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Fast and accurate detection of 
spread source in large complex 
networks
Robert Paluch1, Xiaoyan Lu2, Krzysztof Suchecki1, Bolesław K. Szymański   2,3 &  
Janusz A. Hołyst   1,4

Spread over complex networks is a ubiquitous process with increasingly wide applications. Locating 
spread sources is often important, e.g. finding the patient one in epidemics, or source of rumor 
spreading in social network. Pinto, Thiran and Vetterli introduced an algorithm (PTVA) to solve the 
important case of this problem in which a limited set of nodes act as observers and report times at which 
the spread reached them. PTVA uses all observers to find a solution. Here we propose a new approach 
in which observers with low quality information (i.e. with large spread encounter times) are ignored 
and potential sources are selected based on the likelihood gradient from high quality observers. The 
original complexity of PTVA is O(Nα), where α ∈ (3,4) depends on the network topology and number 
of observers (N denotes the number of nodes in the network). Our Gradient Maximum Likelihood 
Algorithm (GMLA) reduces this complexity to O (N2log (N)). Extensive numerical tests performed on 
synthetic networks and real Gnutella network with limitation that id’s of spreaders are unknown to 
observers demonstrate that for scale-free networks with such limitation GMLA yields higher quality 
localization results than PTVA does.

We live in the networked society. Every second we interact with many networks from which we collect, process and 
transmit a huge amount of information, which increases exponentially each year1–4. Increasing interconnectivity of 
the world exposes us to world-wide range of pathogens, viruses both physical and virtual, misinformation and rumors 
with often grievous consequences5–8. A good example is a fake tweet about explosion in White House in 2013, which 
caused $130 billion loss on the stock market9. Another example is the United States presidential election of 2016 when 
many rumors or fake news became viral on Facebook or Twitter and might have affected elections10. Many papers seek 
finding best conditions for spreading11–16 or sets of optimal spreaders17–20 but here we investigate an inverse problem. 
It became clear that one of the major challenges facing network and data scientists is to develop effective methods for 
detecting and suppressing spread of dangerous viruses, pathogens, misinformation or gossips. The basic component 
of such a system is undoubtedly a fast algorithm finding a source of such spread. The first widely discussed research 
on this subject has been done by Shah and Zaman21 and Pinto, Thiran and Vetterli22. In social networks, Shah and 
Zaman introduced rumor centrality of a node as the number of distinct ways a rumor can spread in the network starting 
from that node. They showed that the node with maximum rumor centrality is the Maximum Likelihood Estimator of 
the rumor source if the underlying graph is a regular tree. They studied also the detection performance for irregular 
geometric trees, small-word networks and scale-free networks. This method assumes that we know all the connections 
between nodes and additionally the infection states of all nodes. Pinto et al. relaxed some of these constraints since their 
algorithm requires information about state of not every node, but only about some fraction of nodes called observers. 
A further description of this algorithm is given in the next section and in Supplementary Information. After these two 
publications, the topic of the source detection became popular and many other variants of this problem have been 
studied. We can distinguish two main approaches to this issue: the snapshot-based21,23–25 and the detector-based22,26,27 
source detection. The first one requires the snapshot of an entire network at a certain time instance, the second needs 
to monitor only a small subset of nodes but all the time. Regardless of the above division, researchers considered also 
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different epidemic models25,28, spreading at weighted or time-varying graphs29–32 and multi-source detection prob-
lems33,34. In 2014 Jiang et al. described state-of-the-art and conducted comparative studies35. One of their conclusions 
is that current methods are too computationally expensive and they can not be use for a quick identification of the 
propagation source. The main goal of our research was finding the method which executes in reasonable time on large 
complex networks and delivers high quality of localization results at the same time.

Results
Before demonstrating our main results, we present a brief description of Pinto-Thiran-Vetterli algorithm 
(PTVA)22. Then, we introduce our approach in which observers with low quality information (i.e. with large 
spread encounter times) are ignored and potential sources are selected based on the likelihood gradient from 
high quality observers. In order to measure the performance of the algorithms we use three different quality of 
localization measures: the accuracy, the rank and the distance error. The accuracy is the empirical probability that 
a source found by the algorithm is the true source. The rank is the true source position on the nodes list, which 
is sorted in descending order by likelihood of being the source. The distance error is the shortest path distance 
between the real source and the source found by the algorithm. Details on these measures can be found in the 
section Methods.

Pinto-Thiran-Vetterli Algorithm.  Pinto, Thiran and Vetterli22 proposed a general framework for the local-
ization of the spread source in which some of the nodes in network act as observers and report from which 
neighbor and at what time it received the information. However, in real life the identity of the neighbor that sent 
the message to the observer is not always available (like in the case of gossip spreading on the public square). For 
this reason, and for the sake of greater generality and applicability of our studies, we do not require data received 
by observers to contain the identities of nodes from which the spread came. We refer to tests in which PTVA is 
applied to such data as Pinto-Thiran-Vetterli Algorithm executed on data with Limited Information (PTVA-LI). 
This lowering of the requirements on input data increases applicability of the methods but reduces detection 
accuracy, and yet it does not affect the algorithm’s complexity or speed. Thus, PTVA-LI tests for the speed and 
complexity are valid also for PTVA.

PTVA calculates the likelihood of each node to be the source (which we call the score, see Eq. 1 in Sup. Inf. 
Section S.1) using the reported times (observed delays) from all available observers. For this purpose, PTVA 
assumes information spreads through the network along the shortest paths and therefore uses breadth-first search 
(BFS) tree in place of the actual but unknown propagation tree. The method also assumes that the propagation 
times θi for each edge are i.i.d Gaussian random variables, for which the mean μ and the variance σ2 are known. 
The algorithm’s complexity for arbitrary graphs is O (N(K3 + N2)), where N is the size of the network and K is the 
number of observers. If K ~ Nγ, PTVA complexity ranges from O(N3) when γ ≤ 2/3 to O(N4) when γ = 1. For more 
details on PTVA see Sup. Inf. Section S.1.

Algorithm 1.  Gradient Maximum Likelihood Algorithm.
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Gradient Maximum Likelihood Algorithm.  Description.  Compared to the framework introduced by 
PTVA-LI we propose two improvements: a limited number of observers, and a gradient-like selection of sus-
pected nodes. The first idea takes advantage of the fact that observers which are very far from the spread source 
make very small contribution to the score in comparison to the nearest observers (Fig. S4 in Sup. Inf. Section S.2). 
On the other hand, those distant observers increase greatly the cost of information processing. Since a distance 
between any observer ok and the true source should increase (in average) with the arrival time tk, we can use only 
a small number K0 ≪ K of the nearest observers and drastically shorten the time needed for computing the score. 
The limited number of observers was used in earlier work22,36 where the search algorithm was run before all K 
observers get infected in order to limit the outbreak. In contrast, here we focus on the optimization of the algo-
rithm’s complexity for large complex networks.

The second idea introduces a procedure of the nodes selection for the score calculation. It is very likely that the 
spread source is in close proximity to the observer which has the smallest time at which the spread was observed 
(the observer one). The procedure starts by calculating scores of the nearest neighbors of the observer one and then 
selects a neighbor with the highest score. Next, the algorithm jumps into this node and calculates scores for its 
nearest neighbors in order to find the one which has a score greater than or equal to the current maximum. The 
process is gradient-like and it is continued until all neighbors have a score lower than the current maximum (see 
Fig. 1). Each calculated score is remembered (along with the node) which allows the algorithm to avoid 
double-calculation and to prepare a ranking of nodes suspected to be the source. The number of suspected nodes 
N0 = |Vs| depends primarily on the size of the network and the average degree 〈k〉. The empirical studies shows 
that N k Nlog( )0 ∼ 〈 〉  (Fig. S6 in Sup. Inf. S.2). It is worth noting that the algorithm does not guarantee that the 
true source s* will be selected for score calculation, i.e. P(s*∈Vs) < 1 (see Fig. S9a and S10a in Sup. Inf. S.2).

The Gradient Maximum Likelihood Algorithm (GMLA) is summarized in Algorithm 2.  denotes the under-
laying graph, μ and σ2 denote the mean and the variance of the random propagation delay associated with one 
edge, {ok} is the set of observers and {tk} are the times at which they observed the spread. The score of a node is the 
likelihood that this node is the true source. We denote the score of a node v as φ(v). The formulas for φ(v), μv and 
Λv are given by equations (1,3,4) in Sup. Inf.

Complexity.  Using the symbols K0 and N0 we reformulate the time complexity of GMLA as O N K N( ( ))0 0
3 2+  in 

the worst case. Assuming N Nlog( )0 ∼  and K0 ≪ N, which is true for our method, the complexity can be further 
simplified into O(log(N)N2).

Fine-tuning and performance.  The number of the nearest observers K0 is a crucial parameter of GMLA and 
should be carefully selected. If K0 is too small, the accuracy of the algorithm decreases. On the other hand, large 

Figure 1.  The visualization of GMLA. The left picture presents the whole graph. The red node is the true source. 
Green nodes mark the K0 nearest observers with the smallest time delays (in this plot K0 = 4). The rest of the 
observers in the network are highlighted in blue. The picture on the right is a zoom of a small area around the 
nearest observers. In this picture the color corresponds to the score (the likelihood of being the source) of the 
node (except for the observers which are green). The higher the score of the node is, the darker red is its color. 
At the beginning the algorithm computes the scores for the neighbors of the nearest observer (in this plot the 
observer one is o1 and its neighbors are v1, v2, and v3). Afterwards GMLA selects the neighbor with the highest 
score (v1 in this case) and starts computing the scores for its neighbors (o1, v4, v5 and s*). During this step there is 
no need for estimating the likelihood for the node v2 since it was done in the previous step. All the scores which 
are computed are stored in the list. Since s* has the highest score among the neighbors of v1, in the next step 
GMLA will compute the scores for it neighbors. None of the neighbors of s* has higher score than s*, therefore 
the algorithm stops here. The node s* is the source according to GMLA because it has the highest score from all 
tested (suspected) nodes. The nodes not visited by the algorithm are black since their scores are undefined (their 
scores are not computed).
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K0 increases the time of computation. The optimal number of the nearest observers ⁎K0  is the minimal number of 
the nearest observers K0 needed to achieve maximal quality of the spread source localization. We test how ⁎K0  
depends on the network size, the average degree and the propagation ratio for Erdös-Rényi (ER) and 
Barabási-Albert (BA) networks37 (see Sup. Inf. Section S.3). No substantial relationship was found between K0

⁎ 
and the average degree of the network or the propagation ratio (Figs S15–S18 in Sup. Inf. S.3). Figure 2 presents 
how the number of the nearest observers affects the performance of GMLA for various sizes of BA network with 
the minimum degree m = 3 (m is the initial degree of each attached node, thus 〈k〉 = 2m = 6). It is easy to see a 
peak of the accuracy and the valleys of the rank and distance error. Figure 2d shows the estimates of K0

⁎ for differ-
ent sizes of BA network. In the case of Erdös-Rényi network, no peak of the accuracy is observed, but the satura-
tion point is clearly visible (Fig. S13c in Sup. Inf. S.3). This also applies to the rank of the true source and the 
distance error (Fig. S13d,e). The fact that we can observe the peak of the accuracy for BA networks (not only the 
saturation point like for ER graphs) has substantial consequences, because it means that taking only K0 ≪ K near-
est observers not only shortens the computation time, but it may also improve the quality of the source localiza-
tion under certain circumstances. As we show further in Discussion, such a circumstance is the occurrence of the 
hubs in BA network. In the next paragraphs we present a numerical estimation of the complexity of GMLA as well 
as its performance in terms of the quality of results in comparison to PTVA-LI.

Tests on synthetic networks.  We tested GMLA and PTVA-LI for various sizes of Erdös-Rényi (ER) ran-
dom graphs and Barabási-Albert (BA) networks. We used Susceptible-Infected model (see details in section 
Methods) for the spread with the infection rate β = 0.5 (λ = 2). The observers were distributed randomly over 
a whole network with the density ρ = 0.2. In order to maintain a high efficiency of GMLA, we set the number of 
the nearest observers as a function of the network size K N0 50 = .  (see Fig. 2d and Fig. S12 in Sup. Inf. S.3) For 
comparative purposes, we introduce also a baseline method. The baseline method is very naive and according to 
it, the true source is always the observer one (with smallest delay tk). Details on the baseline method are given in 
section Methods.

The most important feature of GMLA is a remarkable reduction of the computation time. Figures 3d and 4d 
show that the empirical complexity decreases from O(N3.46) to O(N1.15) for ER graph and from O(N3.49) to O(N1.32) 
for BA network. Furthermore, one can observe an initial difference between GMLA and PTVA-LI computing 
times for the networks of size 200, which is a factor 4.4 for ER graph and 3.6 for BA network.

Figure 2.  Performance of GMLA versus number of the nearest observers K0 for various sizes of BA network 
(m = 3). (a) The maximum of accuracy is not very sharp but is clearly visible. (b,c) The minima of rank and 
distance error are not always compatible with the maximum of accuracy which increases the uncertainty of 
finding ⁎K0 . (d) The optimal number of the nearest observers ⁎K0  for various sizes of BA network. The solid line is 
a nonlinear least squares model =y bxa (Gauss-Newton algorithm), where a = 0.42 ± 0.04 and b = 1.44 ± 0.51 
(95% confidence interval).
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The quality of the source localization clearly depends on the network topology. In general, both algorithms 
achieve better results for ER graphs than BA networks. In the case of ER graphs, the accuracy of both algorithms is 
almost the same (Fig. 3a), but PTVA-LI is characterized by lower rank and distance error (Fig. 3b,c). On the other 
hand, for BA networks which are larger than 300 nodes GMLA outperforms PTVA-LI in every test of quality of 
the results (Fig. 4a–c). Moreover, the advantage of GMLA increases with the size of BA network and is especially 
high for large networks, for which the computation of PTVA-LI takes too long to collect a large enough statistics.

Tests on real social network.  Another test was performed on Gnutella, a real peer-to-peer network. This 
kind of network is used for direct exchange of data via Internet between users and therefore can be used to spread 
the malware. The graph obtained from SNAP Datasets38–40 contains N = 6299 nodes and has the average degree 
〈k〉 = 6.6 (more details on data are in the section Methods). We examine the algorithms for different densities of 
the observers, but we keep a constant number of the nearest observers in GMLA (K0 = 30). During tests we use 
simple SI model to simulate spreading. The results are shown in Fig. 5. For the density of the observers below 10% 
the outcomes of both methods are very similar – GMLA has slightly better accuracy but visibly worse rank than 
PTVA-LI. The situation changes when the density of the observers is equal or greater than 10% – GMLA performs 
better according to all efficiency measures. However, the main difference between these algorithms lies in the 
computation time (Fig. 5b). Initially, for ρ = 2.5% the computation time differs by a factor 61.5, but it increases 
with the density of observers since the computation time for PTVA-LI increases with ρ (see Fig. S2d in Sup. Inf. 
Section S.1).

Discussion
We introduce a new algorithm (GMLA) for the spread source localization in the well-known Pinto-Thiran-Vetterli 
limited observers formulation. The main drawback of the Pinto-Thiran-Vetterli Algorithm (PTVA) is its time 
complexity. For large networks with many observers the complexity of PTVA is defined by the complexity of 
matrix operations, which is O(K3) per node in the worst case (where K denotes the number of observers). We 
avoid this drawback in out algorithm by reducing the number of the observers used to determine the score (the 
likelihood of being the source) and by limiting the number of suspected nodes. The latter is performed by the 

Figure 3.  GMLA (blue) versus PTVA-LI (red) and the baseline method (green) on ER network. (a) The 
accuracy of both algorithms is almost the same and it increases with the network size. (b) The band inside the 
box shows the median of the true source rank. The bottom and top of the box show the values of the first and 
third quartiles. (c) The mean distance error for PTVA-LI and GMLA decreases with the network size. (d) The 
mean computation time of a single realization of GMLA is substantially shorter than of PTVA-LI. The solid lines 
are linear models ln(time) = a ln(size) + b, where a = 3.46 ± 0.07 for PTVA-LI and a = 1.15 ± 0.09 for GMLA 
(95% confidence interval). In the figures (a–c) each point is the result of 1000 realizations. In the figure (d) 
results for PTVA-LI and GMLA are averaged over 26 realizations. Parameters: 〈k〉 = 6, 2λ = , ρ = 0.2, 

= .K N0 50  (details in the text).
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selection procedure which starts from the neighbors of the first observer and follows the gradient of the score. As 
a result of the selection, we get a limited number of the suspected nodes = ∼N V Nlogs0  in contrast to PTVA 
where each node is checked (Vs = V). Thanks to this approach, the complexity of Gradient Maximum Likelihood 
Algorithm (GMLA) is O(log(N)N2) in the worst case and as far as we know this is the fastest algorithm for the 
spread source detection in generic networks with incomplete observations.

We test GMLA and PTVA-LI on Erdös-Rényi, Barabási-Albert and Gnutella networks and compare perfor-
mance of these algorithms using three measures: the accuracy, the rank of true source, and the distance error. 
Both algorithms work noticeably better for ER graphs than BA networks. For ER graphs, the quality of source 
localization by both algorithms is similar (with a minimal advantage of PTVA-LI), but for BA networks GMLA 
achieves much better results. The additional tests performed on Regular Random Graphs (Fig. S19 in Sup. Inf. 
Section S.4), Exponential Random Graph (Figs S20, S21 in Sup. Inf. S.4) and Configuration Model with the degree 
distribution which follows a power-law (Fig. S22 in Sup. Inf. S.4) confirm that GMLA outperforms PTVA-LI for 
scale-free networks. As is well known, the essential property of scale-free network is existence of the hubs - the 
nodes with a very high degree (here we consider nodes with ⩾k N  to be the hubs). The hubs are usually respon-
sible for a very rapid spread in the network, but can their presence hinder detection of the source? Fig. 6a shows 
the accuracy of PTVA-LI for 4 special sets of observers in BA network. All sets are equipotent (15 nodes) and 
contain only the observers which are the second order neighbors of the true source. In addition, the first set (black 
triangles) consists solely of the observers which are “behind” the hubs. We say the observer is “behind” the hub 
(or is noisy) if the shortest path between this observer and the true source passes through any hub. This also 
applies to the observers which are the hubs. The second set (gold triangles) is the opposite of the first set - it con-
tains only non-noisy observers which are not “behind” any hub. The third set (dark red squares) is a random 
mixture of the first two. The last set (purple diamonds) consists of the observers which have the smallest times at 
which the spread reached them (the quickest observers). This is the same criterion for the selection of observers 
as that which GMLA uses. As Fig. 6a shows, using the observers “behind” the hubs substantially worsens the 
accuracy of PTVA-LI. It means that information is degraded after passing through the hub. This is the main rea-
son why PTVA-LI and GMLA are less effective for scale-free networks. The highest accuracy of PTVA-LI is 

Figure 4.  GMLA (blue) versus PTVA-LI (red) and the baseline method (green) on BA network (m = 3). (a) The 
accuracy of GMLA increases with the network size and it is much higher than accuracy of PTVA-LI. (b) The band 
inside the box shows the median of the true source rank. The bottom and top of the box show the values of the 
first and third quartiles. GMLA has much lower rank than PTVA-LI. (c) The mean distance error for PTVA-LI 
increases with the network size in contrast to GMLA, which initially is the highest in the plot, but becomes the 
lowest for the networks larger that 3000 nodes. (d) The mean computation time of a single realization of GMLA is 
substantially shorter than of PTVA-LI. The solid lines are linear models a bln(time) ln(size)= + , where 
a = 3.49 ± 0.08 for PTVA-LI and a = 1.32 ± 0.08 for GMLA (95% confidence interval). In the figures (a)–(c) each 
point is the result of 1000 realizations. In the figure (d) results for PTVA-LI and GMLA are averaged over 26 
realizations. Parameters: 〈k〉 = 6, 2λ = , ρ = 0.2, = .K N0 50  (details in the text).
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achieved when using only non-noisy observers. However, the quality of the source localization of the algorithm 
with the quickest observers is only slightly lower. Since GMLA uses the quickest observers, it achieves better 
results than PTVA-LI in scale-free networks with hubs, because the nearest observers infrequently are “behind” 

Figure 5.  GMLA (blue) versus PTVA-LI (red) and the baseline method (green) on Gnutella network. (a) 
GMLA achieves higher accuracy than PTVA-LI and the baseline method. (b) The band inside the box shows the 
median of the true source rank. The bottom and top of the box show the values of the first and third quartiles. In 
a single realization, GMLA can have rank equal to N = 6299 when the score for the true source is undefined (see 
Fig. 1). (c) The mean distance error. For ρ > 10% GMLA has the lowest distance error. (d) The mean 
computation time of a single realization of GMLA is substantially shorter that PTVA-LI and, in contrast to 
PTVA-LI, is independent of the density of observers. Each point in the figures is the result of 1000 realizations. 
Parameters: λ = 2, K0 = 30 (details in the text).

Figure 6.  Effect of hubs in BA network (m = 3 and λ = 2 in all simulations). (a) Accuracy of the source localization 
vs network size for 4 sets of observers. Each set contains 15 observers which are 2 hops from the true source. Black 
triangles is the set containing only observers which are “behind” the hubs (noisy observers). Gold triangles is the set 
with only non-noisy observers. Dark red squares is the set with randomly selected observers. Purple diamonds is the 
set with the observers with the smallest time delays. These observers are the quickest receivers. Each point is the result 
of 2000 realizations. (b) The fraction of the observers which are “behind” the hubs (noisy observers) for PTVA-LI and 
GMLA. The analysis was done on BA network (m = 3) with constant density of observers ρ = 0.2 and the number of 
the nearest observers = .K N0 50 . The results are averaged over 1000 realizations.



www.nature.com/scientificreports/

8SCIENTIFIC RePortS |  (2018) 8:2508  | DOI:10.1038/s41598-018-20546-3

the hubs for sufficiently large networks, as is confirmed by Fig. 6b. Moreover, this conclusion is supported by the 
results obtained for Gnutella network, which also contains some hubs (0.4% of nodes has degree ⩾k N).

Although GMLA does not use information from all observers, as PTVA-LI does, it achieves better results for 
scale-free networks in quality of localization tests based on three measures: the accuracy, the rank of true source, 
and the distance error. This is because GMLA acts like a filter and rejects low quality information from distant 
observers which are often “behind” the hubs.

In summary, we proposed a new method for fast and accurate detection of spread source with incomplete 
observations which is capable to process timely large networks consisting of tens of thousands of nodes. Our 
algorithm is much faster and provides higher quality of localization results than Pinto-Thiran-Vetterli algorithm 
for scale-free networks. The key to this success is limiting the information sources to the most important observ-
ers, while ignoring excessive and noisy information from far observers, as well as use of likelihood gradient for 
selection of potential spread sources. The phrase “less is more” once again turned out to be truth here.

Methods
Propagation ratio.  For spreading process we define the propagation ratio λ as the ratio between the mean μ 
and the standard deviation σ of time delay associated with an edge in the network.

Susceptible-Infected (SI) model.  We simulate the spread through the network using discrete 
Susceptible-Infected (SI) model41. In this model each node can be in one of two states: susceptible or infected. At 
t = 0 only one random node is infected. We called this node the true source. At each subsequent time step each 
infected node has a chance to pass the information to its neighbor. The number of chances per time step is equal 
to the number of neighbors and for each neighbor the probability of success β is the same. The parameter β is 
called the infection rate. Since the number of time steps needed to pass the information from one node to its 
neighbor is equal to the number of independent trials (with the probability β) needed for first occurrence of suc-
cess, it is described by the geometric distribution and therefore the mean propagation time per edge is μ = 1/β 
and the variance is σ2 = (1−β)/β2. It follows that the propagation ratio λ = μ/σ for SI model is 1/ 1λ β= − .

Efficiency measures.  Accuracy.  The accuracy of a single realization is =a V1/i top  if s*∈ Vtop or ai = 0 
otherwise, where s* is the true source and Vtop is a group of nodes with the highest score (top scorers). The total 
accuracy a is an average of many realizations ai, therefore a ∈ [0,1]. This measure takes into account the fact that 
there might be more than one node with the highest score (ties are possible).

Rank.  The rank is the position of the true source on the node list sorted in descending order by the score. In 
other words this measure shows how many nodes, according to an algorithm, is a better candidate for a source 
than the true source. If the real source has exactly the same score as some other node (or nodes), the true source 
is always below that node (these nodes) on the score list sorted in descending order. The rank takes into account 
the fact that an algorithm which is very poor in pointing out the source exactly (low accuracy) can be very good 
at pointing out a small group of nodes among which is the source.

Distance error.  The distance error is the number of hops (edges) between the true source and a node designated 
as the source by an algorithm. If |Vtop| > 1, which means that an algorithm found more than one candidate for 
the source, the distance error is computed as a mean shortest path distance between the real source and the top 
scorers.

Baseline method.  The baseline method serves as the benchmark for accuracy and distance error tests. It 
assumes that the real source is the first observer reporting the spread. The baseline method works in no time and 
its accuracy is expected to be equal to the density of observers; this follows from the fact that if the true source is 
among the observers, it has to be the observer with the smallest arrival time. One can expect a quite low value of 
the mean distance error in this case, because the baseline method never makes big mistakes in terms of distance 
from the true source. Apart the poor accuracy, the baseline method does not assign the scores to the nodes which 
means that it cannot be used to find the rank of the real source.

Gnutella peer-to-peer network.  We used the data from SNAP Datasets38–40. This dataset consists of a 
snapshot of the Gnutella peer-to-peer file sharing network from 8 August 2002. Nodes represent hosts in the 
Gnutella network topology and edges represent connections which were established on 8 August 2002. The data 
has been anonymized by the researchers from Stanford University before it was made available. The graph con-
tains Ntot = 6301 nodes and Etot = 20777 edges, but we use the largest connected component which consists of 
N = 6299 nodes and E = 20776 edges (〈k〉 = 6.6). The diameter of the network is 9, the average path length is 3.7 
and the average clustering coefficient is 0.0109.

Testbed.  The time tests were performed in Java 7 using AMD FX-8350 4 GHz processor. We used jblas 
v.1.2.442 as a fast linear algebra library for Java.
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