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1. Introduction 

It has been shown that soil moisture has significant influence on numerous hydrologic 

processes including erosion (Fitzjohn et al., 1998), crop yield (Green and Erskine, 2004), the 

production of surface runoff (Western, 2001), and the partitioning of radiation into sensible and 

latent heat (Entekhabi et al., 1996).  Fine-resolution patterns of soil moisture are essential to 

applications of water management, agricultural production, and a wide range of Army related 

activities.  Soil moisture affects troop and vehicle mobility in combat, the accuracy of target 

acquisition systems, and the detection of underground explosives.  However, most available 

methods have not been able to predict soil moisture at the resolutions necessary (10 - 30 m) for 

many of these applications.  For example, the Advanced Microwave Scanning Radiometer 

(ASMR-E), Soil Moisture and Ocean Salinity (SMOS), WindSat, and Soil Moisture Active 

Passive (SMAP) satellites can predict soil moisture at 10 km to 60 km resolutions (Kerr et al., 

2001; Njoku et al., 2003; Entekhabi et al., 2010; Li et al., 2010).  Optical and thermal remote 

sensing data from MODerate resolution Imaging Spectroradiometer (MODIS) can be used to 

downscale these estimates to an intermediate resolution (1 km), and remote sensing can obtain 

soil moisture at a 500 m resolution using algorithms such as the Surface Energy Balance 

Algorithm for Land (SEBAL) (Merlin et al., 2013; Fang and Lakshmi, 2014; Bastiaanssen et al., 

1998; Scott et al., 2003).  Additionally, intermediate-resolution (700 m) soil moisture can be 

obtained from the ground-based Cosmic-ray Soil Moisture Observing System (COSMOS) (Zreda 

et al., 2008). 

To estimate fine-scale variations of soil moisture (resolutions on the order of 10 - 30 m), 

supplemental high-resolution data are needed that are strongly associated with these variations.  

Topographic data are widely available at fine resolutions, and it has been shown that topographic 

attributes influence soil moisture patterns at the catchment scale (Famiglietti et al., 1998; 
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Western et al., 1999; Erskine et al., 2007; Korres et al., 2010).  Wilson et al. (2005) used fine-

resolution topographic and in situ soil moisture data in collaboration with a single spatial average 

soil moisture value on multiple dates to estimate soil moisture patterns at the catchment scale.  

Similarly, Perry and Niemann (2007) developed a method based on empirical orthogonal 

function (EOF) analysis to estimate soil moisture patterns based on the average soil moisture for 

a catchment.  In addition, a method was developed by Temimi et al. (2010) to produce high-

resolution soil moisture maps using coarse resolution passive microwave sensors, high-resolution 

terrain-based topographical wetness indices, and vegetation leaf area index maps.  

The applicability and the significance of estimating soil moisture at fine resolutions has 

been clearly defined and explored by numerous researchers and experts, but the methods that 

have been made available still do not provide dynamic, widely-applicable soil moisture estimates 

at fine resolutions. Therefore, a method is needed to downscale coarse resolution estimates of 

soil moisture to resolutions that are appropriate for hydrologic and Army applications.  The 

overarching goal of this project was to develop such a method by addressing the issues of data 

acquisition, parameter calibration, and soil moisture dependence on multiple variables including 

topography, soil type, vegetation, and climate.  This document only summarizes the main 

accomplishments of the project.  All results have been published in peer-reviewed journal 

articles, so readers are encouraged to find more information in the references provided 

throughout this report. 

      

2. Research Objectives 

2.1 The EOF Method 

The first objective of the project was to determine whether an existing method for soil 

moisture downscaling could be applied to regions aside from those where it was developed using 
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past high resolution soil moisture observations (i.e. is the method transferrable?).  Thus, Busch et 

al. (2012) extended the research done by Perry and Niemann (2007; 2008), which described a 

downscaling method that used high-resolution soil moisture data collected from the field to 

determine empirical orthogonal functions (EOFs).  The objective was to develop an EOF-based 

method to downscale soil moisture using high-resolution topographic data but without requiring 

high-resolution soil moisture data that was previously collected from the application region.   

 

2.2 Nonlinear Relationships 

The second project goal was to evaluate whether nonlinear estimation methods would 

produce improved performance over previously-used linear estimation methods.  There is reason 

to believe that the relationships between soil moisture and topographic attributes are nonlinear 

because the topographic attributes in question are generally associated with physical processes 

that relate nonlinearly to soil moisture (Rodriguez-Iturbe, 2000).  The objective of the research 

done by Coleman and Niemann (2012) was to determine if nonlinear estimation techniques 

would improve the ability to estimate soil moisture patterns when compared to using multiple 

linear regression (MLR).  

 

2.3 The EMT Model 

The third goal of the project was to devise a new method that overcomes the limitations 

of the existing empirical downscaling method.  After characterizing the capabilities and 

limitations of the existing empirical downscaling method, a physically-based model was 

developed to describe the physical processes and dependences of soil moisture in a catchment.  

The development of this new approach, the Equilibrium Moisture from Topography (EMT) 

model, was used to investigate the local soil, vegetation, and climatic characteristics that might 
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influence the type of topographic dependence that soil moisture patterns possess at the catchment 

scale.  The model was also used to determine factors that might affect the temporal stability of 

soil moisture patterns. 

 

2.4 Sampling Techniques 

The fourth goal of the project was to examine the data requirements of the newly-

developed EMT model.  The EOF method relies on large high resolution datasets for its 

calibration, which might now be available in many cases.  The objective of the research done by 

Werbylo and Niemann (2014) was to evaluate the effectiveness of two strategic sampling 

techniques at identifying the relationships between topographic attributes and soil moisture at the 

catchment-scale in order to confine the amount of field data required for the downscaling 

methods.  

 

2.5 Effects of Vegetation 

The fifth goal of the project was to understand how vegetation characteristics might 

affect soil moisture downscaling.  The preceding work developed a better understanding of the 

relationships between soil moisture and topography, but the effects of vegetation on shallow soil 

moisture was also investigated.  The results from the EOF method and the EMT model both 

indicated that the soil moisture patterns at the Cache la Poudre catchment were not downscaled 

as well as the soil moisture patterns at the other application catchments.  It was then 

hypothesized that perhaps topographical attributes alone contributed less to the overall soil 

moisture dependence at Cache la Poudre.  Thus, a study was conducted by Traff et al. (2014) to 

determine how the presence of shrubs and/or trees affected the shallow soil moisture of the 
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semiarid montane Cache la Poudre catchment at fine resolutions.  Why the vegetation caused the 

observed effects on the soil moisture was also explored. 

 

2.6 The EMT+VS Model 

The sixth objective of the project was to incorporate the understanding of vegetation’s 

role into the new downscaling method.  Although the EMT model includes vegetation and soil 

parameters, the model treats them as catchment-wide constants and thus does not consider fine-

resolution variations of the properties.  The research done by Traff et al. (2014) concluded that 

soil moisture can be affected by fine-resolution variations of vegetation characteristics, and soil 

texture variations might have notable effects as well.  The objective of the research done by 

Ranney et al. (2014) was to generalize the EMT model to accept fine-resolution vegetation and 

soil information so as to improve the model’s ability to downscale soil moisture patterns at the 

catchment-scale.  The generalization of the model was called the Equilibrium Moisture from 

Topography, Vegetation, and Soil (EMT+VS) model. 

 

3. Methods  

3.1 The EOF Method 

To develop the EOF-based downscaling method, an available dataset for soil moisture on 

multiple dates and a digital elevation model (DEM) for four specific catchments (Tarrawarra, 

Tarrawarra 2, Cache la Poudre, and Satellite Station) are used.  EOF decomposition is performed 

on each dataset to identify the patterns of covariation (the EOFs) and their significance on each 

date (the expansion coefficients or ECs).  Using the space-time soil moisture datasets, spatial 

anomalies are computed by subtracting the spatial average soil moisture from the individual soil 

moisture values on each date.  The anomalies are used to compute a spatial covariance matrix, 

and an eigenanalysis is performed to create a matrix containing the eigenvectors and a matrix 
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containing the eigenvalues.  The eigenvectors are the ECs, which have values associated with 

each date in the original dataset.  The EOFs are new spatial patterns that result from the product 

of the eigenvectors (the ECs) and the spatial anomalies.  Thus, there is an EOF associated with 

each EC.  The number of EOF/EC pairs that are produced is equal to the number of dates 

associated with the original dataset.  The EOFs represent patterns of covariation in the spatial 

anomalies of soil moisture, and the ECs indicate the importance of each EOF to the pattern of 

anomalies on each date.  By properly combining the spatial averages, the EOFs, and the ECs, the 

original soil moisture dataset can be completely reconstructed.    

After the EOFs and the ECs are computed, statistically significant EOF/EC pairs to be 

retained in the downscaling method are determined.  The statistical tests proposed by Bartlett 

(1950) and Johnson and Wichern (2002) were performed using 95% confidence levels.  It was 

found that the Johnson and Wichern (2002) test tends to be overly restrictive in its estimate of 

the number of important EOFs, and the Bartlett (1950) test tends to be inaccurate with larger 

sample sizes (Perry and Niemann, 2007).  Therefore, the results from the two tests were averaged 

to determine the final number of EOFs to be retained.     

Next, multiple linear regression is used to identify empirical relationships between 

various topographic attributes and the retained EOFs.  The topographic attributes are obtained 

from the DEMs of the application regions.  Slope, aspect, and specific contributing area (SCA) 

are calculated using the methods described by Tarboton et al. (2009) to determine flow 

directions.  With this information, other attributes are calculated including the cosine of the 

aspect (cosAspect), the natural log of SCA (lnSCA), the potential solar radiation index (PSRI), 

and the wetness index, which is lnSCA divided by the slope (Beven and Kirkby 1979).  The 

PSRI value represents the ratio of the potential insolation received by a point with a given slope 
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and aspect to that of a horizontal surface at the same location (Moore et al. 1993).  The profile 

curvature, plan curvature, Laplace curvature, and tangent curvature are also calculated.  Slope, 

SCA, lnSCA, wetness index and the curvatures are expected to be related to the lateral 

redistribution of soil moisture, while cosAspect and PSRI are expected to relate to spatial 

variations in evapotranspiration (Western et al., 1999).  All of these attributes are standardized 

and regressed against each retained EOF.  Stepwise multiple linear regressions are used to relate 

the significant attributes to the EOFs.  Not all of the attributes are necessarily used in the final 

empirical equation.  

Finally, piecewise-linear relationships are used, in place of the cosine function utilized by 

Perry and Niemann (2007), to estimate the retained ECs from the spatial-averaged soil moisture.  

The segmented linear relationship ensures that the EC is zero when the spatial average is at 

specified upper and lower bounds.  These bounds disallow spatial variability once the spatial 

average soil moisture reaches the bounds.  After conducting a sensitivity analysis, the lower and 

upper bounds were set to 0.04 and 0.56, respectively.  Once this final task is complete, the EOF-

based downscaling method is fully constructed.  A fine-resolution DEM can now be used to 

determine topographic attributes, regression equations can estimate the EOFs from the attributes, 

the ECs can be estimated from a required spatial-average soil moisture value, and the computed 

EOFs, ECs, and the spatial average can be combined to determine the downscaled soil moisture 

pattern of any region and date assuming that the identified empirical relationships hold for the 

application conditions.   

 

3.2 Non-linear Relationships 

The nonlinear estimation methods examined are a spatial artificial neural network 

(SANN) and mixture modeling (MM) with multivariate Gaussian distribution functions.  These 
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methods were selected because they are unsupervised machine learning techniques that do not 

assume any specific form of relationship between soil moisture and the predictor data.  Both are 

kernel density estimation methods, which attempt to estimate the joint probability density 

function between soil moisture and the predictor variables.  Additionally, Green et al. (2007) 

found good performance when applying the SANN to crop yields, which are closely related to 

soil moisture.  The nonlinear methods and MLR were used to estimate soil moisture patterns at 

three different study catchments to test the methods’ predictive abilities when different processes 

dominate the construction of the soil moisture patterns.  The catchments included the Tarrawarra, 

Satellite Station, and Cache la Poudre catchments.  

The SANN method was developed by Shin and Salas (2000) and can be viewed as a 

specific implementation of the Nadaraya-Watson model, or kernel regression (Nadaraya 1964; 

Watson 1964; Bishop 2006).  The method is similar to kernel density estimation using 

multivariate Gaussian kernels.  The SANN method has two parameters: the number of neighbors 

P and the factor F.  The parameter P relates directly to the kernel widths, and the effects of P on 

the individual kernel widths depend on the data configuration and density.  The F parameter is 

related inversely to the kernel widths and affects all kernels to the same degree.  For the research 

done by Coleman and Niemann (2012), the value of F is fixed at 2.5, and P is considered a free 

parameter and various values were tested.  A disadvantage to the SANN method is that it 

requires all of the observations to be stored in order to make future estimates, which makes the 

evaluation slow for large datasets. 

The MM method is similar to the SANN method in that estimates are made by 

conditioning a multivariate density function with the values of the predictor variables.  However, 

the MM method uses the expectation-maximization (EM) algorithm (Dempster et al. 1977; 
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McLachlan and Peel 2000), and it uses a number of kernel functions that are less than the 

number of observations.  As was previously mentioned, Gaussian functions are used as the 

kernel functions in the MM method.  The MM method requires only one parameter, K, which is 

the number of components (Gaussian functions) used in the model.  The parameter was varied 

from 1 to 4. 

A Monte Carlo cross-validation methodology was utilized (McLachlan & Peel 2000; 

Bishop 2006) to assess the effectiveness of the estimation methods.  The methodology divides 

each set of observations into training and testing sets.  For each training set, the observations at 

unsampled locations comprise the testing set.  Each of the three estimation methods was used to 

develop a model of the relationship between topographic attributes and soil moisture values 

based on the training sets.  Soil moisture was then estimated at all locations with the models that 

were developed from each of the specific training sets.  Finally, the Nash-Sutcliffe Coefficient of 

Efficiency (NSCE) (Nash & Sutcliffe 1970) was used to measure the model performance, but 

only the testing sets from the three estimation methods were used to calculate the NSCE. 

 

3.3 The EMT Model 

A detailed derivation and description of the EMT model is provided by Coleman and 

Niemann (2013). In short, the EMT model is a conceptual model derived to simulate physical 

processes that occur in the vadose zone of the soil.  Four processes are included in the model to 

simulate the water balance of the vadose zone: infiltration F, deep drainage or recharge to 

groundwater G, lateral flow L, and evapotranspiration E.  The water balance is assumed to be at 

equilibrium, thus disallowing hysteresis in the soil moisture patterns.  The physical processes are 

represented in the model as functions of topographic attributes, which are determined from DEM 
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grid cells.  The topographic attributes derived from the DEM include slope, curvature as defined 

by Heimsath et al. (1999), SCA, and the PSRI on the summer solstice (Dingman, 2002).   

Before applying the model, eleven soil, vegetation, and climatic parameters must first be 

calibrated using point soil moisture observations from the catchment. The calibrated parameter 

values were determined by maximizing the average NSCE for all of the dates in the available soil 

moisture dataset. After calibrations are completed, the EMT model can estimate fine-resolution 

soil moisture patterns in the catchments (Tarrawarra, Satellite Station, and Cache la Poudre) 

from a provided spatial-average soil moisture and topographic attributes. The model is designed 

to generate soil moisture values (θ) for each location within the catchment at the resolution of the 

input DEM (e.g. 15 m by 15 m).  In order to obtain solutions for θ, a procedure is used to 

determine the weighted average solutions when evaluating the four processes of the vadose zone.  

Using the respective weights for each process, a final equation can be written to estimate the 

local soil moisture as a function of the spatial-average soil moisture and various climate, soil, 

and vegetation parameters that were assumed to be catchment-wide constants. 

 

3.4 Sampling Techniques 

The conditioned Latin hypercube sampling (cLHS) method proposed by Minasny and 

McBratney (2006) and a stratified random sampling (SRS) method similar to the SRS technique 

used by McKenzie and Ryan (1999) are the two strategic sampling techniques that were 

evaluated.  The objective of both methods is to identify sampling locations that represent a 

diverse set of values for the ancillary variables so that the sampling is less likely to be redundant 

(Werbylo and Niemann 2014).  The two methods are similar in that they select observation 

locations from locations that are divided into bins.  The methods differ, however, in how they 

determine the composition of the bins.  The cLHS method divides the range of each ancillary 
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variable into equally probable bins such that each bin contains the same number of observations.  

The SRS method divides the range of each ancillary variable into bins that cover an equal 

fraction of the observed range, regardless of the number of observations within each bin.  Figure 

1 demonstrates how the binning of the sampling techniques would look for a hypothetical 

relationship between an ancillary variable and soil moisture. 

The sampling methods were used with the two downscaling models described earlier: the 

EOF method from Busch et al. (2012) and the EMT model from Coleman and Niemann (2013).  

The sampling techniques used the topographic attributes to identify locations where the soil 

moisture should be monitored, and then the recorded soil moisture values were used to define the 

relationships required by the downscaling methods. 

 

 

The performance of the sampling techniques was determined by the ability of the downscaling 

methods to reproduce the actual catchment-scale soil moisture patterns at the application sites 

(Tarrawarra, Satellite Station, and Cache la Poudre) when supplied with data from the sampling 

methods. In the study that was conducted, the sampling methods were compared to random 

sampling, which was used as the control case.  This approach was taken because it is similar to 

other studies that have evaluated the effectiveness of strategic sampling methods (Minasny and 

Figure 1. Application of the cLHS and SRS binning methods for a hypothetical relationship between an ancillary 

variable and soil moisture. 



Methods to Downscale Soil Moisture Patterns to Fine Resolutions 

12 

 

McBratney 2006; Worsham et al. 2012).  Additionally, random sampling was selected because 

the number of sampling locations could be controlled more directly (compared to uniform 

sampling, for example). 

 

3.5 Effects of Vegetation 

To evaluate the role of vegetation, soil moisture was monitored at intercanopy locations, 

under the shrub canopy, and under the forest canopy on both the north-facing and south-facing 

hillslopes of the Cache la Poudre catchment.  Mountain mahogany shrubs and ponderosa pine 

trees are some of the dominant species that vegetate the region, and thus they were used to 

evaluate the effects of a shrub canopy and a forest canopy, respectively.  Soil moisture was also 

monitored at different upslope and downslope distances from plant bases, attempting to evaluate 

the importance of stemflow and run-on effects.  Soil moisture observations were collected on an 

hourly basis using time-domain reflectometry (TDR).  Rain gauges were also placed at the 

various locations in order to measure throughfall.  Temperature and insolation measurements 

were collected to determine the potential evapotranspiration (PET), which was calculated for 

each location type using the Priestly and Taylor (1972) equation.  Observations of soil texture 

and the degree of hydrophobicity were also taken.  Sieving was used to remove any gravel and to 

collect the sand (0.05-2 mm) fraction of the soil.  The silt (0.02-0.6 mm) and clay (<0.02 mm) 

fractions were determined using a hydrometer.  The degree of hydrophobicity of the soil samples 

was determined by using the molarity of ethanol droplet (MED) test (Roy and McGill 2002). 

Using the south-facing slope’s (SFS) intercanopy locations as the base condition 

(condition with the least possibility of having effects from vegetation), the measurements were 

compared and the effects of vegetation on shallow soil moisture were assessed.  Sensors on the 

SFS and NFS have labels that begin with ‘S’ and ‘N’, respectively.  The three canopy locations; 
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intercanopy, mountain mahogany canopy, and ponderosa pine canopy, are labelled ‘I’, ‘M’, and 

‘P’, respectively.  Therefore, the six primary location types are labelled SI, SM, SP, NI, NM, and 

NP.  Also, at one site on the SFS, throughfall and insolation were measured above the canopy, 

which was considered an open site and was labelled SO. 

 

3.6 The EMT+VS Model 

Similar to the EMT model, the vadose zone of the soil was simulated by the EMT+VS 

model.  In the EMT+VS model, a water balance is again constructed to consider infiltration F, 

deep drainage G, evapotranspiration E, and lateral flow L.  In this case, however, the processes 

are modified to also include the roles of interception, transpiration, and soil evaporation. 

Interception by vegetation modifies the infiltration term.  The adjustment allows for the 

fact that interception would cause a decrease in infiltration. The ET process is also modified 

because the EMT model does not distinguish transpiration and evaporation due to effects of 

vegetation.  By introducing a fractional vegetation cover (V), the EMT+VS model accounts for 

both evaporation and transpiration.  The vegetation cover is applied to the transpiration term to 

show that denser vegetation cover is associated with increases in transpiration.  It is also applied 

to soil evaporation to show that soil evaporation is reduced by denser vegetation cover. 

In addition to the process modifications, the structure of the model was revised to allow 

both vegetation and soil data to vary at fine-resolutions. Nonetheless, the EMT+VS model uses a 

weighted average solution strategy that is used for the EMT model.  The only difference is that 

more variables are allowed to vary spatially in the EMT+VS model. 

The model was evaluated by applying it to the Cache la Poudre catchment, where fine-

resolution topographic and soil moisture data were available on a 15 m grid.  Vegetation data 

were measured on the 15 m grid, and soil data were collected at alternating points from the 15 m 
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grid, producing a 30 m grid.  It was also tested at the Tarrawarra and Nerrigundah catchments in 

Australia where soil moisture, topographic, and limited soil data were available.  Because the 

soil data at the Australian catchments are limited, the feasibility of interpolating soil data for use 

with the EMT+VS model was also evaluated. 

 

 

 

 

4. Application Sites 

4.1 Tarrawarra 

The Tarrawarra catchment is located near Melbourne in southern Victoria, Australia 

(Western and Grayson 1998).  It has a temperate climate with an annual precipitation of 

approximately 82 cm, an annual PET of approximately 83 cm, and a rainfall deficit in summer 

and excess in winter.  The vegetation of the catchment consists primarily of grassy pasture used 

for cattle grazing.  The soils generally consist of a silty loam A horizon over a clay B horizon, 

and the soil depths vary from 40 cm in the upper catchment to over 2 m in the lower region.  The 

catchment area is 10.5 ha, and the topography consists of undulating hills with topographic relief 

of 27 m.  A DEM with 5 m resolution is available for the site, which was created by interpolating 

elevations that were collected using a total station on a paced 10 m grid.  Soil moisture data were 

collected at Tarrawarra on 13 dates between September 27, 1995 and November 29, 1996 on a 

10 x 20 m sampling grid using a portable TDR.  The soil moisture was measured in the top 30 

cm of the soil layer.  The soil moisture dataset was filtered to include only those locations that 

were observed on all dates, resulting in a dataset with 454 locations.  
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4.2 Tarrawarra 2 

The Tarrawarra 2 catchment surrounds the original Tarrawarra catchment and is 

described by Wilson et al. (2005).  The catchment exhibits similar characteristics to the 

Tarrawarra catchment including climate, precipitation, PET, vegetation, and soil type.  The 

catchment has an area of approximately 115 ha with topographic relief of 41 m.  The available 

DEM for the catchment has a 10 m resolution.  Soil moisture data were collected at Tarrawarra 2 

on eight dates between June 1998 and October 1999, a few years after the dataset for Tarrawarra 

was collected.  The data at Tarrawarra 2 were also collected using a portable TDR on a 40 x 40 

m grid.  After filtering the data, the soil moisture dataset includes 374 locations.  It should be 

noted that the Tarrawarra dataset was collected during a wetter than average period while the 

Tarrawarra 2 dataset was collected during a drier than average period.  Nonetheless, the soil 

moisture patterns at the two catchments are expected to exhibit similar behavior.  

 

4.3 Cache la Poudre 

The Cache la Poudre catchment is near Rustic, Colorado and approximately 40 km west 

of Fort Collins, Colorado (Lehman and Niemann 2008).  The catchment has a semiarid climate 

where annual precipitation is approximately 40 cm and annual PET is approximately 93 cm.  It is 

substantially drier than the Tarrawarra and Tarrawarra 2 catchments.  The vegetation on the 

north-facing slope of the catchment is predominately coniferous forest with scattered shrubs, 

whereas the south-facing hillslope is primarily covered with shrubs and grasses.  The catchment 

has thin sandy soil on the south-facing hillslope and thicker mineral soils overlaid with organic 

matter on the north-facing hillslope.  The Cache la Poudre catchment has an area of 8 ha with 

topographic relief of 115 m, and it consists of the headwater area for one incised channel with 

both steep and flat portions.  The DEM for the catchment was created by surveying on a 15 m 
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grid.  Soil moisture data were collected on nine dates over a period of three months from April to 

June 2008.  A portable TDR was used to collect the measurements, but because of the 

shallowness of the soils in this catchment, the soil moisture was only measured in the top 5cm of 

the soil.  The soil moisture data were collected on the same 15 x 15 m grid as the DEM.  After 

filtering to produce a consistent dataset, a total of 347 locations remain. 

 

 

4.4 Satellite Station 

The Satellite Station catchment is located approximately 70 km north of Aukland, New 

Zealand, and is described by Wilson et al. (2003).  The catchment has a humid climate where 

annual precipitation is approximately 160 cm and annual PET is approximately 130 cm.  

Consequently, Satellite Station is the wettest catchment that was evaluated during this research.  

The catchment is used for cattle grazing, and the soil characteristics have a clear distinction 

between the hillslopes and the lowland valleys.  Hillslope soils are generally silty clay loam with 

30 cm depths, while the lowland valley soils are relatively deep alluvial fills with high clay 

content.  The area of the catchment is approximately 60 ha and comprised of undulating terrain 

with a total relief of 80 m.   The topographic data for the catchment are available as a 10 m 

resolution DEM.  Soil moisture data were collected at Satellite Station on six dates from March 

1998 to October 1999.  These measurements were made on a 40 x 40 m grid using a portable 

TDR device to measure soil moisture to a depth of 30 cm.  Again, the dataset was filtered, 

resulting in a dataset with 322 locations. 

 

4.5 Nerrigundah 

The 6 ha Nerrigundah catchment is located northwest of Dungog in New South Wales, 

Australia (Walker 1999; Walker et al. 2001).  It has a temperate climate where annual 
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precipitation is approximately 100 cm and annual PET is approximately 160 cm.  Natural grasses 

vegetate the catchment where soils are usually shallow (30-90 cm) predominantly consisting of 

sandy loams.  The catchment has an average elevation of approximately 110 m with topographic 

relief of 27 m.  A total station survey was conducted to develop the available 20 m DEM.  Soil 

moisture data were collected for the top 15 cm of the soil on 12 dates from August 27, 1997 to 

September 22, 1997.  A TDR was used to measure the soil moisture within the catchment on a 20 

x 20 m grid.  The soil moisture dataset was filtered and produced a dataset with 238 locations. 

 

 

 

5. Results 

5.1 The EOF Method 

Figure 2 displays the significant EOFs for the four analyzed catchments.  For Tarrawarra, 

the Bartlett (1950) test indicates that five EOFs are significant, whereas the Johnson and 

Wichern (2002) test identifies only one as significant.  Therefore, three EOFs are retained in the 

downscaling method.  The three EOFs explain 54.9%, 9.4% and 5.9% of the variation in the 

Tarrawarra dataset, respectively, for a total of 70.2 %.  The Bartlett (1950) test indicates that 

three EOFs are significant and the Johnson and Wichern (2002) test indicates one EOF as 

significant for the Tarrawarra 2 dataset, resulting in two EOFs being retained in the downscaling 

method.   The two EOFs explain 25.3% and 15.9% of the variation, respectively, for a total of 

41.2%.  At Cache la Poudre, the statistical tests produced similar results to the Tarrawarra 2 

dataset, resulting in the first two EOFs being retained in the downscaling method.  The EOFs 

explain 50.2% and 13.9% of the variation, respectively, for a total of 64.2%.  For Satellite 

Station, both statistical test methods indicate that only one EOF is significant, and it explains 

29.8% of the variation in the dataset. 
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As was described previously, multiple linear regressions were used to identify empirical 

relationships between various topographic attributes and the retained EOFs.  The EOF patterns 

that were estimated using the regression equations are denoted as REOFs and are presented in 

Figure 3.  When comparing the REOFs (Figure 3) with the actual EOFs (Figure 2), it can be seen 

that the REOFs are reasonably similar to the EOFs, but they appear to be smoother.  For 

Tarrawarra, the portion of the variation in each EOF that is explained by the corresponding 

REOF is 0.72 for EOF1, 0.39 for EOF2 and 0.22 for EOF3.  For Tarrawarra 2, the portion of 

variation explained is 0.41 for EOF1 and 0.09 for EOF2.  The portions are 0.26 for EOF1 and 

0.13 for EOF2 for the Cache la Poudre catchment, and for Satellite Station, the amount of 

variation explained within EOF1 by the empirical relationships is 0.38.    

Figure 2. Retained EOFs for (a) Tarrawarra, (b) Tarrawarra 2, (c) Cache la Poudre and (d) Satellite Station.  White 

cells indicate locations that were excluded from the EOF analysis because soil moisture observations were missing 

in the original dataset 



Methods to Downscale Soil Moisture Patterns to Fine Resolutions 

19 

 

 

 

Overall, it can be seen that the topographic attributes are more successful at explaining 

the most important EOFs at each catchment.  Tarrawarra’s EOFs are most strongly related to the 

topographic attributes, whereas Cache la Poudre’s EOFs are most weakly related.  The weaker 

relation is likely attributed to the drier conditions and shallow measurement depths at the Cache 

la Poudre catchment.  

The EOFs are used to produce downscaled soil moisture patterns in combination with the 

retained and estimated ECs.  The downscaling method was applied to each catchment in four 

ways.  First, each downscaling method was applied when the actual EOFs and ECs were used.  

Second, the actual EOFs and the estimated ECs were used.  Third, the method used the estimated 

EOFs and the actual ECs. Fourth, the estimated EOFs and the estimated ECs were used.  This 

approach was executed to better understand the origins of the errors that occurred in the 

Figure 3. EOFs estimated based on the regressions against topographic attributes for (a) Tarrawarra, (b) Tarrawarra 

2, (c) Cache la Poudre and (d) Satellite Station. White cells indicate locations with no values in the original soil 

moisture dataset 
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downscaled patterns.  The NSCE was used to measure the difference between the observed and 

the downscaled soil moisture patterns.  The maximum value of NSCE is one, which implies that 

the downscaled pattern matches the observed pattern exactly.  NSCE values greater than zero 

indicate the downscaled pattern explains more of the observed variability than does simply using 

the spatial average soil moisture. 

Figure 4 shows the results of the analysis.  The average NSCE values are the highest 

when the actual EOFs and ECs are used.  The only reason why the NSCE values are not equal to 

one in this case was because of the discarded EOF/EC pairs that were not retained for the 

downscaling method.  When the analysis was repeated using the estimated ECs in place of the 

actual ECs, the average NSCE values decrease further.  Using this information is essentially 

what was done be Perry and Niemann (2007) who downscaled soil moisture patterns by using a 

space-time dataset of soil moisture and a spatial-average soil moisture value.  The error that is 

introduced by estimating the patterns of covariation from the topographic attributes can be 

realized by looking at the analysis that uses the REOFs and actual ECs.   

 

Figure 4. Performance of the downscaling method at each catchment as the estimated ECs and EOFs replace the 

actual ECs and EOFs in the method.  In the legend, ‘EOF’ indicates that the downscaling method used that actual 

EOF, and ‘REOF’ indicates that the method used the estimates obtained from the topography.  Similarly, ‘actual 

EC’ means that the method used the EC values obtained from the EOF analysis, whereas ‘estimated EC’ means 

that the method used the estimates obtained from the spatial-average soil moisture 
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In this case, one can see the topographic dependence that the catchments possess.  Tarrawarra’s 

soil moisture patterns contain the strongest relationship to the topographical attributes because 

the NSCE drops from 0.63 to only 0.40, whereas Cache la Poudre exhibit the weakest 

relationship because the NSCE drops from 0.58 to 0.14.  Overall, the figure demonstrates that the 

primary source of error in the downscaling method results from the estimation of the EOFs from 

topographic data.  Thus it suggests that the use of additional data such as soil and vegetation 

variations might represent a way to improve the downscaling method.  As expected, the lowest 

NSCE values are achieved when both the EOFs and the ECs are estimated.  However, the fact 

that the NSCE values are positive indicates that the downscaling method produces a soil 

moisture pattern that is better than using just the spatial average soil moisture.  The advantage of 

this final method is that it can possibly be used for other similar catchments where no space-time 

soil moisture observations have been collected. 

Figure 5 illustrates the best performance of the downscaling method at each catchment.  

The NSCE values for these patterns are 0.67 for Tarrawarra, 0.35 for Tarrawarra 2, 0.33 for 

Cache la Poudre and 0.34 for Satellite Station.  From the figure, it can be seen that the 

downscaling method successfully captures most of the major features of the observed patterns at 

all four catchments.  At Tarrawarra, the downscaled pattern successfully identifies the wet valley 

bottom, and it identifies the relatively drier soil moisture on the north-facing slope.  At Cache la 

Poudre, the downscaled pattern produces relatively wetter locations on the north-facing hillslope, 

which is consistent with the observed pattern.  All of the estimated patterns are much smoother 

in appearance than the observed patterns because the REOFs are much smoother than the actual 

EOFs.     
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The probability of the EOF-based downscaling method was then evaluated.  In the analysis, the 

downscaling method that was developed at each catchment was applied to the other three 

catchments.  When applied to the other catchments, the performance of the methods is almost 

always worse.  The generally poor transferability of the methods between the datasets could be 

attributed to a number of causes including: differences in precipitation during times of data 

collection, differences in DEM resolutions, the number of attributes associated with the 

respective REOFs, and the fact that the REOFs are estimated on the basis of topography alone 

while neglecting consideration of soil and vegetation properties.  

 

5.2 Non-linear Relationships 

The observed soil moisture patterns and the patterns estimated when 25% of the available 

data were used for training for the three application regions are shown in Figure 6.  The patterns  

Figure 5. Comparisons of observed soil moisture patterns and those estimated by the EOF-based downscaling 

method at (a) Tarrawarra, (b) Tarrawarra 2, (c) Cache la Poudre and (d) Satellite Station. These dates were selected 

because their NCSE values are the highest among all dates at the given catchment. Soil Moisture values are 

volumetric soil moisture expressed as a percentage. White cells indicate locations with no values 
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shown are from the set of topographic attributes that produced the highest median NSCE for 

each method and the training data that produced the results closest to that median NSCE among 

different samples.  The main features observed in the soil moisture patterns are reproduced by all 

of the methods.  The wet valley bottom and south-facing hillslope of the Tarrawarra catchment 

are reproduced by each of the methods.  Satellite Station has a weakly organized soil moisture 

pattern, but the methods are able to capture some of the variability.  The methods are also able to 

reproduce the mostly aspect-dependent pattern of the Cache la Poudre catchment, which 

distinguishes the soil moisture of the south-facing hillslope and the north-facing hillslope.  The 

NSCE values included in the figure were calculated only from the associated testing dataset.  The 

Figure 6. (a) Observed soil moisture patterns at each study site, and soil moisture patterns estimated by (b) MLR, 

(c) SANN and (d) MM. The dots indicate training data locations. 
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methods generally perform better at Tarrawarra compared to the other two sites, but the SANN 

has the highest NSCE value for all three application catchments.  The SANN method most likely 

performs better than the other two methods because it has the most flexibility in the type of 

relationship that it can infer from the data.  The flexibility allows the SANN to include 

intricacies in the relationships to the topographic attributes that are ignored by the other two 

methods. 

Figure 7 plots the median NSCE for the three methods as the number of topographic 

attributes used varies.  For each application site, the driest, wettest, and a moderate wetness 

condition were evaluated.  In all cases, 25% of the observations were used as training data, and 

the lines in the figures indicate the median NSCE values from all 30 samples at that sampling 

rate.  In nearly all of the scenarios, the performance of the three estimation methods is similar.  

The largest notable difference between performances can be seen at Satellite Station for both the 

dry and moderate wetness conditions.  In both cases, the SANN method has the best 

performance.  Although it is not as noticeable, the SANN performs better than the other methods 

in most of the other cases in the figure as well.  In general, the methods perform better under the 

moderate wetness condition.  The reduced performance in the dry and wet conditions could be 

expected because of the reduced spatial structure of the soil moisture patterns during those 

conditions.  

The overall similarity of the results of the MLR, MM and SANN estimation methods 

indicate that allowing nonlinearity in the relationships between soil moisture and topographic 

attributes does not substantially improve pattern estimation.  For most of the cases in the figure, 

the methods show little variation in the NSCE as the number of predictor variables is increased.   
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The exceptions are the moderate and wet conditions at Tarrawarra and the dry condition at Cache 

la Poudre.  Overall, the NSCE for the SANN method usually remain somewhat constant or 

improve with additional predictor variables, while the other two methods generally decrease with 

additional variables.  The lack of substantial improvement with additional variables suggests that 

one or two attributes represent the major effects of the dominant physical processes.  The 

negative trends in NSCE values as predictor variables increase indicate overtraining. 

The effects of the size of the training dataset on the performance of the methods are 

illustrated in Figure 8.  The figure shows the results associated with the maximum median NSCE 

value produced by the use of two predictor variables.  Only the moderate wetness condition is 

shown for each site, but the results are consistent for all three wetness conditions.  The plots in 

the figure characterize the variation in the performance of each method among the 30 training  

Figure 7. Median NSCE for each estimation method as the number of topographic attributes used increases. 
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sets generated at a given sampling density.  In general, the performance is not significantly 

influenced by the number of observations supplied for training.  In some cases, the performance 

slightly decreases, and in other cases it slightly increases as the sampling rate is increased.  

Overall, the nonlinear methods’ best performances are obtained by using more data than the 

MLR, which demonstrates the nonlinear methods’ abilities to continue to extract useful 

information as the amount of data increases.  However, at least 50% of the data supplied for 

training has to be used to achieve the best performance for all of the estimation methods.  This 

indicates that a significant data collection effort would be required.  In light of that fact, the 10 

and 25% sampling rates are more aptly evaluated.  These rates are associated with a much more 

feasible manual collection effort.  At those sampling rates, the SANN has the highest median 

NSCE at Satellite Station and Cache la Poudre, and MLR has the highest value for Tarrawarra.  

Figure 8. Box-and-whisker plots characterizing the performance of each estimation method as the amount of 

training data increases.  Plus symbols indicate outliers, which are defined as values that are more than 1.5 times the 

distance between the upper and lower quartiles away from the box limits. 
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For the most part, the SANN obtains equivalent or higher NSCE values than MLR when the 

sampling rate is at least 25%.  Additionally, the MM outperforms MLR in most cases when the 

sampling rate is at least 50%. 

 

5.3 The EMT Model 

 Realistic soil moisture patterns can be produced by assuming that the spatial structure of 

the patterns is at equilibrium and by inferring the spatial variability of the physical processes 

from topographic attributes (Coleman and Niemann, 2013). Separate calibrations were 

performed for each of the three catchments seeking the maximum average NSCE for all the dates 

in the available soil moisture dataset.  At the Tarrawarra catchment, shown in Figure 9, the EMT 

model shows increasingly prominent wet areas in the valley bottoms as the spatial-average soil 

moisture increases from (d) to (f). In contrast, the hillslope dependence decreases as spatial-

average soil moisture increases. The model seems to slightly overestimate the valley bottom 

dependence for this catchment. However, the overall topographic dependencies for Tarrawarra 

are successfully reproduced.  
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The estimated soil moisture patterns for Satellite Station (Figure 10) exhibit stable wet 

valley bottoms. This feature is likely due to lateral flow having a large effect on soil moisture.  

Overall, it can be seen that the estimated soil moisture pattern closely resembles the observed 

pattern, and it captures most of the observed scatter and variability. 

Figure 9. Representative observed (a, b, c), EMT model (d, e, f), and implicit equation (g, h, i) soil moisture 

patterns for Tarrawarra. The observed soil moisture patterns are from 14 February 1996, 27 September 
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The ranges of NSCE among the dates and catchments are shown in Table 1.  On average, 

the model explains between 8% and 30% of the spatial variation in the soil moisture. The best 

performance occurs at Tarrawarra, where the model explains up to 58% of the variation on one 

particular date.  These NSCE values are similar to the performance of other methods that 

estimate soil moisture based on topography at these sites (Coleman and Niemann, 2012; Perry 

and Niemann, 2007; Western et al., 1999; Wilson et al., 2005). 

 

Figure 11. Representative observed (a, b, c), EMT model (d, e, f), and implicit equation (g, h, i) soil moisture 

patterns for Cache la Poudre. The observed soil moisture patterns are from 24 June 2008, 12 June 2008, and 28 

May 2008, and the spatial-average soil moisture values are 0.04, 0.11, and 0.19 V/V for Figures 4a, 4b, and 4c, 

respectively. NSCE values for the EMT model are 0.10, 0.20, and 0.00. 



Methods to Downscale Soil Moisture Patterns to Fine Resolutions 

30 

 

 

The relative importance of the two spatial patterns that are embedded in the EMT model (the 

lateral flow index (LFI) and the evapotranspiration index (ETI)) depend on the spatial-average 

soil moisture in the catchment. The relative weight for each term in the EMT model as a function 

of spacial-average soil moisture is plotted in Figure 12. For the Tarrawarra catchment (Figure 

12a) at low spatial-average soil moistures, the radiative ET weight is largest, implying hillslope-

dependent soil moisture patterns to be the most important. Conversely, as spatial-average soil 

moisture becomes large, the later flow weight and the influence of LFI are very large, producing 

valley-dependent soil moisture patterns. At Satellite Station (Figure 12b), aerodynamic ET and 

deep drainage dominate at the lower and upper ends of the spatial-average soil moisture range, 

respectively.  

 

Table 1. Statistics of the NSCE Values from All Available Dates at the Three Catchments when the Best-

Performing Parameter Sets are Used 
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Lateral flow is more important at Satellite Station than Tarrawarra, and the radiative ET weight 

is less important. For Cache la Poudre (Figure 12c), deep drainage processes dominate at the 

upper extreme of the range of spatial-average soil moisture, but it is already important for much 

lower soil moistures. The lateral flow weight is small for the entire range, which supports the 

lack of valley dependence in the soil moisture patterns of the Cache la Poudre catchment.   

 

5.4 Sampling Techniques 

The sampling techniques were evaluated for two scenarios: location-limited and date-

limited.  For the location-limited scenario, the sampling methods were used to select a limited 

number of locations in a catchment based on the topographic attributes that are required by each 

Figure 12. Calibrated weights plotted as a function of spatial-average soil moisture for (a) Tarrawarra, (b) Satellite 

Station, and (c) Cache la Poudre. Markers indicate observed spatial-average soil moisture values and the associated 

process weights. 
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downscaling method as ancillary variables.  For the date-limited scenario, all available locations 

were sampled but only on a limited number of dates.  In this scenario, the spatial average soil 

moisture, which varies between different dates, was treated as an ancillary variable (the only 

ancillary variable).  For any given number of sampling locations and/or dates, the selection of 

actual locations and dates was repeated numerous times to produce multiple realizations.  The 

EOF method requires about 100 realizations for the average performance of the model to 

stabilize.  The EMT model requires only about 50 trials because it has fewer ancillary variables 

(topographic attributes) and parameters. 

Figure 13 presents the results for the location-limited scenario at the three application 

catchments when the spatial average soil moisture is estimated from the sampled locations.  In 

general, cLHS consistently outperforms random sampling.  When very few locations are sampled 

(fewer than about 30), SRS performs as good as or better than cLHS.  This result is not seen at 

Cache la Poudre, and the difference can mostly be attributed to the fact that the catchment is 

hillslope-dependent and because the soil moisture patterns at Cache la Poudre are most weakly 

related to topography relative to the other two catchments.  However, for large numbers of 

sampled locations, SRS can perform worse than both cLHS and even random sampling. 
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Comparing the left column of results to the right column in Figure 13 allows a 

comparison of the EMT model and EOF method when they are calibrated with soil moisture 

observations from limited numbers of locations.  The random sampling case allows for the most 

direct comparison because the same locations are used in both cases.  The results show that the 

EMT model significantly outperforms the EOF method when smaller numbers of locations are 

used: less than 55 for Tarrawarra, less than 130 for Satellite Station, and less than 47 for Cache la 

Poudre.  When the numbers of locations are large, the EOF method outperforms the EMT model.  

The EMT model likely performs better with limited data because it is based on a physical 

description of vadose-zone hydrology that helps constrain the estimated patterns.  The EOF 

Figure 13. Average NSCE of the downscaling methods at Tarrawarra (top row), Satellite Station (middle row), and 

Cache la Poudre (bottom row) when the number of sampled locations and the sampling method are varied. The left 

column considers the EMT model, while the right column considers the EOF method. 
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method likely performs better with large datasets because its empirical approach allows greater 

flexibility in reproducing the observed patterns. 

In the date-limited scenario, the downscaling methods were calibrated using every soil 

moisture observation from the selected sampling dates.  Then, the downscaling methods were 

used to estimate the soil moisture patterns on all available dates when supplied with the true 

spatial average.  Figure 14 shows the results of the limited-date scenario when it is coupled with 

each of the downscaling methods and all three application sites.  Overall, little improvement in 

performance occurs after three to four dates have been observed, depending on the sampling 

method used.   
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A large advantage is observed for strategic sampling at Tarrawarra when the EMT model is used 

(Figure 14a).  The advantage is not as evident when applying the EOF method to Tarrawarra or 

when either downscaling method is applied to the other two application sites.  The differences 

are likely smaller at the other catchments because the soil moisture patterns are temporally 

stable.  When selecting dates at Tarrawarra, it is more important that dry, intermediate, and wet 

conditions are represented because the soil moisture patterns are different for each condition at 

that catchment.  The strategic sampling methods ensure the inclusion of the varying conditions, 

and that is why they outperform random sampling so clearly in Figure 14a.  It should be noted 

that the EOF method outperforms the EMT model in all cases of the date-limited scenario in part 

because all available locations are sampled on any selected date. 

 

Figure 14. Average NSCE of the downscaling methods when the number of sampled dates and the sampling 

method are varied. The left column considers the EMT model, while the right column considers the EOF method. 

The top row considers Tarrawarra, the middle row considers Satellite Station, and the bottom row considers Cache 

la Poudre. 
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coefficients of variation to the NFS intercanopy case. The effect of vegetation cover differs 

between the two hillslopes because the intercanopy soil moisture differs (the behavior of the 

canopy locations was similar on both hillslopes). Compared with the SFS intercanopy case, the 

NFS intercanopy soil moisture is a little greater on average and exhibits less temporal variation 

with respect to its average. The difference between the two intercanopy cases mostly results from 

differences in the soil moisture values during dry periods. 

 

             
 
 

 

 

 

 

The second objective was to understand why vegetation has the observed effects on the 

shallow soil moisture. It was hypothesized that differences in interception help produce the 

Figure 15. (a) Average and (b) coefficient of 

variation of soil moisture for all location types. For 

locations having more than one soil moisture probe 

(all but SI), the plotted values are the averages 

amongst all probes for that location type. The error 

bars show the standard deviation of the average 

and coefficient of variation for each soil type. 

Figure 16. (a) Average and (b) coefficient of 

variation of hourly throughfall rate for the available 

location types. This analysis excludes periods when 

no throughfall or precipitation was recorded at any 

gauge. Averages are low in part because the 

calculation can include zeroes if rainfall or 

throughfall was recorded at other gauges. 
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observed differences in soil moisture, and the results (Figure 16) support this hypothesis. The 

throughfall rates under both canopy types are typically much smaller than the rainfall rates in the 

open.  Interception helps explain why the soil is typically drier under the canopy types during 

wet periods, which are associated with rainfall events. Throughfall for the NFS intercanopy case 

is similar to rainfall in the open. This result helps explain why its soil moisture is similar during 

wet periods to the SFS intercanopy location, which is also expected to experience little 

interception. 

It was also hypothesized that differences in shading contribute to the observed differences 

in shallow soil moisture. This hypothesis was also supported by the results as shown in Figure 

17.  Shading from both canopy types produces substantially lower PET under the vegetation 

cover than in the open. Shading is expected to reduce soil evaporation and preserve the soil 

moisture under the canopy. Thus, it helps explain why the soils are wetter for canopy locations 

than intercanopy locations during dry periods. The NFS intercanopy location also experiences 

substantial shading from the nearby canopy, whereas SFS intercanopy locations are unlikely to 

experience much shading because the shrubs are shorter and more widely spaced than the NFS 

pine trees. Also, the SFS is oriented towards the sun, which is expected to reduce the shading of 

intercanopy locations by the nearby shrub canopy. The difference in shading between the 

intercanopy locations on the two hillslopes helps explain why their soil moisture differs during 

dry periods. It also helps explain why the canopy and intercanopy cases have more similar soil 

moisture on the NFS than the SFS. 
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Finally, it was hypothesized that soil properties also help produce the observed 

differences in soil moisture. The results do not support this hypothesis. Table 2 shows that the 

soils have more silt and less sand under both vegetation types than at intercanopy locations, but 

this change has only a small effect on the inferred hydraulic properties. Similarly, greater water 

repellency occurs for canopy locations than intercanopy locations and on the NFS than on the 

SFS, but the average water repellency is low for all cases. As a result, differences in soil 

properties are not expected to have a strong effect on the observed differences in soil moisture. 

 

 

 

 

 

Figure 17. (a) Average and (b) coefficient of variation of hourly potential evapotranspiration (PET) rate (including 

both day and night) for the available location types. 

Table 2. Average percent sand, silt and clay along with saturated hydraulic conductivity (Ks) and pore 

disconnectedness (γ) for the south-facing intercanopy (SI), south-facing mountain mahogany (SM), north-facing 

intercanopy (NI) and north-facing ponderosa pine (NP) location types. 
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5.6 The EMT+VS Model 

This study generalized the EMT model to allow it to accept fine-resolution data for 

vegetation and soil properties based on the hypothesis that consideration of the spatial variations 

in vegetation and soil characteristics would improve the model’s ability to downscale soil 

moisture patterns (Ranney and Niemann, 2015).  When vegetation cover is included in the 

EMT+VS model at the Cache la Poudre catchment, its performance is better than that of the 

EMT model.  Adding vegetation increases the average NSCE from 0.080 to 0.134 at the 15 m 

resolution.  The EMT+VS model and the EOF method both show improvements when 

vegetation data are provided.  The EMT+VS model has greater improvements than the EOF 

method, suggesting that the representation of vegetation in the EMT+VS model is superior to the 

linear regressions used in the EOF method.  Figure 18 shows the results of the various models for 

a date with a typical observed soil moisture pattern at the Cache la Poudre catchment.  The soil 

moisture patterns from the EMT and EMT+VS models are substantially different.  The EMT+VS 

pattern is more realistic because it captures the wetter conditions in the western part of the 

catchment and more of the local variability, particularly on the SFS.  The main influences 

vegetation has on the soil moisture at the Cache la Poudre catchment are a reduction in soil 

evaporation and consequently an increase in transpiration. The addition of fine-resolution 

variations in vertical saturated hydraulic conductivity ( ,s vK ) and porosity ( ) play a small role 

in determining the soil moisture patterns at Cache la Poudre.  Overall, the addition of soil data 

either degraded or slightly improved the model performances. In contrast, the addition of fine-

resolution vegetation data improved the results of the model and proved to be a promising 

direction for improving soil moisture downscaling methods.  These results are also expressed in 

terms of the NSCE and root mean square error (RMSE), shown in Table 3. 
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For the Cache la Poudre catchment, the patterns of variation that are used to estimate the soil 

moisture in the EMT and EMT+VS models are shown in Figure 19.  The deep drainage index 

Figure 18. The first column shows the observed soil moisture pattern on an example date with intermediate 

moisture (June 12, 2008) at Cache la Poudre, the second column shows the soil moisture patterns that are 

downscaled by the EOF method, and the third column shows the soil moisture patterns that are downscaled by the 

(c) EMT and (f) EMT+VS models.  In the top row, only fine-scale topographic information is used. In the bottom 

row, both fine-scale topographic and vegetation information are used. All patterns are on a 15 m grid. 

Table 3. Measures of model performance when the downscaling models are supplied with various fine-resolution 

datasets and applied to Cache la Poudre. The NSCE, RMSE, and MRE are calculated separately for each date in the 

dataset and the averages, maximums, and minimums are determined from the different dates. 
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(DDI), which is not present in the EMT model, depends on the vegetation cover due to 

vegetation’s role in interception.  It has larger values on the SFS where the sparse vegetation 

reduces interception.  The EMT+VS model would produce patterns that are wetter on the SFS 

than the NFS for wet conditions when deep drainage dominates.  In the same conditions, the 

EMT model would produce uniform soil moisture.  The radiative ET index (REI) pattern in the 

EMT+VS model and the ETI pattern in the EMT model are analogous, but the REI pattern in the 

EMT+VS incorporates vegetation, which introduces more local variability.   
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The aerodynamic ET index (AEI), which is only in the EMT+VS model, depends only on 

vegetation cover. It has larger values on the NFS and where vegetation cover is thicker on the 

western portion of the Cache la Poudre catchment.  From the figure, one can observe how the 

additional patterns of variation modeled by the EMT+VS increase the model’s ability to 

accurately estimate soil moisture and local variability compared to the EMT model. 

As was previously mentioned, the downscaling methods were also applied to other 

catchments to evaluate the EMT+VS model’s use of fine resolution soil data.  Figure 20 presents 

the application of the EOF method, EMT model, and EMT+VS model to the Nerrigundah 

catchment.  It should be noted that fine-resolution vegetation data were not available at this 

catchment, so the downscaling methods were evaluated assuming a constant vegetation cover.  

For an example date with intermediate moisture (Figure 20a), the observed soil moisture pattern  

 

Figure 19. The first column shows the calibrated patterns of variation that are used to downscale soil moisture in 

the EMT model, and the second column shows the calibrated patterns of variation that are used in the EMT+VS 

model.  Deep drainage and aerodynamic ET produce spatially constant soil moisture in the EMT model, so only 

two patterns are used.  The index related to radiative ET in the EMT model is termed ETI while it is termed REI in 

the EMT+VS model.  All patterns are on a 15 m grid. 
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exhibits wetter conditions on the SFS than the NFS in the eastern half of the catchment.  The 

western half of the catchment is generally drier and exhibits little dependence on hillslope 

orientation.  When only topographic data are used in the EOF method and the EMT model, the 

downscaled patterns also exhibit the wetter conditions for the SFS than the NFS.  However, the 

difference between the eastern and western halves of the catchment is not well reproduced.  

When the ,s vK  data are added to the EOF method and EMT+VS model, the downscaled patterns 

exhibit more distinct dry regions on the NFS, which corresponds to areas of higher ,s vK .  The 

EMT+VS pattern is determined primarily by the REI and DDI.  Because the DDI depends on 

,s vK , the downscaled pattern reflects the ,s vK  pattern to a certain extent.  The average 

performance from all dates (Table 4) indicates the EOF method performance improves when the 

Figure 20. The first column shows the soil moisture pattern that is observed at Nerrigundah on an example date 

with intermediate conditions (September 12, 1997), the second column shows the soil moisture patterns that are 

downscaled by the EOF method, and the third column shows the soil moisture patterns that are downscaled by the 

(c) EMT and (f,i) EMT+VS models.  In the top row, only fine-scale topographic information is used.  In the middle 

row, fine-scale topographic and Ks,v data are used.  In the bottom row, fine-scale topographic, Ks,v, and φ data are 

used. 
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similar dry regions, they do not exactly align with the dry areas in the downscaled pattern.  It is 

possible that the EMT+VS model is capturing some soil moisture variations that are due to   

variations, but that the interpolated   map does not correctly identify the configuration of those 

variations.  The average performance of the EOF method is unchanged from the previous case 

(Table 4), but the average performance of the EMT+VS model decreases when the   dataset is 

included.  In fact, the performance of the EMT+VS model is worse for this case than the EMT 

model.  Overall, the results suggest that the use of fine-resolution soil data for downscaling is 

somewhat problematic.   

 

 

6. Summary of Key Results and Future Directions for Research 

Overall, this study produced a new downscaling method called the EMT or EMT+VS 

model.  This downscaling method can produce soil moisture patterns at the resolutions that are 

required for multiple military and civilian applications.  To perform the downscaling, the method 

requires coarse resolution soil moisture, which is available from weather forecasting models and 

remote-sensing methods, and fine resolution topographic data, which is globally available.  In 

addition, if fine resolution vegetation and soil data are available, such datasets can also be used.  

Table 4. Measures of model performance when the downscaling models are supplied with various fine-resolution 

datasets and applied to Nerrigundah.  The NSCE, RMSE, and MRE are calculated separately for each date in the 

dataset and then the averages, maximums, and minimums are determined from the different dates. 
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This downscaling method has similar but slightly worse performance than the pre-existing EOF 

method when large soil moisture datasets are available for method calibration.  However, for 

more realistic scenarios when few observations are available for calibration, the EMT model 

outperforms the EOF method.  In addition, adequate performance can be achieved for the EMT 

model when relatively few calibration points are available, so the method appears to have 

numerous practical applications.  The EMT model framework was also used to understand why 

certain catchments exhibit valley-dependent soil moisture patterns and others exhibit hillslope-

dependent patterns.  It was also use to understand why some catchments exhibit a switching 

between these structures through time, which produces temporally unstable soil moisture 

patterns.  The EMT model was also shown to be able to reproduce soil moisture patterns for all 

of these cases. 

Future research should consider three issues.  First, methods should be developed to 

estimate model parameters when calibration data are not available.  This research should aim to 

identify global climate, soil, and vegetation datasets that can provide information for the required 

model parameters.  The use of such datasets should be evaluated by testing the method at the 

research catchments used for the previous work and potentially new catchments.  Second, the 

model should be evaluated when multiple coarse-resolution grid cells are provided as inputs.  In 

all studies to date, only a single coarse grid cell was provided as input.  Boundaries between the 

coarse grid cells might introduce artifacts in the model’s soil moisture output.  Research should 

be conducted to develop a method for generating smooth variations in the estimated soil moisture 

pattern when provided with a grid of coarse soil moisture values.  Third, methods should be 

developed and evaluated that can assimilate estimates from the EMT+VS model and other 
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resources (such as from drones and/or remote-sensing methods) into a potentially superior soil 

moisture product. 
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