

 ARL-TR-8373 ● JUNE 2018

 US Army Research Laboratory

OpenFlow-Enabled Network Functions to
Enhance High-Performance Computing (HPC)
Platforms

by Venkat Dasari and Nikolai Snow

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8373 ● JUNE 2018

 US Army Research Laboratory

OpenFlow-Enabled Network Functions to
Enhance High-Performance Computing (HPC)
Platforms

by Venkat Dasari
Computational and Information Sciences Directorate, ARL

Nikolai Snow
Envistacom, Atlanta, GA

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

June 2018
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

May 2016–May 2018
4. TITLE AND SUBTITLE

OpenFlow-Enabled Network Functions to Enhance High-Performance
Computing (HPC) Platforms

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Venkat Dasari and Nikolai Snow
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-S
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8373

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Programmable network functions are described to enhance the computational efficiency of the high-performance computing
(HPC) systems by making the network react and adapt to the traffic conditions in relation to the computational efficiency. In
this report a micro HPC system with programmable network fabrics is described and its performance compared under various
traffic conditions. Matrix multiplication is used to analyze the computational efficiency of the micro HPC system.

15. SUBJECT TERMS

OpenFlow, matrix multiplication, computational complexity, controller, slicing

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

16

19a. NAME OF RESPONSIBLE PERSON

Venkat Dasari
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-2846
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

1. Introduction 1

2. Background 2

2.1 Modeling of OpenFlow Enhanced HPC Clusters 2

2.2 OpenFlow Extensibility through Experimenter Labels 3

3. Technical Approach 4

4. Results and Discussion 5

5. Conclusions and Recommendations 6

6. References 7

Distribution List 10

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 OpenFlow-enabled software-defined network architecture 1

Fig. 2 OpenFlow HPC network ... 3

Fig. 3 Computational completion times: metered vs. unmetered 5

Fig. 4 Computation completion time in various different traffic scenarios 6

Approved for public release; distribution is unlimited.
1

1. Introduction

The urgent need to break from stagnation in network innovation and to bring
network awareness into computational framework has motivated researchers to
consider new extensible protocols to ignite network innovation and to enhance the
computing efficiency of the platforms attached to the network. OpenFlow has
emerged as the protocol of choice to develop programmable network architectures.1
OpenFlow separates the control plane from a network device and places it on an
external centralized device called a controller (Fig. 1). OpenFlow-enabled switches
become high-speed packet forwarding devices while their forwarding paths are
controlled by centralized OpenFlow controllers.2 This design allowed engineers to
have total control over forwarding paths. This design has also introduced deep
programmability of network devices through control plane application
programming interface (API).3–5

Fig. 1 OpenFlow-enabled software-defined network architecture

OpenFlow-enabled switches use flow tables and group tables to make forwarding
decisions to move traffic across the network. There can be more than one flow table
in a switch, and traffic lookup will be made until a match is found in any of the
flow tables. Unmatched traffic will follow the configured policy or either be
dropped or handed up to a controller. Flow tables contain the port information while
the group tables contain the action elements, and putting both together will create
a policy to be applied to matching traffic.6 The design is not concerned with how a
switch internally processes and integrates with its hardware elements as long as the
OpenFlow semantics and action attributes are preserved. OpenFlow implementers

Approved for public release; distribution is unlimited.
2

can ignore the difference in the hardware and concentrate on the OpenFlow feature
to rapidly build various network topologies completely isolated from each other
and run parallel experiments. OpenFlow is widely used and highly programmable
protocol to build intelligent networks that can adapt to computing needs.7
Computing platforms, including HPC systems, depend on the static networks for
interconnecting their nodes and clusters. Utilizing OpenFlow in this context can
enable more efficient and smarter decision making in the network for job
management systems to allow quicker completion for HPC jobs.8–11

2. Background

Historically networks are configurable but not programmable. Most of a network’s
intelligence is hard coded, and its control plane is embedded in hardware along with
the data plane. This static design has become an impediment not only to network
innovation but also to the performance of distributed computing architectures,
including HPC clusters. Currently HPC systems use classical network switches,
and no ability exists to change the network functions as demanded by the computing
tasks being performed by the cluster.12 Scientists have studied and demonstrated
different ways programmable networks can improve HPC clusters.13–17

2.1 Modeling of OpenFlow Enhanced HPC Clusters

In order to remedy the lack of adaptability and to demonstrate the benefits, a
programmable switch and controller are introduced in the HPC models discussed
(Fig. 2). To accomplish this, a physical cluster is built using embedded boards and
a specialty board designed with many Ethernet ports to act as a switch. Typically,
enterprise-grade switches can be flashed with different firmware or have
compatibility with OpenFlow already; however, in this case, it was more fitting for
the micro HPC to use more compact, consumer-grade hardware that more closely
matches the embedded boards.

Approved for public release; distribution is unlimited.
3

Fig. 2 OpenFlow HPC network

After installing operating systems on all of the respective nodes and the switch, the
software framework is introduced. In the switch, Open vSwitch is installed and
configured to act as a switch between the physical ports of the board. An OpenFlow
controller, Ryu, is also installed to act as the controller of the OpenFlow switch. On
the nodes, a message passing interface (MPI) is installed and a network file system
is established. With this stack in place, one can run MPI jobs and control the
network accordingly to implement the new framework by extending the OpenFlow
protocol.

2.2 OpenFlow Extensibility through Experimenter Labels

One key feature of OpenFlow is the ability to insert new functions through
experimenter labels. This feature is leveraged in our model to introduce network
functions to enhance cluster computing. Experimenter extensions provide a
standard way for OpenFlow switches to offer additional functionality within the
OpenFlow message type space. Often times, the experimenters are used as a staging
area for future OpenFlow features.18 Experimenter extensions come in a few
different object types, such as messages, instructions, actions, queues, meters, or
OXM (OpenFlow Extensible matches), which the experimenter utilized in this
system. OpenFlow Experimenter matches can be used to enrich a switch’s flow
match functionality. The modifications necessary to implement experimenter labels
require changes on both the OpenFlow switch and controller to maintain
compatibility. These OpenFlow experimenter modifications are generally only

Approved for public release; distribution is unlimited.
4

made by vendors for their own proprietary features and implementations. This
poses a problem for new OpenFlow developers, as the details for how to make these
modifications are not made open to the public, apart from the cryptic guidelines
that are given in the software repository wiki for how to make such modifications.
To introduce the experimenter labels, one must add cases and methods to handle all
typical situations that arise normally in a switch, such as comparison, read, or set
values. Using additional labels, an evolution of traditional networks is possible;
artificial intelligence markup language functions could be created and exist solely
on or for network components of HPC systems.19,20 Leveraging the new capability
allows for network developers to create truly smart networks21 that could
complement existing computing, or even function as a computer itself, by
incorporating intent-aware networking for computing.

3. Technical Approach

OpenFlow protocol source code was obtained and custom labels were encoded. The
modified code was recompiled and installed for both the switch and the controller.
The modifications necessary to implement experimenter labels require changes on
both sides of a software-defined network: the controller and the switch. To make
these changes, one must modify the source code in each to add the required new
labels in a way that is compatible with one another. At the time of writing,
modifying the controller Ryu (v4.x) is generally easier than modifying the main
OpenFlow switch, Open vSwitch (v2.5.x). Modifying the controller can be as
simple as adding the new labels to the OpenFlow protocol source file and adding a
proper definition for those labels in terms of specifying the type length,
experimenter ID, and the data variable(s) associated. The type length is a calculated
field based on the experimenter ID and the number of bytes used by the remaining
fields. The experimenter ID is a value that is assigned to various organizations who
use experimenter labels in OpenFlow. The variable(s) associated with a given field
can hold a value that can be matched on or modified using flows. Determining this
information proved very difficult, as the details on implementing experimenters in
OpenFlow, while it does exist, is incredibly scarce and decentralized. Some of the
information was in comments of the code for the switch and the controller, and
other parts were not in a large OpenFlow knowledge base but instead scattered
among web pages and mailing lists. Despite these major barriers to entry, the goals
of this report were accomplished and the labels were implemented. Setting up the
switch to read in relevant information into the labels from the cluster was done by
writing values to files and reading them across the network. Once the switch
received job information from the cluster, OpenFlow is used to send the data up to
the controller, where in this micro HPC, single switch case, is the same switch. At

Approved for public release; distribution is unlimited.
5

this point, the controller should have the data from every switch in the network, and
thus every node in the cluster. The controller can use this global knowledge to
modify the network to best suit the jobs being run on the cluster; to this end, a
metering system was created. In big data situations, network congestion can cause
delays or timeouts for jobs. This job-based metering system, which is designed
using the OpenFlow system, has the unique possibility to enable a QoS (quality of
service) system that can entirely alleviate the job performance and stability impact
that larger data jobs can have on an HPC. To test this system, a parallelized matrix
multiplication MPI job was created as a benchmark. This benchmark was run at
different core counts and different computation complexities while background
traffic was being sent across the cluster to simulate a big data job. The background
traffic levels were also modulated along with the other parameters to determine the
effectiveness of the metering system.

4. Results and Discussion

The measurements made support the assertion that the job-based metering system
introduced in this report effectively improves HPC efficiency. In Fig. 3, we see that
when the matrix multiplication is 1000 rows by 1000 columns, the completion time
of the multiplication is significantly more for the unmetered runs compared to the
metered, while the metering introduces minimal overhead. This same trend can be
seen at different traffic levels, computational complexities, and core counts in
Fig. 4.

Fig. 3 Computational completion times: metered vs. unmetered

Approved for public release; distribution is unlimited.
6

Fig. 4 Computation completion time in various different traffic scenarios

5. Conclusions and Recommendations

We have used OpenFlow tables to successfully demonstrate that smart
implementation of network slicing can improve matrix multiplication computation
time. This can be extrapolated to a variety of different computation types on a
variety of HPC environments. Future research in this area could verify these results
using a number of different computations and environments (HPC, remote
distributed, etc.). Future research in this area could also be aimed at introducing
more sophisticated AI/ML functionality in either job detection, metering level, or
network configuration to enable more advanced HPC aiding techniques.

0 Unmetered 700 Unmetered 800 Unmetered 900 Metered 0 Metered 700 Metered 800 Metered 900
n 4 N 1000 32.21 33.29 32.97 33.24 32.52 32.96 32.79 33.18
n 4 N 1250 57.31 59.14 57.89 58.25 58.16 58.96 58.25 59.07
n 4 N 1500 100.68 104.36 106.04 107.83 101.55 101.74 101.54 103.56
n 8 N 1000 14.63 16.13 17.25 24.32 14.74 15.52 15.80 15.39
n 8 N 1250 25.85 26.63 26.76 38.67 26.00 26.85 27.06 26.60
n 8 N 1500 57.85 59.47 59.43 70.09 56.64 58.35 60.61 58.26
n 12 N 1000 10.59 15.28 18.74 20.99 10.39 11.57 11.66 11.59
n 12 N 1250 18.01 24.78 29.24 31.69 18.84 18.62 20.57 19.49
n 12 N 1500 39.24 42.19 51.34 73.22 39.09 40.16 39.89 39.81

Approved for public release; distribution is unlimited.
7

6. References

1. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford
J, Shenker S, Turner J. OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review. 2008;38:69–74.

2. Suzuki K, Sonoda K, Tomizawa N, Yakuwa Y, Uchida T, Higuchi Y,
Tonouchi T, Shimonishi H. A survey on OpenFlow technologies. IEICE
Transactions on Communications. 2014;97:375–386.

3. Dasari VR, Humble TS. OpenFlow arbitrated programmable network channels
for managing quantum metadata. Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology. 2016;13:1–11.

4. Sharma S, Staessens D, Colle D, Pickavet M, Demeester P. Fast failure
recovery for in-band OpenFlow networks. 2013 9th International Conference
on the Design of Reliable Communication Networks (DRCN); 2013 Mar 4–7;
Budapest, Hungary.

5. Monsanto C, Foster N, Harrison R, Walker D. A compiler and run-time system
for network programming languages. ACM SIGPLAN Notices.
2012;47(1):217–230.

6. Akyildiz IF, Lee A, Wang P, Luo M, Chou W. A roadmap for traffic
engineering in SDN-OpenFlow networks. Comput Netw. 2014;71:1–30.

7. Bianchi G, Bonola M, Capone A, Cascone C. OpenState: programming
platform-independent stateful openflow applications inside the switch. ACM
SIGCOMM Comput Commun Rev. 2014;44(2):44–51.

8. Watashiba Y, Date S, Abe H, Ichikawa K, Kido Y, Yamanaka H, Kawai E,
Shimojo S. Architecture of virtualized computational resource allocation on
SDN-enhanced job management system framework. 2016 39th International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO); 2016 May 30–June 3; Opatija, Croatia.

9. Basnet SR, Chaulagain RS, Pandey S, Shakya S. Distributed high performance
computing in OpenStack cloud over SDN infrastructure. 2017 IEEE
International Conference on Smart Cloud (SmartCloud); 2017 Nov 3–5; New
York, NY.

10. Jamalian S, Rajaei H. Data-intensive HPC tasks scheduling with SDN to
enable HPC-as-a-service. 2015 IEEE 8th International Conference on Cloud
Computing; 2015 June 27–July 2; New York, NY.

Approved for public release; distribution is unlimited.
8

11. Endo A, Jingai R, Date S, Kido Y, Shimojo S. Evaluation of SDN-based
conflict avoidance between data staging and inter-process communication.
2017 International Conference on High Performance Computing and
Simulation (HPCS); 2017 July 17–21; Genoa, Italy.

12. Benito M, Vallejo E, Beivide R. On the use of commodity ethernet technology
in exascale HPC systems. 2015 IEEE 22nd International Conference on High
Performance Computing (HiPC); 2015 Dec 16–19; Bangalore, India.

13. Daga A, Powell R, Heath A, Grossman R, Greenway M, Bailey S, Narayan S.
OpenFlow enabled hadoop over local and wide area clusters. Proceedings of
High Performance Computing, Networking, Storage and Analysis, SC
Companion; 2012 Nov 10–16; Salt Lake City, UT. 2012;00:1625–1628.

14. Arap O, Brown G, Himebaugh B, Swany M. Software defined multicasting for
MPI collective operation offloading with the NetFPGA. In: Silva F, Dutra I,
Costa SV, editors. Proceedings of the Euro-Par 2014 Parallel Processing 20th
International Conference; 2014 Aug 25–29; Porto, Portugal. Cham
(Switzerland): Springer International Publishing; c2014, p. 632–643.

15. Craig A, Nandy B, Lambadaris I, Koutsakis P. Bloomflow: Openflow
extensions for memory efficient, scalable multicast with multi-stage bloom
filters. Computer Communications. 2017;110:83–102.

16. Date S, Abe H, Khureltulga D, Takahashi K, Kido Y, Watashiba Y, U-Chupala
P, Ichikawa K, Yamanaka H, Kawai E, Shimojo S. An empirical study of SDN-
accelerated HPC infrastructure for scientific research. 2015 International
Conference on Cloud Computing Research and Innovation (ICCCRI); 2015
Oct 26–27; Singapore, Singapore.

17. Makpaisit P, Ichikawa K, Uthayopas P, Date S, Takahashi K, Khureltulga D.
MPI_Reduce algorithm for OpenFlow-enabled network. 2015 15th
International Symposium on Communications and Information Technologies
(ISCIT); 2015 Oct 7–9; Nara, Japan.

18. Pfaff B, Lantz B, Heller B, Barker C, Beckmann C, Cohn D, Talayco D,
Erickson D, McDysan D, Ward D, et al. OpenFlow switch specification.
Version 1.3.0 (wire protocol 0x04). Menlo Park (CA): Open Networking
Foundation; 2012 June 25 [accessed 2018 May 23].
https://www.opennetworking.org/images/stories/downloads/sdn-resources
/onf-specifications/openflow/openflow-spec-v1.3.0.pdf.

https://www.opennetworking.org/images/stories/downloads/sdn-resources

Approved for public release; distribution is unlimited.
9

19. Huang L, Gaolei L, Wu J, Li L, Li J, Morello R. Software-defined QoS
provisioning for fog computing advanced wireless sensor networks. IET
Cyber-Physical Systems: Theory & Applications. 2016;1–3.
doi:10.1109/ICSENS.2016.7808814.

20. Huang NF, Li CC, Li CH, Chen CC, Chen CH, Hsu IH. Application
identification system for SDN QoS based on machine learning and DNS
responses. 2017 19th Asia-Pacific Network Operations and Management
Symposium (APNOMS); 2017 Sep 27–29; Seoul, South Korea.

21. Jmal R, Chaari L. An OpenFlow architecture for managing content-centric-
network (OFAM-CCN) based on popularity caching strategy. Computer
Standards & Interfaces. 2017;51(C):22–29.

Approved for public release; distribution is unlimited.
10

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 2 ARL
 (PDF) RDRL CIH S
 V DASARI
 N SNOW

	Contents
	List of Figures
	1. Introduction
	2. Background
	2.1 Modeling of OpenFlow Enhanced HPC Clusters
	2.2 OpenFlow Extensibility through Experimenter Labels

	3. Technical Approach
	4. Results and Discussion
	5. Conclusions and Recommendations
	6. References

