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Abstract
Wepresent quantum algorithms to efficiently performdiscriminant analysis for dimensionality
reduction and classification over an exponentially large input data set. Comparedwith the best-known
classical algorithms, the quantum algorithms show an exponential speedup in both the number of
training vectorsM and the feature space dimensionN.We generalize the previous quantum algorithm
for solving systems of linear equations (2009Phys. Rev. Lett. 103 150502) to efficiently implement a
Hermitian chain product of k trace-normalizedN×NHermitian positive-semidefinitematrices with
time complexity of ( ( ))O Nlog . Using this result, we perform linear as well as nonlinear Fisher
discriminant analysis for dimensionality reduction overM vectors, each in anN-dimensional feature
space, in time ( ( ) )O p MNpolylog 3 , where ò denotes the tolerance error, and p is the number of
principal projection directions desired.We also present a quantumdiscriminant analysis algorithm
for data classificationwith time complexity ( ( ) )O MNlog 3 .

1. Introduction

With the rise in the fields of big data analysis andmachine learning in themodern era, techniques such as
dimensionality reduction and classification have gained significant importance in the information sciences. In
machine learning and statistical analysis problems, when input vectors are given in an extremely large feature
space, it is often necessary to reduce the data to amoremanageable dimension/size beforemanipulation or
classification. One classical example is in the problemof face recognition [8, 9], where the size of the feature
space is determined by a huge number of pixels representing each face.More recent applications are also seen in
fields ofmedical imaging. For instance, [11] shows the necessity for dimensionality reduction in diagnosing
cases of liver cirrhosis. Also, [12] shows the importance of dimensionality reduction for early Alzheimer’s disease
detection.

Onewidely used technique for dimensionality reduction is principal components analysis (PCA), where the
data is projected onto the directions ofmaximal variance. However, a significant disadvantage of PCA is that it
looks only at the overall data variance, and does not consider the class data. The extreme example of this would
occur if the overall data variance is in exactly the same direction as themaximal within-class data variance, but
orthogonal to the direction ofmaximal between-class data variance. In such a case, it is possible for a PCA
projection to completely overlap the data fromdifferent classes,making it impossible to use the projected data to
perform future discriminations. Fisher’s linear discriminant analysis (LDA) is a technique developed to
overcome this problemby instead projecting the data onto directions thatmaximize the between-class variance,
whileminimizing thewithin-class variance of the training data. It is hence not surprising that LDA is shown to
bemore effective than PCA inmachine learning problems involving dimensionality reduction before
classification [8, 9].
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Another common application of discriminant analysis is to use it as a classifier itself, where labeled training
vectors are presented as input and new casesmust be efficiently assigned to their respective classes. The
discriminant analysis classifier has recently been used inmedical analysis, such as in analyzing electromyography
(EMG) signals [13, 14], lung cancer classification [15], and breast cancer diagnosis [16].While other algorithms
such as the support vectormachine (SVM) reach similar accuracy rates as the discriminant analysis classifier
[17, 18], studies [18] show that discriminant analysis is a significantlymore stablemodel. This is because the
separating hyperplane chosen by the SVMcan depend only on a few support vectors, subjecting it to high
variance in the case of training vector errors. On the other hand, since discriminant analysis bases its
classification on the entire classmeans and variances, it tends to show less fluctuation and is potentiallymore
robust in the presence of error.

A significant drawback of discriminant analysis in both dimensionality reduction and classification is the
time complexity. Even the best existing classical algorithms for LDAdimensionality reduction require timeO
(Ms) [7], whereM is the number of training vectors given, and s is the sparseness (maximumnumber of nonzero
components) of each feature vector. For large data sets in high dimensions, this can scale rather poorly, especially
since it is often hard to guarantee the sparseness of training vectors.While quantumalgorithms have been
designed to exponentially speed up PCA to be polylogarithmic in the number of input vectors and their
dimension [5], no suchwork has been done yet to speed up LDA. In section 3, we provide a quantumalgorithm
for LDApolylogarithmic in bothM, the number of training vectors, andN, the initial feature space dimension,
regardless of the sparseness of the training vectors.

Similarly, while a quantum algorithmhas been presented to provide exponential speedup in SVM
classification [3], nowork has been done yet for the discriminant analysis classifier. The best known algorithms
for the classical discriminant analysis classifier also require time polynomial inM andN (see section 2 below),
which again can scale rather poorly. In section 4, we provide a quantumalgorithm for discriminant analysis
classification logarithmic in both the number of input vectorsM and the dimensionN.

This paper is arranged as follows: in section 2we briefly review the classical discriminant analysis algorithms
for dimensionality reduction and data classification. In sections 3 and 4, we present ourmajor results of
quantumdiscriminant analysis algorithms for dimensionality reduction as well as classification. The detailed
proof of theorem 1 in section 3, which is about efficient quantum implementation of aHermitian chain product
of k trace-normalizedN×NHermitian positive-semidefinitematrices, is included in the appendix.

2. Review of classical discriminant analysis

2.1.Dimensionality reduction
The classical LDAdimensionality reduction algorithm is designed to return the directions of projection that
maximize the between-class variance (for class discrimination), butminimize thewithin-class variance.With
this result, in big data problems as listed in section 1, the vectors in a high-dimensional feature spacemay be
projected onto a lower-dimensional subspace (spanned by the returned optimal unit vectors), so that less
resourcesmay be used to store the same amount of information. Supposewe are givenM (real-valued) input
data vectors Î{ }  x i M: 1i

N each belonging to one of k classes. Let mc denote thewithin-classmean
(centroid) of class c, and x denotes themean/centroid of all data points x. Furthermore, let

å m m= - -
=

( )( ) ( )S x x 1B
c

k

c c
1

T

denote the between-class scattermatrix of the dataset, and let

åå m m= - -
= Î

( )( ) ( )S x x 2W
c

k

x c
c c

1

T

denote thewithin-class scattermatrix. The goal is then tofind a direction of projection Î w N thatmaximizes
the between-class variance w S wB

T relative to thewithin-class variance w S wW
T .Mathematically, assuming that

the classes have approximatelymultivariate Gaussian distributionwith similar covariances, this is the problem
ofmaximizing the objective function (commonly known as Fisher’s discriminant)

=( ) ( )J w
w S w

w S w
. 3B

W

T

T

Since the expression for J(w) is invariant under constant rescaling ofw, it is clear that themaximization problem
given in (3) is equivalent to the optimization problem

- ( )w S wmin , 4
w

B
T
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= ( )w S wsubject to 1. 5W
T

Weare thusminimizing the Lagrangian [1]

l= - + -( ) ( ) w S w w S w 1 , 6P B W
T T

whereλ is the desired Lagrangemultiplier. By theKarush–Kuhn–Tucker conditions [27], thismeans that

l=- ( )S S w w. 7W B
1

It follows thatw is an eigenvector of -S SW B
1 . By plugging (7) back into the objective function J(w), we get

l=( )J w . Hence, we choosew to be the principal eigenvector.
The above procedure generalizes easily to higher-dimensional projection subspaces. In this case, we seek p

vectors which form a basis for our projection subspace; this corresponds tomaximizing the discriminant

=( )J W
W S W

W S W
,B

W

T

T

whereW is theN×pmatrix whose columns are the basis vectors. Using the same analysis as above, one can
show that the columns ofWwill be the eigenvectors corresponding to the p largest eigenvalues of -S SW B

1 , as in the
case of PCA.

2.2. Classification
Although itsmost widely used application is probably in dimensionality reduction, discriminant analysis is also
commonly used to directly performdata classification. For classification, one constructs the discriminant
functions for each class c

d m m m p= S - S +- -( ) ( )x x
1

2
, log , 8c c c c c c c

T 1 T 1

whereSc is the covariancematrix for class c, mc is the classmean for c as before, and pc is the prior probability for
classifying into class c [19]. Given a vector x, it is then classified into the class d= ( )c xargmaxc c . From the
training vector data, ifMc is the number of training vectors belonging to class c, we can approximate p = M Mc c

for simplicity, i.e. the probability of classifying to a certain class c is directly proportional to the fraction of
training vectors belonging to c [19]. Assumingmultivariate Gaussian distributions for each class, we also
estimate

å m mS =
-

- -
Î

( )( ) ( )
M

x x
1

1
. 9c

c x c
c c

T

Note that in the special case where the covariancematrices are all approximately equal (i.e.S » Sc " c),Σ is
proportional to the scattermatrix SW given by equation (2). In this special case, the functions dc are known as
linear discriminant functions. In our paper, we present a quantum algorithm to solve themore general case,
known as quadratic discriminant analysis (QDA), in time logarithmic in both the number of input vectorsM and
their dimensionN. Our algorithmwill be easily applicable to the special case of LDA classification. This provides
exponential speedup over the fastest existing algorithms, since the classical construction/inversion ofSc to
evaluate the discriminant functionsmust require time polynomial in bothM andN.

3.QuantumLDAalgorithm: dimensionality reduction

3.1. Assumptions and initialization
The quantumPCA algorithmof [5]presentsmethods for processing input vector data if the covariancematrix of
the data is efficiently obtainable as a densitymatrix, under specific assumptions about the vectors given in
quantummechanical form.While ourmajor contributions are also in the processingmechanisms of thewithin-
and between-class covariancematrices, wewill describe how to obtain this densitymatrix under certain
assumptions about the input data, like in [2, 4, 5].

In our algorithm, similar to the assumptionsmade in [2, 4, 5], wewill assumewe have quantum access to the
training vector data in a quantumRAM (as described in [10]).Wewill assume that each training vector is stored
in the quantumRAM in terms of its difference from the classmeans. That is, if a training vector xj belongs to class
cjwith centroid mcj

, we have the Euclidean norm and complex-valued components of the difference vector

m= -d xj j cj
stored as floating-point numbers in quantumRAM in polar form (alternatively, if the input is

presented directly as the training vectors xj and the classmeans mc , wemay first perform a component-wise
subtraction of the given floating-point numbers, by [26]). Following themethodology of [3–5], wewill assume
the following oracle:

3
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m mñ ñ ñ ñ  ñ - ñ - ñ ñ(∣ ∣ ∣ ∣ ) ∣ ∣ ∣ ∣ j j x x c0 0 0 j c j c j1 j j
 

to get the jth training vector and its class cj, where m- ñ∣xj cj
has already been normalized to one. Similarly, we

also assume that we are given the quantum representations of the class centroids m ñ∣ c , in terms of their differences
from the overall training vectormean ñ∣x . That is, if m= -D xc c , we assume the oracle

m mñ ñ ñ  ñ - ñ - ñ(∣ ∣ ∣ ) ∣ ∣ ∣ c c x x0 0 ,c c2  

wherewe similarly assume that m - ñ∣ xc has been normalized to one. These oracles could, as an example, be
realizable if the input data is presented in this form as the output of a preceding quantum system, or if the vector
components are presented as floating-point numbers in the quantumRAM, and the sub-norms of the vectors
can be estimated efficiently [4, 28–30]. The oracles1 and2 allowus to construct densitymatrices proportional
to SB and SW as follows: let

å å m mY ñ = ñ ñ ñ = ñ - ñ - ñ
= =

∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )
⎛
⎝⎜

⎞
⎠⎟k

c
k

c x x
1

0 0
1

, 10
c

k

c

k

c c1 2
1 1

 

å å m mF ñ = ñ ñ ñ ñ = ñ - ñ - ñ
= =

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟M

j
M

j x x
1

0 0 0
1

. 11
j

M

j

M

j c j c1 1
1 1

j j
 

By [4, 28–30], if the norms of the vectors form an efficiently integrable distribution, we can obtain the states

å m m mY ñ = - ñ - ñ - ñ
=

∣ ∣ ∣ ∣ ( )
A

x c x x
1

, 12
c

k

c c c2
1

   

å m m mF ñ = - ñ - ñ - ñ ñ
=

∣ ∣ ∣ ∣ ∣ ( )
B

x j x x c
1

, 13
j

M

j c j c j c j2
1

j j j
   

where m= å -=A xc
k

c1
2  , m= å -=B xj

M
j c1

2
j

  .
In both cases, we now take the partial trace over the first register. Then, for the state of equation (12), the

densitymatrix of the second register [5] is given by

å m m m= - - ñá -
=

∣ ∣ ( )S
A

x x x
1

14B
c

k

c c c
1

2 

and for the state of equation (13), the densitymatrix of the second register is given by

åå m m m= - - ñá -
= Î

∣ ∣ ( )S
B

x x x
1

. 15W
c

k

i c
i c i c i c

1

2 

Assuming our oracles1 and2, we can hence construct theHermitian operators SB, SW in
time ( ( ))O MNlog .

3.2. LDA approach
Having initialized themeans and operators SB, SW, ourmain taskwill be to solve the eigenvector problemof (7).
This problemwould be simpler if only -S SW B

1 wereHermitian positive semidefinite. However, we can reduce this
problem to an eigenvalue problem for aHermitian densitymatrix: specifically, since SB isHermitian positive
semidefinite, letting = -w S vB

1 2 reduces (7) to the eigenvalue problem [1]

l=- ( )S S S v v. 16B W B
1 2 1 1 2

To apply the quantumphase estimation algorithm to solve (16), wemustfirst be able to construct the density
matrix -S S SB W B

1 2 1 1 2. In the following section, we present amore general theorem that can be applied to construct
this densitymatrix.

3.3. Implementing theHermitian chain product
In this section, we state a theorem to construct the densitymatrix corresponding to theHermitian chain product

[ ( ) ( )][ ( ) ( )] ( )†f A f A f A f A... ... 17k k k k1 1 1 1

to error ò, for arbitrary normalizedN×NHermitian positive semidefinitematrices A A,... k1 , and functions
f f,... k1 with convergent Taylor series. The derivation of this theorem follows themethod presented in [2], and is
presented in appendix A.

Theorem1. Let ¼A A, k1 be k normalizedHermitian positive semidefinitematrices whose quantum forms can be
constructed in time ( ( ))O Nlog (e.g., by visits to a quantumRAM) and let ¼f f, k1 be k functions with convergent

Taylor series. Let l ={ }jl l
N

1 denote the eigenvalues ofmatrix Aj. Then theHermitian operator in equation (17) can be
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implemented in time

å k
l
l

l

l= =

( ) · ·
∣ ( )∣
∣ ( )∣

∣ ( )∣

∣ ( )∣
( )



⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟O

N f

f

f

f

log max

min

max

min
, 18

j

k

j
l l

l l j

k l j jl

l j jl
3

1

2 1 1

1 1 2

2

where kj is the condition number formatrix Aj, i.e. the ratio of the largest to smallest eigenvalue of Aj.More generally,
if construction of eachmatrix Aj takes timeO(X), the operator can be implemented in time

å k
l
l

l
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j
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Wenote that this provides exponential speedup over classical algorithms, as the optimal classical algorithm for
multiplication of non-sparseN×Nmatrices requires time ( )O N 2.3737 [31].

3.4. Finding the principal eigenvectors
For LDA,we apply the theorempresented in the previous section to obtain thematrix product -S S SB W B

1 2 1 1 2.
Specifically, we use =A SW1 , =A SB2 , = -( )f X X1

1 2, and =( )f X X2
1 2. To avoid exponential complexity in

the case of exponentially small eigenvalues, we adopt a technique used in [3] by pre-defining an effective
condition number keff and taking into account only eigenvalues in the range k[ ]1 , 1eff for phase estimation.
(typically, onemay take k = ( )O 1eff , because keff is a limit to the amount of eigenvalues considered in phase
estimation, which should be proportional to the error tolerance). By our initialization procedures, preparation
of SB and SW take time ( ( ))O MNlog , and by definition of f1, f2, and keff

l
l

l
l

k= =
∣ ( )∣
∣ ( )∣

∣ ( )∣
∣ ( )∣

f

f

f

f

max

min

max

min
.

l l

l l

l l

l l

1 1

1 1

2 2

2 2
eff
1 2

Hence, by (19)we can obtain -S S SB W B
1 2 1 1 2 in time k( ( ) )O MNlog eff

3.5 3 . Using thematrix exponentiation
technique presented in [5], we can then apply quantumphase estimation to obtain an approximation to the state

år l l l= ñá Ä ñá∣ ∣ ∣ ∣v v ,
i

i i i i i

where li and vi are the eigenvalues and eigenvectors of
-S S SB W B

1 2 1 1 2. If the p principal (largest) eigenvalues are
polynomially small, sampling produces the corresponding p principal eigenvectors vr of

-S S SB W B
1 2 1 1 2 in time

( ( ) )O p MNpolylog 3 [22]. (If all eigenvalues are indeed super-polynomially small, there are typically no
suitable directions for discriminant analysis: all directions would be essentially the same in preserving between-
class versuswithin-class data). Finally, having solved the eigenvalue problemof (16), we again use the technique
of the previous section to obtain the eigenvectors

= - ( )w S v 20r B r
1 2

of -S SW B
1 . After obtaining these principal eigenvectors, the data can be projected onto the dimensions ofmaximal

between-class variance andminimal within-class variance. At this stage, one has effectively performed
dimensionality reduction, and can now easilymanipulate the data with existing tools, e.g. a classifier (see [3] or
section 4 below).

Algorithm1.QuantumLDAdimensionality reduction.

Step 1: Initialization. By querying the quantumRAM/oracles, construct theHermitian positive semidefinite operators SB and SW as given by

equations (14) and (15) in time ( ( ))O MNlog .

Step 2: Since SB and SW areHermitian positive semidefinite, use themethod of [5] to exponentiate these operators. Apply the generalized
matrix chain algorithmof theorem1 to implement -S S SB W B

1 2 1 1 2 in time k( ( ) )O MNlog eff
3.5 3 .

Step 3: Since -S S SB W B
1 2 1 1 2 isHermitian positive semidefinite, use themethod of [5] to exponentiate this operator. Use quantumphase

estimationmethods and sample from the resulting probabilisticmixture to then obtain the p principal eigenvalues/eigenvectors vr, in

time ( ( ) )O p MNpolylog 3 .

Step 4: Apply -SB
1 2 to the vrʼs (by the algorithmof theorem1) to get desired directions = -w S vr B r

1 2 , in time k( ( ) )O p MNlog eff
3 3 .

Step 5: Project data onto thewrʼs for dimensionality reduction, or otherwisework in the directions ofmaximal class discrimination.

3.5. Algorithmic complexity for dimensionality reduction
Algorithm1 above shows the pseudocode for our LDA algorithm. Step 1 (initialization) takes time ( ( ))O MNlog
with our quantumoracles. Implementing the operator -S S SB W B

1 2 1 1 2 takes time k( ( ) )O MNlog eff
3.5 3 , and

5
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finding its principal eigenvectors then takes ( ( ) )O MNlog 3 . Finally, Step 4 takes time k( ( ) )O MNlog eff
3 3 to

apply -SB
1 2 to the vrʼs and obtain the eigenvectors of

-S SW B
1 . Hence, we can add these to get the total runtime:

Theorem2.The quantumLDAalgorithm presented in this paper (with pseudocode given by algorithm 1) can be
implemented in time polylogarithmic in both the number of input vectorsMand the input vector dimensionN.
Specifically, it has a runtime of

k( ( ) ) ( )O p MNpolylog , 21eff
3.5 3

where keff is a pre-defined condition number restricting the range of eigenvalues considered for phase estimation,
typically taken to be ( )O 1 , and p is the number of principal eigenvectors.

Note that the complexity presented here in (21) is polylogarithmic in both the number of input vectorsM
and their dimensionN, regardless of training vector sparseness.

3.6. Nonlinear/kernel FDA
Certainly, inmany real-world cases, a straightforward linear discriminantmay not be sufficient. Classically, a
simple generalization is known as kernel FDA,where the input vectors are firstmapped (nonlinearly) by a
function f f ( )x x: j j into a higher-dimensional feature space  . The linear discriminant corresponding to J
(w) in the feature space then becomes nonlinear in the original space. In the classical case, if the dimension of 
is too large, it becomes computationally infeasible to performoperations such asmatrixmultiplication or
exponentiation on the resulting large covariancematrices fSB and fSW . Instead, onemust findworkarounds such
as kernelmethods, and perform reductions so that the algorithm involves only dot products in the feature space
[21], but thismay seriously limit the potential choices ofmappingf. In the quantum case, however, we can
directly perform the LDA analysis in the higher-dimensional feature space. As long as the dimension of  scales
polynomially with the original input dimension, our algorithmic performance will be affected only by a constant
factor. This allows for amuchwider range ofmappingsf into the feature space.

4.QDAalgorithm for classification

4.1. Algorithm
Wenowpresent an efficient quantum algorithm for the classification of an exponentially large data set byQDA,
and our results can easily be applied to performLDA classification. As before, we assume that the classmeans
and training vector data are givenwith their norms and components stored asfloating-point numbers in
quantumRAM.We again assume the oracle2 to obtain the classmeans of the training vectors mc and their
norms, and in this section, we further assume thatwe can obtain the jth training vector of each class. As in
section 3 initialization or [3–5], our oracle gives the vectors xc j, are given as their difference from their class
means (as in section 3, thismay also be obtained from the stored floating-point numbers if necessary).
Specifically, we assume the oracle

m mñ ñ ñ ñ  ñ ñ - ñ - ñ(∣ ∣ ∣ ∣ ) ∣ ∣ ∣ ∣ c j c j x x0 0 .c j c c j c3 , , 

As in section 3, m- ñ∣xc j c, has been normalized to one. Finally, we now assume that for each class c, we are given
the number of training vectorsMc belonging to that class.

ForQDA,we use the oracles to construct for each class c theHermitian positive semidefinite operator

å m m mS = - - ñá -
=

∣ ∣ ( )
A

x x x
1

. 22c
c j

M

c j c c j c c j c
1

,
2

, ,

c

 

where m= å -=A xc j
M

c j c1 ,
2c   . To do this, wefirst call3 on the state å ñ ñ ñ ñ= ∣ ∣ ∣ ∣c j 0 0

M j
M1

1c

c to obtain the

register m må ñ ñ - ñ - ñ= ∣ ∣ ∣ ∣c j x x
M j

M
c j c c j c

1
1 , ,

c

c   . As in the initialization procedure of section 3, we use the

methods of [4, 28–30] to obtain the state c m m mñ = å å - ñ ñ - ñ - ñ= =∣ ∣ ∣ ∣ ∣x c j x xc A j
M

j
M

c j c c j c c j c
1

1 1 , , ,
c

c     .

Tracing over ñ∣ j in the outer product c cñá∣ ∣c c then yields the operatorSc in time ( ( ))O MNlog .
Given an input vector ñ∣x in quantum form,we nowpresent amethod tofind themaximumamong the k

discriminant functions d ( )xc given in equation (8). First, we applyS-
c

1 to the classmean m ñ∣ c , using thematrix
inversion algorithmof [2]. As before, to avoid exponential complexity with small eigenvalues, we introduce the
pre-defined effective condition number keff to limit the range of considered eigenvalues. By [2], we can thus
construct the state

mS ñ-∣ ( )23c c
1

6
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for each class c in time k( ( ) )O MNlog eff
3 3 . Next, recognizing the first two terms of the discriminant function

of (8) as an inner product, we perform a SWAP test [32] on the states mS ñ-∣ c c
1 and m- ñ∣x c

1

2
to obtain the value

m m mS - S- - ( )x
1

2
. 24c c c c c

T 1 T 1

This inner product evaluation requires time ( ( ))O Nlog . Finally, for each class c, we add to the value in (24) the
class prior p = M Mc c .We hence obtain the discriminant values d ( )xc for all of the k classes in time

k( ( ) )O k MNlog eff
3 3 . It is then straightforward to identify the class yielding themaximumdiscriminant, to

which the input vector is then classified.Note that our algorithm can be easily applied to performquantumLDA
classification, by using an operator proportional to the scattermatrix SW (see section 3, initialization) in place of
Sc for each class.

Algorithm2.Quantumdiscriminant analysis classifier.

Step 1: Initialization. By querying the quantumRAMor oracles, construct theHermitian positive semidefinite operators Sc in time

( ( ))O k MNlog for all classes c.

Step 2: Since Sc is Hermitian positive semidefinite, use themethod of [5] to exponentiate this operator. Apply the inversion algorithmof [2]
on the state m ñ∣ c for each class to construct the states given by equation (23) in time k( ( ) )O k MNlog eff

3 3 .
Step 3: Take the inner product of mS-

c c
1 with m-x c

1

2
using the SWAP test, yielding the value in equation (24). This step requires

time ( )O Nlog .

Step 4: For each class c, add the class prior p = M Mc c to the value in (24) to obtain thefinal discriminant value d ( )xc .

Step 5: Select the class c yielding themaximumdiscriminant value, and classify x accordingly in timeO(k).

4.2. Algorithmic complexity for classification
Algorithm2 above shows the pseudocode for our quantumQDAclassifier. Step 1 (initialization) takes time

( ( ) )O k MNlog . Applying the inversion algorithmof [2] for each class then takes time k( ( ) )O k MNlog eff
3 3 .

Computing all of the inner products given by (24) requires time ( )O k Nlog , and adding the class priors requires
timeO(k). Finally, selecting the class withmaximumdiscriminant takes timeO(k).We add these to give the
overall complexity below:

Theorem3.The quantumQDA classifier algorithm presented in this paper (with pseudocode given by algorithm 2)
can be implemented in time logarithmic in both the number of input vectorsMand the input vector dimensionN.
Specifically, it has a runtime of

k( ( ) ) ( )O k MNlog , 25eff
3 3

where k is the number of classes for classification, and keff is a pre-defined condition number restricting the range of
eigenvalues considered for phase estimation, typically taken to be ( )O 1 .

Note that the complexity presented in equation (25) is logarithmic in bothM andN regardless of training
vector sparseness.

5.Discussion

In this paper, we have presented a generalized algorithm from [2] for implementingHermitianmatrix chain
operators, and applied it to implement an algorithm for quantumLDA in polylogarithmic time. As
demonstrated by classical works such as [8, 9], LDA is a powerful tool for dimensionality reduction infields such
asmachine learning and big data analysis. Although our performance in terms of error ò is poorer than classical
algorithms (polynomial instead of logarithmic in 1 ), we believe that this is acceptable, since it is unlikely that
someone desiring extreme levels of precisionwill wish to perform significant dimensionality reduction like that
provided by LDA. Rather, we believe that the exponential speedup in terms of the parametersM andN should be
more significant in reducing the overall algorithmic runtime.

Ourwork has also presented a quantum algorithmproviding exponential speedup for the LDA andQDA
classifiers. As classical studies [17, 18] have shown, these classifiers typically perform just as well in terms of
accuracy as the SVM (for which a quantum algorithmhas been developed, [3]). However, they tend to have
much bettermodel stability [18], which canmake themmore robust in face of training data errors. Finally,
discriminant analysismethods aremuch simpler when generalizing tomulti-class classification, whereas the
SVM ismore suited for binary classification [23]. In conclusion, this work has provided efficient exponential
speedup for two important algorithms for dimensionality reduction and classification in big data analysis.
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AppendixA. Proof of theorem1

In this appendix, we present the derivation of equation (19) from theorem 1 in section 3. The proof of the
theorem closely follows thematrix inversion algorithmpresented in [2] (referred to in the following as theHHL
algorithm). TheHHL algorithmbegins with the initial state

åy
p t

tñ
+

ñ
t=

-

∣ ≕ ( ) ∣ ( )
T

sin
1 2

26
T

0
0

1

for largeT (see [2] formore details on original algorithm,wemake a sketch below). Since the original algorithm
was designed to apply the inverse of amatrixA on a specific vector ñ∣b , HHL considers the state y ñ Ä ñ∣ ∣b0 . Here,

we are interested instead in obtaining an operator for (17), sowe use the density operator r = å ñá= ∣ ∣i i
N i

N
0

1
1

(proportional to the identity) in place of ñ∣b , andwe use y yñá∣ ∣0 0 in place of y ñ∣ 0 .
FollowingHHL, decompose r0 in the eigenvector basis using phase estimation. Denote the eigenvectors of

A1 by ñ ={∣ }u l l
N

1 1, and let l ={ }l l
N

1 1be the corresponding eigenvalues. Then, wewrite

år b= ñá
¢=

¢ ¢∣ ∣ ( )u u . 27
l l

N

ll l l0
, 1

1 1

Quantumphase estimation is then applied on r0 for time k= ( )t O0 1 to obtain the state

år b l l¢ » ñá ñá
¢=

¢ ¢ ¢∣ ∣∣ ∣ ( )u u 28
l l

N

ll l l l l0
, 1

1 1 1 1

up to a tolerance error ò (k1 is the condition number of thematrixA1, or the ratio of the largest to smallest
eigenvalue). In this step, the exponentiation of theHermitian operatorA1 is performed using the trick presented
in [5]. By [5], k= ( )n O 1

2 3 copies ofA1 are required to perform the phase estimation to error ò, so ifA1 can be
constructed in timeO(X), this step requires time k=( ) ( )O nX O X 1

2 3 .
HHL then add an ancilla and perform a unitary controlled on the eigenvalue register. Here, we generalize this

step to a controlled rotation from ñá∣ ∣0 0 to the state y yñál l ¢∣ ∣
l l1 1

, where

y l lñ = - ñ + ñl∣ ( ) ∣ ( )∣ ( )C f Cf1 0 1 29l l
2

1 1
2

1 1l1

andC is a constant of order l -( {∣ ( )∣ })O fminl l1 1
1 for normalization. Assuming f1 has a convergent Taylor series,

it is possible to efficiently perform this rotation using controlled gates (see appendix B). This results in the overall
state

år b b l l y y = ñá ñá ñál l
¢=

¢ ¢ ¢ ¢∣ ∣∣ ∣∣ ∣ ( )u u . 30
l l

N

l l l l l l0
, 1

1 1 1 1 l l1 1

Next, followingHHL,we undo phase estimation to uncompute the eigenvalue register, resulting in the state

år b b y y= ñá ñál l
¢=

¢ ¢ ¢‴ ∣ ∣∣ ∣ ( )u u . 31
l l

N

l l l l0
, 1

1 1 l l1 1

Finally, as inHHL,measure the ancilla to be ñá∣ ∣1 1 . By choice ofC, this success probability is easily seen to
be5

l
l

W
∣ ( )∣
∣ ( )∣

( )
⎛
⎝⎜

⎞
⎠⎟

f

f

min

max
. 32

l l

l l

1 1
2

1 1
2

This produces the density operator proportional to r = ( ) ( ( ))†f A f AI1 1 1 1 1 in runtime

k
l
l

· ·
∣ ( )∣
∣ ( )∣

⎛
⎝⎜

⎞
⎠⎟O

X f

f

max

min
.

l l

l l
3 1

2 1 1
2

1 1
2

To generalize this to the entirematrix chain, we can simply repeat this algorithmwithA2 as thematrix, f2 as
the function, and start with the state r1 instead of r0.More generally, at each iteration j, useAj, fj on r -j 1. At each

5
As in complexity analysis, the notation = W( ) ( ( ))F x G x is used in place of the expression ‘∃a constant c such that ( ) ( )F x cG x for all x’.
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step, k= ( )n O j
2 3 copies ofAj are required, and the probability of success inmeasuring the ancilla is given by

the expression analogous to equation (32). Hence, for kmatrices, theHermitian operator in equation (17) can be
implemented in time

å k
l

l= =

· ·
∣ ( )∣

∣ ( )∣
( )



⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟O

X f

f

max

min
. 33

j

k

j
j

k l j jl

l j jl
3

1

2

1

2

By [2], amplitude amplification can be used on thefirstmatrixA1 only to increase themeasurement success

probability from W
l

l

∣ ( ) ∣

∣ ( ) ∣
⎜ ⎟⎛
⎝

⎞
⎠

f

f

min

max

l j jl

l j jl

2

2 to W
l

l

∣ ( ) ∣

∣ ( ) ∣
⎜ ⎟⎛
⎝

⎞
⎠

f

f

min

max

l j jl

l j jl
. This reduces the complexity slightly to

å k
l
l

l

l= =

· ·
∣ ( )∣
∣ ( )∣

·
∣ ( )∣

∣ ( )∣
( )



⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟O

X f

f

f

f

max

min

max

min
. 34

j

k

j
l l

l l j

k l j jl

l j jl
3

1

2 1 1

1 1 2

2

In the case where A A,... k1 are densitymatrices presented in a quantumRAM, = ( ( ))X O Nlog , andwe obtain
equation (18).

Appendix B. Performing the controlled rotation of (29)

In this section, we showhow to perform a controlled rotation in the formof (29) for an arbitrary function fwith
convergent Taylor series. Specifically, we are to rotate the ancilla by the angle q l l= -( ) ( ( ))Cfsin 1 . This is not
trivial, even for simple cases such as =( )f x x1 in the original HHL algorithm.HHLdonot provide a
decomposition of this rotation in terms of controlled gates.Here, wewill present such amethod for arbitrary f.

The idea behind ourmethod is to approximate q l( ) by its Taylor series.Wewillfirst construct the register
l ñ∣ ( )f from lñ∣ , and then construct q l ñ∣ ( ) from l ñ∣ ( )f . This procedure is outlined below and presented in

detail in algorithm 3.
Since f has a convergent Taylor series, we approximate

l l
l

» + ¢ - + +
-( ) ( ) ( )( ) ( )( )

!
( )

( )
f f x f x x

f x x

n
. 35

n n

0 0 0
0 0

for some constant x0 nearλ to order n. Now, by choice ofC, l <∣ ( )∣Cf 1 lies in the radius of convergence of the
Maclaurin series for - ( )xsin 1 . Hence, we can substitute l( )Cf into thisMaclaurin series and approximate

q l l l
l l l

= » + + + +-( ) ( ( )) ( ) ( ( )) ( ( )) ( ( )) ( )Cf Cf
Cf Cf Cf

sin
6

3

40

5

112
. 361

3 5 7



Themultiplication in steps 1 and 2 on the quantum registers in algorithm3 can be performed very similarly to
the exponentiation an in Shor’s algorithm [25]. Suppose the binary strings ñ∣A and ñ∣B are given in quantum
form. Then, the classical grade-schoolmultiplication algorithm can be carried out by performing addition
operations controlled on the qubits representing ñ∣B : at the kth iteration, if the kth qubit of ñ∣B from the right is
ñ∣1 , add ñ∣ A2k (obtained by left-shifting qubits) to the result. Repeating for all k between 0 and the number of

qubits in ñ∣B minus one gives the desired product.
Finally, oncewe have the binary representation of the rotation angle in the register q l ñ∣ ( ) , we can implement

the controlled rotation of the ancilla. Specifically, for each term 2r appearing in this binary expansion, add a
unitary controlled on the qubit coefficient of this term to rotate the ancilla by 2r . Since any two-qubit controlled-
U operation can be implementedwith two controlled-NOT gates and single-qubit unitaries [24], the desired
rotation of (29) can be implemented efficiently.

Algorithm3. Constructing q lñ∣ ( ) from lñ∣ .

Step 1: Initialization. Prepare an auxiliary register to hold the value l - x0. Prepare threemoreworking registers: thefirst (initialized to 1)
will hold the current power of l - x0, the second (initialized to 1)will hold the value of thefirst registermultiplied by the Taylor coeffi-

cient ( ) !( )f x kk
0 , and the third (initialized to 0)will be a running total for the right hand side of equation (35).

Step 2:Multiply thefirst working register by l - x0 from the auxiliary.

Step 3:Multiply the value in the first register by the kth Taylor coefficient !( )f kk and store the result in the secondworking register.

Step 4: Add the value in the secondworking register to the thirdworking register.

Step 5: Repeat steps 2–4 for each value =k n1, 2,... . After this step, we have successfully obtained the value l ñ∣ ( )f in the thirdworking

register.

Step 6: Repeat steps 1–5 nowwith a register containing l ñ∣ ( )Cf in place of lñ∣ , andwith the function sin−1 in place of f. It suffices to expand

around =x 00 . This step yields the register q l ñ∣ ( ) , by theMaclaurin series approximation of (36).

9

New J. Phys. 18 (2016) 073011 ICong and LDuan



References

[1] WellingMFisher linear discriminant analysis (unpublished)
[2] HarrowAW,HassidimAand Lloyd S 2009Phys. Rev. Lett. 103 150502
[3] Rebentrost P,MohseniM and Lloyd S 2014Phys. Rev. Lett. 113 130503
[4] Lloyd S,MohseniM andRebentrost P 2013 arXiv:quant-ph/1307.0411v2
[5] Lloyd S,MohseniM andRebentrost P 2014Nat. Phys. 10 631–3
[6] VasconcelosN PCAand LDAunpublished
[7] CaiD,HeX andHan J 2008Training linear discriminant analysis in linear time Proc. 2008 Int. Conf. onData Engineering (ICDE’08)
[8] Belhumeur PN, João PH andKriegmanD J 1997 IEEETrans. Pattern Anal.Mach. Intell. 19 711
[9] Cheng Y-Q, LiuK, Yang J-Y, ZhuangY-MandGuN-C 1992Human face recognitionmethod based on the statisticalmodel of small

sample size Intelligent Robots andComputer VisionX: Algorithms andTechniques Int. Soc. Opt. Photon. 85 1607
[10] Giovannetti V, Lloyd S andMaccone L 2008Quantum random accessmemory Phys. Rev. Lett. 100 160501
[11] UetaniM, TateyamaT, Kohara S,HanXH,ChenYW,Kanasaki S, FurukawaA andWei X 2015Computer-aided diagnosis of liver

cirrhosis based onmultiple statistical shapemodels Int. Conf. on Computer Information Systems and Industrial Applications
[12] Dai Z, YanC,Wang Z,Wang J, XiaM, Li K andHeY 2012Discriminative analysis of early Alzheimer’s disease usingmulti-modal

imaging andmulti-level characterizationwithmulti-classifier (M3)NeuroImage 59 2187
[13] NaikG, Selvan S andNguyenH2015 Single-Channel EMGclassificationwith ensemble-empirical-mode-decomposition-based ICA

for diagnosing neuromuscular disorders IEEETrans. Neural Syst. Rehabil. Eng. (doi:10.1109/TNSRE.2015.2454503)
[14] Krusienski D J, Sellers EW,Cabestaing F, Bayoudh S,McFarlandD J, VaughanTMandWolpaw J R 2006A comparison of

classification techniques for the P300 SpellerNeural Eng. 3 299
[15] Suárez-Cuenca J J, GuoWand LiQ 2015 Integration ofmultiple classifiers for computerized detection of lung nodules inCTBiomed.

Eng. Appl. Basis Commun. 27 1550040
[16] Esener I I, Ergin S andYuksel T 2015Anew ensemble of features for breast cancer diagnosis 38th Int. Convention on IEEE Information

andCommunication Technology, Electronics andMicroelectronics (MIPRO)
[17] AlkanA andGünayM2012 Identification of EMG signals using discriminant analysis and SVMclassifierExpert Syst. Appl. 39 44
[18] Dixon S J andBreretonRG2009Comparison of performance offive common classifiers represented as boundarymethods: euclidean

distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector
machines, as dependent on data structureChemometr. Intell. Lab. Syst. 95 1

[19] Hastie T, Tibshirani R and Friedman J 2009The Elements of Statistical Learning (Berlin: Springer)
[20] Ahuja A andKapoor S 1999 arXiv:quant-ph/9911082v1
[21] Mika S, RätschG,Weston J, Schölkopf B andMüller K-R 1999 Fisher discriminant analysis with kernels (unpublished)
[22] Cleve R, Ekert A,Macchiavello C andMoscaM1999Quantum algorithms revisited (arXiv:quant-ph/9708016)
[23] Li T, Zhu S andOgiharaM2006Using discriminant analysis ormulti-class classification: an experimental investigationKnowl. Info.

Syst. 10 4
[24] MerminD 2007QuantumComputer Science (Cambridge: CambridgeUniversity Press)
[25] Shor P 1997 polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer SIAM J. Comput.

26 1484
[26] NakaharaMandOhmiT 2008QuantumComputing: FromLinear Algebra to Physical Realizations (BocaRaton, FL: CRC) ch 8
[27] Boyd S andVandenberghe L 2004ConvexOptimization (Cambridge: CambridgeUniversity Press) ch 5
[28] Grover L andRudolphaTCreating superpositions that correspond to efficiently integrable probability distributions arXiv: quant-ph/

0208112
[29] Kaye P andMoscaM2001Proc. Int. Conf. onQuantum Information (NewYork: Rochester) (arXiv:quant-ph/0407102)
[30] SoklakovAN and Schack R 2006Phys. Rev.A 73 012307
[31] WilliamsVV 2012Multiplyingmatrices faster thanCoppersmith-Winograd Proc. 44th ACMSymp. on Theory of Computing
[32] NielsenMAandChuang I L 2011QuantumComputation andQuantum Information (Cambridge: CambridgeUniversity Press)

10

New J. Phys. 18 (2016) 073011 ICong and LDuan

http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://arxiv.org/abs/quant-ph/1307.0411v2
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1109/34.598228
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1016/j.neuroimage.2011.10.003
http://dx.doi.org/10.1109/TNSRE.2015.2454503
http://dx.doi.org/10.1088/1741-2560/3/4/007
http://dx.doi.org/10.4015/S1016237215500404
http://dx.doi.org/10.1016/j.eswa.2011.06.043
http://arxiv.org/abs/quant-ph/9911082v1
http://arxiv.org/abs/quant-ph/9708016
http://dx.doi.org/10.1007/s10115-006-0013-y
http://dx.doi.org/10.1137/S0097539795293172
http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/ quant-ph/0407102
http://dx.doi.org/10.1103/PhysRevA.73.012307

	1. Introduction
	2. Review of classical discriminant analysis
	2.1. Dimensionality reduction
	2.2. Classification

	3. Quantum LDA algorithm: dimensionality reduction
	3.1. Assumptions and initialization
	3.2. LDA approach
	3.3. Implementing the Hermitian chain product
	3.4. Finding the principal eigenvectors
	3.5. Algorithmic complexity for dimensionality reduction
	3.6. Nonlinear/kernel FDA

	4. QDA algorithm for classification
	4.1. Algorithm
	4.2. Algorithmic complexity for classification

	5. Discussion
	Acknowledgments
	Appendix A.
	Appendix B.
	References



