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1. Introduction 

The urgent need to break from stagnation in network innovation and to bring 
network awareness into computational framework has motivated researchers to 
consider new extensible protocols to ignite network innovation and to enhance the 
computing efficiency of the platforms attached to the network. OpenFlow has 
emerged as the protocol of choice to develop programmable network architectures.1 
OpenFlow separates the control plane from a network device and places it on an 
external centralized device called a controller (Fig. 1). OpenFlow-enabled switches 
become high-speed packet forwarding devices while their forwarding paths are 
controlled by centralized OpenFlow controllers.2 This design allowed engineers to 
have total control over forwarding paths. This design has also introduced deep 
programmability of network devices through control plane application 
programming interface (API).3–5  

 

 

Fig. 1 OpenFlow-enabled software-defined network architecture 

OpenFlow-enabled switches use flow tables and group tables to make forwarding 
decisions to move traffic across the network. There can be more than one flow table 
in a switch, and traffic lookup will be made until a match is found in any of the 
flow tables. Unmatched traffic will follow the configured policy or either be 
dropped or handed up to a controller. Flow tables contain the port information while 
the group tables contain the action elements, and putting both together will create 
a policy to be applied to matching traffic.6 The design is not concerned with how a 
switch internally processes and integrates with its hardware elements as long as the 
OpenFlow semantics and action attributes are preserved. OpenFlow implementers 
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can ignore the difference in the hardware and concentrate on the OpenFlow feature 
to rapidly build various network topologies completely isolated from each other 
and run parallel experiments. OpenFlow is widely used and highly programmable 
protocol to build intelligent networks that can adapt to computing needs.7 
Computing platforms, including HPC systems, depend on the static networks for 
interconnecting their nodes and clusters. Utilizing OpenFlow in this context can 
enable more efficient and smarter decision making in the network for job 
management systems to allow quicker completion for HPC jobs.8–11  

2. Background 

Historically networks are configurable but not programmable. Most of a network’s 
intelligence is hard coded, and its control plane is embedded in hardware along with 
the data plane. This static design has become an impediment not only to network 
innovation but also to the performance of distributed computing architectures, 
including HPC clusters. Currently HPC systems use classical network switches, 
and no ability exists to change the network functions as demanded by the computing 
tasks being performed by the cluster.12 Scientists have studied and demonstrated 
different ways programmable networks can improve HPC clusters.13–17  

2.1 Modeling of OpenFlow Enhanced HPC Clusters 

In order to remedy the lack of adaptability and to demonstrate the benefits, a 
programmable switch and controller are introduced in the HPC models discussed 
(Fig. 2). To accomplish this, a physical cluster is built using embedded boards and 
a specialty board designed with many Ethernet ports to act as a switch. Typically, 
enterprise-grade switches can be flashed with different firmware or have 
compatibility with OpenFlow already; however, in this case, it was more fitting for 
the micro HPC to use more compact, consumer-grade hardware that more closely 
matches the embedded boards.  
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Fig. 2 OpenFlow HPC network 

After installing operating systems on all of the respective nodes and the switch, the 
software framework is introduced. In the switch, Open vSwitch is installed and 
configured to act as a switch between the physical ports of the board. An OpenFlow 
controller, Ryu, is also installed to act as the controller of the OpenFlow switch. On 
the nodes, a message passing interface (MPI) is installed and a network file system 
is established. With this stack in place, one can run MPI jobs and control the 
network accordingly to implement the new framework by extending the OpenFlow 
protocol.  

2.2 OpenFlow Extensibility through Experimenter Labels  

One key feature of OpenFlow is the ability to insert new functions through 
experimenter labels. This feature is leveraged in our model to introduce network 
functions to enhance cluster computing. Experimenter extensions provide a 
standard way for OpenFlow switches to offer additional functionality within the 
OpenFlow message type space. Often times, the experimenters are used as a staging 
area for future OpenFlow features.18 Experimenter extensions come in a few 
different object types, such as messages, instructions, actions, queues, meters, or 
OXM (OpenFlow Extensible matches), which the experimenter utilized in this 
system. OpenFlow Experimenter matches can be used to enrich a switch’s flow 
match functionality. The modifications necessary to implement experimenter labels 
require changes on both the OpenFlow switch and controller to maintain 
compatibility. These OpenFlow experimenter modifications are generally only 
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made by vendors for their own proprietary features and implementations. This 
poses a problem for new OpenFlow developers, as the details for how to make these 
modifications are not made open to the public, apart from the cryptic guidelines 
that are given in the software repository wiki for how to make such modifications. 
To introduce the experimenter labels, one must add cases and methods to handle all 
typical situations that arise normally in a switch, such as comparison, read, or set 
values. Using additional labels, an evolution of traditional networks is possible; 
artificial intelligence markup language functions could be created and exist solely 
on or for network components of HPC systems.19,20 Leveraging the new capability 
allows for network developers to create truly smart networks21 that could 
complement existing computing, or even function as a computer itself, by 
incorporating intent-aware networking for computing.  

3. Technical Approach 

OpenFlow protocol source code was obtained and custom labels were encoded. The 
modified code was recompiled and installed for both the switch and the controller. 
The modifications necessary to implement experimenter labels require changes on 
both sides of a software-defined network: the controller and the switch. To make 
these changes, one must modify the source code in each to add the required new 
labels in a way that is compatible with one another. At the time of writing, 
modifying the controller Ryu (v4.x) is generally easier than modifying the main 
OpenFlow switch, Open vSwitch (v2.5.x). Modifying the controller can be as 
simple as adding the new labels to the OpenFlow protocol source file and adding a 
proper definition for those labels in terms of specifying the type length, 
experimenter ID, and the data variable(s) associated. The type length is a calculated 
field based on the experimenter ID and the number of bytes used by the remaining 
fields. The experimenter ID is a value that is assigned to various organizations who 
use experimenter labels in OpenFlow. The variable(s) associated with a given field 
can hold a value that can be matched on or modified using flows. Determining this 
information proved very difficult, as the details on implementing experimenters in 
OpenFlow, while it does exist, is incredibly scarce and decentralized. Some of the 
information was in comments of the code for the switch and the controller, and 
other parts were not in a large OpenFlow knowledge base but instead scattered 
among web pages and mailing lists. Despite these major barriers to entry, the goals 
of this report were accomplished and the labels were implemented. Setting up the 
switch to read in relevant information into the labels from the cluster was done by 
writing values to files and reading them across the network. Once the switch 
received job information from the cluster, OpenFlow is used to send the data up to 
the controller, where in this micro HPC, single switch case, is the same switch. At 
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this point, the controller should have the data from every switch in the network, and 
thus every node in the cluster. The controller can use this global knowledge to 
modify the network to best suit the jobs being run on the cluster; to this end, a 
metering system was created. In big data situations, network congestion can cause 
delays or timeouts for jobs. This job-based metering system, which is designed 
using the OpenFlow system, has the unique possibility to enable a QoS (quality of 
service) system that can entirely alleviate the job performance and stability impact 
that larger data jobs can have on an HPC. To test this system, a parallelized matrix 
multiplication MPI job was created as a benchmark. This benchmark was run at 
different core counts and different computation complexities while background 
traffic was being sent across the cluster to simulate a big data job. The background 
traffic levels were also modulated along with the other parameters to determine the 
effectiveness of the metering system.  

4. Results and Discussion 

The measurements made support the assertion that the job-based metering system 
introduced in this report effectively improves HPC efficiency. In Fig. 3, we see that 
when the matrix multiplication is 1000 rows by 1000 columns, the completion time 
of the multiplication is significantly more for the unmetered runs compared to the 
metered, while the metering introduces minimal overhead. This same trend can be 
seen at different traffic levels, computational complexities, and core counts in 
Fig. 4.  

 

Fig. 3 Computational completion times: metered vs. unmetered 
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Fig. 4 Computation completion time in various different traffic scenarios 

5. Conclusions and Recommendations 

We have used OpenFlow tables to successfully demonstrate that smart 
implementation of network slicing can improve matrix multiplication computation 
time. This can be extrapolated to a variety of different computation types on a 
variety of HPC environments. Future research in this area could verify these results 
using a number of different computations and environments (HPC, remote 
distributed, etc.). Future research in this area could also be aimed at introducing 
more sophisticated AI/ML functionality in either job detection, metering level, or 
network configuration to enable more advanced HPC aiding techniques.   

  

0 Unmetered 700 Unmetered 800 Unmetered 900 Metered 0 Metered 700 Metered 800 Metered 900
n 4 N 1000 32.21 33.29 32.97 33.24 32.52 32.96 32.79 33.18
n 4 N 1250 57.31 59.14 57.89 58.25 58.16 58.96 58.25 59.07
n 4 N 1500 100.68 104.36 106.04 107.83 101.55 101.74 101.54 103.56
n 8 N 1000 14.63 16.13 17.25 24.32 14.74 15.52 15.80 15.39
n 8 N 1250 25.85 26.63 26.76 38.67 26.00 26.85 27.06 26.60
n 8 N 1500 57.85 59.47 59.43 70.09 56.64 58.35 60.61 58.26
n 12 N 1000 10.59 15.28 18.74 20.99 10.39 11.57 11.66 11.59
n 12 N 1250 18.01 24.78 29.24 31.69 18.84 18.62 20.57 19.49
n 12 N 1500 39.24 42.19 51.34 73.22 39.09 40.16 39.89 39.81
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