

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

FEASIBILITY OF AN EXTENDED-DURATION AERIAL
PLATFORM USING AUTONOMOUS MULTI-ROTOR

VEHICLE SWAPPING AND BATTERY MANAGEMENT

by

Alexander G. Williams

December 2017

Thesis Advisor: Oleg A. Yakimenko
Second Reader: Brian S. Bingham

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
FEASIBILITY OF AN EXTENDED-DURATION AERIAL PLATFORM
USING AUTONOMOUS MULTI-ROTOR VEHICLE SWAPPING AND
BATTERY MANAGEMENT

5. FUNDING NUMBERS

6. AUTHOR(S) Alexander G. Williams

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Although the U.S. military relies increasingly on autonomous unmanned systems, such systems
cannot surveil for long periods of time. For better intelligence collection and communication, an extended-
duration aerial platform is required. This thesis focuses on the development and evaluation of a multi-rotor
persistent system to provide a longer-duration system using vehicle swapping and intelligent battery
management. A proof-of-concept system was built using three quadcopters, a single wireless network
router and a laptop to execute code. The system monitored vehicle battery life; when the limit was
exceeded, the next vehicle was launched and swapped in its place autonomously. This cycle continued as
long as fresh batteries were available. The system provided 54 minutes of platform coverage, more than
five times the duration of the single quadcopter. Testing found the system to be feasible and suggests how
autonomous capabilities can be extended with persistent platforms. The system is easily scalable for
increased survivability and coverage. Battery life and recharging capability proved to be key limitations of
the system. However, if the rate at which fully charged batteries are available exceeds the rate at which
they are expended, the system can operate until all individual quadcopters mechanically fail.

14. SUBJECT TERMS
multi-rotor UAS, persistent coverage, battery management

15. NUMBER OF
PAGES

93
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

FEASIBILITY OF AN EXTENDED-DURATION AERIAL PLATFORM USING
AUTONOMOUS MULTI-ROTOR VEHICLE SWAPPING AND BATTERY

MANAGEMENT

Alexander G. Williams
Lieutenant Commander, United States Navy
B.S., North Carolina State University, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2017

Approved by: Oleg A. Yakimenko
Thesis Advisor

Brian S. Bingham
Second Reader

Ronald E. Giachetti
Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Although the U.S. military relies increasingly on autonomous unmanned systems,

such systems cannot surveil for long periods of time. For better intelligence collection

and communication, an extended-duration aerial platform is required. This thesis focuses

on the development and evaluation of a multi-rotor persistent system to provide a longer-

duration system using vehicle swapping and intelligent battery management. A proof-of-

concept system was built using three quadcopters, a single wireless network router and a

laptop to execute code. The system monitored vehicle battery life; when the limit was

exceeded, the next vehicle was launched and swapped in its place autonomously. This

cycle continued as long as fresh batteries were available. The system provided 54 minutes

of platform coverage, more than five times the duration of the single quadcopter. Testing

found the system to be feasible and suggests how autonomous capabilities can be

extended with persistent platforms. The system is easily scalable for increased

survivability and coverage. Battery life and recharging capability proved to be key

limitations of the system. However, if the rate at which fully charged batteries are

available exceeds the rate at which they are expended, the system can operate until all

individual quadcopters mechanically fail.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THE ROLE OF UNMANNED SYSTEMS ..1
B. THE DESIRE FOR PERSISTENT PLATFORMS3

1. Current State of the Art and Technology3
2. Desired State ...4
3. Research Application ...5

C. TECHNOLOGY GAPS IN PERSISTENT PLATFORMS6
D. THESIS OBJECTIVES AND RESEARCH APPROACH7
E. THESIS ORGANIZATION ..8

II. DEVELOPMENT OF THE TEST PLATFORM ...11
A. SYSTEM OVERVIEW ...11
B. HARDWARE SETUP ...12

1. Aerial Vehicle ...12
2. Vehicle Configuration ..14
3. Network Configuration ...14

C. SOFTWARE ARCHITECTURE ...15
1. Collecting Battery Data ...16
2. Multiple Vehicle Connectivity ..16
3. Vehicle Launch ...16
4. Vehicle Flight ..16
5. Vehicle Swapping ...17
6. Data Logging ..17

III. TEST AND EVALUATION OF THE PROPOSED SOLUTION19
A. TEST ENVIRONMENT ...19

1. Camp Roberts...19
2. Scenario ...19
3. Scope..20
4. Objectives..20

B. TEST RESULTS ..20
C. SCALABILITY ..24

IV. SUITABILITY OF THE DEVELOPED SYSTEM ..27
A. MISSION THREAT ANALYSIS ...27

1. The Mission...27
2. Theater of Operation ...28

 viii

B. MISSION-THREAT ENCOUNTER ANALYSIS AND
GEOMETRIC DESCRIPTION ...28
1. Expected Threats ...28
2. Critical Components and Kill Modes ...29

C. SUSCEPTIBILITY ANALYSIS ...30
1. Tactics, Flight Performance ..31
2. Threat Warning ...31
3. Signature Reduction ..32

D. VULNERABILITY ANALYSIS ..33
E. SURVIVABILITY ENHANCEMENT TRADE STUDY33

1. Susceptibility Improvement Opportunities34
2. Vulnerability Improvement Opportunities34
3. Survivability Enhancement Impact..35

F. KILL TREE ..35
1. Individual Kill Tree ...35
2. System Kill Tree ...36

G. MISSION DEGRADATION DURING SYSTEM SWAP....................37

V. CONCLUSION AND FUTURE WORK ...39
A. CONCLUSION ..39
B. FUTURE WORK ...40

APPENDIX A. 3DR SOLO STEP-BY-STEP CONFIGURATION41
A. HOW TO ACCESS SOLO ..41
B. PREPARING YOUR COMPUTER ...42
C. CONNECTING SOLO TO WIFI ..43
D. MAKING SOLO MORE ACCESSIBLE (OPTIONAL)44
E. DRONEKIT-PYTHON WITH 3DR SOLO ..45
F. SETTING UP FOR MULTIPLE 3DR SOLO46
G. PREFLIGHT CHECKLIST ...51

APPENDIX B. PYTHON SCRIPT ...53

APPENDIX C. FIELD TESTING RAW DATA ..69

LIST OF REFERENCES ..71

INITIAL DISTRIBUTION LIST ...73

 ix

LIST OF FIGURES

 Single 3DR Solo Multi-rotor System. Source: Holland (2015).4 Figure 1.

 Tern Artist Concept. Source: Northrop Grumman (2016).6 Figure 2.

 High-Level Operational Concept Graphic ...7 Figure 3.

 Research and Development Timeline ..11 Figure 4.

 3DR Solo Controller and Vehicle ..12 Figure 5.

 System Network Architecture ..15 Figure 6.

 System Mobility MOE and MOP ..20 Figure 7.

 System Field Testing Results ...21 Figure 8.

 Loiter Time Comparison ..23 Figure 9.

 Nine-Battery Discharge Plan ...25 Figure 10.

 Operational Concept Diagram ...27 Figure 11.

 Threat Warning ..31 Figure 12.

 Signature Reduction. Source: Adams (2017). ..32 Figure 13.

 Radar Cross-Section of 3DR Solo. Source: Li and Ling (2016).33 Figure 14.

 Individual Quadcopter Kill Tree versus SUAS Kill Tree36 Figure 15.

 System Partial Kill ...37 Figure 16.

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. 3DR Solo Vehicle Specifications. Adapted from 3DR (2015).13

Table 2. System Action Timeline ..22

Table 3. Field Testing Individual Vehicle Flight Time ...24

Table 4. Expected Threats ..29

Table 5. SUAS Critical Components and Kill Modes ...30

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

3DR 3D Robotics, a commercial unmanned aerial vehicle manufacturer

CLI Command Line Tool

COI critical operational issue

COTS commercial off-the-shelf

DARPA Defense Advanced Research Projects Agency

DOD Department of Defense

GCS ground control station

GPS Global Positioning System

IR infrared

ISR intelligence, surveillance, and reconnaissance

MANPADS man-portable air-defense system

MOE measure of effectiveness

MOP measure of performance

NPS Naval Postgraduate School

RCS radar cross-section

SSH Service Set Shell

SSID Service Set Identifier

SUAS small unmanned aerial system

UAS unmanned aerial system

UV ultraviolet

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Unmanned systems continue to be at the forefront of development for the U.S.

military and the defense industrial base. Unmanned systems operate more and more with

greater autonomy. A key aspect of enhancing autonomy is providing persistent systems

(Defense Science Board 2012). Fuel limits the operational time of many systems

characterized as persistent. This thesis focuses on the development and evaluation of a

multi-rotor persistent system to provide a longer-duration system using vehicle swapping

and intelligent battery management.

The system developed consisted of three commercially available 3DR Solo

quadcopters, shown in Figure 1, a wireless network router, and a laptop to execute

Python code. System operation was autonomous, swapping vehicles, as shown in

Figure 1, to maintain an airborne vehicle in the loiter area based on battery health. There

are three vehicles in this system. The first vehicle, shown in red, is replaced by the

second vehicle, shown in blue, while the third vehicle, shown in black, remains on the

ground next in line for tasking.

Figure 1. Operational Concept Diagram

Based on analysis and assessment of the field test results, the persistent system is

feasible. The system conducted four vehicle swaps and maintained a vehicle in the loiter

 xvi

area for 54 minutes, more than five times the air time of a single vehicle, as shown in

Figure 2. The loiter time accomplished by the system is more than five times the average

loiter time of a single vehicle.

Figure 2. Loiter Time Comparison

The field testing was conducted with limited numbers of batteries. The life of the system

is limited because the rate batteries are expended exceeds the time required to charge

batteries. From analysis, with nine batteries and chargers per vehicle, the system could

conceivably continue to operate for much longer durations.

Vehicle swapping using intelligent battery management is a feasible solution for

providing persistent systems for much longer time durations. The system is easily

scalable for added robustness or increased coverage. With further development, this

system can become a fully deployed technology available to enhance our military

capabilities.

Reference

Defense Science Board. 2012. The Role of Autonomy in DOD Systems. Washington, DC:
Office of the Under Secretary of Defense for Acquisition, Technology and
Logistics. https://www.acq.osd.mil/dsb/reports/2010s/AutonomyReport.pdf.

54:14

10:19

00:00

07:12

14:24

21:36

28:48

36:00

43:12

50:24

57:36

Lo
ite

r T
im

e
(M

M
:S

S)

System Loiter Time Average Vehicle Loiter Time

 xvii

ACKNOWLEDGMENTS

This thesis has been quite the process and I could not have done it without the

loving support of my wonderful wife, Paula, and daughter, Emilia. Thank you for giving

me the free time to travel and conduct testing in Paso Robles and for the longer nights

and weekends in putting it all down on paper. I love you always!

To my thesis advisor, Dr. Yakimenko, thank you for taking on my project and

never questioning where it was going. You are truly an asset to the university, and I

greatly appreciate our discussions and how simple you made thesis travel and material

acquisition. You made this system tangible.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. THE ROLE OF UNMANNED SYSTEMS

Commercial and government entities have allocated large amounts of research

and development resources to unmanned systems. According to a study conducted by

Bard College, the Department of Defense (DOD) allocated approximately $4.457 billion

to unmanned systems in the proposed fiscal year 2017 budget (Gettinger 2016).

Commercial development and use of unmanned systems for filming movies, delivering

packages, conducting engineering evaluations on difficult-to-reach equipment, and for

use in hobbyist racing are just some of the applications driving companies to spend

billions in advancing the technologies.

Commercial unmanned systems, equipped with multiple sensors and cameras, are

widely available from companies such as DJI. Commercial entities and hobbyists

primarily use these systems to conduct aerial photography and engineering evaluations.

Many commercial systems have been used for DOD applications. Modifying a

commercial unmanned system is typically cheaper than developing new government-

based systems. However, many of these systems have cyber vulnerabilities that exist

without full knowledge of the user, as seen in the U.S. Army’s restriction on use of DJI

systems imposed in August 2017 (Scott 2017).

The Defense Advanced Research Projects Agency (DARPA) has been a leader in

guiding the discovery and advancement of many of every day technologies. Dr. Drozeski,

program manager in the Tactical Technology Office of DARPA, recognized the need for

better capabilities within the military, stating,

Effective 21st-century warfare requires the ability to conduct airborne
intelligence, surveillance, and reconnaissance (ISR) and strike mobile targets
anywhere, around the clock. Current technologies, however, have their
limitations. Helicopters are relatively limited in their distance and flight time.
Fixed-wing manned and unmanned aircraft can fly farther and longer but require
either aircraft carriers or large, fixed land bases with runways often longer than a
mile. Moreover, establishing these bases or deploying carriers requires substantial
financial, diplomatic, and security commitments that are incompatible with rapid
response. (2017, 1)

 2

The military has implemented unmanned systems for ISR and strike missions primarily in

Iraq and Afghanistan. According to Dr. Kaminski of the Defense Science Board (2012),

fielded unmanned systems are improving defense operations, but autonomy technology

remains underutilized. Further, the value of these systems is not in replacing humans, but

rather assisting humans in providing persistent capabilities.

Unmanned systems are widely used by military and civilians to provide quick

services without risking human life. Many of the systems currently in use have limited

flight times due to battery limitations. From the 2012 Defense Science Board’s report on

the role of autonomy in Department of Defense (DOD) systems,

The true value of these [unmanned] systems is not to provide a direct
human replacement, but rather to extend and complement human
capability in a number of ways. These systems extend human reach by
providing potentially unlimited persistent capabilities without degradation
due to fatigue or lack of attention. Unmanned systems offer the warfighter
more options and flexibility to access hazardous environments, work at
small scales, or react at speeds and scales beyond human capability. (DOD
2012, 1)

Many unmanned systems have been developed since 2012, yet persistent systems are still

an idea for the future.

A system is necessary to maintain the mobility of aerial platforms while providing

a solution for limited battery life. Tethered systems offer extended-duration flight, but are

limited in range. Little has been done to solve the problem of persistent platforms without

placing great restrictions on the platform in use. Commercially, unmanned systems

labelled as “persistent” require the vehicle to return to a base station for battery charging

or battery swap. During this period of maintenance, the aerial platform is lost. In military

applications, this presents a period of gapped collection or vulnerability to the operating

unit. Manufacturers suggest that multiple independent unmanned systems may work

together, but offer no guidance to tie the systems together seamlessly.

Many military units utilize unmanned systems for intelligence, surveillance, and

reconnaissance (ISR) collection. Ground units often use commercial off-the-shelf

(COTS) quadcopter and hex-rotor unmanned aerial systems (UAS) for situational

 3

awareness and immediate visual feedback over an affected area. If these systems are to

accomplish the vision provided by the Defense Science Board and aid operators, rather

than further task them, autonomous persistent platforms are required.

B. THE DESIRE FOR PERSISTENT PLATFORMS

Greater autonomy drives advancement in unmanned systems. Operators no longer

have to control every movement of the system and can focus on high level tasking and

overall mission accomplishment. Often degraded by human fatigue or lack of attention,

current systems do not provide truly persistent capabilities to users (Defense Science

Board 2012). DARPA uses the term “persistent” to describe some systems, but fuel still

limits the system’s operational capabilities. Similarly, many commercial companies

advertise persistent systems, but require the vehicle to return for extended periods of time

to recharge. For military applications, persistent systems must overcome fuel constraints.

1. Current State of the Art and Technology

The majority of multi-rotor systems in use today are COTS. They provide users

with a platform, usually a setup for taking pictures and recording videos from

perspectives that had required much more costly helicopters or camera rigs. Multi-rotor

systems are limited by their battery life. Many systems, such as the 3DR Solo shown in

Figure 1, can be operated for up to 25 minutes.

 4

 Single 3DR Solo Multi-rotor System. Source: Holland (2015). Figure 1.

Tethered systems made up of a single multi-rotor system are typically COTS

vehicles with an affixed tether which can provide power. The advantage of this system is

that it extends the operating duration of the platform. While batteries are no longer a

concern, the life of the vehicle’s mechanical components limit the life of the system.

Also, while tethered, the system is much less mobile and requires a power source on the

ground which may further restrict system mobility.

2. Desired State

The intent of the system described in this thesis is to provide an aerial platform to

affix ISR, communication systems, or whatever the user sees fit. The system operates for

an extended duration using multiple vehicles. Vehicles swap in the loiter position

autonomously based on battery monitoring and management through the ground control

station (GCS). The GCS exists primarily to monitor the system health and real-time

activity.

 5

The near-term solution does not focus on the use of the platform. Its primary

purpose is to provide an aerial platform. The solution also does not focus on extending

individual battery life or automatically swapping batteries, but rather looks at what is

possible with current technology. This is the primary purpose of this thesis.

The system is intended to be used as an early indication, extra sensor, or an

additional defensive weapon for a military unit. The system will be launched by a user to

provide a platform for seamless sensors, or cameras, through autonomous vehicle

swapping and streaming data transfer. As a secondary mission, the system can be tasked

to investigate other areas and will automatically launch and task the next multi-rotor

system to conduct the primary loiter mission near the unit. The best weapon to counter an

unmanned system is an unmanned system. The future system utilizes computer vision to

counter adversary unmanned system nearby at the desire of the unit commander.

3. Research Application

This thesis focuses on determining the feasibility and battery limitations in

providing a persistent multi-rotor aerial platform using battery health management and

vehicle swapping. The lack of persistent capabilities in available systems presents an

opportunity for development of future autonomous technologies. Using commercially

available quadcopters to minimize cost and provide a proof of concept, this thesis

evaluates the capabilities and limitations of multiple vehicle persistent systems.

Advancing persistent technologies would allow the military longer on station times while

minimizing any time gaps in coverage. The U.S. military relies heavily on its sensors to

detect and counter threats. Affixing sensors to persistent systems would allow operators

to focus on the big picture without missing important information. When a ship is in port

or a military unit is stationary, the majority of sensors power down and safety is

dependent on security personnel. Cuts to military staffing and the increased speed of

weaponry, greatly reduces reaction time. The number of personnel, capacity of human

memory in identifying threats, and personnel fatigue limit security patrols; whereas, an

unmanned vehicle can autonomously patrol at higher speed and frequency which could

complement or replace security personnel (Seng et al. 2015). Persistent unmanned

 6

systems could advance our military into the twenty-second century, but still require

extensive development.

C. TECHNOLOGY GAPS IN PERSISTENT PLATFORMS

The Tern system is one of the Defense Advanced Research Projects Agency

(DARPA) solutions in development that recognizes the limitations of helicopters and

manned aircraft for use with the U.S. Navy. The objective of Tern is to provide a long

endurance unmanned aerial system for ISR and strike missions deployed, operated, and

recovered from small ships (DARPA 2017). Though it will provide longer on-station

times than traditional aircraft, the need for fuel limits the system. From conceptual

images provided by DARPA and Northrop Grumman, shown in Figure 2, the vehicle

appears similar in size to a shipboard manned helicopter. Based on the vehicle size and

design, the system likely cannot swap vehicles or conduct refueling autonomously in

order to keep the system on station. Moving vehicles of this size to launch positions

would require manpower and personnel time for execution.

 Tern Artist Concept. Source: Northrop Grumman (2016). Figure 2.

 7

Commercial companies such as Hoverfly and H3Dynamics offer versions of

persistent coverage capabilities. Hoverfly offers a multi-rotor platform that is tethered to

a ground station. The ground station provides power to the vehicle through the affixed

cable, which limits the vehicle’s mobility. Hoverfly vehicles cannot travel far from the

ground station. In a military environment, the loss of the single vehicle would mean the

loss of the system’s full capabilities. By contrast, H3Dynamics produces a product called

Dronebox, which does not require a tether. The Dronebox system features autonomous

flight and has a command center capable of charging multi-rotor vehicle batteries.

However, the life of the vehicle’s battery remains a limitation. Even with multiple

Dronebox systems, the company does not offer a way to mesh them together to work as a

single autonomous system.

D. THESIS OBJECTIVES AND RESEARCH APPROACH

Unmanned systems provide increased capability to modern-day militaries.

Autonomous unmanned systems act as force multipliers, providing unit commanders

immediate capabilities without requiring increased training or manpower. Development

of an extended-duration aerial platform is crucial in improving the military’s ability to

collect intelligence, provide early warning to deployed units, and protect forces on the

ground. Figure 3 shows video surveillance coverage for a bottom mounted camera on the

platform.

 High-Level Operational Concept Graphic Figure 3.

 8

The objective of this thesis is to determine whether a system of quadcopters can

(1) provide a persistent aerial platform, and (2) operate autonomously utilizing battery

management techniques, while they (3) explore the limitations of an extended-duration

airborne system. The system is comprised of COTS quadcopter systems, a single router, a

laptop, and a computer program. Field experiments helped to develop and evaluate the

system as well as determine its capabilities and limitations. To determine the suitability

of this system for military use, a survivability analysis was also conducted.

While UAS can consist of an array of vehicles, this thesis focuses on multi-rotor

vehicles. A multi-rotor vehicle is an aerial vehicle with at least two rotors. The multi-

rotor vehicle used for development and testing is the commercially available 3DR Solo

quadcopter. The user conducts battery changes manually, but in the future system,

autonomous swapping occurs.

The system developed is not ready for the field, but rather a prototype of a system

to show proof of concept. The system utilizes COTS quadcopters to examine whether a

low-cost solution is possible. Providing a more secure, mission specific system will

require additional research and development.

E. THESIS ORGANIZATION

To address the objectives formulated in the previous section, this thesis is

organized as follows.

Chapter II describes the development and configuration of the test platform. This

chapter provides the methodology for the experiment. The aerial vehicle is introduced

along with the necessary vehicle configuration, network configuration, and software

configuration to realize the near term desired system. The scenario details the field

experiment and evaluation criteria for the system.

Chapter III highlights the results of field testing and analysis. In this chapter, field

testing appears along with the results. Field testing covers how the system performed as a

whole and the results of battery evaluations conducted. Battery evaluation became a

major concern for the system moving toward a fielded system.

 9

Chapter IV focuses on the survivability of the system for use in military

applications. To determine how this system might operate in the field in its future desired

state, this chapter contains the survivability assessment. The assessment provides a

susceptibility and vulnerability analysis as well as an evaluation of improvement

technologies.

Chapter V concludes the thesis and suggests future work recommendations.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

II. DEVELOPMENT OF THE TEST PLATFORM

This chapter provides details on the system used and describes the process

necessary to prepare for field testing of the proof-of-concept multi-rotor persistent

platform. A sequence of events is shown in Figure 4. The system concept was established

by December 2016. From December to February, the investigator explored available

multi-rotor vehicles to determine which were best suited to work in a persistent system.

Software research began in January and continued until June when the vehicles were

delivered to the Naval Postgraduate School. From June through July, the aerial vehicles

and network were configured and software was developed and tested in increments. Field

testing ended in August 2017.

 Research and Development Timeline Figure 4.

A. SYSTEM OVERVIEW

The system conducts vehicle swapping based on the battery state of the airborne

vehicle. When the user starts the system, the first vehicle launches to the desired position

and loiters. The system monitors the battery health of the airborne vehicle, and when the

battery level falls below the user set threshold, the next vehicle launches. The first vehicle

rises to avoid collision while continuing to provide the platform to the user. The

replacement vehicle flies to the desired position and loiters in the area previously

occupied by the first vehicle. Once the replacement vehicle reaches the desired position,

 12

the first vehicle returns to the launch platform for battery swap or charging to be ready

for its next use. This system cycles through vehicles until all batteries are exhausted or

the user ends the mission. Additional safeguards are built in to skip vehicles that

encounter faults or errors, such as vehicles with depleted batteries or ones that experience

issues with reaching desired altitude on launch.

B. HARDWARE SETUP

There are two basic parts of the system: the hardware and the software. The

hardware consisted of the aerial vehicles and wireless network, each of which, when

properly configured, communicated with the laptop. The laptop was not discussed in this

thesis as it is was primarily used to develop and execute the program code, which could

be accomplished by most low-level computers.

1. Aerial Vehicle

Many commercially available vehicles have software development kits that allow

the user to program and control through software running external from the controller and

vehicle. The vehicle chosen, the 3DR Solo, shown in Figure 5, offered a low-cost

requirement with readily available parts.

 3DR Solo Controller and Vehicle Figure 5.

 13

The 3DR Solo specifications, shown in Table 1, were competitive with other

commercially available quadrotors. While conducting research on the development kits

available, 3DR Solo also proved to have a wealth of software development

documentation. Additionally, former 3DR employees had developed a collaborative

document that detailed the steps that they had used to operate multiple 3DR Solos as a

“swarm.” For the purposes of field testing, the equipment included three 3DR Solos, one

wireless router operating at 2.4 GHz, and a laptop capable of running the Python

programming language.

Currently, the system is capable of operating with additional 3DR Solos, so long

as the vehicles are configured properly and their associated internet protocols and ports

are written into the software code used to control the system.

Table 1. 3DR Solo Vehicle Specifications. Adapted from 3DR (2015).

Component Description

Dimensions 10 inches tall, 18 inches motor-to-motor

Weight 3.3 lbs. / 3.9 lbs. with GoPro and Solo Gimbal

Range 0.5 miles

Max speed 55 mph

Flight time 20–25 minutes

Flight battery Lithium polymer 5200 mAh 14.8 VDC

Battery charge time 1.5 hours

Communications Secure WiFi network

Frequency 2.4 GHz

Flight battery Lithium polymer 5200 mAh 14.8 VDC

Flight time 20–25 minutes

Motors 880 kV

Autopilot Pixhawk 2

 14

2. Vehicle Configuration

From the manufacturer, each vehicle came set up to connect with its included

controller. Using the network protocol Secure Socket Shell (SSH), each vehicle and

controller was remotely reconfigured. To operate the system properly, port identifiers for

each vehicle were assigned along with the network Service Set Identifier (SSID)

information necessary to connect to a single wireless network.

3. Network Configuration

The goal is to operate three vehicles from a single terminal running Python code.

The system operates autonomously, monitoring vehicle battery health and swapping

vehicles, when necessary. To do this, the vehicles must all operate on a common network.

The three vehicles and one laptop are connected through a single wireless access

point operating at 2.4GHz. The wireless access point allowed the ability to access both

the internet and any of the vehicles on the network. The internet could update the vehicles

to the latest manufacturer’s firmware but otherwise was not necessary for the purpose of

developing or testing the system.

The network architecture, shown in Figure 6, is a block diagram showing the

system entities and connections. The 3DR Solos connect to the laptop through the

wireless network router. Internet connection is optional through the router. The network

shows solid lines to indicate wireless connections, and a dotted line to show an optional

connection to the internet. The three colored blocks represent individual 3DR Solo

controllers and associated vehicles. The network diagram illustrates the critical path and

dependencies for connectivity.

 15

 System Network Architecture Figure 6.

C. SOFTWARE ARCHITECTURE

Python, a programming language designed for ease of use and readability, was the

primary means of developing autonomous system function. Using the documentation—

provided as part of DroneKit-Python—an online software development kit, and multiple

smaller field tests the vehicles were configured to conduct flight operations initiated by

the Python script. Short flight tests were conducted in May and June 2017 at Camp

Roberts to ensure the function of sections of the code before the field test.

 16

The code for the system followed a six-step development cycle:

1. Collecting Battery Data

The first challenge was to connect to a single 3DR Solo and ensure that real time

battery information could be accessed by the system. This is the crux of the entire project

and without this capability, the system would not properly operate. The code reads the

battery status of a single vehicle while connected and activates the next quadrotor when

the battery’s health falls below the desired threshold.

2. Multiple Vehicle Connectivity

The second challenge was to verify that all of the vehicles connected to the

network and provided real time system health information to the Python script. The code

ensured that the vehicles could report all information back to the ground station—the

laptop—without losing information from another vehicle.

3. Vehicle Launch

The next challenge was launching vehicles on command. The 3DR Solo code

provided in DroneKit-Python experienced issues that caused the vehicle not to launch

properly. Often, the vehicle would hover less than a meter above the ground, but the code

would ignore the state of the vehicle. A number of implemented checks warranted that

the vehicle launched successfully before proceeding. Additional measures guaranteed that

if a vehicle remained in the launch state, it could not continue until the vehicle reached

the desired launch altitude or a replacement vehicle launched to that altitude in its place.

This prevented the code from progressing before the vehicle was ready to respond.

4. Vehicle Flight

Flight control was relatively simple compared to the vehicle launch or

connectivity challenges. For the test, the intended flight path was to transit to a specified

latitude and longitude to loiter using the flight controller and Global Positioning System

(GPS) onboard.

 17

5. Vehicle Swapping

The final development for the vehicle was to code in automated vehicle swapping,

which raised the original vehicle to a higher altitude before sending the replacement

vehicle. The replacement vehicle moved to occupy the position once held by the original

vehicle. Once the replacement vehicle moved into the loiter position, the original vehicle

returned to the launch platform.

6. Data Logging

To analyze the success of the system in the field test, the code included data

collection scripts. The code collected vehicle data and appended an external file to the

laptop. Excessive data collection led to multiple system crashes and subsequent loss of

collected data. As a remedy, fewer data points were collected but the data focused on

vehicle transition points within the test. Unfortunately, numerous flight tests encountered

this issue and data was lost for those flights.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. TEST AND EVALUATION OF THE PROPOSED SOLUTION

This chapter describes the procedures to evaluate the proposed solution. It starts

with a brief description of the test and evaluation environment, continued by a test

scenario, scope, and objectives description. The results of field testing are presented and

an analysis of system limitations and improvement opportunities are evaluated. The

chapter ends with a discussion of system scalability.

A. TEST ENVIRONMENT

1. Camp Roberts

The Naval Postgraduate School is located in close proximity to the Monterey

regional airport. As such, flight operations with government furnished equipment is

extremely limited. McMillan Field, at Camp Roberts, California, offers dedicated

airspace and provides the power and connectivity resources necessary to conduct field

testing. All flight tests and field testing were conducted at McMillan Field.

2. Scenario

To evaluate the feasibility of the system, the loiter scenario was developed.

During the scenario, the system flies approximately 100 meters away from the launch

point to an altitude of 100 meters and provides an aerial platform that loiters in this

position until cancelled by the user or available batteries are exhausted. This simulates a

real world environment where this system operates above a ship in port or ground base

providing a nearby airborne platform for sensors. Each of the 3DR Solos include its

gimbals and cameras, the GoPro 4, to test with a payload.

Success for this system is defined as multiple vehicle swaps when the user

defined 30% battery threshold level is met. The system shall provide aerial coverage for a

duration that exceeds the capability of a single 3DR Solo.

 20

3. Scope

The development and testing focused on the vehicle as a platform. The main focus

of field experimentation determined whether the system would autonomously swap

vehicles when the battery level reached a defined limit. Camera and video production

development and testing were not included but should be developed for future systems.

4. Objectives

The primary critical operation issue (COI) addressed in this system is mobility. In

order to achieve mobility capabilities, the measure of effectiveness (MOE) tested in this

thesis is endurance. Each measure of performance (MOP) evaluated is shown in Figure 7.

 System Mobility MOE and MOP Figure 7.

Field testing at Camp Roberts on August 7–8, 2017, sought to determine whether

the system would swap vehicles without user intervention, triggered solely on battery

percentage remaining. When the battery percentage of the flying vehicle falls below the

30%, the test value set, the Python code initiates the swapping process.

B. TEST RESULTS

Figure 8 shows a summary of field testing results. Table C-1 (see Appendix C)

provides complete details. Three vehicles were tested. Vehicles one and two executed

multiple flights before expending all available batteries.

 21

 System Field Testing Results Figure 8.

The results show that the system successfully operated multiple vehicles in the intended

loitering position and swapped vehicles autonomously. The testing concluded after five

fully-charged 3DR Solo batteries fell below the 30% battery threshold. A timeline of field

testing is summarized in Table 2.

0

20

40

60

80

100

120

05:01 12:13 19:25 26:37 33:49 41:01 48:13 55:25

Al
tit

ud
e

(m
)

Time (MM:SS)

System Field Testing

Vehicle 1 Vehicle 2 Vehicle 3

 22

Table 2. System Action Timeline

Time
(MM:SS) Event

Vehicle On
Station

00:03 Vehicle 1 Launch
00:48 Vehicle 1 Reached Loiter Point

Vehicle 1 On
Station

11:17 Vehicle 1 Battery Limit Exceeded (29%)
11:20 Vehicle 2 Launch
11:28 Vehicle 1 Raise Altitude For Vehicle Swap
12:11 Vehicle 2 Reached Loiter Point

Vehicle 2 On
Station

SWAP
12:11 Vehicle 1 Return to Platform
13:28 Vehicle 1 Land
22:22 Vehicle 2 Battery Limit Exceeded (29%)
22:25 Vehicle 3 Launch
22:33 Vehicle 2 Raise Altitude For Vehicle Swap
23:11 Vehicle 3 Reached Loiter Point

Vehicle 3 On
Station

SWAP
23:11 Vehicle 2 Return to Platform
24:29 Vehicle 2 Land
32:34 Vehicle 3 Battery Limit Exceeded (29%)
32:37 Vehicle 1 Launch
32:45 Vehicle 3 Raise Altitude For Vehicle Swap
33:24 Vehicle 1 Reached Loiter Point

Vehicle 1 On
Station

SWAP
33:24 Vehicle 3 Return to Platform
34:42 Vehicle 3 Land
43:24 Vehicle 1 Battery Limit Exceeded (29%)
43:28 Vehicle 2 Launch
43:36 Vehicle 1 Raise Altitude For Vehicle Swap
44:16 Vehicle 2 Reached Loiter Point

Vehicle 2 On
Station

SWAP
44:16 Vehicle 1 Return to Platform
45:33 Vehicle 1 Land
54:11 Vehicle 2 Battery Limit Exceeded (29%)
54:11 No Replacement Available
55:03 Vehicle 2 Return to Platform
55:25 Vehicle 2 Land

 23

Four vehicle swaps occurred during field testing. Vehicles remained at the loiter

position for approximately 54 minutes using vehicle swapping and manual battery

changes. When a vehicle returned to the launch platform with an expended battery, the

vehicle was turned off, equipped with a fully charged battery in place of the old one, and

the vehicle was restarted. The vehicle reconnected with the network and the Python script

would reconnect to the vehicle as the script progressed.

From the results, the system is much more capable than using a single 3DR Solo.

The loiter time is the period that the vehicle occupies the desired position intended for the

platform. When compared to the average individual vehicle loiter time of 10 minutes and

19 seconds, the system provided coverage in the loiter area for more than five times the

duration at 54 minutes and 14 seconds, as shown in Figure 9.

 Loiter Time Comparison Figure 9.

One alarming finding was that the battery life of the 3DR Solos expended battery

approximately twice as fast as the manufacturer’s specifications. Instead of 20–25

minutes, the vehicles could only safely operate for 12–14 minutes, as shown in Table 3.

54:14

10:19

00:00

07:12

14:24

21:36

28:48

36:00

43:12

50:24

57:36

Lo
ite

r T
im

e
(M

M
:S

S)

System Loiter Time Average Vehicle Loiter Time

 24

Table 3. Field Testing Individual Vehicle Flight Time

 Vehicle Flight Time (MM:SS)
Sortie 1 13:24
Sortie 2 13:09
Sortie 3 12:18
Sortie 4 12:55
Sortie 5 11:56
Manufacturer Specification 20:00-25:00

With additional batteries, this system could conceivably continue to operate for

much longer durations. The primary limitation is the number of batteries available at full

charge. Unfortunately a battery discharges at 12–14 minutes and charging takes

approximately 1.5 hours. This does not keep up with the rate at which the battery drains

when in use by a vehicle.

 1

Time to Charge a BatteryNumber of Batteries Required
Time to Expend a Battery

= +

 (1)

 90 1 8.5 9
12

minutesNumber of Batteries Required Batteries
minutes

 = + = =

For the system to keep up with the rate at which the batteries are expended, nine

batteries and chargers are necessary. This assumes a maximum charge time of 90 minutes

for a battery, as provided by the manufacturer, and assumes that the time to expend a

battery does not decrease. Additional battery studies are necessary to determine the

feasibility of extending the operational duration of the system.

C. SCALABILITY

The system developed and tested in this thesis is a proof of concept. Employing

even more than three vehicles would assure true survivability and extend the capability of

the system. Additional aerial vehicles should follow the same configuration guidance

included in Appendix A and include the network address of the new vehicles in the

program code. The minimum number of batteries and chargers required remains nine

 25

whether the system has three vehicles or more, as seen in Figure 10. In Figure 10, the top

diagram represents battery usage by the three vehicle configuration system whereas the

bottom diagram shows the four vehicle configuration system, both with nine batteries.

Both diagrams show the time required to discharge battery 1, shown in orange, and

charge, shown in green.

 Nine-Battery Discharge Plan Figure 10.

To cover larger areas, employ multiple interconnected systems with the same

fundamental setup and configuration. This system scales well with mission requirements.

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

IV. SUITABILITY OF THE DEVELOPED SYSTEM

In the system’s desired future state, the system is supposed to be highly

survivable. To address the issue, this chapter presents an analysis of the prospective

system’s threats, key limitations, and opportunities with respect to susceptibility and

vulnerability.

A. MISSION THREAT ANALYSIS

1. The Mission

Managed by a single computer running the Python script, the system maintains a

single quadcopter over an area and conducts vehicle swaps autonomously to manage the

limited battery life of individual quadcopters. The system concept diagram, Figure 11

illustrates this process. There are three vehicles in this system. The first vehicle, shown in

red, is replaced by the second vehicle, shown in blue, while the third vehicle, shown in

black, remains on the ground next in line for tasking. Utilizing autonomous battery

management, the system provides extended coverage for less cost than larger aerial

vehicles with much quicker response times.

 Operational Concept Diagram Figure 11.

 28

The system conducts vehicle swapping based on the battery state of the airborne

vehicle. The first vehicle launches to the desired position and loiters. The system

monitors the battery health of the airborne vehicle and when the battery level falls below

the user set threshold, the next vehicle launches. The first vehicle rises to avoid collision

while continuing to provide the platform to the user. The replacement vehicle flies to the

desired position and loiters in the area previously occupied by the first vehicle. Once the

replacement vehicle reaches the desired position, the first vehicle returns to the launch

platform for battery swap or charging to be ready for its next use. This system cycles

through vehicles until all batteries are exhausted or the user ends the mission.

2. Theater of Operation

The system is intended for use in a stable, fortified environment. When used on a

ship, the ground station and launch platform exist onboard. The system may be exposed

to hostile actions and extreme environmental conditions, but for the most part will

operate in a relatively low-risk setting. Onboard a ship, in order for adversaries to access

the ground station or other quadcopters used in the system, they would need to attack the

ship itself. This makes the system less exposed to direct threats.

B. MISSION-THREAT ENCOUNTER ANALYSIS AND GEOMETRIC
DESCRIPTION

Mission-threat encounter analysis and geometric description is accomplished by

examining expected threats, their characteristics and likelihood, and the system’s critical

components and kill modes.

1. Expected Threats

Given the theater of operation, Table 4 characterizes and describes the most likely

threats. Given the operational environment and cost of the threats, the most likely threat

is from small arms.

 29

Table 4. Expected Threats

Threat Range Likelihood

Small arms 600 m High

Portable and relatively inexpensive
At long range, inaccurate

Electronic attack Power dependent Medium

Most effective
Requires technology, power, and proximity to attack

Man-portable air-defense
systems
(MANPADS)

6 km Low

Very capable against target emitting Infrared (IR) signatures

Radar guided missile 70 km Low

Expensive and proven

In March 2017, BBC reported that a U.S. ally conducted a strike on a small

unmanned aerial system (UAS) using a patriot missile successfully at the cost of $3M

(Baraniuk 2017). The engagement demonstrated the system’s ability to engage the small

target, even though according to Justin Bronk, a researcher at the Royal United Services

Institute, the Patriot system may struggle to target a small quadcopter effectively (2017).

The radar guided missile system costs millions, making it economically infeasible for use

against an individual quadcopter in the small unmanned aerial system (SUAS) that costs

only a few hundred dollars. Similarly, a MANPAD costs thousands of dollars and the

financial cost associated for its deployment would be overkill for an inexpensive

quadcopter.

2. Critical Components and Kill Modes

Table 5 describes the SUAS critical components and their associated kill modes.

 30

Table 5. SUAS Critical Components and Kill Modes

CRITICAL COMPONENT KILL MODE(S)
Power System
Battery Battery connection severed/damaged

Battery damaged
Battery removed
Battery depleted

Propulsion
Propeller Damage to control surfaces

Loss of propeller
Motor Motor failure
Flight Control System
Navigation Loss of satellite signal

Connection failure
Flight Control Disruption of control signal path

Loss of control power
Mechanical damage
Overheating

Ground Station Loss of connection
Payload
Sensors/Cameras Sensor/camera damaged

Connection failure

Quadcopters make up the system, which has many critical components without

redundant parts. By killing a single component, the quadcopter will likely fail, damaging

the system. However, the small size of the system makes the vehicle difficult to engage

with a weapon, which makes it less susceptible to attack.

C. SUSCEPTIBILITY ANALYSIS

The likelihood that the system is hit by a weapon or threat is referred to as

susceptibility, DOD recognizes six concepts: tactics; threat warning; signature reduction;

noise jamming and deceiving; expendables; and threat suppression (Ball 2003). This

SUAS actively employs the first three. By understanding the aspects which make the

system susceptible, DOD can conduct system risk mitigation or reduction.

 31

1. Tactics, Flight Performance

As an automated system, to ensure success, this SUAS does not require training

and proficiency as do most manned systems. The tactics for decreasing susceptibility

primarily focus on minimizing isolated exposure of the SUAS and with redundant

systems.

The SUAS is made up of multiple quadcopters, which offers a tactical advantage

to ensure immediate replacement. If one of the quadcopters is lost, a replacement will be

launched immediately to provide continuous coverage. The aerial platform exists toward

the center of an operating unit, which will likely minimize direct enemy exposure. The

SUAS may act as a decoy while protecting ground or naval units that can return fire.

These tactics reduce system susceptibility.

2. Threat Warning

Using a radar warning or missile launch and approach warning system, military

commanders can receive advanced notice of imminent threats. These systems provide

information on the location and type of threat.

Utilizing cameras and additional sensors, the SUAS can detect incoming threats

using computer vision, the process for acquiring and processing digital images to gather

information. It may then take evasive action removing an easy kill opportunity for the

enemy and allowing the system to be less susceptible. It would also provide the ground or

naval units an immediate notification of a nearby threat, as seen in Figure 12.

 Threat Warning Figure 12.

 32

3. Signature Reduction

Signature reduction is the practice of reducing the detectability of the vehicle

below a weapon’s sensor threshold. This means minimizing signature in radar, infrared

(IR), visual, magnetic, acoustic, and ultraviolet (UV), as seen in Figure 13 from Adams’

Susceptibility Reduction lecture (2017). Because radar typically provides the greatest

detection ranges, minimizing radar cross-section (RCS) has been a common practice in

military design.

 Signature Reduction. Source: Adams (2017). Figure 13.

Small aerial systems have insignificant RCS and may be lost in air clutter or

misidentified as another object. The SUAS has a small RCS because of its size and lack

of traditional gasoline or diesel fuel engine. It will also operate with larger units, making

the SUAS RCS less visible to radar operators. The University of Texas at Austin

completed an evaluation of the 3DR Solo with respect to radar cross-section and found it

to have a very small RCS (Li and Ling 2016). The actual RCS value, shown in Figure 14,

will vary depending on the radar and environmental conditions, but radar operators

observe the value as relatively small, according to Li and Ling’s report Radar Signatures

of Small Consumer Drones (2016).

 33

The white outlines indicate the overall size and location of the 3DR Solo.

 Radar Cross-Section of 3DR Solo. Source: Li and Ling (2016). Figure 14.

D. VULNERABILITY ANALYSIS

The likelihood that the system will survive an engagement, vulnerability, is

defined by the DOD in six different concepts: component shielding; component location;

component elimination or replacement; component redundancy; passive damage

suppression; and active damage suppression (Ball 2003). To keep cost low and maximize

operational characteristics of the system, the SUAS actively employs redundancy.

The SUAS consists of at least three quadcopters with commercially available

replacement parts, should repair be necessary. This provides the system with redundancy,

though there may be a delay in the time between the loss of one unit and stationing of the

second unit.

E. SURVIVABILITY ENHANCEMENT TRADE STUDY

As typical with all systems, adding enhancements with operational functions of

the system entails major trade-offs. Besides the additional cost of developing the system

further, susceptibility and vulnerability improvement opportunities determine the trade-

offs of enhancing the SUAS.

 34

1. Susceptibility Improvement Opportunities

Additional signature reduction. The SUAS could be outfitted with stealth

technologies. By changing the shape, curves, edges, and outer material, the system may

achieve greater stealth advantage. The trade-off comes at the cost of additional weight on

the system.

Noise jamming and deceiving. The SUAS may employ this feature in the future.

Electronic attack and protection would help to decrease the susceptibility of the system.

The trade-off is weight and power consumption that come along with any electronic

system addition.

Expendables. The SUAS may employ this feature in the future. Expendables may

help the system to avoid impact from MANPADS or missiles. However, this comes at the

cost of weight on the system and additional power consumption. The MANPAD/missile

threat is assessed as minimal to the system as a whole, given the costly nature of

employing these weapons.

Threat suppression. The SUAS was not designed as an offensive system, but

should the desire exist, the system could be outfitted as an enemy-seeking weapon. In

that, it may carry a warhead. The vehicle could be tasked to seek out enemy fortifications

or high value units for destruction, eliminating or suppressing the threat. The system

could accommodate this by launching an additional system to take over the persistent

platform mission. This enhancement comes at the cost of weight and additional power

consumption, as seen with the other susceptibility reduction features. Another trade-off

would be a loss of an individual system and redundancy. In using the system for

offensive capabilities, the system is removed from the persistent platform mission.

Additional quadcopters would be necessary to maintain both the offensive and defensive

mission outlined in threat suppression.

2. Vulnerability Improvement Opportunities

Component shielding. The SUAS may be equipped with resistant materials such

as composite armor which should lower the vulnerability of the system to small arms fire.

With the advancement of composite lightweight armor, this is a likely feasible

 35

enhancement for the SUAS. Any trade-off would come in increased unit cost and

possible weight addition.

Component redundancy. The SUAS has redundancy through multiple

quadcopters. Individual quadcopters could have component redundancy, allowing the

quadcopter to take damage and lose components, while carrying on the mission. This

comes at the cost of additional weight.

Passive/active damage suppression. The SUAS could be equipped with damage

suppression systems. The main concern is additional power draw and weight.

3. Survivability Enhancement Impact

The majority of the enhancements’ trade-off cost includes increased weight or

power draw, leading to decreased time of flight. With the low cost of individual

quadcopters and the redundant nature of the system, survivability enhancements are not

financially logical.

F. KILL TREE

1. Individual Kill Tree

The kill tree of an individual quadcopter and of the system of quadcopters are

shown in Figure 15. The left portion of this figure shows a single quadcopter’s kill tree

which is included in the system of three quadcopter’s overall system kill tree. A single

quadcopter looks vulnerable. However, the system kill tree of the SUAS is a more robust,

redundant system.

 36

 Individual Quadcopter Kill Tree versus SUAS Kill Tree Figure 15.

2. System Kill Tree

A kinetic kill of individual quadcopters would not disable the system unless all

three of the quadcopters were lost, as seen in Figure 16. The loss of two quadcopters

illustrates a partial kill. The system remains functional with a third quadcopter available

for tasking. The ground control station would be located within a ship or ground unit and

therefore be protected. The logical means of attacking the SUAS system is either with an

overwhelming weapon that destroys the area, a surgical strike on the ground station,

which may not be readily identifiable to the enemy, or the most likely scenario, a

jamming system that floods the operating frequency (2.4 GHz) into the area. This may

effectively disable the quadcopters and cause a mission kill.

 37

 System Partial Kill Figure 16.

G. MISSION DEGRADATION DURING SYSTEM SWAP

While the system cannot be killed by the loss of a single vehicle, removing one

quadcopter from flight requires time to conduct vehicle replacement. There would be a

momentary lapse in coverage as the next available quadcopter is launched and moves into

position. The SUAS vehicle swaps conducted during field testing in August 2017 show

the system proof of concept. In field testing, three identical UAS launched individually to

provide 54 minutes of continuous platform coverage through system swapping. If a single

quadcopter is removed from the system, the replacement time would be approximately

one minute. During this time, the system does not perform the intended mission.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION

To address the problem of persistent platforms formulated, the multi-rotor

paradigm and architecture was developed. The developed prototype was field tested at

Camp Roberts August 7–8, 2017. These tests provided results which evaluated feasibility

of the system based on performance.

The system of quadcopters is a feasible option to provide a persistent aerial

platform. By monitoring battery health, vehicles intelligently swap to ensure the system

always has an airborne asset. The system provides coverage in a loitering scenario that

far exceeds the capability of a single quadcopter while also providing the user with a

survivable asset.

Testing revealed certain limitations with the system, specifically with current

battery and charging technology. Until the technology advances significantly, a store of

batteries is necessary to keep the system airborne for extended periods of time. If the

number of batteries available and the charging capacity can exceed the vehicle demands,

the system could operate seemingly indefinitely, or at least until all vehicles mechanically

fail.

The feasibility of the vehicle swapping system has been established. The system

operates autonomously and only requires operators to change batteries to keep the

platform in the air.

This multi-rotor system is robust, built on redundancy. The system is most

susceptible to degradation if a quadcopter is killed in flight. To the mission commander

operating this system, the one-minute gap may be unacceptable. This degradation is

minimized with the low susceptibility of the system in operation. The likelihood that an

enemy could remove a portion of the system effectively and conduct a strike in that gap

requires a high level of coordination and does not present an imminent threat. The multi-

rotor system is a survivable for the near future and ready for further testing and

demonstration.

 40

B. FUTURE WORK

Through development of the multiple quadcopter system, future work

recommendations are as follows:

• Conduct extensive duration testing using at least the nine recommended

batteries and chargers to determine when the system will fail.

• Test existing batteries and provide recommendations for advancement of

battery life.

• Test flight patterns to find potential battery efficiencies.

• Develop sensors or video systems to integrate onto the aerial platforms

and seamlessly string together between vehicles.

• Develop the system to further survive in combat scenarios. If one vehicle

is lost in a maintenance or combat scenario, the system should be able to

autonomously replace the vehicle.

With further development, this system can provide the full proof of concept for

use with our armed forces and establish the technology for use with society. Battery

technology is developing slowly, persistent technologies—such as vehicle swapping

using intelligent battery monitoring—are crucial to keeping the United States military the

most capable in the world.

 41

APPENDIX A. 3DR SOLO STEP-BY-STEP CONFIGURATION

This step-by-step configuration guide was created during the process of

developing this thesis. These are the steps used to allow multiple 3DR Solos to access a

single wireless network. This closely follows the 3DR Solo Development Guide

(https://dev.3dr.com) with notes that helped me get things working.

A. HOW TO ACCESS SOLO

These are the steps necessary to access the 3DR Solo controller and vehicle:

1) Accessing Solo. Reference: https://dev.3dr.com/starting-network.html

a) When connected to the SoloLink wifi network (SoloLink-###) created by the

3DR Solo Controller and Quadcopter, you are able to find the following

addresses:

i) 10.1.1.1 — Controller

ii) 10.1.1.10 — Solo

iii) 10.1.1.100–10.1.1.255 — Computers, phones, or other devices on the

network

b) You are able to SSH into the controller:
 ssh root@10.1.1.10

You will be prompted for the password: TjSDBkAu

If you see an error "WARNING: REMOTE HOST IDENTIFICATION HAS

CHANGED!", you can remove the keys to allow connection using the command:
 ssh-keygen -R 10.1.1.10

c) If you have trouble logging in, it may be due to "Host Identification" error which

can happen if you previously SSH'd into a different solo. See:

https://dev.3dr.com/starting-network.html

 42

d) Instructions for changing WiFi SSID and password: https://3drobotics.com/kb/

setting-wifi-password/

B. PREPARING YOUR COMPUTER

1) Setting up your computer: Solo Command Line Tool (Solo CLI Tool).

Reference: https://dev.3dr.com/starting-utils.html

a) The Solo CLI should be installed on the PC to execute solo commands (more on

this in steps to follow). If it is already installed on the computer, you can skip step

2.

b) Connect to valid WiFi network with internet and run:
 sudo -H pip install git https://github.com/3drobotics/solo-cli

c) Optional: If you get an error: "distutils.errors.DistutilsError: Setup script exited

with error: command 'x86_64-linux-gnu-gcc' failed with exit status 1", as I did,

run this and then try again:
 sudo apt-get install libffi-dev
 sudo apt-get install libssl-dev
 sudo apt-get install python-dev

Also, if you get an error: "ImportError: No module named virtualenv", you should

run:
 sudo pip install virtualenv

d) Reconnect to the solo's wifi network. You can now run solo commands. Note that

you MUST be connected to the solo network for these commands to execute

properly. To see all solo commands, use command "solo":
 $ solo
 Usage:
 solo info
 solo wifi --name=<n> [--password=<p>]
 solo flash (drone|controller|both)
 (latest|current|factory|<version>) [--clean]
 solo flash --list
 solo flash pixhawk <filename>
 solo provision
 solo resize
 solo logs (download)
 solo install-pip

 43

 solo install-smart
 solo install-runit
 solo video (acquire|restore)
 solo script [<arg>...]

i) First time running solo command and results:
 solo info

Response:
 connecting to Solo and the Controller...
 {
 "controller": {
 "ref": "3dr-controller-imx6solo-3dr-artoo-20160926202703",
 "version": "2.4.2"
 },
 "gimbal": {
 "connected": false
 },
 "pixhawk": {
 "apm_ref": "7e9206cc",
 "px4firmware_ref": "5e693274",
 "px4nuttx_ref": "d48fa307",
 "version": "1.3.1"
 },
 "solo": {
 "ref": "3dr-solo-imx6solo-3dr-1080p-20160926202940",
 "version": "2.4.2"
 }
 }

Error Response:
 connecting to the Controller...
 connecting to encrypted wifi network.
 (your computer may disconnect from Solo's network.)
 please manually reconnect to Solo's network once it becomes available.
 it may take up to 30s to a reconnect to succeed.

If this occurs, check that you are connected to the solo network and try again.

C. CONNECTING SOLO TO WIFI

1) Connecting the solo to a common network or network with internet.

Reference: https://dev.3dr.com/starting-utils.html

a) Install the Solo CLI. This allows more control over the solo network.

 44

b) In order to connect the solo to another network, ensure that you are still connected

to the existing solo network (SoloLink-####) and run the following code

replacing <ssid> with your WAP SSID and <password> with your WAP

password:
 solo wifi --name=<ssid> --password=<password>

For this system configuration:
 solo wifi --name=solocommand --password=commandsolo

c) You should hear a sound from the vehicle and it will reboot. Another sound will

indicate you are connected.

d) Your solo now has internet access.

D. MAKING SOLO MORE ACCESSIBLE (OPTIONAL)

1) Follow the procedures for Connecting Solo to Wi-Fi, then proceed.

2) First time solo CLI. Reference: https://dev.3dr.com/starting-utils.html

a) Ensure you are still connected to the solo network (you do not need to SSH in

first).

b) The first time you run solo CLI, we want to install a few repositories on the solo.

Install all of the following libraries.

i) smart
 solo install-smart

ii) runit
 solo install-runit

Troubleshooting: If you get the error shown below, reboot the controller, repeat

steps 4.i through 4.ii

 NOTE: this process requires simultaneous access to

 Solo and to the Internet. if you have not yet done so,

 run `solo wifi` to connect to Solo and to a local

 wifi connection simultaneously.

 45

 connecting to solo...

 waiting for Internet connectivity...

 Loading cache...

 Updating cache... ## [100%]

 error: busybox-1.21.1-r1@cortexa9hf_vfp_neon is not available for

 downloading

iii) pip
 solo install-pip

iv) DroneKit script pack
 solo script pack

If successful, the command will create an archive in the solo-script.tar.gz in

the current directory.

Deploy this archive to Solo and run a specified script using the solo script run

<scriptname> command. The host computer must be connected to the Solo wifi

network, and Solo must also be connected to the internet.

For example, to deploy and run the helloworld example:
 solo script run helloworld.py

E. DRONEKIT-PYTHON WITH 3DR SOLO

1) Clone my working repository
git clone https://github.com/awilliams84/solo.git

2) Connect to the Solo network created when the controller and vehicle connect together

(likely named SoloLink_<name>). On the Solo's network, you can connect to the

vehicle as a UDP client 'udpin:0.0.0.0:14550'. Reference: https://dev.3dr.com/

concept-dronekit.html

https://dev.3dr.com/example-helloworld.html

 46

3) Run a simple script to ensure that everything is working. Navigate to the directory

that contains solohello.py and execute the script. The key is declaring your vehicle.
python solohello.py

If successful, you should see a response the looks similar to Figure A-1.

Figure A-1. Execution of solohello.py

F. SETTING UP FOR MULTIPLE 3DR SOLO

Figure A-2. Network Concept

 47

These are step by step instructions modified from the 3DR Google document

about operating swarms.

Reference: https://docs.google.com/document/d/1heLTpFEyNC_52BnZnz78lZxP

eW15iZX98VUEXM4GIBM/edit#heading=h.ma685xmoqc83

Steps 1 will only be necessary the first time you are running through this tutorial.

Once you have cloned the 3DR Git, you can skip step 1 for additional Solo vehicles.

1) Clone the 3DR github repository containing the installation extras

(https://github.com/3drobotics/swarm):
 mkdir ~/solo_ws/src
 cd ~/solo_ws/src
 git clone https://github.com/3drobotics/swarm.git

2) Modifying Solo’s UDP broadcast port. Since Solo communicates with the ground

station via UDP, we will have to change default port used by each Solo to make sure

they do not interfere with each other. The first step is to layout which ports will be

used by which Solo. The first Solo starts on port 15550, and the next on 16550, etc.,

as that leaves the default Solo port (14550) open in case someone accidentally

connects their solo to our network.

Table A-1. Solo Port Assignments

Solo Port

SoloLink_redleader 15550

SoloLink_blueleader 16550

SoloLink_goldleader 17550

SoloLink_greenleader 18550

With the ports laid out, change the drone’s network configurations to broadcast on

these ports. Start by connecting to the first Solo’s network (usually

SoloLink_###), then run these commands: (Note, the password of the artoo and

the solo is TjSDBkAu)

 48

Connect to vehicle:
 ssh root@10.1.1.10

You will be prompted for the password: TjSDBkAu

Edit file on solo:
 nano /etc/sololink.conf

In the sololink.conf file, change a parameter called “TelemDestPort”. The

parameter should be set to the default port (14550); change it to the port you

would like to assign.

Then save, close, and run (if you do not run this command, rebooting will reset

the .conf file to the default)
 md5sum /etc/sololink.conf > /etc/sololink.conf.md5

Next, reboot solo:
 reboot

Connect to artoo:
 ssh root@10.1.1.1

You will be prompted for the password: TjSDBkAu

Edit file on solo:
 nano /etc/sololink.conf

In the sololink.conf file, change the same parameter called “TelemDestPort”. The

parameter should be set to the default port; change it to the port you would like to

assign.

Then save, close, and run (if you do not run this command, rebooting will reset

the .conf file to the default)

 49

 md5sum /etc/sololink.conf > /etc/sololink.conf.md5

Next, reboot solo:
 Reboot

3) Setup automatic network connection and port forwarding. Next, you’ll need to set up

your solo so it automatically connects to the swarm network and forwards its mavlink

data. This process is automated by the make permanent script found in

installer/make_permanent.py, which we already have from cloning the 3DR git

repository.

a) Run the make_permanent script:
 python ~/solo_ws/src/swarm/installer/make_permanent.py

b) Input the parameters:

i) What is the ssid of the swarm network: solocommand

ii) What is the passkey of the swarm network: commandsolo

iii) What is the port you want your artoo to forward: 15550 (or whichever port

you set for that specific solo)

Your solo should reboot.

OPTIONAL: If you would like to check whether the Solo is configured properly

with your network, reconnect to the SoloLink_### network and SSH into artoo:
 ssh root@10.1.1.1

You will be prompted for the password: TjSDBkAu

To check the network configuration:
 ifconfig

You should see something that indicates you are connected to a wlan0 network, as

shown in Figure A-3.

 50

Figure A-3. Network Configuration

4) Record your IP address for each solo in your network using a table similar to Table
C-2.

 51

Table A-2. Network IP Address Assignments

Solo IP solocommand Port

SoloLink_redleader 192.168.1.133 15550

SoloLink_blueleader 192.168.1.121 16550

SoloLink_goldleader 192.168.1.138 17550

SoloLink_greenleader 192.168.1.106 18550

G. PREFLIGHT CHECKLIST

1) SSH into each Solo from your Router’s network (To enable port forwarding)

2) Connect to Solo with a the swarm.launch file and use a unique,

sequential copter_id

3) Run rostopic echo /copter#/mavros/rc/in to confirm sticks are publishing

4) Run your python file (For example python velocity_goto.py)

a) python velocity_goto.py (takeoff and land)

b) python dualo.py (fly 2 solos with one controller)

c) python pong.py (play pong, requires 5 solos)

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

APPENDIX B. PYTHON SCRIPT

The following script was used to control three quadcopters demonstrated in field

testing. Written in Python programming language, it launches vehicles and executes

stationing commands using DroneKit-Python and includes data collection to an

external file.

1. __author__ = "Alexander Williams"
2. __email__ = "alexander.williams@gmail.com"
3. __status__ = "Production"
4.
5. '''''
6. This code was developed as part of the thesis:
7.
8. Naval Postgraduate School
9. FEASIBILITY OF AN EXTENDED-DURATION AERIAL PLATFORM USING AUTONOMOUS
10. MULTI-ROTOR VEHICLE SWAPPING AND BATTERY MANAGEMENT
11.
12. By LCDR Alexander Williams
13.
14. This code was written and tested in 2017 at Camp Roberts. All
15. code has parameters set for testing at a specific site. If you
16. intend to use this code, ensure you change the parameters,
17. especially the latitude and longitude.
18.
19. '''
20.
21. # Import necessary libraries
22. from dronekit import connect, VehicleMode
23. from dronekit import LocationGlobalRelative, LocationGlobal, Command
24. import time
25. import math
26. from pymavlink import mavutil
27.
28. import numpy as np
29. import matplotlib.pyplot as plt
30. import matplotlib.animation as animation
31.
32. import signal
33. import sys
34. from datetime import datetime, timedelta
35. from collections import defaultdict
36. import csv
37.
38. from mpl_toolkits.mplot3d import Axes3D
39.
40. # Initialize global variables
41. sortiedata=defaultdict(list)
42. solos=defaultdict(list)
43. sortie=0
44.
45. ###
46. ####################### ADJUSTABLE VARIABLES ########################

 54

47. ###
48.
49. # Define all Solo ports and names (ports and names)
50. # If you add vehicles, this is where to add their ports and assign names for
51. # inclusion
52. soloports=['udpin:0.0.0.0:15550','udpin:0.0.0.0:16550','udpin:0.0.0.0:17550','ud

pin:0.0.0.0:14550']
53. soloids=['redleader','blueleader','goldleader','greenleader']
54.
55. # Static test parameters
56.
57. # Min voltage we want to see from any vehicle
58. battery_volt_limit = 10
59. # Min battery level we want to see from any vehicle
60. battery_level_critical_limit = 30
61.
62. # Test location - modify for future application not at Camp Roberts
63. loiterlat = 35.7167982
64. loiterlon = -120.7625160
65. loiteralt = 100 #meters
66. # loiterlat = 35.716014
67. # loiterlon = -120.763119
68. # loiteralt = 30 #meters
69.
70. # Adjustable variables
71. takeoffalt = 15 # Altitude vehicles will go to on takeoff
72. vehiclealtseparation = 5 # Seperation distance (in meters) at swap
73.
74. ###
75. #################### END ADJUSTABLE VARIABLES #######################
76. ###
77.
78. # Initialize time for data collection
79. # DELETE
80. # starttime = datetime.now()
81.
82.
83. # Function for arming and takeoff to set altitude
84. def arm_and_takeoff(vehicle,aTargetAltitude,vehiclename):
85.
86. print "Basic pre-arm checks"
87. # Do not try to arm until autopilot is ready
88. while not vehicle.is_armable:
89. print " Waiting for vehicle to initialise..."
90. time.sleep(1)
91.
92.
93. print "Arming motors"
94. # Copter should arm in GUIDED mode
95. vehicle.mode = VehicleMode("GUIDED")
96. vehicle.armed = True
97.
98. while not vehicle.armed:
99. print " Waiting for arming..."
100. time.sleep(1)
101.
102. print "Taking off! Heading to ",aTargetAltitude
103.
104. takeofftime = datetime.now()
105. landedalt=vehicle.location.global_relative_frame.alt

 55

106. global sortie
107. sortie+=1
108.
109. # For data logging
110. storesortiedata(vehiclename,vehicle)
111.
112. # Wait until the vehicle reaches a safe height before
113. # processing the goto (otherwise the command
114. # after Vehicle.simple_takeoff will execute immediately).
115. while True:
116. vehicle.simple_takeoff(aTargetAltitude) # Take off to target alt

itude
117. timeelapsed=((datetime.now()-takeofftime).total_seconds())
118. print " Altitude: ", vehicle.location.global_relative_frame.alt,

 " Time Elapsed: ",timeelapsed, " sec"
119. #Trigger just below target alt
120. if vehicle.location.global_relative_frame.alt>=aTargetAltitude*0

.95:
121. print "Reached target altitude in ",timeelapsed," sec"
122. status="success"
123. break
124. if timeelapsed>3 and vehicle.location.global_relative_frame.alt<

landedalt+1:
125. print "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Launch ERROR!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!"
126. print "Land vehicle (%s)" %(vehiclename)
127. vehicle.mode = VehicleMode("LAND")
128. status="fail"
129. break
130. time.sleep(1)
131.
132. # For data logging
133. storesortiedata(vehiclename,vehicle)
134.
135. return status
136.
137.
138. # Function to calculate the distance in meters between two position
139. def get_distance_metres(aLocation1, aLocation2):
140. """
141. Returns the ground distance in metres between two LocationGlobal obj

ects.
142.
143. This method is an approximation, and will not be accurate over
144. large distances and close to the earth's poles. It comes from the
145. ArduPilot test code:
146. https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/co

mmon.py
147. """
148. dlat = aLocation2.lat - aLocation1.lat
149. dlong = aLocation2.lon - aLocation1.lon
150. return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5
151.
152.
153. # Function to store data during testing
154. def storesortiedata(vehiclename,vehicle):
155. timenow = datetime.now()
156. global sortie
157.
158. sortiename=vehiclename

 56

159. sortiedata[sortiename].append(
160. (timenow,
161. vehicle.location.global_relative_frame.lat,
162. vehicle.location.global_relative_frame.lon,
163. vehicle.location.global_relative_frame.alt,
164. vehicle.battery.level,
165. vehicle.battery.voltage,
166. sortiename
167.))
168.
169. print "Stored data for %s in dictionary"%(vehiclename)
170.
171.
172. # Function to write data to csv file and plot data
173. def showplot():
174. if len(sortiedata)>0:
175. fig=plt.figure()
176. fig.suptitle('Battery Management Testing')
177. plt1=fig.add_subplot(211)
178. plt2=fig.add_subplot(212)
179. fig2=plt.figure()
180. plt3=fig2.add_subplot(111,projection='3d')
181.
182. # Open csv file and append
183. f = open('data.csv','a')
184.
185. fulltime=[]
186. fulllatitude=[]
187. fulllongitude=[]
188. fullaltitude=[]
189. fullbatterypct=[]
190. fullbatteryvolt=[]
191. fullsolo=[]
192.
193. global starttime
194.
195. for key, value in sorted(sortiedata.iteritems()):
196. soloid=key
197. time=[]
198. latitude=[]
199. longitude=[]
200. altitude=[]
201. batterypct=[]
202. batteryvolt=[]
203. solo=[]
204.
205. for var in value:
206. time.append((var[0]-starttime).total_seconds())
207. latitude.append(var[1])
208. longitude.append(var[2])
209. altitude.append(var[3])
210. batterypct.append(var[4])
211. batteryvolt.append(var[5])
212. solo.append(var[6])
213.
214. plt1.plot(time,altitude,label=soloid)
215. plt1.set_xlabel('Time (sec)')
216. plt1.set_ylabel('Altitude (m)')
217. plt2.plot(time,batterypct,label=soloid)
218. plt2.set_xlabel('Time (sec)')

 57

219. plt2.set_ylabel('Battery Life (%)')
220. plt3.plot(latitude,longitude,altitude)
221. plt3.set_xlabel('Latitude (m)')
222. plt3.set_xlabel('Longitude (m)')
223. plt3.set_xlabel('Altitude (m)')
224.
225. plt1.scatter(time[0],altitude[0],marker='o',color='g',s=50)

226. plt1.scatter(time[-1],altitude[-

1],marker='o',color='r',s=50)
227. plt2.scatter(time[0],batterypct[0],marker='o',color='g',s=50

)
228. plt2.scatter(time[-1],batterypct[-

1],marker='o',color='r',s=50)
229.
230. fulltime.extend(time)
231. fulllatitude.extend(latitude)
232. fulllongitude.extend(longitude)
233. fullaltitude.extend(altitude)
234. fullbatterypct.extend(batterypct)
235. fullbatteryvolt.extend(batteryvolt)
236. fullsolo.extend(solo)
237.
238. duration=math.ceil(fulltime[-1]/60)
239. start=starttime.strftime('%Y%m%d %H%M')
240. stoptime=var[0]
241. stop=stoptime.strftime('%Y%m%d %H%M')
242. flightdata=['Start: '+start,'Stop: '+stop,'Duration: '+`duration

`+ ' minutes','Sortie Count: '+`len(sortiedata)`]
243.
244. # Add row titles
245. fulltime.insert(0,'Time (sec)')
246. fullsolo.insert(0,'Vehicle ID')
247. fulllatitude.insert(0,'Latitude')
248. fulllongitude.insert(0,'Longitude')
249. fullaltitude.insert(0,'Altitude (m)')
250. fullbatterypct.insert(0,'Battery (%)')
251. fullbatteryvolt.insert(0,'Battery (V)')
252.
253. # Write to csv file
254. w = csv.writer(f, delimiter=',')
255. w.writerow(flightdata)
256. w.writerow(fullsolo)
257. w.writerow(fulltime)
258. w.writerow(fulllatitude)
259. w.writerow(fulllongitude)
260. w.writerow(fullaltitude)
261. w.writerow(fullbatterypct)
262. w.writerow(fullbatteryvolt)
263.
264. print "############# Data stored to CSV #############"
265.
266. # Close csv file
267. f.close()
268.
269. plt1.autoscale(enable=True, axis='both', tight=False)
270. plt2.autoscale(enable=True, axis='both', tight=False)
271.
272.
273.

 58

274. # Initialize lists of available Solos (connect and names) set in
275. # connection (set empty here)
276. solo=[]
277. soloname=[]
278.
279. print "======================== CONNECTING TO SOLOS ====================

===="
280.
281. i=0
282.
283. # Loop through solo ports to attempt connection with each vehicle
284. for soloport in soloports:
285.
286. index=soloports.index(soloport)
287. soloid=soloids[index]
288.
289. print("Connecting to solo: %s (%s)" % (soloport,soloid))
290.
291. # Try to connect to the solo for XX heartbeat_timeout seconds
292. try:
293. vehicle=connect(soloport, wait_ready=True, heartbeat_timeout=90)

294. solo.append(vehicle)
295. soloname.append(soloid)
296.
297. solos[soloid]=vehicle
298.
299. # Print some vehicle attributes
300. print "Get some vehicle attribute values:"
301. print " GPS: %s" % solo[i].gps_0
302. print " Battery: %s" % solo[i].battery
303. print " Last Heartbeat: %s" % solo[i].last_heartbeat
304. print " Is Armable?: %s" % solo[i].is_armable
305. print " System status: %s" % solo[i].system_status.state
306. print " Mode: %s" % solo[i].mode.name
307.
308. # Increment 1 to look on the next solo port
309. i+=1
310.
311. except:
312. print (soloid+" vehicle not found.")
313.
314.
315. print "////////////////////// END CONNECTING TO SOLOS //////////////////

////"
316.
317.
318. # Write which solos were found
319. print "%s Solos available: " %len(solo)
320. print soloname
321.
322. # A check to see if the script should continue running in loop to follow

323. continuecheck = 1
324.
325. # Ask user whether to continue where 'y' and 'n' are only acceptable ans

wers
326. while continuecheck != 'y' and continuecheck != 'n':
327. continuecheck = raw_input('Continue? (y/n):')
328.

 59

329. # Create new dictionary variables for home lat and longs
330. homelat=defaultdict(list)
331. homelon=defaultdict(list)
332.
333. vehicle=0
334. sortienum=-1
335. unavailablevehicles=0
336. takeoffstatus="true"
337.
338.
339.
340. # Main script for flight operations
341. try:
342.
343. vehicleindex=0
344. vehicleindex2=1
345.
346. # Initialize time for data collection
347. starttime = datetime.now()
348.
349. # Loop through vehicles
350. while True and continuecheck == 'y':
351.
352. for thisvehicle in solo:
353.
354. if vehicleindex>len(solo)-1:
355. vehicleindex=0
356.
357. print "vehicleindex=%s" %(vehicleindex)
358. print "vehicleindex2=%s" %(vehicleindex2)
359.
360. if vehicle==solo[vehicleindex]:
361. if takeoffstatus=="fail":
362. print "Sleep to standby for another attempt. Same ve

hicle."
363. time.sleep(15)
364. else:
365. print 'Vehicle Check: %s already flying, cannot use

same vehicle to start while airborne' %(soloname[vehicleindex])
366. continuecheck='n'
367. break
368. if solo[vehicleindex].battery.voltage < battery_volt_limit o

r solo[vehicleindex].battery.level < battery_level_critical_limit:
369. print 'Vehicle Check: %s battery too low for operation,

skip to next' %(soloname[vehicleindex])
370. vehicleindex+=1
371. unavailablevehicles+=1
372. break
373. elif unavailablevehicles>len(solo):
374. print 'Vehicle Check: No vehicles available.'
375. continuecheck='n'
376. break
377.
378. vehicle=solo[vehicleindex]
379. sortienum+=1
380.
381. # Dynamic test parameters
382. battery_level_limit=0 # Set higher for testing
383.
384. print("Connected to solo: %s" % (soloname[vehicleindex]))

 60

385.
386. # If connection is not current, skip vehicle and go to next

387. if vehicle.last_heartbeat>10:
388. vehicleindex+=1
389. break
390.
391. # If the next vehicle does not have enough battery
392. if vehicle.battery.level < battery_level_critical_limit:
393. print " %s battery too low for designated flight." %(sol

oname[vehicleindex])
394.
395. # Else, continue
396. else:
397.
398. # If vehicle is not already airborne (likely same vehicl

e)
399. if vehicle.location.global_relative_frame.alt < takeoffa

lt-1:
400.
401. try:
402. cmds = vehicle.commands
403. cmds.download()
404. cmds.wait_ready()
405.
406. # Arm and take off - receive status
407. takeoffstatus=arm_and_takeoff(vehicle,takeoffalt

,soloname[vehicleindex])
408.
409. # If launch fail
410. if takeoffstatus=="fail":
411. print "Launch failed, vehicleindex=%s" %(veh

icleindex)
412. vehicleindex+=1
413. print "Find next vehicle, vehicleindex=%s" %

(vehicleindex)
414. break
415.
416. except:
417. if takeoffstatus=="fail":
418. print "Take off aborted, vehicleindex=%s" %(

vehicleindex)
419. vehicleindex+=1
420. print "Find next vehicle, new vehicleindex=%s" %

(vehicleindex)
421. break
422.
423. # Increasing vehicle airspeed to max (30)
424. print "Set vehicle airspeed to 30"
425. vehicle.airspeed = 30
426.
427. # Set home location as the location above takeoff
428. # (for return later)
429. homelat[vehicleindex]=(vehicle.location.global_frame

.lat)
430. homelon[vehicleindex]=(vehicle.location.global_frame

.lon)
431.
432. # Print for debug
433. print " Home Latitude: %s" % homelat[vehicleindex]

 61

434. print " Home Longitude: %s" % homelon[vehicleindex]

435.
436. else:
437. print "Vehicle (%s) already airborne" %(soloname[veh

icleindex])
438.
439. # Mission location
440. loiterpoint = LocationGlobalRelative(loiterlat,loiterlon

, loiteralt)
441. vehicle.simple_goto(loiterpoint)
442.
443.
444. print "*****************Go to loiter point**************

***"
445.
446. storesortiedata(soloname[vehicleindex],vehicle)
447.
448. # Loop to track distance to loiter. Print distance to go

 until
449. # at loiter
450. while True:
451. currentaltitude=vehicle.location.global_relative_fra

me.alt
452.
453. dist = get_distance_metres(vehicle.location.global_f

rame, loiterpoint)
454. print " Distance to go: %s Altitude goal: %s Current

: %s"%(dist,loiteralt,currentaltitude)
455.
456. if currentaltitude>loiteralt:
457. goalpct=1.02
458. else:
459. goalpct=0.98
460.
461. if dist < 1 and currentaltitude>=(loiteralt)*0.98:
462. print 'Within 1m of waypoint'
463. break
464.
465. time.sleep(1)
466.
467. storesortiedata(soloname[vehicleindex],vehicle)
468.
469.
470. print "*******************Maintain loiter point*********

**********"
471.
472. # Maintain loiter position until battery level too low
473. while True:
474.
475. try:
476. print ' %s Battery limit: %s Current battery: %

s'%(soloname[vehicleindex],max(battery_level_limit,battery_level_critical_limit)
,vehicle.battery.level)

477. time.sleep(1)
478.
479. # If battery level below limit or voltage level

below limit, break loop

 62

480. if vehicle.battery.voltage < battery_volt_limit
or vehicle.battery.level < battery_level_limit or vehicle.battery.level < batter
y_level_critical_limit:

481. print 'Battery below limit'

482. break
483.
484. except:
485. # When battery loop is manually exited (CTRL+C)

486. print " BATTERY CHECK ABORTED"
487. break
488.
489. storesortiedata(soloname[vehicleindex],vehicle)
490.
491. if vehicleindex==len(solo)-1:
492. vehicle2=solo[0]
493. vehicleindex2=0
494. else:
495. vehicle2=solo[vehicleindex+1]
496. vehicleindex2=vehicleindex+1
497.
498. # Look for replacement if more than one solo online
499. if len(solo) > 1:
500. print 'Checking for replacement'
501.
502. vehiclecheck=0
503. while vehiclecheck <= len(solo) and (vehicle2.batter

y.level < battery_level_critical_limit or vehicle==vehicle2 or vehicle2.last_hea
rtbeat>5):

504. if vehicleindex==len(solo)-1:
505. vehicle2=solo[0]
506. vehicleindex2=0
507. else:
508. vehicle2=solo[vehicleindex+1]
509. vehicleindex2=vehicleindex+1
510. vehiclecheck+=1
511. print "Vehicle check count: %s"%(vehiclecheck)
512.
513. # Check if replacements are able to replace (battery

 checks)
514. if vehiclecheck > len(solo) or vehicle2.battery.leve

l < battery_level_critical_limit:
515. replacementfails=vehiclecheck
516. # break
517. else:
518. replacementfails=0
519.
520. # Reset takeoffstatus before trying another takeoff

521. takeoffstatus="fail"
522.
523. # Start takeoff sequence until a replacement is laun

ched or all fail
524. while takeoffstatus=="fail" and replacementfails<len

(solo):
525. if vehicleindex2==vehicleindex:
526. vehicleindex2+=1
527. if vehicleindex2>len(solo)-1:
528. vehicleindex2=0

 63

529. if solo[vehicleindex2].last_heartbeat<5:
530. print 'Launch replacement'
531. print 'Launch vehicleindex2=%s' %(vehicleind

ex2)
532. try:
533. takeoffstatus=arm_and_takeoff(solo[vehic

leindex2],takeoffalt,soloname[vehicleindex2])
534. except:
535. takeoffstatus="fail"
536.
537. nextvehicle=vehicleindex2+1
538. if nextvehicle>len(solo):
539. nextvehicle=0
540.
541. if nextvehicle==vehicleindex2 or nextvehicle==ve

hicleindex:
542. time.sleep(15)
543.
544. if takeoffstatus=="fail":
545. print 'Launch replacement failed'
546. vehicleindex2+=1
547. replacementfails+=1
548. # break
549.
550. vehicle2=solo[vehicleindex2]
551.
552. if replacementfails>len(solo):
553. print "Replacement Launch Failed %s times, quitt

ing" %(replacementfails)
554. continuecheck='n'
555. else:
556.
557. print "Set vehicle airspeed to 30"
558. vehicle2.airspeed = 30
559.
560. storesortiedata(soloname[vehicleindex],vehicle)

561. storesortiedata(soloname[vehicleindex2],vehicle2

)
562.
563. if vehicleindex2>len(homelat)-1:
564. print "Adding home point for %s" %(soloname[

vehicleindex2])
565.
566. cmds = vehicle2.commands
567. cmds.download()
568. cmds.wait_ready()
569.
570. homelat[vehicleindex2]=(vehicle2.location.gl

obal_frame.lat)
571. homelon[vehicleindex2]=(vehicle2.location.gl

obal_frame.lon)
572.
573. print 'Home: (%s,%s)' %(homelat[vehicleindex

2],homelon[vehicleindex2])
574.
575. else:
576. print "Home already exists, ignoring!"
577.

 64

578. print "**************Vehicle: %s airborne, takeoffst
atus=%s"%(soloname[vehicleindex2],takeoffstatus)

579.
580. # Raise original vehicle
581. print 'Raising vehicle from %s to %s' %(vehicle.loca

tion.global_relative_frame.alt,loiteralt+vehiclealtseparation)
582. highloiterpoint = LocationGlobalRelative(loiterlat,l

oiterlon, loiteralt+vehiclealtseparation)
583. vehicle.simple_goto(highloiterpoint)
584.
585. # Loop to track raised altitude
586. while True and takeoffstatus!="fail":
587. currentaltitude=vehicle.location.global_relative

_frame.alt
588.
589. print ' Altitude goal: %s Current: %s' %(loitera

lt+vehiclealtseparation,currentaltitude)
590. if currentaltitude>loiteralt+vehiclealtseparatio

n:
591. goalpct=1.02
592. else:
593. goalpct=0.98
594. if currentaltitude>=(loiteralt+vehiclealtseparat

ion)*goalpct:
595. break
596.
597. time.sleep(1)
598.
599. # Changing to guided mode in case vehicle coming onl

ine is not already
600. print 'Change mode to guided'
601. vehicle.mode = VehicleMode("GUIDED")
602.
603. # If repacement launched, send to loiter point
604. if len(solo) > 1 and takeoffstatus!="fail":
605.
606. print 'Send replacement'
607.
608. storesortiedata(soloname[vehicleindex],vehicle)

609. storesortiedata(soloname[vehicleindex2],vehicle2

)
610.
611. while True:
612. vehicle2.simple_goto(loiterpoint)
613.
614. currentaltitude=vehicle2.location.global_rel

ative_frame.alt
615.
616. dist = get_distance_metres(vehicle2.location

.global_frame, loiterpoint)
617. print " Distance to loiter pt: %s Altitude g

oal: %s Current: %s"%(dist,loiteralt,currentaltitude)
618.
619. if currentaltitude>loiteralt:
620. goalpct=1.02
621. else:
622. goalpct=0.98
623.

 65

624. if dist < 1 and currentaltitude>=(loiteralt)
*goalpct:

625. print 'Within 1m of waypoint'
626. break
627.
628. time.sleep(1)
629.
630.
631. print 'Check altitude: %s' %(vehicle.location.global_rel

ative_frame.alt)
632. print 'Take off alt minus 2: %s' %(takeoffalt-2)
633.
634. # If original vehicle still airborn (should be), return to l

aunch position
635. # this check is conducted using vehicle's altitude. If loite

r position is lower
636. # than takeoff alt, this will need to be rewritten
637. if vehicle.location.global_relative_frame.alt > takeoffalt-

2:
638.
639. # Return to launch point
640. print 'Vehicle index=%s' %(vehicleindex)
641. print 'Returning to launch position: (%s,%s)' %(homelat[

vehicleindex],homelon[vehicleindex])
642.
643. homepoint = LocationGlobalRelative(homelat[vehicleindex]

,homelon[vehicleindex], takeoffalt+vehiclealtseparation)
644. vehicle.simple_goto(homepoint)
645.
646. print " Go to %s" %(homepoint)
647.
648. storesortiedata(soloname[vehicleindex],vehicle)
649. storesortiedata(soloname[vehicleindex2],vehicle2)

650.
651. while True:
652. currentaltitude=vehicle.location.global_relative_fra

me.alt
653.
654. dist = get_distance_metres(vehicle.location.global_f

rame, homepoint)
655. print " Distance to home: %s Altitude goal: %s Curre

nt: %s"%(dist,takeoffalt+vehiclealtseparation,currentaltitude)
656.
657. if currentaltitude>loiteralt+vehiclealtseparation:
658. goalpct=1.02
659. else:
660. goalpct=0.98
661.
662. if dist < 1 and currentaltitude<=(loiteralt+vehiclea

ltseparation)*goalpct:
663. print 'Within 1m of waypoint'
664. break
665.
666. time.sleep(1)
667.
668. # Land original vehicle
669. print ' Landing'
670. vehicle.mode = VehicleMode("LAND")
671.

 66

672. storesortiedata(soloname[vehicleindex],vehicle)
673. storesortiedata(soloname[vehicleindex2],vehicle2)

674.
675. # Loop to track landing. Was used for data storing
676. while True:
677. print " Landing %s Altitude: %s" %(soloname[vehiclei

ndex],vehicle.location.global_relative_frame.alt)
678.
679. if vehicle.location.global_relative_frame.alt<=2: #T

rigger just below target alt.
680. print "Vehicle On Deck"
681. break
682. time.sleep(1)
683.
684. storesortiedata(soloname[vehicleindex],vehicle)
685.
686. # showplot()
687. vehicleindex+=1
688.
689. if unavailablevehicles >= len(solo):
690. break
691.
692.
693. # If interrupt
694. except:
695.
696. print "\n\n\n**************************Exited script early.*********

*******************"
697.
698. vehicleindex=0
699. for vehicle in solo:
700. print "%s control released. Returned to LOITER mode"%(soloname[v

ehicleindex])
701. vehicle.mode = VehicleMode("LOITER")
702. vehicleindex+=1
703.
704. showplot()
705. plt.show(block=True)
706. sys.exit(0)
707.
708.
709. # If script errors out
710. if continuecheck=='y' and len(solo)==0:
711. print 'No solo present for operation. Exited script.'
712. elif continuecheck=='n':
713. print 'Exited script.'
714. else:
715. print "\n\n\n*************************Errored out of script early.**

**************************"
716.
717. vehicleindex=0
718. for vehicle in solo:
719. print "%s control released. Returned to LOITER mode"%(soloname[v

ehicleindex])
720. vehicle.mode = VehicleMode("LOITER")
721. vehicleindex+=1
722.
723. if len(solo)!=0:
724. showplot()

 67

725. plt.show(block=True)
726. sys.exit(0)

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

APPENDIX C. FIELD TESTING RAW DATA

Table C-1 presents raw data collected at Camp Roberts, California, August 8,

2017.

Table C-1. Field Testing Results

Altitude (m)

ID
Time

(MM:SS) Latitude Longitude Veh 1 Veh 2 Veh 3
Battery

(%)
Battery

(V)
Vehicle 1 00:03 35.7156929 -120.7635823 0.01 96 16.214
Vehicle 1 00:11 35.7156898 -120.7635802 14.55 95 16.113
Vehicle 1 00:48 35.7167919 -120.7625102 99.88 91 15.774
Vehicle 1 11:17 35.7167971 -120.7625096 100.01 29 14.405
Vehicle 2 11:20 35.7155735 -120.7635051 100.01 0.01 95 16.457
Vehicle 2 11:28 35.715574 -120.76351 100.01 14.55 94 16.215
Vehicle 1 11:28 35.7167979 -120.762511 99.98 14.55 28 14.4
Vehicle 2 11:28 35.715574 -120.76351 99.98 14.55 94 16.215
Vehicle 1 11:32 35.7168006 -120.7625096 103.49 14.55 28 14.358
Vehicle 2 11:32 35.7155716 -120.7635059 103.49 14.9 94 16.149
Vehicle 1 12:11 35.7167976 -120.76251 104.97 14.9 24 14.312
Vehicle 2 12:11 35.7167941 -120.7625084 104.97 99.96 90 15.899
Vehicle 1 13:04 35.7156978 -120.7635808 20.39 99.96 19 14.215
Vehicle 2 13:04 35.7167983 -120.7625094 20.39 100.07 85 15.771
Vehicle 1 13:04 35.7156978 -120.7635808 20.39 100.07 19 14.215
Vehicle 1 13:28 35.7156866 -120.7635829 1.99 100.07 7 14.256
Vehicle 2 13:28 35.716797 -120.7625081 100.03 83 15.672
Vehicle 2 13:28 35.716797 -120.7625081 100.03 83 15.672
Vehicle 2 22:22 35.7167982 -120.7625094 99.97 29 14.537
Vehicle 3 22:25 35.7155368 -120.7633986 99.97 0.01 95 16.327
Vehicle 3 22:33 35.7155362 -120.7633981 99.97 14.61 94 16.236
Vehicle 2 22:33 35.7167964 -120.7625089 100.03 14.61 28 14.512
Vehicle 3 22:33 35.7155362 -120.7633981 100.03 14.61 94 16.236
Vehicle 2 22:36 35.7167974 -120.7625098 103.45 14.61 28 14.484
Vehicle 3 22:36 35.7155349 -120.7633984 103.45 14.95 94 16.165
Vehicle 2 23:11 35.7167969 -120.7625086 105 14.95 24 14.47
Vehicle 3 23:11 35.716791 -120.7625165 105 99.68 89 15.895
Vehicle 2 24:05 35.7155795 -120.7635053 19.88 99.68 19 14.426
Vehicle 3 24:05 35.7167971 -120.7625085 19.88 100.05 84 15.737
Vehicle 2 24:05 35.7155795 -120.7635053 19.88 100.05 19 14.426
Vehicle 2 24:29 35.7155807 -120.7635056 1.76 100.05 17 14.567
Vehicle 3 24:29 35.716797 -120.7625075 100.02 81 15.633
Vehicle 3 24:29 35.716797 -120.7625075 100.02 81 15.633

 70

Altitude (m)

ID
Time

(MM:SS) Latitude Longitude Veh 1 Veh 2 Veh 3
Battery

(%)
Battery

(V)
Vehicle 3 32:34 35.7167968 -120.7625096 99.97 29 14.629
Vehicle 1 32:37 35.715692 -120.763558 0.01 99.97 94 16.45
Vehicle 1 32:45 35.7156886 -120.7635546 14.67 99.97 93 16.162
Vehicle 3 32:45 35.716796 -120.7625091 14.67 100.1 28 14.616
Vehicle 1 32:45 35.7156886 -120.7635546 14.67 100.1 93 16.162
Vehicle 3 32:48 35.7167977 -120.7625106 14.67 103.58 28 14.562
Vehicle 1 32:48 35.7156896 -120.7635573 14.89 103.58 93 16.109
Vehicle 3 33:24 35.7167964 -120.7625094 14.89 104.94 24 14.564
Vehicle 1 33:24 35.7167932 -120.762512 99.98 104.94 89 15.848
Vehicle 3 34:19 35.7155351 -120.7633912 99.98 20.23 19 14.539
Vehicle 1 34:19 35.7168003 -120.76251 99.92 20.23 84 15.694
Vehicle 3 34:19 35.7155351 -120.7633912 99.92 20.23 19 14.539
Vehicle 3 34:42 35.7155326 -120.7633931 99.92 1.63 17 14.656
Vehicle 1 34:43 35.7167928 -120.7625049 100.06 82 15.599
Vehicle 1 34:46 35.7167978 -120.7625091 100.07 82 15.612
Vehicle 1 43:24 35.7167965 -120.7625094 99.98 29 14.541
Vehicle 2 43:28 35.7155635 -120.7635258 99.98 0.1 95 16.278
Vehicle 2 43:36 35.7155628 -120.7635253 99.98 14.65 94 16.082
Vehicle 1 43:36 35.7167962 -120.7625093 100 14.65 28 14.531
Vehicle 2 43:36 35.7155628 -120.7635253 100 14.65 94 16.082
Vehicle 1 43:39 35.7167941 -120.7625073 103.48 14.65 28 14.527
Vehicle 2 43:39 35.7155639 -120.7635255 103.48 14.95 94 16.011
Vehicle 1 44:16 35.7167969 -120.7625075 105.07 14.95 24 14.486
Vehicle 2 44:16 35.7167925 -120.7625099 105.07 99.91 90 15.813
Vehicle 1 45:10 35.7156956 -120.7635865 20.2 99.91 20 14.433
Vehicle 2 45:10 35.7167985 -120.7625085 20.2 100.17 85 15.617
Vehicle 1 45:10 35.7156956 -120.7635865 20.2 100.17 20 14.433
Vehicle 1 45:33 35.7156894 -120.7635844 1.92 100.17 18 14.384
Vehicle 2 45:33 35.7167977 -120.7625088 100.05 83 15.511
Vehicle 2 45:33 35.7167977 -120.7625088 100.05 83 15.511
Vehicle 2 54:11 35.7167977 -120.7625084 100.02 29 14.413
Vehicle 2 54:11 35.7167977 -120.7625084 100.02 29 14.413
Vehicle 3 54:11 35.715537 -120.7633971 100.02 2.7 17 14.793
Vehicle 2 55:03 35.7155802 -120.7635055 19.9 2.7 25 14.348
Vehicle 3 55:03 35.715537 -120.7633971 19.9 2.7 17 14.793
Vehicle 2 55:03 35.7155802 -120.7635055 19.9 2.7 25 14.348
Vehicle 2 55:25 35.7155778 -120.7635076 1.95 2.7 22 14.338

 71

LIST OF REFERENCES

3DR. 2015. “Solo Specs: Just the Facts.” May 4, 2015. https://3dr.com/blog/solo-specs-
just-the-facts-14480cb55722.

Adams, Christopher. 2017. “Designing for Survivability.” Class notes for ME4751:
Combat Survivability, Reliability and System Safety Engineering. Naval
Postgraduate School, Monterey, CA.

Ball, Robert. 2003. The Fundamentals of Ship Combat Survivability Analysis and Design.
2nd ed. Reston, VA: AIAA.

Baraniuk, Chris. 2017. “Small Drone ‘Shot with Patriot Missile.’” BBC. March 15, 2017.
http://www.bbc.com/news/technology-39277940.

Defense Advanced Research Projects Agency. 2017. “Tern.” Accessed October 9, 2017.
https://www.darpa.mil/program/tern.

Defense Science Board. 2012. The Role of Autonomy in DOD Systems. Washington, DC:
Office of the Under Secretary of Defense for Acquisition, Technology and
Logistics. https://www.acq.osd.mil/dsb/reports/2010s/AutonomyReport.pdf.

Gettinger, Dan. 2016. Drone Spending in the Fiscal Year 2017 Defense Budget.
Annandale-on-Hudson, NY: Center for the Study of the Drone at Bard College.

Holland, Terry. 2015. “The 3D Robotics Solo: A DroneLife Review.” Drone Life. July
30, 2015. https://dronelife.com/2015/07/30/the-3d-robotics-solo-a-dronelife-
review.

Li, Chenchen and Hao Ling. 2016. “Radar Signatures of Small Consumer Drones.” Paper
presented at the AP-S/USNC-URSI IEEE, Puerto Rico.

Northrop Grumman. 2016. “Tern UAS Concept Overview.” Video, 0:46. November 28,
2016. https://news.northropgrumman.com/news/releases/northrop-grumman-
passes-key-development-milestones-on-darpaus-navy-tern-program.

Seng, Lee Kian, Mark Ovinis, T. Nagarajan, Ralph Seulin, and Olivier Morel. 2015.
“Autonomous Patrol and Surveillance System using Unmanned Aerial Vehicles.”
In 2015 IEEE 15th International Conference on Environment and Electrical
Engineering (EEEIC), 1291–1297. Rome, Italy: IEEE.

Scott, Alwyn. 2017. “China Drone Maker Steps Up Security after U.S. Army Ban.”
Reuters. Accessed October 12, 2017. https://www.reuters.com/article/us-usa-
drones-dji/china-drone-maker-steps-up-security-after-u-s-army-ban-
idUSKCN1AU294.

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. THE ROLE OF UNMANNED SYSTEMS
	B. THE DESIRE FOR PERSISTENT PLATFORMS
	1. Current State of the Art and Technology
	2. Desired State
	3. Research Application

	C. TECHNOLOGY GAPS IN PERSISTENT PLATFORMS
	D. THESIS OBJECTIVES AND RESEARCH APPROACH
	E. THESIS ORGANIZATION

	II. DEVELOPMENT OF THE TEST PLATFORM
	A. SYSTEM OVERVIEW
	B. HARDWARE SETUP
	1. Aerial Vehicle
	2. Vehicle Configuration
	3. Network Configuration

	C. SOFTWARE ARCHITECTURE
	1. Collecting Battery Data
	2. Multiple Vehicle Connectivity
	3. Vehicle Launch
	4. Vehicle Flight
	5. Vehicle Swapping
	6. Data Logging

	III. TEST AND EVALUATION OF THE PROPOSED SOLUTION
	A. Test Environment
	1. Camp Roberts
	2. Scenario
	3. Scope
	4. Objectives

	B. Test Results
	C. Scalability

	IV. SUITABILITY OF THE DEVELOPED SYSTEM
	A. Mission Threat Analysis
	1. The Mission
	2. Theater of Operation

	B. Mission-threat encounter analysis and geometric description
	1. Expected Threats
	2. Critical Components and Kill Modes

	C. Susceptibility Analysis
	1. Tactics, Flight Performance
	2. Threat Warning
	3. Signature Reduction

	D. Vulnerability Analysis
	E. Survivability Enhancement Trade Study
	1. Susceptibility Improvement Opportunities
	2. Vulnerability Improvement Opportunities
	3. Survivability Enhancement Impact

	F. Kill Tree
	1. Individual Kill Tree
	2. System Kill Tree

	G. Mission Degradation during System Swap

	V. CONCLUSION AND FUTURE WORK
	A. Conclusion
	B. Future Work

	appendix A. 3DR SOLO STEP-BY-STEP CONFIGURATION
	A. How to Access Solo
	B. Preparing your Computer
	C. Connecting Solo to WiFi
	D. Making Solo More Accessible (OPTIONAL)
	E. Dronekit-Python with 3DR Solo
	F. Setting up for multiple 3DR Solo
	G. Preflight Checklist

	appendix B. PYTHON SCRIPT
	appendix C. FIELD TESTING RAW DATA
	List of References
	initial distribution list

