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ABSTRACT

Taming the complexity of granular materials with vector calculus

Report Title

Granular materials, which occur widely in nature and industry, exhibit a vast range of complex behaviour: self-
organised pattern formation and multiphase behaviour that defies conventional solid/ fluid/ gas classification. 
Arguably the most important source of this complexity is the immense number of degrees of freedom in the system, 
an aspect that presents serious challenges to the modeller. In particular, the fundamental continuum mechanics 
concept of strain, the mathematical quantity used to describe how a material deforms, cannot adequately describe the 
motion of even the smallest particle cluster. In this paper, we demonstrate how key concepts from vector calculus can 
be used to formulate and model complex particle motions that hold the key to understanding the deformation, failure 
and flow of granular materials. We present a number of examples to facilitate the implementation of these concepts in 
lectures. A code in Excel has been written to enable an exploration of a wide range of particle motions, and to 
provide an invaluable tool for designing problems for students to work on in assignments.
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1 INTRODUCTION

This paper concerns the mathematical modelling of 
the deformation of granular materials. It showcases 
modern applications of undergraduate-level 
vector calculus in the context of evolving vector 
fields – specifically, the study of the kinematics 
(displacements, rotations and velocities) of an 
assembly of “grains” as they engage in self-organised 
pattern formation.

Granular materials form a class of materials 
encompassing everything from soil and natural 
grains to pharmaceutical pills and chemical powders. 
They are ubiquitous in nature and commercially vital 
in many industries such as chemical, agricultural, 
cosmetics, food manufacturing, pharmaceutical 
and mining industries (see fi gure 1). Considered 
as the ultimate paradigm of complex systems, 
granular materials exhibit emergent behaviour that 
has eluded scientists for centuries. Today, there is 
still no universally-accepted constitutive model to 
predict how granular materials will behave under 
load. Consequently, systems and processes involving 
granulates rarely reach 60% of their design capacity, 
whereas processes involving fluids operate on 

average at 96% design capacity (Duran, 2000; Oda 
&  Iwashita, 2005). Thus, even a fractional advance 
in our understanding of how granular media behave 
can have a profound economic and social impact.

Numerous models of granular materials are 
constructed within the framework of classical 
continuum theory (Oda &  Iwashita, 2005). This 
theory is based on the assumption that the body 
is continuous and comprises material points that 
bear only translational degrees of freedom. By 
contrast, a granular material is a discrete assembly 
of solid particles, each of which has translational 
as well as rotational degrees of freedom. Classical 
continuum mechanics asserts that a material should 
undergo homogeneous or affine deformation in 
response to homogeneous boundary forces, that 
is, the change in shape of the material should be 
uniform throughout the whole material. Therefore, 
in an affine deformation the components of the 
strain tensor are independent of position (ie. are 
constants or functions of time only). But experiments 
have shown that a granular material subjected to 
uniform boundary forces exhibits signifi cant non-
affi ne deformation, ie. local deviations from affi ne 
deformation (see, for example, Tordesillas et al (2009) 
and references therein). Non-affine deformation 
becomes particularly important during self-organised 
pattern formation, a common phenomenon that 
arises almost from the onset of loading, especially in 
densely packed granular systems (LTB Group, 2004; 
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Behringer, n. d.; Duran, 2000; Oda &  Iwashita, 2005; 
Tordesillas et al, 2008; 2009; Tordesillas & Arber, 2005; 
Majmudar & Behringer, 2005; Rechenmacher, 2006; 
Oda et al, 2004; Kuhn & Bagi, 2002; Mueth et al, 2000; 
Tordesillas, 2007).

By far the most striking example of emergent pattern 
formation in a deforming granular medium resides 
in the manner by which the material transmits 
force via a dual complex force network, as shown 
in fi gure 2. The fi rst, known as the strong network, 
comprises force chains: quasi-linear particle chains 
through which above average contact forces are 
transmitted (LTB Group, 2004; Behringer, n. d.; 
Majmudar & Behringer, 2005). The second, known 
as the weak network, comprises the remaining 
particles bearing relatively small forces: these 
surround and provide lateral stability to the force 
chains. Force chains may span only a few grains in 
length, or they may extend for hundreds of grain 
diameters. Physical experiments using techniques of 
photo-elasticity have shown that force chains align 
themselves in the direction where the material feels 
the greatest compression (Oda & Iwashita, 2005; 
Tordesillas et al, 2009). In essence then force chains 
are emergent columnar structures that are subject to 
axial compression. As the material deforms under 
load, the temporal evolution of these force chains 
is one characterised by the continual birth of new 
force chains and collapse by buckling of old force 
chains. This evolution is highly non-affine, and 
involves large rotations and gradients in rotations1 
(for movies of shear band evolution in a granular 
media simulation, visit www.mgm.ms.unimelb.edu.
au/projects2009.php). Experiments and numerical 
simulations have shown that failure to capture this 
aspect in constitutive modelling results in poor 
predictive capabilities (see Tordesillas et al (2008; 
2009) and references cited therein for more details).

Figure 1: Granular materials are part of everyday life. Catastrophic failures (eg. collapse of silo and 
road failure) are frequent (For movies and images of force chains from experiments, visit 
www.phy.duke.edu/~bob).

1 The movie of the photo-elastic disc experiment shows the 
development of rotating mesoscopic clusters highlighting the 
multiscale nature of pattern formation in these systems.

Vector and tensor calculus is currently taught to 

second- and third-year undergraduate mathematics, 

physics and engineering students. Typically, basic 

operations and concepts such as divergence, 

curl, vector fields, flow lines, etc. are explained 

physically using fluid flow. In this paper, we 

demonstrate how vector and tensor calculus can 

be applied at the cutting edge of research in the 

science of complex media to quantify the non-affi ne 

deformation of granular materials. Attention is paid 

to the “transition regime” during which the material 

effectively undergoes a phase change from solid-like 

to liquid-like behaviour. This has proven to be one 

of the most challenging regimes from the standpoint 

of mathematical modelling, as the material self-

organises to form failure patterns at multiple length 

scales (eg. microbands, force chain buckling, shear 

band) (Tordesillas et al, 2008; 2009; Rechenmacher, 

2006; Oda et al, 2004; Kuhn & Bagi, 2002; Mueth et 

al, 2000; Tordesillas, 2007). A simple computer code 

for calculating the non-affi ne deformation associated 

with the deformation of a particle cluster can readily 

be implemented in an Excel spreadsheet (available 

from the authors upon request).

2 DEFORMATION OF A CONTINUUM

In general, the application of force to a continuous 

body gives rise to a combination of rigid body motion 

and a change in shape of the body. The change in shape 

is called deformation. Deformable bodies can change 

shape, whereas rigid bodies can only undergo rigid-

body motions. We now briefl y review the deformation 

of a classical continuum body, as typically presented in 

the introductory sections of a classical solid mechanics 

textbook (eg. Hjelmstad, 2005).

To quantify deformation, we must completely 

characterise the initial geometry of the body B. We 

may treat this initial geometry B as the reference 

confi guration. The reference confi guration has two 
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basic features: the domain B, which is the interior of 

the body, and the boundary S, which is the surface 

of the body. The first assumption in continuum 

mechanics is that we know the position of every 

point in the body in the reference confi guration. We 

can then locate the position of a point P by assigning 

it a position vector x with coordinates (x
1
, x

2
, x

3
). The 

second assumption in continuum mechanics is that 

we can characterise the deformation of the body B 
with a (possibly piecewise) continuous function  

called a deformation map. The deformation map 

sends a point P in the reference confi guration with 
position vector x to a point ( )P  in the deformed 

confi guration with position vector ( )x .

To measure the intensity of deformation (deformation 

per unit length) about a material point in a continuous 

body, a quantity called strain is employed. In general, 

deformation will not be uniform throughout the 

whole body. Some line segments will experience 

extensions, while others will experience contractions. 

Angles between line segments can change. The 

strain completely characterises the deformation of 

the infi nitesimal neighbourhood of the point x. We 

defi ne the Lagrangian strain tensor  in terms of the 

deformation gradient tensor F as  = ½[FT  · F – I], 

where F  and I is the identity tensor. We refer 

our readers to any standard classical continuum 
mechanics textbook (eg. Hjelmstad, 2005) for a 
derivation of this measure from fi rst principles, along 
with a discussion of vectors and tensors.

We can also express the Lagrangian strain tensor in 
terms of particle displacements. The displacement 
vector of a point initially at x that moves to ( )x  as a 

result of the deformation is given by u, as illustrated 
in fi gure 3. Accordingly, the deformation gradient is 
given by F = I + u, where u is the displacement 
gradient tensor. The Lagrangian strain tensor can 
then be defi ned in terms of the displacement gradient 
as  = ½[ u + uT + uT u], where uT ≡ [ u]T.

We defi ne a special class of deformations known as 
affi ne deformations. These are deformations of the 
form ( )x F x c, where F and c are constants or 

functions of time only. The deformation gradient 
of an affi ne deformation is given by the tensor F. 
As a consequence, all of the deformation and strain 
tensors associated with an affi ne deformation are 
independent of position: the body deforms in a 
uniform manner. Under an affine deformation, 

Figure 2: Images of bright chains of photo-elastic particles carrying above average forces, ie. “force 
chains”, existing amidst dark particles which carry small or zero forces. From top right 
clockwise are images of force transmission patterns in granular assemblies: (a) sheared 
between concentric cylinders (outer cylinder is fi xed, inner cylinder is rotating); (b) under an 
“impacting” steel ball; (c) close-up view of stress pattern in individual particles; and (d) in an 
exhibit at the Chicago Museum of Science and Industry by R. P. Behringer (LTB Group, 2004; 
Behringer, n. d.).

(a)

(b)

(c)(d)
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material curves that form straight lines in the 

reference confi guration remain straight lines in the 

deformed confi guration (fi gure 4). Conversely, under 

a non-affi ne deformation, material curves that are 

straight in the reference confi guration become curved 

in the deformed confi guration (fi gure 4).

3 DEFORMATION OF A
GRANULAR MATERIAL

Granular materials differ geometrically from 

continuous bodies due to the heterogeneous 

characteristics of grains and their possible 

confi gurations, and yet it remains convenient to 

defi ne the strain tensor for a granular material in 

P
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u(x)

r 
 (B)

      

r 
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1
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Figure 3: Deformation in terms of displacement.
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Figure 4: Graphical depictions of an affi ne (top) and non-affi ne (bottom) deformation.

2 This analysis can be extended to spherical particles in three 
dimensions, however, this extension is beyond the scope of 
this paper.

terms of the displacement gradient as in continuum 

mechanics. Before doing so, we must define a 

representative particle cluster that will form the 

material point in the continuum representation 

of the granular material (Tordesillas et al, 2008). 

For simplicity, we confine our attention to two-

dimensional granular assemblies of circular particles 

of varying sizes. The representative particle cluster 

comprises a reference particle and its first ring 

of neighbours, see fi gure 5.2 We then introduce a 

coordinate system, the origin of which is located at 

the centre of the reference particle. The vector lc that 
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joins the centre of the reference particle to the centre 
of its cth neighbour is called a branch vector. The end 
points of the branch vectors joining the reference 
particle to its immediate neighbours correspond to 
the vertices of a Delaunay polygon for the reference 
particle.3 The Delaunay polygon has boundary S and 
area V. We defi ne an outwards unit normal vector on 

the cth edge of the Delaunay polygon by 1
3

c c
jk k ke l l  

or 1
3ˆc cl l x , where eijk is the Levi-Civita symbol, 

defi ned by:

0    for ,  or  

1  for , , 1, 2, 3 , 2, 3,1 , 3,1, 2

1  for , , 1, 3, 2 , 3, 2,1 , 2,1, 3

ijk

i j j k k i

e i j k

i j k

 (1)

and × denotes the cross product.

Let u be the displacement vector of the reference 
particle and uc be the displacement vector of the cth 
neighbour. Then the relative displacement vector pc 
describes the displacement of the cth neighbour in 
relation to the reference particle, and is defi ned as:

3 3ˆ  or  c c c c c c
i i i ij jp u u e l p u u l x  (2)

where ω is the angle of rotation of the reference 
particle. This defi nition encapsulates an important 
degree of freedom in granular materials that is 
absent in classical continua. Note this internal 
rotation ω is distinct from the macroscopic rotation 
of the material point that corresponds to the 
representative particle cluster.

We now derive a measure of strain for a granular 
material. Consider a continuous displacement fi eld, 
u, given for a continuous body. Let V be the area of 
the body, S its boundary, and n the outward unit 

x
3

ˆ    (l
c+1 lc )

p
c+1

S

  V

  l
c

l
c+1

  p
c

Figure 5: A non-affi ne deformation of a cluster of seven circular particles in two dimensions.

3 The Delaunay-network in two-dimensional Euclidean space is 
dual to the Dirichlet tesselation. The plane can be partitioned 
into polygonal domains or Dirichlet-cells such that each 
Dirichlet-cell contains exactly one grain and every point in a 
given Dirichlet-cell has a shorter or equal tangent to that grain 
than to any other grain. If the Dirichlet-cells of two grains have 
a common edge, the two grain centres are connected with 
a branch vector. These branch vectors form the Delaunay-
network of the assembly (Oda & Iwashita, 2005).

normal on S. By the divergence theorem in the plane, 
the volumetric average u of u can be expressed as 
an integral on S:

1 1
ij ij i j

V S

u u dV u n dS
V V

 (3)

where iju  are the components of u.

Essentially, we calculate the total change in shape of 
the body by considering the distances and directions 
in which the boundary displaces. We then divide 
by the initial area V of the body to give the average 
displacement gradient. This defi nes a new strain 
tensor, which we can apply to a particle and its fi rst 
ring of neighbours. The components of the strain 
tensor, defi ned for a reference particle, are given by:

1 1
3

1 1
2

c c c c
ij i j i i jk k k

c BS

p n dS p p e l l
V V

 (4)

where pi is a linear interpolation of the pi
c vectors 

and the sum is taken anticlockwise over the set B of 
branch vectors associated with the reference particle.

Since this strain tensor is independent of position (ie. 
a constant tensor or a function of time), it describes 
an affi ne deformation, regardless of whether or not 
the individual motions of particles adhere to the strict 
linearity constraints of an affi ne deformation. This 
has signifi cant implications. Consider the following 
scenario: we vertically compress a cluster of seven 
rigid particles until it deforms, as illustrated in fi gure 
5. Initially, the three particles comprising the central 
column are aligned. But in order for the cluster to 
deform, the three central particles must diverge from 
their initial alignment so that their centres are no 
longer situated along a straight line. This constitutes 
a non-affi ne deformation. However, the strain tensor 
that we have just defi ned does not register the non-
affi nity of this buckling event. Failure to register 
non-affinity is problematic since non-affinity is 
associated with a key mechanism in granular systems 
called force chain buckling (Tordesillas et al, 2008). 
Experimental studies have shown that force chain 
buckling governs shear banding, which is regarded 
as the “signature” of granular media (Tordesillas et 
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al, 2009; Rechenmacher, 2006; Oda et al, 2004). Once 
a shear band is fully developed, it effectively splits 
the material into parts that slide past one another in 
rigid body motion (Mueth et al, 2000). At this point 
the material can no longer sustain any load and is 
said to have failed.

We can capture such non-affine deformation by 
introducing a new measure to supplement the 
strain tensor. The difference Δpc between the actual 
relative displacement pc of the cth neighbour and the 
displacement  · lc implied by the strain tensor is:

Δpc = pc –  · lc (5)

We defi ne a scalar measure of non-affi ne deformation 
associated with the deformation of a particle cluster, 
comprising a particle and its fi rst ring of neighbours, as:

1 1
 

1 1

1 1
2

1
2

c c c c

c BS

c c c c c

c B

dS
V V

V

p p p l l

p l l l l
 (6)

This measure is defi ned for the reference particle and 
captures the deviations of the relative displacements 
of neighbouring particles from those displacements 
implied by the strain tensor. The measure is 
dimensionless, and therefore independent of particle 
cluster size.

4 EXAMPLE PROBLEMS

Computed below are the strain tensors and measures 
of non-affi ne deformation for two common modes 
of deformation in two dimensions.

4.1 Example 1 – affi ne deformation

Consider a cluster of seven circular, rigid particles of 
unit diameter, as shown in fi gure 6.

The branch vectors joining the reference particle to 
its neighbours are given by:

1 2 3

4 5 6

1 3 1 3
1,0 ,   , ,   , ,

2 2 2 2

1 3 1 3
1,0 ,   , ,   ,

2 2 2 2

l l l

l l l

The images of the branch vectors after deformation 

are given by:

1 2 3

4 5 6

2 2 2 2
2,0 ,   , ,   , ,

2 2 2 2

2 2 2 2
2,0 ,   , ,   ,

2 2 2 2

' ' '

' ' '

l l l

l l l

The relative displacement vector pc of the neighbour 

c is lc’ − lc. Thus, the relative displacement vectors 

are given by:

1 2

3 4

5 6

2 1 2 3
2 1,0 ,  , ,

2 2 2 2

2 1 2 3
, ,  2 1,0 ,

2 2 2 2

2 1 2 3 2 1 2 3
, ,  ,

2 2 2 2 2 2 2 2

p p

p p

p p

The component ε
11

 of the strain tensor can be 

computed by substituting i = 1 and j = 1 into equation 

(4). Then:

1 2 2 1 2 3 3 2
11 1 1 2 2 1 1 2 2

3 4 4 3 4 5 5 4
1 1 2 2 1 1 2 2

5 6 6 5 6 1 1 6
1 1 2 2 1 1 2 2

1
2

2 1

p p l l p p l l
V
p p l l p p l l

p p l l p p l l

The other components can be computed in a similar 

fashion. Thus, the strain tensor has components:

2 1 0

6
0 1

3

For this deformation, we observe that pc –  · lc = 0 

for all c ∈ B. For example, c = 1 gives:

1 1
2 1 0 1 02 1

6 0 00 0 1
3

p l

Hence, the relative displacement implied by the 

strain tensor matches the actual relative displacement 

of the neighbour c. According to equation (6), it 

l
1

l
1

l
6

l
4l

4

l
5

l
3l

2
l
3

l
2

    l
5

  l
6

Figure 6: An affi ne deformation of a seven-particle cluster. Arrows show branch vectors joining the centre 
of the reference particle to the centres of its neighbours. Dotted lines show virtual contacts.
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follows that Δε = 0. Hence, this deformation is an 

affi ne deformation.

4.2 Example 2 – a non-affi ne deformation
of a seven-particle cluster

In this example, we consider the buckling of a force 

chain under lateral confinement from its weak 

network neighbours. The particles are assumed to 

be rigid and of unit diameter, as shown in fi gure 7.

The branch vectors joining the centre of the reference 

particle to the centres of its neighbours are given by:

1 2 3

4 5 6

3 1 3 1
, ,   0,1 ,   , ,

2 2 2 2

3 1 3 1
, ,   0, 1 ,   ,

2 2 2 2

l l l

l l l

The images of the branch vectors after deformation 

are given by:

2

1 2

3 4

2

5 6

2 1 2 1 2 2
1 , ,   , ,

2 2 2 2 2 2

3 1 3 1
, ,   , ,

2 2 2 2

2 2 2 1 2 1
, ,   1 ,

2 2 2 2 2 2

' '

' '

' '

l l

l l

l l

From equation (4), the strain tensor can be computed 

to have components:

2
6 3 1 2 1

1 0
6 3 2 2 2

2 2
0

3

From equation (5), the difference between the actual 

relative displacement of neighbour 2 and the relative 

displacement of neighbour 2 implied by the strain 

tensor is:

    l
6

  l
1

l
5

l
2

    l
4

    l
3

l
1

l
3

l
4

    l
5

l
6

    l
2

Figure 7: A seven-particle force chain buckling model. Shaded (unshaded) particles are force chain 
(weak network) particles. Arrows show branch vectors joining the centre of the reference 
particle to the centres of its neighbours. Dotted lines show virtual contacts.

4 In general, force chains can comprise more than three particles. 
We can apply the measure of non-affi ne deformation to larger 
force chains by analysing them in three-particle segments, as 
was performed in Tordesillas et al (2009) and Tordesillas (2007).

2 2 2

2

2
2

2
1

2

6 3 1 2 1
1 0 06 3 2 2 2

1
2 2

0
3

0.71
0.10

p p l

Similarly, the differences between the actual relative 

displacements of the other neighbours and the relative 

displacements implied by the strain tensor are:

Δp1 ≈ (0.41, 0.10), Δp2 ≈ (0.71, –0.10), Δp3 ≈ (0.41, 0.10),

Δp4 ≈ (0.41, –0.10), Δp5 ≈ (0.71, 0.10), Δp6 ≈ (0.41, –0.10)

From equation (6), the non-affi ne deformation4 can 

be computed as:

1 2 1 1 6

2 3 2 2 1 3 4 3 3 2

4 5 4 4 3 5 6 5 5 4

6 1 6 6 5

1
2

1.2

V
p l l l l

p l l l l p l l l l

p l l l l p l l l l

p l l l l

5 FURTHER APPLICATIONS

There exist distinct modes of relative motion between 

the particles in a deforming granular material. 

To better understand the relative contribution of 

each of these modes to strain, we consider some 

decompositions of the strain tensor. Below we present 
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some decompositions that represent contributions 

from relative motion with respect to in-contact versus 

out-of-contact neighbours, and motions in the normal 

versus tangential directions. 

The average strain for a particle, 
p
ij, can be decomposed 

into components describing the relative motion at 

branch vectors between contacting particles, 
in
ij , 

and that due to the relative motion at branch vectors 

between particles that are out of contact, out
ij , such that:

in outp
ij ij ij  (7)

These two strain rate measures are given by:

in

in 1 1
3

1
2

c c c c
ij i i jk k kp

c B

p p e l l
V

 (8)

out

out 1 1
3

1
2

c c c c
ij i i jk k kp

c B

p p e l l
V

 (9)

where the sums are over those branch vectors where 

the particles are in contact, Bin, and those branch 

vectors where the particles are out of contact, Bout, 

respectively.

Similarly, the successive application of the in-out 

and normal-tangential decompositions introduces 

further strain measures: 
nin

ij  and 
tin

ij  describing the 

contribution to the strain at branch vectors between 

contacting particles due to the relative normal and 

tangential motion, respectively, and 
nout

ij  and 
tout

ij  

describing the strain at branch vectors between 

particles that are out of contact due to the relative 

normal and tangential motion, respectively. For 

example, we have:

n

in

in 1 1
3

1
2

c c c c
ij h h i h h i jk k kp

c B

p n n p n n e l l
V

 (10)

where ni or n̂ is a unit vector normal to the branch 

vector and ph
cnh or pc · n̂ denotes the dot product.

As an illustration of these decompositions, we show 

in figure 8 some particle motions that produce 

different contributions to the particle volumetric 

strain in 1
2

p
vol ii , a measure of the change in volume 

of the material element: if positive, the material is 

said to have undergone dilatation. By exploring these 

decompositions, we can get a detailed understanding 

5 A distinctive feature of dense granular materials is Reynolds’ 
dilatancy; the tendency for a granular material to increase in 
volume during deformation (For an experiment demonstrating 
Reynolds’ dilatancy, visit www.grasp.ulg.ac.be/cours/fun/
diy/Dilatancy.html). While walking along the beach, Osborne 
Reynolds puzzled over the apparent whitening or drying up 
of the sand around his feet. The sand grains beneath his feet 
experienced shear, causing grains to roll and slide over one 
another. This motion is akin to a lever action that inherently 
creates voids between the grains. The surface water drains 
into these interstitial voids, thus giving the appearance of the 
sand drying up around Reynolds’ feet.

6 These simulations show the temporal evolution of the non-
affi ne deformation of the particle motion.

of the specifi c kinds of motion that serve as major 
contributors to this intriguing phenomenon.5

In particular, fi gure 8(left) shows how a dilative 
volumetric strain can arise from solely normal motion 

along out-of-contact branch vectors (
nout

ij ). Figure 

8(right) shows how dilative normal motion and 
contractive tangential motion from out-of-contact 

branch vectors (
nout

ij , 
tout

ij ) can combine to produce 

zero volume change in εij, 
out
ij  and 

in
ij . A measure 

of some of these decompositions for the specimen 
in the simulation6 shown in Tordesillas (n. d.) is 
presented in fi gure 9. The decompositions evolve 
with strain distinctly from each other and from the 
total volumetric strain. Specifi cally, the contribution 
from branch vectors between out-of-contact particles 
begins to dilate before the total volumetric strain, 
whereas that for in-contact particles continues to 
undergo compression even after the assembly has 
commenced dilatation (left plot in fi gure 9). It can 

also be observed that in
vol is due predominantly to 

normal motions (right plot in fi gure 9).

6 CONCLUSION

Much of the complex behaviour exhibited by 
granular materials cannot be described by classical 
continuum mechanics. In particular, force chain 
buckling, one of the most interesting and important 
phenomena associated with the deformation of 
granular materials, emerges due to the discrete 
nature of granular systems. The aim of this article was 
to address the limitations of the classical continuum 
strain tensor and to give a basic understanding of 
non-affi ne deformation in granular materials. The 
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Figure 8: Possible particle motions that lead to different strain contributions. Dark grey particles 
contribute to the strain and their branch vectors are dotted lines. Light grey particles do
not contribute to the strain and their branch vectors are solid lines.
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Figure 9: Two possible decompositions of the particle volumetric strain tensor.

worked examples included in this article demonstrate 
how to compute the non-affi nity associated with two 
common modes of deformation. A code facilitates 
further study and exploration of the important 
connection between particle kinematics and strain.
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