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ABSTRACT 

Although the U.S. military relies increasingly on autonomous unmanned systems, 

such systems cannot surveil for long periods of time. For better intelligence collection 

and communication, an extended-duration aerial platform is required. This thesis focuses 

on the development and evaluation of a multi-rotor persistent system to provide a longer-

duration system using vehicle swapping and intelligent battery management. A proof-of-

concept system was built using three quadcopters, a single wireless network router and a 

laptop to execute code. The system monitored vehicle battery life; when the limit was 

exceeded, the next vehicle was launched and swapped in its place autonomously. This 

cycle continued as long as fresh batteries were available. The system provided 54 minutes 

of platform coverage, more than five times the duration of the single quadcopter. Testing 

found the system to be feasible and suggests how autonomous capabilities can be 

extended with persistent platforms. The system is easily scalable for increased 

survivability and coverage. Battery life and recharging capability proved to be key 

limitations of the system. However, if the rate at which fully charged batteries are 

available exceeds the rate at which they are expended, the system can operate until all 

individual quadcopters mechanically fail. 
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EXECUTIVE SUMMARY 

Unmanned systems continue to be at the forefront of development for the U.S. 

military and the defense industrial base. Unmanned systems operate more and more with 

greater autonomy. A key aspect of enhancing autonomy is providing persistent systems 

(Defense Science Board 2012). Fuel limits the operational time of many systems 

characterized as persistent. This thesis focuses on the development and evaluation of a 

multi-rotor persistent system to provide a longer-duration system using vehicle swapping 

and intelligent battery management. 

The system developed consisted of three commercially available 3DR Solo 

quadcopters, shown in Figure 1, a wireless network router, and a laptop to execute 

Python code. System operation was autonomous, swapping vehicles, as shown in 

Figure 1, to maintain an airborne vehicle in the loiter area based on battery health. There 

are three vehicles in this system. The first vehicle, shown in red, is replaced by the 

second vehicle, shown in blue, while the third vehicle, shown in black, remains on the 

ground next in line for tasking. 

 

Figure 1.   Operational Concept Diagram 

Based on analysis and assessment of the field test results, the persistent system is 

feasible. The system conducted four vehicle swaps and maintained a vehicle in the loiter 



 xvi 

area for 54 minutes, more than five times the air time of a single vehicle, as shown in 

Figure 2. The loiter time accomplished by the system is more than five times the average 

loiter time of a single vehicle. 

 
Figure 2.   Loiter Time Comparison 

The field testing was conducted with limited numbers of batteries. The life of the system 

is limited because the rate batteries are expended exceeds the time required to charge 

batteries. From analysis, with nine batteries and chargers per vehicle, the system could 

conceivably continue to operate for much longer durations. 

Vehicle swapping using intelligent battery management is a feasible solution for 

providing persistent systems for much longer time durations. The system is easily 

scalable for added robustness or increased coverage. With further development, this 

system can become a fully deployed technology available to enhance our military 

capabilities.  
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I. INTRODUCTION 

A. THE ROLE OF UNMANNED SYSTEMS  

Commercial and government entities have allocated large amounts of research 

and development resources to unmanned systems. According to a study conducted by 

Bard College, the Department of Defense (DOD) allocated approximately $4.457 billion 

to unmanned systems in the proposed fiscal year 2017 budget (Gettinger 2016). 

Commercial development and use of unmanned systems for filming movies, delivering 

packages, conducting engineering evaluations on difficult-to-reach equipment, and for 

use in hobbyist racing are just some of the applications driving companies to spend 

billions in advancing the technologies. 

Commercial unmanned systems, equipped with multiple sensors and cameras, are 

widely available from companies such as DJI. Commercial entities and hobbyists 

primarily use these systems to conduct aerial photography and engineering evaluations. 

Many commercial systems have been used for DOD applications. Modifying a 

commercial unmanned system is typically cheaper than developing new government-

based systems. However, many of these systems have cyber vulnerabilities that exist 

without full knowledge of the user, as seen in the U.S. Army’s restriction on use of DJI 

systems imposed in August 2017 (Scott 2017). 

The Defense Advanced Research Projects Agency (DARPA) has been a leader in 

guiding the discovery and advancement of many of every day technologies. Dr. Drozeski, 

program manager in the Tactical Technology Office of DARPA, recognized the need for 

better capabilities within the military, stating,  

Effective 21st-century warfare requires the ability to conduct airborne 
intelligence, surveillance, and reconnaissance (ISR) and strike mobile targets 
anywhere, around the clock. Current technologies, however, have their 
limitations. Helicopters are relatively limited in their distance and flight time. 
Fixed-wing manned and unmanned aircraft can fly farther and longer but require 
either aircraft carriers or large, fixed land bases with runways often longer than a 
mile. Moreover, establishing these bases or deploying carriers requires substantial 
financial, diplomatic, and security commitments that are incompatible with rapid 
response. (2017, 1) 
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The military has implemented unmanned systems for ISR and strike missions primarily in 

Iraq and Afghanistan. According to Dr. Kaminski of the Defense Science Board (2012), 

fielded unmanned systems are improving defense operations, but autonomy technology 

remains underutilized. Further, the value of these systems is not in replacing humans, but 

rather assisting humans in providing persistent capabilities. 

Unmanned systems are widely used by military and civilians to provide quick 

services without risking human life. Many of the systems currently in use have limited 

flight times due to battery limitations. From the 2012 Defense Science Board’s report on 

the role of autonomy in Department of Defense (DOD) systems,  

The true value of these [unmanned] systems is not to provide a direct 
human replacement, but rather to extend and complement human 
capability in a number of ways. These systems extend human reach by 
providing potentially unlimited persistent capabilities without degradation 
due to fatigue or lack of attention. Unmanned systems offer the warfighter 
more options and flexibility to access hazardous environments, work at 
small scales, or react at speeds and scales beyond human capability. (DOD 
2012, 1) 

Many unmanned systems have been developed since 2012, yet persistent systems are still 

an idea for the future.  

A system is necessary to maintain the mobility of aerial platforms while providing 

a solution for limited battery life. Tethered systems offer extended-duration flight, but are 

limited in range. Little has been done to solve the problem of persistent platforms without 

placing great restrictions on the platform in use. Commercially, unmanned systems 

labelled as “persistent” require the vehicle to return to a base station for battery charging 

or battery swap. During this period of maintenance, the aerial platform is lost. In military 

applications, this presents a period of gapped collection or vulnerability to the operating 

unit. Manufacturers suggest that multiple independent unmanned systems may work 

together, but offer no guidance to tie the systems together seamlessly. 

Many military units utilize unmanned systems for intelligence, surveillance, and 

reconnaissance (ISR) collection. Ground units often use commercial off-the-shelf 

(COTS) quadcopter and hex-rotor unmanned aerial systems (UAS) for situational 
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awareness and immediate visual feedback over an affected area. If these systems are to 

accomplish the vision provided by the Defense Science Board and aid operators, rather 

than further task them, autonomous persistent platforms are required. 

B. THE DESIRE FOR PERSISTENT PLATFORMS 

Greater autonomy drives advancement in unmanned systems. Operators no longer 

have to control every movement of the system and can focus on high level tasking and 

overall mission accomplishment. Often degraded by human fatigue or lack of attention, 

current systems do not provide truly persistent capabilities to users (Defense Science 

Board 2012). DARPA uses the term “persistent” to describe some systems, but fuel still 

limits the system’s operational capabilities. Similarly, many commercial companies 

advertise persistent systems, but require the vehicle to return for extended periods of time 

to recharge. For military applications, persistent systems must overcome fuel constraints. 

1. Current State of the Art and Technology 

The majority of multi-rotor systems in use today are COTS. They provide users 

with a platform, usually a setup for taking pictures and recording videos from 

perspectives that had required much more costly helicopters or camera rigs. Multi-rotor 

systems are limited by their battery life. Many systems, such as the 3DR Solo shown in 

Figure 1, can be operated for up to 25 minutes. 
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 Single 3DR Solo Multi-rotor System. Source: Holland (2015). Figure 1. 

Tethered systems made up of a single multi-rotor system are typically COTS 

vehicles with an affixed tether which can provide power. The advantage of this system is 

that it extends the operating duration of the platform. While batteries are no longer a 

concern, the life of the vehicle’s mechanical components limit the life of the system. 

Also, while tethered, the system is much less mobile and requires a power source on the 

ground which may further restrict system mobility. 

2. Desired State 

The intent of the system described in this thesis is to provide an aerial platform to 

affix ISR, communication systems, or whatever the user sees fit. The system operates for 

an extended duration using multiple vehicles. Vehicles swap in the loiter position 

autonomously based on battery monitoring and management through the ground control 

station (GCS). The GCS exists primarily to monitor the system health and real-time 

activity. 
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The near-term solution does not focus on the use of the platform. Its primary 

purpose is to provide an aerial platform. The solution also does not focus on extending 

individual battery life or automatically swapping batteries, but rather looks at what is 

possible with current technology. This is the primary purpose of this thesis. 

The system is intended to be used as an early indication, extra sensor, or an 

additional defensive weapon for a military unit. The system will be launched by a user to 

provide a platform for seamless sensors, or cameras, through autonomous vehicle 

swapping and streaming data transfer. As a secondary mission, the system can be tasked 

to investigate other areas and will automatically launch and task the next multi-rotor 

system to conduct the primary loiter mission near the unit. The best weapon to counter an 

unmanned system is an unmanned system. The future system utilizes computer vision to 

counter adversary unmanned system nearby at the desire of the unit commander. 

3. Research Application 

This thesis focuses on determining the feasibility and battery limitations in 

providing a persistent multi-rotor aerial platform using battery health management and 

vehicle swapping. The lack of persistent capabilities in available systems presents an 

opportunity for development of future autonomous technologies. Using commercially 

available quadcopters to minimize cost and provide a proof of concept, this thesis 

evaluates the capabilities and limitations of multiple vehicle persistent systems. 

Advancing persistent technologies would allow the military longer on station times while 

minimizing any time gaps in coverage. The U.S. military relies heavily on its sensors to 

detect and counter threats. Affixing sensors to persistent systems would allow operators 

to focus on the big picture without missing important information. When a ship is in port 

or a military unit is stationary, the majority of sensors power down and safety is 

dependent on security personnel. Cuts to military staffing and the increased speed of 

weaponry, greatly reduces reaction time. The number of personnel, capacity of human 

memory in identifying threats, and personnel fatigue limit security patrols; whereas, an 

unmanned vehicle can autonomously patrol at higher speed and frequency which could 

complement or replace security personnel (Seng et al. 2015). Persistent unmanned 
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systems could advance our military into the twenty-second century, but still require 

extensive development. 

C. TECHNOLOGY GAPS IN PERSISTENT PLATFORMS 

The Tern system is one of the Defense Advanced Research Projects Agency 

(DARPA) solutions in development that recognizes the limitations of helicopters and 

manned aircraft for use with the U.S. Navy. The objective of Tern is to provide a long 

endurance unmanned aerial system for ISR and strike missions deployed, operated, and 

recovered from small ships (DARPA 2017). Though it will provide longer on-station 

times than traditional aircraft, the need for fuel limits the system. From conceptual 

images provided by DARPA and Northrop Grumman, shown in Figure 2, the vehicle 

appears similar in size to a shipboard manned helicopter. Based on the vehicle size and 

design, the system likely cannot swap vehicles or conduct refueling autonomously in 

order to keep the system on station. Moving vehicles of this size to launch positions 

would require manpower and personnel time for execution. 

 

 Tern Artist Concept. Source: Northrop Grumman (2016). Figure 2. 
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Commercial companies such as Hoverfly and H3Dynamics offer versions of 

persistent coverage capabilities. Hoverfly offers a multi-rotor platform that is tethered to 

a ground station. The ground station provides power to the vehicle through the affixed 

cable, which limits the vehicle’s mobility. Hoverfly vehicles cannot travel far from the 

ground station. In a military environment, the loss of the single vehicle would mean the 

loss of the system’s full capabilities. By contrast, H3Dynamics produces a product called 

Dronebox, which does not require a tether. The Dronebox system features autonomous 

flight and has a command center capable of charging multi-rotor vehicle batteries. 

However, the life of the vehicle’s battery remains a limitation. Even with multiple 

Dronebox systems, the company does not offer a way to mesh them together to work as a 

single autonomous system. 

D. THESIS OBJECTIVES AND RESEARCH APPROACH 

Unmanned systems provide increased capability to modern-day militaries. 

Autonomous unmanned systems act as force multipliers, providing unit commanders 

immediate capabilities without requiring increased training or manpower. Development 

of an extended-duration aerial platform is crucial in improving the military’s ability to 

collect intelligence, provide early warning to deployed units, and protect forces on the 

ground. Figure 3 shows video surveillance coverage for a bottom mounted camera on the 

platform.  

 

 High-Level Operational Concept Graphic Figure 3. 
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The objective of this thesis is to determine whether a system of quadcopters can 

(1) provide a persistent aerial platform, and (2) operate autonomously utilizing battery 

management techniques, while they (3) explore the limitations of an extended-duration 

airborne system. The system is comprised of COTS quadcopter systems, a single router, a 

laptop, and a computer program. Field experiments helped to develop and evaluate the 

system as well as determine its capabilities and limitations. To determine the suitability 

of this system for military use, a survivability analysis was also conducted. 

While UAS can consist of an array of vehicles, this thesis focuses on multi-rotor 

vehicles. A multi-rotor vehicle is an aerial vehicle with at least two rotors. The multi-

rotor vehicle used for development and testing is the commercially available 3DR Solo 

quadcopter. The user conducts battery changes manually, but in the future system, 

autonomous swapping occurs. 

The system developed is not ready for the field, but rather a prototype of a system 

to show proof of concept. The system utilizes COTS quadcopters to examine whether a 

low-cost solution is possible. Providing a more secure, mission specific system will 

require additional research and development.  

E. THESIS ORGANIZATION 

To address the objectives formulated in the previous section, this thesis is 

organized as follows. 

Chapter II describes the development and configuration of the test platform. This 

chapter provides the methodology for the experiment. The aerial vehicle is introduced 

along with the necessary vehicle configuration, network configuration, and software 

configuration to realize the near term desired system. The scenario details the field 

experiment and evaluation criteria for the system. 

Chapter III highlights the results of field testing and analysis. In this chapter, field 

testing appears along with the results. Field testing covers how the system performed as a 

whole and the results of battery evaluations conducted. Battery evaluation became a 

major concern for the system moving toward a fielded system. 
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Chapter IV focuses on the survivability of the system for use in military 

applications. To determine how this system might operate in the field in its future desired 

state, this chapter contains the survivability assessment. The assessment provides a 

susceptibility and vulnerability analysis as well as an evaluation of improvement 

technologies.  

Chapter V concludes the thesis and suggests future work recommendations.  
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II. DEVELOPMENT OF THE TEST PLATFORM 

This chapter provides details on the system used and describes the process 

necessary to prepare for field testing of the proof-of-concept multi-rotor persistent 

platform. A sequence of events is shown in Figure 4. The system concept was established 

by December 2016. From December to February, the investigator explored available 

multi-rotor vehicles to determine which were best suited to work in a persistent system. 

Software research began in January and continued until June when the vehicles were 

delivered to the Naval Postgraduate School. From June through July, the aerial vehicles 

and network were configured and software was developed and tested in increments. Field 

testing ended in August 2017. 

 

 Research and Development Timeline Figure 4. 

A. SYSTEM OVERVIEW 

The system conducts vehicle swapping based on the battery state of the airborne 

vehicle. When the user starts the system, the first vehicle launches to the desired position 

and loiters. The system monitors the battery health of the airborne vehicle, and when the 

battery level falls below the user set threshold, the next vehicle launches. The first vehicle 

rises to avoid collision while continuing to provide the platform to the user. The 

replacement vehicle flies to the desired position and loiters in the area previously 

occupied by the first vehicle. Once the replacement vehicle reaches the desired position, 
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the first vehicle returns to the launch platform for battery swap or charging to be ready 

for its next use. This system cycles through vehicles until all batteries are exhausted or 

the user ends the mission. Additional safeguards are built in to skip vehicles that 

encounter faults or errors, such as vehicles with depleted batteries or ones that experience 

issues with reaching desired altitude on launch. 

B. HARDWARE SETUP 

There are two basic parts of the system: the hardware and the software. The 

hardware consisted of the aerial vehicles and wireless network, each of which, when 

properly configured, communicated with the laptop. The laptop was not discussed in this 

thesis as it is was primarily used to develop and execute the program code, which could 

be accomplished by most low-level computers. 

1. Aerial Vehicle 

Many commercially available vehicles have software development kits that allow 

the user to program and control through software running external from the controller and 

vehicle. The vehicle chosen, the 3DR Solo, shown in Figure 5, offered a low-cost 

requirement with readily available parts.  

 

 3DR Solo Controller and Vehicle Figure 5. 
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The 3DR Solo specifications, shown in Table 1, were competitive with other 

commercially available quadrotors. While conducting research on the development kits 

available, 3DR Solo also proved to have a wealth of software development 

documentation. Additionally, former 3DR employees had developed a collaborative 

document that detailed the steps that they had used to operate multiple 3DR Solos as a 

“swarm.” For the purposes of field testing, the equipment included three 3DR Solos, one 

wireless router operating at 2.4 GHz, and a laptop capable of running the Python 

programming language.  

Currently, the system is capable of operating with additional 3DR Solos, so long 

as the vehicles are configured properly and their associated internet protocols and ports 

are written into the software code used to control the system. 

Table 1.   3DR Solo Vehicle Specifications. Adapted from 3DR (2015). 

Component Description 

Dimensions 10 inches tall, 18 inches motor-to-motor 

Weight 3.3 lbs. / 3.9 lbs. with GoPro and Solo Gimbal 

Range 0.5 miles 

Max speed 55 mph 

Flight time 20–25 minutes 

Flight battery Lithium polymer 5200 mAh 14.8 VDC 

Battery charge time 1.5 hours 

Communications Secure WiFi network 

Frequency 2.4 GHz 

Flight battery Lithium polymer 5200 mAh 14.8 VDC 

Flight time 20–25 minutes 

Motors 880 kV 

Autopilot Pixhawk 2 
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2. Vehicle Configuration 

From the manufacturer, each vehicle came set up to connect with its included 

controller. Using the network protocol Secure Socket Shell (SSH), each vehicle and 

controller was remotely reconfigured. To operate the system properly, port identifiers for 

each vehicle were assigned along with the network Service Set Identifier (SSID) 

information necessary to connect to a single wireless network. 

3. Network Configuration 

The goal is to operate three vehicles from a single terminal running Python code. 

The system operates autonomously, monitoring vehicle battery health and swapping 

vehicles, when necessary. To do this, the vehicles must all operate on a common network. 

The three vehicles and one laptop are connected through a single wireless access 

point operating at 2.4GHz. The wireless access point allowed the ability to access both 

the internet and any of the vehicles on the network. The internet could update the vehicles 

to the latest manufacturer’s firmware but otherwise was not necessary for the purpose of 

developing or testing the system. 

The network architecture, shown in Figure 6, is a block diagram showing the 

system entities and connections. The 3DR Solos connect to the laptop through the 

wireless network router. Internet connection is optional through the router. The network 

shows solid lines to indicate wireless connections, and a dotted line to show an optional 

connection to the internet. The three colored blocks represent individual 3DR Solo 

controllers and associated vehicles. The network diagram illustrates the critical path and 

dependencies for connectivity. 



 15 

 

 System Network Architecture Figure 6. 

C. SOFTWARE ARCHITECTURE 

Python, a programming language designed for ease of use and readability, was the 

primary means of developing autonomous system function. Using the documentation—

provided as part of DroneKit-Python—an online software development kit, and multiple 

smaller field tests the vehicles were configured to conduct flight operations initiated by 

the Python script. Short flight tests were conducted in May and June 2017 at Camp 

Roberts to ensure the function of sections of the code before the field test. 
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The code for the system followed a six-step development cycle:  

1. Collecting Battery Data 

The first challenge was to connect to a single 3DR Solo and ensure that real time 

battery information could be accessed by the system. This is the crux of the entire project 

and without this capability, the system would not properly operate. The code reads the 

battery status of a single vehicle while connected and activates the next quadrotor when 

the battery’s health falls below the desired threshold. 

2. Multiple Vehicle Connectivity 

The second challenge was to verify that all of the vehicles connected to the 

network and provided real time system health information to the Python script. The code 

ensured that the vehicles could report all information back to the ground station—the 

laptop—without losing information from another vehicle. 

3. Vehicle Launch 

The next challenge was launching vehicles on command. The 3DR Solo code 

provided in DroneKit-Python experienced issues that caused the vehicle not to launch 

properly. Often, the vehicle would hover less than a meter above the ground, but the code 

would ignore the state of the vehicle. A number of implemented checks warranted that 

the vehicle launched successfully before proceeding. Additional measures guaranteed that 

if a vehicle remained in the launch state, it could not continue until the vehicle reached 

the desired launch altitude or a replacement vehicle launched to that altitude in its place. 

This prevented the code from progressing before the vehicle was ready to respond.  

4. Vehicle Flight 

Flight control was relatively simple compared to the vehicle launch or 

connectivity challenges. For the test, the intended flight path was to transit to a specified 

latitude and longitude to loiter using the flight controller and Global Positioning System 

(GPS) onboard. 
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5. Vehicle Swapping 

The final development for the vehicle was to code in automated vehicle swapping, 

which raised the original vehicle to a higher altitude before sending the replacement 

vehicle. The replacement vehicle moved to occupy the position once held by the original 

vehicle. Once the replacement vehicle moved into the loiter position, the original vehicle 

returned to the launch platform. 

6. Data Logging 

To analyze the success of the system in the field test, the code included data 

collection scripts. The code collected vehicle data and appended an external file to the 

laptop. Excessive data collection led to multiple system crashes and subsequent loss of 

collected data. As a remedy, fewer data points were collected but the data focused on 

vehicle transition points within the test. Unfortunately, numerous flight tests encountered 

this issue and data was lost for those flights.  
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III. TEST AND EVALUATION OF THE PROPOSED SOLUTION 

This chapter describes the procedures to evaluate the proposed solution. It starts 

with a brief description of the test and evaluation environment, continued by a test 

scenario, scope, and objectives description. The results of field testing are presented and 

an analysis of system limitations and improvement opportunities are evaluated. The 

chapter ends with a discussion of system scalability. 

A. TEST ENVIRONMENT 

1. Camp Roberts 

The Naval Postgraduate School is located in close proximity to the Monterey 

regional airport. As such, flight operations with government furnished equipment is 

extremely limited. McMillan Field, at Camp Roberts, California, offers dedicated 

airspace and provides the power and connectivity resources necessary to conduct field 

testing. All flight tests and field testing were conducted at McMillan Field. 

2. Scenario 

To evaluate the feasibility of the system, the loiter scenario was developed. 

During the scenario, the system flies approximately 100 meters away from the launch 

point to an altitude of 100 meters and provides an aerial platform that loiters in this 

position until cancelled by the user or available batteries are exhausted. This simulates a 

real world environment where this system operates above a ship in port or ground base 

providing a nearby airborne platform for sensors. Each of the 3DR Solos include its 

gimbals and cameras, the GoPro 4, to test with a payload. 

Success for this system is defined as multiple vehicle swaps when the user 

defined 30% battery threshold level is met. The system shall provide aerial coverage for a 

duration that exceeds the capability of a single 3DR Solo. 
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3. Scope 

The development and testing focused on the vehicle as a platform. The main focus 

of field experimentation determined whether the system would autonomously swap 

vehicles when the battery level reached a defined limit. Camera and video production 

development and testing were not included but should be developed for future systems. 

4. Objectives 

The primary critical operation issue (COI) addressed in this system is mobility. In 

order to achieve mobility capabilities, the measure of effectiveness (MOE) tested in this 

thesis is endurance. Each measure of performance (MOP) evaluated is shown in Figure 7. 

 

 System Mobility MOE and MOP Figure 7. 

Field testing at Camp Roberts on August 7–8, 2017, sought to determine whether 

the system would swap vehicles without user intervention, triggered solely on battery 

percentage remaining. When the battery percentage of the flying vehicle falls below the 

30%, the test value set, the Python code initiates the swapping process. 

B. TEST RESULTS 

Figure 8 shows a summary of field testing results. Table C-1 (see Appendix C) 

provides complete details. Three vehicles were tested. Vehicles one and two executed 

multiple flights before expending all available batteries. 
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 System Field Testing Results Figure 8. 

The results show that the system successfully operated multiple vehicles in the intended 

loitering position and swapped vehicles autonomously. The testing concluded after five 

fully-charged 3DR Solo batteries fell below the 30% battery threshold. A timeline of field 

testing is summarized in Table 2. 
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Table 2.   System Action Timeline 

Time 
(MM:SS) Event 

Vehicle On 
Station   

00:03 Vehicle 1 Launch     
00:48 Vehicle 1 Reached Loiter Point 

Vehicle 1 On 
Station 

  
11:17 Vehicle 1 Battery Limit Exceeded (29%)   
11:20 Vehicle 2 Launch   
11:28 Vehicle 1 Raise Altitude For Vehicle Swap   
12:11 Vehicle 2 Reached Loiter Point 

Vehicle 2 On 
Station 

SWAP 
12:11 Vehicle 1 Return to Platform   
13:28 Vehicle 1 Land   
22:22 Vehicle 2 Battery Limit Exceeded (29%)   
22:25 Vehicle 3 Launch   
22:33 Vehicle 2 Raise Altitude For Vehicle Swap   
23:11 Vehicle 3 Reached Loiter Point 

Vehicle 3 On 
Station 

SWAP 
23:11 Vehicle 2 Return to Platform   
24:29 Vehicle 2 Land   
32:34 Vehicle 3 Battery Limit Exceeded (29%)   
32:37 Vehicle 1 Launch   
32:45 Vehicle 3 Raise Altitude For Vehicle Swap   
33:24 Vehicle 1 Reached Loiter Point 

Vehicle 1 On 
Station 

SWAP 
33:24 Vehicle 3 Return to Platform   
34:42 Vehicle 3 Land   
43:24 Vehicle 1 Battery Limit Exceeded (29%)   
43:28 Vehicle 2 Launch   
43:36 Vehicle 1 Raise Altitude For Vehicle Swap   
44:16 Vehicle 2 Reached Loiter Point 

Vehicle 2 On 
Station 

SWAP 
44:16 Vehicle 1 Return to Platform   
45:33 Vehicle 1 Land   
54:11 Vehicle 2 Battery Limit Exceeded (29%)   
54:11 No Replacement Available   
55:03 Vehicle 2 Return to Platform   
55:25 Vehicle 2 Land     
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Four vehicle swaps occurred during field testing. Vehicles remained at the loiter 

position for approximately 54 minutes using vehicle swapping and manual battery 

changes. When a vehicle returned to the launch platform with an expended battery, the 

vehicle was turned off, equipped with a fully charged battery in place of the old one, and 

the vehicle was restarted. The vehicle reconnected with the network and the Python script 

would reconnect to the vehicle as the script progressed. 

From the results, the system is much more capable than using a single 3DR Solo. 

The loiter time is the period that the vehicle occupies the desired position intended for the 

platform. When compared to the average individual vehicle loiter time of 10 minutes and 

19 seconds, the system provided coverage in the loiter area for more than five times the 

duration at 54 minutes and 14 seconds, as shown in Figure 9. 

 

 Loiter Time Comparison  Figure 9. 

One alarming finding was that the battery life of the 3DR Solos expended battery 

approximately twice as fast as the manufacturer’s specifications. Instead of 20–25 

minutes, the vehicles could only safely operate for 12–14 minutes, as shown in Table 3. 
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Table 3.   Field Testing Individual Vehicle Flight Time 

  Vehicle Flight Time (MM:SS) 
Sortie 1 13:24 
Sortie 2 13:09 
Sortie 3 12:18 
Sortie 4 12:55 
Sortie 5 11:56 
Manufacturer Specification 20:00-25:00 

 

With additional batteries, this system could conceivably continue to operate for 

much longer durations. The primary limitation is the number of batteries available at full 

charge. Unfortunately a battery discharges at 12–14 minutes and charging takes 

approximately 1.5 hours. This does not keep up with the rate at which the battery drains 

when in use by a vehicle.  

 

        1
    

Time to Charge a BatteryNumber of Batteries Required
Time to Expend a Battery

 
= + 
 

  (1) 

 90     1 8.5  9  
12  

minutesNumber of Batteries Required Batteries
minutes

 = + = =    
  

 

For the system to keep up with the rate at which the batteries are expended, nine 

batteries and chargers are necessary. This assumes a maximum charge time of 90 minutes 

for a battery, as provided by the manufacturer, and assumes that the time to expend a 

battery does not decrease. Additional battery studies are necessary to determine the 

feasibility of extending the operational duration of the system. 

C. SCALABILITY 

The system developed and tested in this thesis is a proof of concept. Employing 

even more than three vehicles would assure true survivability and extend the capability of 

the system. Additional aerial vehicles should follow the same configuration guidance 

included in Appendix A and include the network address of the new vehicles in the 

program code. The minimum number of batteries and chargers required remains nine 
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whether the system has three vehicles or more, as seen in Figure 10. In Figure 10, the top 

diagram represents battery usage by the three vehicle configuration system whereas the 

bottom diagram shows the four vehicle configuration system, both with nine batteries. 

Both diagrams show the time required to discharge battery 1, shown in orange, and 

charge, shown in green.  

 

 Nine-Battery Discharge Plan Figure 10. 

To cover larger areas, employ multiple interconnected systems with the same 

fundamental setup and configuration. This system scales well with mission requirements.  
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IV. SUITABILITY OF THE DEVELOPED SYSTEM 

In the system’s desired future state, the system is supposed to be highly 

survivable. To address the issue, this chapter presents an analysis of the prospective 

system’s threats, key limitations, and opportunities with respect to susceptibility and 

vulnerability. 

A. MISSION THREAT ANALYSIS 

1. The Mission 

Managed by a single computer running the Python script, the system maintains a 

single quadcopter over an area and conducts vehicle swaps autonomously to manage the 

limited battery life of individual quadcopters. The system concept diagram, Figure 11 

illustrates this process. There are three vehicles in this system. The first vehicle, shown in 

red, is replaced by the second vehicle, shown in blue, while the third vehicle, shown in 

black, remains on the ground next in line for tasking. Utilizing autonomous battery 

management, the system provides extended coverage for less cost than larger aerial 

vehicles with much quicker response times.  

 

 Operational Concept Diagram Figure 11. 
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The system conducts vehicle swapping based on the battery state of the airborne 

vehicle. The first vehicle launches to the desired position and loiters. The system 

monitors the battery health of the airborne vehicle and when the battery level falls below 

the user set threshold, the next vehicle launches. The first vehicle rises to avoid collision 

while continuing to provide the platform to the user. The replacement vehicle flies to the 

desired position and loiters in the area previously occupied by the first vehicle. Once the 

replacement vehicle reaches the desired position, the first vehicle returns to the launch 

platform for battery swap or charging to be ready for its next use. This system cycles 

through vehicles until all batteries are exhausted or the user ends the mission. 

2. Theater of Operation 

The system is intended for use in a stable, fortified environment. When used on a 

ship, the ground station and launch platform exist onboard. The system may be exposed 

to hostile actions and extreme environmental conditions, but for the most part will 

operate in a relatively low-risk setting. Onboard a ship, in order for adversaries to access 

the ground station or other quadcopters used in the system, they would need to attack the 

ship itself. This makes the system less exposed to direct threats. 

B. MISSION-THREAT ENCOUNTER ANALYSIS AND GEOMETRIC 
DESCRIPTION 

Mission-threat encounter analysis and geometric description is accomplished by 

examining expected threats, their characteristics and likelihood, and the system’s critical 

components and kill modes. 

1. Expected Threats 

Given the theater of operation, Table 4 characterizes and describes the most likely 

threats. Given the operational environment and cost of the threats, the most likely threat 

is from small arms. 
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Table 4.   Expected Threats 

Threat Range Likelihood 

Small arms 600 m High 

Portable and relatively inexpensive 
At long range, inaccurate 

Electronic attack Power dependent Medium 

Most effective 
Requires technology, power, and proximity to attack 

Man-portable air-defense 
systems 
(MANPADS) 

6 km Low 

Very capable against target emitting Infrared (IR) signatures 

Radar guided missile 70 km Low 

Expensive and proven 

 

In March 2017, BBC reported that a U.S. ally conducted a strike on a small 

unmanned aerial system (UAS) using a patriot missile successfully at the cost of $3M 

(Baraniuk 2017). The engagement demonstrated the system’s ability to engage the small 

target, even though according to Justin Bronk, a researcher at the Royal United Services 

Institute, the Patriot system may struggle to target a small quadcopter effectively (2017). 

The radar guided missile system costs millions, making it economically infeasible for use 

against an individual quadcopter in the small unmanned aerial system (SUAS) that costs 

only a few hundred dollars. Similarly, a MANPAD costs thousands of dollars and the 

financial cost associated for its deployment would be overkill for an inexpensive 

quadcopter. 

2. Critical Components and Kill Modes 

Table 5 describes the SUAS critical components and their associated kill modes. 
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Table 5.   SUAS Critical Components and Kill Modes 

CRITICAL COMPONENT KILL MODE(S) 
Power System 
Battery Battery connection severed/damaged 

Battery damaged 
Battery removed 
Battery depleted 

Propulsion  
Propeller Damage to control surfaces 

Loss of propeller 
Motor Motor failure 
Flight Control System 
Navigation Loss of satellite signal 

Connection failure 
Flight Control Disruption of control signal path 

Loss of control power 
Mechanical damage 
Overheating 

Ground Station Loss of connection 
Payload 
Sensors/Cameras Sensor/camera damaged 

Connection failure 

 

Quadcopters make up the system, which has many critical components without 

redundant parts. By killing a single component, the quadcopter will likely fail, damaging 

the system. However, the small size of the system makes the vehicle difficult to engage 

with a weapon, which makes it less susceptible to attack. 

C. SUSCEPTIBILITY ANALYSIS 

The likelihood that the system is hit by a weapon or threat is referred to as 

susceptibility, DOD recognizes six concepts: tactics; threat warning; signature reduction; 

noise jamming and deceiving; expendables; and threat suppression (Ball 2003). This 

SUAS actively employs the first three. By understanding the aspects which make the 

system susceptible, DOD can conduct system risk mitigation or reduction. 
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1. Tactics, Flight Performance 

As an automated system, to ensure success, this SUAS does not require training 

and proficiency as do most manned systems. The tactics for decreasing susceptibility 

primarily focus on minimizing isolated exposure of the SUAS and with redundant 

systems. 

The SUAS is made up of multiple quadcopters, which offers a tactical advantage 

to ensure immediate replacement. If one of the quadcopters is lost, a replacement will be 

launched immediately to provide continuous coverage. The aerial platform exists toward 

the center of an operating unit, which will likely minimize direct enemy exposure. The 

SUAS may act as a decoy while protecting ground or naval units that can return fire. 

These tactics reduce system susceptibility. 

2. Threat Warning 

Using a radar warning or missile launch and approach warning system, military 

commanders can receive advanced notice of imminent threats. These systems provide 

information on the location and type of threat. 

Utilizing cameras and additional sensors, the SUAS can detect incoming threats 

using computer vision, the process for acquiring and processing digital images to gather 

information. It may then take evasive action removing an easy kill opportunity for the 

enemy and allowing the system to be less susceptible. It would also provide the ground or 

naval units an immediate notification of a nearby threat, as seen in Figure 12. 

 

 Threat Warning Figure 12. 
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3. Signature Reduction 

Signature reduction is the practice of reducing the detectability of the vehicle 

below a weapon’s sensor threshold. This means minimizing signature in radar, infrared 

(IR), visual, magnetic, acoustic, and ultraviolet (UV), as seen in Figure 13 from Adams’ 

Susceptibility Reduction lecture (2017). Because radar typically provides the greatest 

detection ranges, minimizing radar cross-section (RCS) has been a common practice in 

military design.  

 

 Signature Reduction. Source: Adams (2017). Figure 13. 

Small aerial systems have insignificant RCS and may be lost in air clutter or 

misidentified as another object. The SUAS has a small RCS because of its size and lack 

of traditional gasoline or diesel fuel engine. It will also operate with larger units, making 

the SUAS RCS less visible to radar operators. The University of Texas at Austin 

completed an evaluation of the 3DR Solo with respect to radar cross-section and found it 

to have a very small RCS (Li and Ling 2016). The actual RCS value, shown in Figure 14, 

will vary depending on the radar and environmental conditions, but radar operators 

observe the value as relatively small, according to Li and Ling’s report Radar Signatures 

of Small Consumer Drones (2016). 
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The white outlines indicate the overall size and location of the 3DR Solo. 

 Radar Cross-Section of 3DR Solo. Source: Li and Ling (2016). Figure 14. 

D. VULNERABILITY ANALYSIS 

The likelihood that the system will survive an engagement, vulnerability, is 

defined by the DOD in six different concepts: component shielding; component location; 

component elimination or replacement; component redundancy; passive damage 

suppression; and active damage suppression (Ball 2003). To keep cost low and maximize 

operational characteristics of the system, the SUAS actively employs redundancy. 

The SUAS consists of at least three quadcopters with commercially available 

replacement parts, should repair be necessary. This provides the system with redundancy, 

though there may be a delay in the time between the loss of one unit and stationing of the 

second unit. 

E. SURVIVABILITY ENHANCEMENT TRADE STUDY 

As typical with all systems, adding enhancements with operational functions of 

the system entails major trade-offs. Besides the additional cost of developing the system 

further, susceptibility and vulnerability improvement opportunities determine the trade-

offs of enhancing the SUAS.  
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1. Susceptibility Improvement Opportunities 

Additional signature reduction. The SUAS could be outfitted with stealth 

technologies. By changing the shape, curves, edges, and outer material, the system may 

achieve greater stealth advantage. The trade-off comes at the cost of additional weight on 

the system. 

Noise jamming and deceiving. The SUAS may employ this feature in the future. 

Electronic attack and protection would help to decrease the susceptibility of the system. 

The trade-off is weight and power consumption that come along with any electronic 

system addition. 

Expendables. The SUAS may employ this feature in the future. Expendables may 

help the system to avoid impact from MANPADS or missiles. However, this comes at the 

cost of weight on the system and additional power consumption. The MANPAD/missile 

threat is assessed as minimal to the system as a whole, given the costly nature of 

employing these weapons. 

Threat suppression. The SUAS was not designed as an offensive system, but 

should the desire exist, the system could be outfitted as an enemy-seeking weapon. In 

that, it may carry a warhead. The vehicle could be tasked to seek out enemy fortifications 

or high value units for destruction, eliminating or suppressing the threat. The system 

could accommodate this by launching an additional system to take over the persistent 

platform mission. This enhancement comes at the cost of weight and additional power 

consumption, as seen with the other susceptibility reduction features. Another trade-off 

would be a loss of an individual system and redundancy. In using the system for 

offensive capabilities, the system is removed from the persistent platform mission. 

Additional quadcopters would be necessary to maintain both the offensive and defensive 

mission outlined in threat suppression. 

2. Vulnerability Improvement Opportunities 

Component shielding. The SUAS may be equipped with resistant materials such 

as composite armor which should lower the vulnerability of the system to small arms fire. 

With the advancement of composite lightweight armor, this is a likely feasible 
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enhancement for the SUAS. Any trade-off would come in increased unit cost and 

possible weight addition. 

Component redundancy. The SUAS has redundancy through multiple 

quadcopters. Individual quadcopters could have component redundancy, allowing the 

quadcopter to take damage and lose components, while carrying on the mission. This 

comes at the cost of additional weight. 

Passive/active damage suppression. The SUAS could be equipped with damage 

suppression systems. The main concern is additional power draw and weight. 

3. Survivability Enhancement Impact 

The majority of the enhancements’ trade-off cost includes increased weight or 

power draw, leading to decreased time of flight. With the low cost of individual 

quadcopters and the redundant nature of the system, survivability enhancements are not 

financially logical. 

F. KILL TREE 

1. Individual Kill Tree 

The kill tree of an individual quadcopter and of the system of quadcopters are 

shown in Figure 15. The left portion of this figure shows a single quadcopter’s kill tree 

which is included in the system of three quadcopter’s overall system kill tree. A single 

quadcopter looks vulnerable. However, the system kill tree of the SUAS is a more robust, 

redundant system. 
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 Individual Quadcopter Kill Tree versus SUAS Kill Tree Figure 15. 

2. System Kill Tree 

A kinetic kill of individual quadcopters would not disable the system unless all 

three of the quadcopters were lost, as seen in Figure 16. The loss of two quadcopters 

illustrates a partial kill. The system remains functional with a third quadcopter available 

for tasking. The ground control station would be located within a ship or ground unit and 

therefore be protected. The logical means of attacking the SUAS system is either with an 

overwhelming weapon that destroys the area, a surgical strike on the ground station, 

which may not be readily identifiable to the enemy, or the most likely scenario, a 

jamming system that floods the operating frequency (2.4 GHz) into the area. This may 

effectively disable the quadcopters and cause a mission kill. 
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 System Partial Kill Figure 16. 

G. MISSION DEGRADATION DURING SYSTEM SWAP 

While the system cannot be killed by the loss of a single vehicle, removing one 

quadcopter from flight requires time to conduct vehicle replacement. There would be a 

momentary lapse in coverage as the next available quadcopter is launched and moves into 

position. The SUAS vehicle swaps conducted during field testing in August 2017 show 

the system proof of concept. In field testing, three identical UAS launched individually to 

provide 54 minutes of continuous platform coverage through system swapping. If a single 

quadcopter is removed from the system, the replacement time would be approximately 

one minute. During this time, the system does not perform the intended mission. 
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V. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

To address the problem of persistent platforms formulated, the multi-rotor 

paradigm and architecture was developed. The developed prototype was field tested at 

Camp Roberts August 7–8, 2017. These tests provided results which evaluated feasibility 

of the system based on performance.   

The system of quadcopters is a feasible option to provide a persistent aerial 

platform. By monitoring battery health, vehicles intelligently swap to ensure the system 

always has an airborne asset. The system provides coverage in a loitering scenario that 

far exceeds the capability of a single quadcopter while also providing the user with a 

survivable asset. 

Testing revealed certain limitations with the system, specifically with current 

battery and charging technology. Until the technology advances significantly, a store of 

batteries is necessary to keep the system airborne for extended periods of time. If the 

number of batteries available and the charging capacity can exceed the vehicle demands, 

the system could operate seemingly indefinitely, or at least until all vehicles mechanically 

fail.  

The feasibility of the vehicle swapping system has been established. The system 

operates autonomously and only requires operators to change batteries to keep the 

platform in the air.  

This multi-rotor system is robust, built on redundancy. The system is most 

susceptible to degradation if a quadcopter is killed in flight. To the mission commander 

operating this system, the one-minute gap may be unacceptable. This degradation is 

minimized with the low susceptibility of the system in operation. The likelihood that an 

enemy could remove a portion of the system effectively and conduct a strike in that gap 

requires a high level of coordination and does not present an imminent threat. The multi-

rotor system is a survivable for the near future and ready for further testing and 

demonstration. 
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B. FUTURE WORK 

Through development of the multiple quadcopter system, future work 

recommendations are as follows: 

• Conduct extensive duration testing using at least the nine recommended 

batteries and chargers to determine when the system will fail. 

• Test existing batteries and provide recommendations for advancement of 

battery life. 

• Test flight patterns to find potential battery efficiencies. 

• Develop sensors or video systems to integrate onto the aerial platforms 

and seamlessly string together between vehicles. 

• Develop the system to further survive in combat scenarios. If one vehicle 

is lost in a maintenance or combat scenario, the system should be able to 

autonomously replace the vehicle. 

With further development, this system can provide the full proof of concept for 

use with our armed forces and establish the technology for use with society. Battery 

technology is developing slowly, persistent technologies—such as vehicle swapping 

using intelligent battery monitoring—are crucial to keeping the United States military the 

most capable in the world.  
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APPENDIX A.  3DR SOLO STEP-BY-STEP CONFIGURATION 

This step-by-step configuration guide was created during the process of 

developing this thesis. These are the steps used to allow multiple 3DR Solos to access a 

single wireless network. This closely follows the 3DR Solo Development Guide 

(https://dev.3dr.com) with notes that helped me get things working.  

A. HOW TO ACCESS SOLO 

These are the steps necessary to access the 3DR Solo controller and vehicle: 

1) Accessing Solo. Reference: https://dev.3dr.com/starting-network.html  

a) When connected to the SoloLink wifi network (SoloLink-###) created by the 

3DR Solo Controller and Quadcopter, you are able to find the following 

addresses: 

i) 10.1.1.1 — Controller 

ii) 10.1.1.10 — Solo 

iii) 10.1.1.100–10.1.1.255 — Computers, phones, or other devices on the 

network 

b) You are able to SSH into the controller: 
      ssh root@10.1.1.10 
 

You will be prompted for the password:  TjSDBkAu 

If you see an error "WARNING: REMOTE HOST IDENTIFICATION HAS 

CHANGED!", you can remove the keys to allow connection using the command: 
      ssh-keygen -R 10.1.1.10 
 

c) If you have trouble logging in, it may be due to "Host Identification" error which 

can happen if you previously SSH'd into a different solo. See: 

https://dev.3dr.com/starting-network.html 



 42 

d) Instructions for changing WiFi SSID and password: https://3drobotics.com/kb/ 

setting-wifi-password/  

B. PREPARING YOUR COMPUTER 

1) Setting up your computer: Solo Command Line Tool (Solo CLI Tool). 

Reference: https://dev.3dr.com/starting-utils.html  

a) The Solo CLI should be installed on the PC to execute solo commands (more on 

this in steps to follow). If it is already installed on the computer, you can skip step 

2. 

b) Connect to valid WiFi network with internet and run: 
      sudo -H pip install git https://github.com/3drobotics/solo-cli 
 

c) Optional: If you get an error: "distutils.errors.DistutilsError: Setup script exited 

with error: command 'x86_64-linux-gnu-gcc' failed with exit status 1", as I did, 

run this and then try again: 
      sudo apt-get install libffi-dev 
      sudo apt-get install libssl-dev 
      sudo apt-get install python-dev 
 

Also, if you get an error: "ImportError: No module named virtualenv", you should 

run: 
      sudo pip install virtualenv 
 

d) Reconnect to the solo's wifi network. You can now run solo commands. Note that 

you MUST be connected to the solo network for these commands to execute 

properly. To see all solo commands, use command "solo": 
      $ solo 
      Usage: 
       solo info 
       solo wifi --name=<n> [--password=<p>] 
       solo flash (drone|controller|both)  
                         (latest|current|factory|<version>) [--clean] 
       solo flash --list 
       solo flash pixhawk <filename> 
       solo provision 
       solo resize 
       solo logs (download) 
       solo install-pip 
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       solo install-smart 
        solo install-runit 
        solo video (acquire|restore) 
        solo script [<arg>...] 
 

i) First time running solo command and results: 
         solo info 

Response: 
      connecting to Solo and the Controller... 
      { 
        "controller": { 
          "ref": "3dr-controller-imx6solo-3dr-artoo-20160926202703", 
          "version": "2.4.2" 
        }, 
        "gimbal": { 
          "connected": false 
        }, 
        "pixhawk": { 
          "apm_ref": "7e9206cc", 
          "px4firmware_ref": "5e693274", 
          "px4nuttx_ref": "d48fa307", 
          "version": "1.3.1" 
        }, 
        "solo": { 
          "ref": "3dr-solo-imx6solo-3dr-1080p-20160926202940", 
          "version": "2.4.2" 
        } 
      } 
 

Error Response: 
      connecting to the Controller... 
      connecting to encrypted wifi network. 
       (your computer may disconnect from Solo's network.) 
      please manually reconnect to Solo's network once it becomes available. 
      it may take up to 30s to a reconnect to succeed. 
 

If this occurs, check that you are connected to the solo network and try again. 

C. CONNECTING SOLO TO WIFI 

1) Connecting the solo to a common network or network with internet. 

Reference: https://dev.3dr.com/starting-utils.html  

a) Install the Solo CLI. This allows more control over the solo network. 
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b) In order to connect the solo to another network, ensure that you are still connected 

to the existing solo network (SoloLink-####) and run the following code 

replacing <ssid> with your WAP SSID and <password> with your WAP 

password: 
      solo wifi --name=<ssid> --password=<password> 
 

For this system configuration: 
      solo wifi --name=solocommand --password=commandsolo 
 

c) You should hear a sound from the vehicle and it will reboot. Another sound will 

indicate you are connected. 

d) Your solo now has internet access. 

D. MAKING SOLO MORE ACCESSIBLE (OPTIONAL) 

1) Follow the procedures for Connecting Solo to Wi-Fi, then proceed. 

2) First time solo CLI. Reference: https://dev.3dr.com/starting-utils.html  

a) Ensure you are still connected to the solo network (you do not need to SSH in 

first).  

b) The first time you run solo CLI, we want to install a few repositories on the solo. 

Install all of the following libraries.  

i) smart 
         solo install-smart 
 

ii) runit 
         solo install-runit 

Troubleshooting: If you get the error shown below, reboot the controller, repeat 

steps 4.i through 4.ii 

      NOTE: this process requires simultaneous access to 

      Solo and to the Internet. if you have not yet done so, 

      run `solo wifi` to connect to Solo and to a local 

      wifi connection simultaneously. 
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      connecting to solo... 

      waiting for Internet connectivity... 

 

      Loading cache... 

      Updating cache... ######################################## [100%] 

 

 

      error: busybox-1.21.1-r1@cortexa9hf_vfp_neon is not available for    

      downloading 

 

iii) pip 
      solo install-pip 
 

iv) DroneKit script pack 
      solo script pack 

If successful, the command will create an archive in the solo-script.tar.gz in 

the current directory. 

Deploy this archive to Solo and run a specified script using the solo script run 

<scriptname> command. The host computer must be connected to the Solo wifi 

network, and Solo must also be connected to the internet. 

For example, to deploy and run the helloworld example:  
      solo script run helloworld.py 

E. DRONEKIT-PYTHON WITH 3DR SOLO 

1) Clone my working repository 
git clone https://github.com/awilliams84/solo.git 
 

2) Connect to the Solo network created when the controller and vehicle connect together 

(likely named SoloLink_<name>). On the Solo's network, you can connect to the 

vehicle as a UDP client 'udpin:0.0.0.0:14550'. Reference: https://dev.3dr.com/ 

concept-dronekit.html  

https://dev.3dr.com/example-helloworld.html
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3) Run a simple script to ensure that everything is working. Navigate to the directory 

that contains solohello.py and execute the script. The key is declaring your vehicle. 
python solohello.py 
 

If successful, you should see a response the looks similar to Figure A-1. 

 
Figure A-1. Execution of solohello.py 

 

F. SETTING UP FOR MULTIPLE 3DR SOLO 

 
Figure A-2. Network Concept 
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These are step by step instructions modified from the 3DR Google document 

about operating swarms.  

Reference: https://docs.google.com/document/d/1heLTpFEyNC_52BnZnz78lZxP

eW15iZX98VUEXM4GIBM/edit#heading=h.ma685xmoqc83  

Steps 1 will only be necessary the first time you are running through this tutorial. 

Once you have cloned the 3DR Git, you can skip step 1 for additional Solo vehicles. 

1) Clone the 3DR github repository containing the installation extras 

(https://github.com/3drobotics/swarm): 
      mkdir ~/solo_ws/src 
      cd ~/solo_ws/src 
      git clone https://github.com/3drobotics/swarm.git 
 

2) Modifying Solo’s UDP broadcast port. Since Solo communicates with the ground 

station via UDP, we will have to change default port used by each Solo to make sure 

they do not interfere with each other. The first step is to layout which ports will be 

used by which Solo. The first Solo starts on port 15550, and the next on 16550, etc., 

as that leaves the default Solo port (14550) open in case someone accidentally 

connects their solo to our network. 
 

Table A-1. Solo Port Assignments 

Solo Port 

SoloLink_redleader 15550 

SoloLink_blueleader 16550 

SoloLink_goldleader 17550 

SoloLink_greenleader 18550 

  

With the ports laid out, change the drone’s network configurations to broadcast on 

these ports. Start by connecting to the first Solo’s network (usually 

SoloLink_###), then run these commands: (Note, the password of the artoo and 

the solo is TjSDBkAu) 
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Connect to vehicle: 
      ssh root@10.1.1.10 
 

You will be prompted for the password:  TjSDBkAu 

  

Edit file on solo: 
      nano /etc/sololink.conf 
 

In the sololink.conf file, change a parameter called “TelemDestPort”. The 

parameter should be set to the default port (14550); change it to the port you 

would like to assign. 

Then save, close, and run (if you do not run this command, rebooting will reset 

the .conf file to the default) 
      md5sum /etc/sololink.conf > /etc/sololink.conf.md5 

 

Next, reboot solo: 
      reboot 

  

Connect to artoo: 
      ssh root@10.1.1.1 
 

You will be prompted for the password:  TjSDBkAu 

  

Edit file on solo: 
      nano /etc/sololink.conf 

 

In the sololink.conf file, change the same parameter called “TelemDestPort”. The 

parameter should be set to the default port; change it to the port you would like to 

assign. 

 

Then save, close, and run (if you do not run this command, rebooting will reset 

the .conf file to the default) 
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      md5sum /etc/sololink.conf > /etc/sololink.conf.md5 

 

Next, reboot solo: 
      Reboot 
 

3) Setup automatic network connection and port forwarding. Next, you’ll need to set up 

your solo so it automatically connects to the swarm network and forwards its mavlink 

data. This process is automated by the make permanent script found in 

installer/make_permanent.py, which we already have from cloning the 3DR git 

repository. 

a) Run the make_permanent script: 
   python ~/solo_ws/src/swarm/installer/make_permanent.py 
 

b) Input the parameters: 

i) What is the ssid of the swarm network: solocommand 

ii) What is the passkey of the swarm network: commandsolo 

iii) What is the port you want your artoo to forward: 15550 (or whichever port 

you set for that specific solo) 

Your solo should reboot. 

 

OPTIONAL: If you would like to check whether the Solo is configured properly 

with your network, reconnect to the SoloLink_### network and SSH into artoo: 
      ssh root@10.1.1.1 
 

You will be prompted for the password: TjSDBkAu 

To check the network configuration: 
      ifconfig 
 

You should see something that indicates you are connected to a wlan0 network, as 

shown in Figure A-3. 
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Figure A-3. Network Configuration 

4) Record your IP address for each solo in your network using a table similar to Table 
C-2. 
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Table A-2. Network IP Address Assignments 

Solo IP solocommand Port 

SoloLink_redleader 192.168.1.133 15550 

SoloLink_blueleader 192.168.1.121 16550 

SoloLink_goldleader 192.168.1.138 17550 

SoloLink_greenleader 192.168.1.106 18550 

 

G. PREFLIGHT CHECKLIST 

1) SSH into each Solo from your Router’s network (To enable port forwarding) 

2) Connect to Solo with a the swarm.launch file and use a unique, 

sequential copter_id 

3) Run rostopic echo /copter#/mavros/rc/in to confirm sticks are publishing 

4) Run your python file (For example python velocity_goto.py) 

a) python velocity_goto.py (takeoff and land) 

b) python dualo.py (fly 2 solos with one controller) 

c) python pong.py (play pong, requires 5 solos) 
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APPENDIX B.  PYTHON SCRIPT 

The following script was used to control three quadcopters demonstrated in field 

testing. Written in Python programming language, it launches vehicles and executes 

stationing commands using DroneKit-Python and includes data collection to an 

external file. 

1. __author__ = "Alexander Williams"   
2. __email__ = "alexander.williams@gmail.com"   
3. __status__ = "Production"   
4.    
5. '''''  
6. This code was developed as part of the thesis:  
7.   
8. Naval Postgraduate School  
9. FEASIBILITY OF AN EXTENDED-DURATION AERIAL PLATFORM USING AUTONOMOUS   
10. MULTI-ROTOR VEHICLE SWAPPING AND BATTERY MANAGEMENT  
11.   
12. By LCDR Alexander Williams  
13.   
14. This code was written and tested in 2017 at Camp Roberts. All    
15. code has parameters set for testing at a specific site. If you    
16. intend to use this code, ensure you change the parameters,    
17. especially the latitude and longitude.    
18.   
19. '''   
20.    
21. # Import necessary libraries   
22. from dronekit import connect, VehicleMode   
23. from dronekit import LocationGlobalRelative, LocationGlobal, Command   
24. import time   
25. import math   
26. from pymavlink import mavutil   
27.    
28. import numpy as np   
29. import matplotlib.pyplot as plt   
30. import matplotlib.animation as animation   
31.    
32. import signal   
33. import sys   
34. from datetime import datetime, timedelta   
35. from collections import defaultdict   
36. import csv   
37.    
38. from mpl_toolkits.mplot3d import Axes3D   
39.    
40. # Initialize global variables   
41. sortiedata=defaultdict(list)   
42. solos=defaultdict(list)   
43. sortie=0   
44.    
45. #####################################################################   
46. ####################### ADJUSTABLE VARIABLES ########################   
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47. #####################################################################   
48.    
49. # Define all Solo ports and names (ports and names)   
50. # If you add vehicles, this is where to add their ports and assign names for   
51. # inclusion   
52. soloports=['udpin:0.0.0.0:15550','udpin:0.0.0.0:16550','udpin:0.0.0.0:17550','ud

pin:0.0.0.0:14550']   
53. soloids=['redleader','blueleader','goldleader','greenleader']   
54.    
55. # Static test parameters   
56.    
57. # Min voltage we want to see from any vehicle   
58. battery_volt_limit = 10    
59. # Min battery level we want to see from any vehicle   
60. battery_level_critical_limit = 30   
61.    
62. # Test location - modify for future application not at Camp Roberts   
63. loiterlat = 35.7167982   
64. loiterlon = -120.7625160   
65. loiteralt = 100 #meters   
66. # loiterlat = 35.716014   
67. # loiterlon = -120.763119   
68. # loiteralt = 30 #meters   
69.    
70. # Adjustable variables   
71. takeoffalt = 15             # Altitude vehicles will go to on takeoff   
72. vehiclealtseparation = 5    # Seperation distance (in meters) at swap   
73.    
74. #####################################################################   
75. #################### END ADJUSTABLE VARIABLES #######################   
76. #####################################################################   
77.    
78. # Initialize time for data collection   
79. # DELETE   
80. # starttime = datetime.now()    
81.    
82.    
83. # Function for arming and takeoff to set altitude   
84. def arm_and_takeoff(vehicle,aTargetAltitude,vehiclename):   
85.    
86.     print "Basic pre-arm checks"   
87.     # Do not try to arm until autopilot is ready   
88.     while not vehicle.is_armable:   
89.         print " Waiting for vehicle to initialise..."   
90.         time.sleep(1)   
91.    
92.            
93.     print "Arming motors"   
94.     # Copter should arm in GUIDED mode   
95.     vehicle.mode = VehicleMode("GUIDED")   
96.     vehicle.armed = True   
97.    
98.     while not vehicle.armed:         
99.         print " Waiting for arming..."   
100.         time.sleep(1)   
101.    
102.     print "Taking off! Heading to ",aTargetAltitude   
103.    
104.     takeofftime = datetime.now()     
105.     landedalt=vehicle.location.global_relative_frame.alt   
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106.     global sortie   
107.     sortie+=1   
108.    
109.     # For data logging   
110.     storesortiedata(vehiclename,vehicle)               
111.    
112.     # Wait until the vehicle reaches a safe height before    
113.     # processing the goto (otherwise the command    
114.     # after Vehicle.simple_takeoff will execute immediately).   
115.     while True:   
116.         vehicle.simple_takeoff(aTargetAltitude) # Take off to target alt

itude   
117.         timeelapsed=((datetime.now()-takeofftime).total_seconds())   
118.         print " Altitude: ", vehicle.location.global_relative_frame.alt,

 " Time Elapsed: ",timeelapsed, " sec"         
119.         #Trigger just below target alt   
120.         if vehicle.location.global_relative_frame.alt>=aTargetAltitude*0

.95:   
121.             print "Reached target altitude in ",timeelapsed," sec"   
122.             status="success"   
123.             break   
124.         if timeelapsed>3 and vehicle.location.global_relative_frame.alt<

landedalt+1:   
125.             print "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Launch ERROR!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!"   
126.             print "Land vehicle (%s)" %(vehiclename)   
127.             vehicle.mode = VehicleMode("LAND")   
128.             status="fail"   
129.             break   
130.         time.sleep(1)   
131.    
132.     # For data logging   
133.     storesortiedata(vehiclename,vehicle)           
134.    
135.     return status   
136.    
137.    
138. # Function to calculate the distance in meters between two position   
139. def get_distance_metres(aLocation1, aLocation2):   
140.     """  
141.     Returns the ground distance in metres between two LocationGlobal obj

ects.  
142.   
143.     This method is an approximation, and will not be accurate over   
144.     large distances and close to the earth's poles. It comes from the   
145.     ArduPilot test code:   
146.     https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/co

mmon.py  
147.     """   
148.     dlat = aLocation2.lat - aLocation1.lat   
149.     dlong = aLocation2.lon - aLocation1.lon   
150.     return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5   
151.    
152.    
153. # Function to store data during testing   
154. def storesortiedata(vehiclename,vehicle):   
155.     timenow = datetime.now()   
156.     global sortie   
157.    
158.     sortiename=vehiclename   
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159.     sortiedata[sortiename].append(    
160.         (timenow,   
161.             vehicle.location.global_relative_frame.lat,   
162.             vehicle.location.global_relative_frame.lon,   
163.             vehicle.location.global_relative_frame.alt,   
164.             vehicle.battery.level,   
165.             vehicle.battery.voltage,   
166.             sortiename   
167.             ))   
168.        
169.     print "Stored data for %s in dictionary"%(vehiclename)   
170.    
171.    
172. # Function to write data to csv file and plot data   
173. def showplot():   
174.     if len(sortiedata)>0:   
175.         fig=plt.figure()   
176.         fig.suptitle('Battery Management Testing')   
177.         plt1=fig.add_subplot(211)   
178.         plt2=fig.add_subplot(212)   
179.         fig2=plt.figure()   
180.         plt3=fig2.add_subplot(111,projection='3d')   
181.    
182.         # Open csv file and append   
183.         f = open('data.csv','a')   
184.    
185.         fulltime=[]   
186.         fulllatitude=[]   
187.         fulllongitude=[]   
188.         fullaltitude=[]   
189.         fullbatterypct=[]   
190.         fullbatteryvolt=[]   
191.         fullsolo=[]   
192.    
193.         global starttime   
194.    
195.         for key, value in sorted(sortiedata.iteritems()):   
196.             soloid=key   
197.             time=[]   
198.             latitude=[]   
199.             longitude=[]   
200.             altitude=[]   
201.             batterypct=[]   
202.             batteryvolt=[]   
203.             solo=[]   
204.    
205.             for var in value:   
206.                 time.append((var[0]-starttime).total_seconds())   
207.                 latitude.append(var[1])   
208.                 longitude.append(var[2])   
209.                 altitude.append(var[3])   
210.                 batterypct.append(var[4])   
211.                 batteryvolt.append(var[5])   
212.                 solo.append(var[6])   
213.    
214.             plt1.plot(time,altitude,label=soloid)   
215.             plt1.set_xlabel('Time (sec)')   
216.             plt1.set_ylabel('Altitude (m)')   
217.             plt2.plot(time,batterypct,label=soloid)   
218.             plt2.set_xlabel('Time (sec)')   
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219.             plt2.set_ylabel('Battery Life (%)')   
220.             plt3.plot(latitude,longitude,altitude)   
221.             plt3.set_xlabel('Latitude (m)')   
222.             plt3.set_xlabel('Longitude (m)')   
223.             plt3.set_xlabel('Altitude (m)')   
224.    
225.             plt1.scatter(time[0],altitude[0],marker='o',color='g',s=50) 

  
226.             plt1.scatter(time[-1],altitude[-

1],marker='o',color='r',s=50)   
227.             plt2.scatter(time[0],batterypct[0],marker='o',color='g',s=50

)   
228.             plt2.scatter(time[-1],batterypct[-

1],marker='o',color='r',s=50)   
229.    
230.             fulltime.extend(time)   
231.             fulllatitude.extend(latitude)   
232.             fulllongitude.extend(longitude)   
233.             fullaltitude.extend(altitude)   
234.             fullbatterypct.extend(batterypct)   
235.             fullbatteryvolt.extend(batteryvolt)   
236.             fullsolo.extend(solo)   
237.    
238.         duration=math.ceil(fulltime[-1]/60)   
239.         start=starttime.strftime('%Y%m%d %H%M')   
240.         stoptime=var[0]   
241.         stop=stoptime.strftime('%Y%m%d %H%M')   
242.         flightdata=['Start: '+start,'Stop: '+stop,'Duration: '+`duration

`+ ' minutes','Sortie Count: '+`len(sortiedata)`]   
243.    
244.         # Add row titles   
245.         fulltime.insert(0,'Time (sec)')   
246.         fullsolo.insert(0,'Vehicle ID')   
247.         fulllatitude.insert(0,'Latitude')   
248.         fulllongitude.insert(0,'Longitude')   
249.         fullaltitude.insert(0,'Altitude (m)')   
250.         fullbatterypct.insert(0,'Battery (%)')   
251.         fullbatteryvolt.insert(0,'Battery (V)')   
252.    
253.         # Write to csv file            
254.         w = csv.writer(f, delimiter=',')   
255.         w.writerow(flightdata)   
256.         w.writerow(fullsolo)   
257.         w.writerow(fulltime)   
258.         w.writerow(fulllatitude)       
259.         w.writerow(fulllongitude)      
260.         w.writerow(fullaltitude)       
261.         w.writerow(fullbatterypct)   
262.         w.writerow(fullbatteryvolt)   
263.    
264.         print "############# Data stored to CSV #############"   
265.    
266.         # Close csv file   
267.         f.close()      
268.    
269.         plt1.autoscale(enable=True, axis='both', tight=False)   
270.         plt2.autoscale(enable=True, axis='both', tight=False)   
271.    
272.    
273.    
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274. # Initialize lists of available Solos (connect and names) set in    
275. # connection (set empty here)   
276. solo=[]   
277. soloname=[]   
278.    
279. print "======================== CONNECTING TO SOLOS ====================

===="   
280.    
281. i=0   
282.    
283. # Loop through solo ports to attempt connection with each vehicle   
284. for soloport in soloports:   
285.    
286.     index=soloports.index(soloport)   
287.     soloid=soloids[index]   
288.    
289.     print("Connecting to solo: %s (%s)" % (soloport,soloid))   
290.    
291.     # Try to connect to the solo for XX heartbeat_timeout seconds   
292.     try:   
293.         vehicle=connect(soloport, wait_ready=True, heartbeat_timeout=90)

   
294.         solo.append(vehicle)   
295.         soloname.append(soloid)   
296.    
297.         solos[soloid]=vehicle   
298.    
299.         # Print some vehicle attributes   
300.         print "Get some vehicle attribute values:"   
301.         print " GPS: %s" % solo[i].gps_0   
302.         print " Battery: %s" % solo[i].battery   
303.         print " Last Heartbeat: %s" % solo[i].last_heartbeat   
304.         print " Is Armable?: %s" % solo[i].is_armable   
305.         print " System status: %s" % solo[i].system_status.state   
306.         print " Mode: %s" % solo[i].mode.name   
307.    
308.         # Increment 1 to look on the next solo port   
309.         i+=1   
310.    
311.     except:   
312.         print (soloid+" vehicle not found.")   
313.    
314.    
315. print "////////////////////// END CONNECTING TO SOLOS //////////////////

////"   
316.    
317.    
318. # Write which solos were found   
319. print "%s Solos available: " %len(solo)   
320. print soloname   
321.    
322. # A check to see if the script should continue running in loop to follow

   
323. continuecheck = 1   
324.    
325. # Ask user whether to continue where 'y' and 'n' are only acceptable ans

wers   
326. while continuecheck != 'y' and continuecheck != 'n':   
327.     continuecheck = raw_input('Continue? (y/n):')   
328.    
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329. # Create new dictionary variables for home lat and longs   
330. homelat=defaultdict(list)   
331. homelon=defaultdict(list)   
332.    
333. vehicle=0   
334. sortienum=-1   
335. unavailablevehicles=0   
336. takeoffstatus="true"   
337.    
338.    
339.    
340. # Main script for flight operations   
341. try:   
342.    
343.     vehicleindex=0   
344.     vehicleindex2=1   
345.    
346.     # Initialize time for data collection   
347.     starttime = datetime.now()   
348.    
349.     # Loop through vehicles   
350.     while True and continuecheck == 'y':   
351.    
352.         for thisvehicle in solo:   
353.    
354.             if vehicleindex>len(solo)-1:   
355.                 vehicleindex=0   
356.    
357.             print "vehicleindex=%s" %(vehicleindex)   
358.             print "vehicleindex2=%s" %(vehicleindex2)   
359.    
360.             if vehicle==solo[vehicleindex]:   
361.                 if takeoffstatus=="fail":   
362.                     print "Sleep to standby for another attempt. Same ve

hicle."   
363.                     time.sleep(15)   
364.                 else:   
365.                     print 'Vehicle Check: %s already flying, cannot use 

same vehicle to start while airborne' %(soloname[vehicleindex])   
366.                     continuecheck='n'   
367.                     break   
368.             if solo[vehicleindex].battery.voltage < battery_volt_limit o

r solo[vehicleindex].battery.level < battery_level_critical_limit:   
369.                 print 'Vehicle Check: %s battery too low for operation, 

skip to next' %(soloname[vehicleindex])   
370.                 vehicleindex+=1   
371.                 unavailablevehicles+=1   
372.                 break   
373.             elif unavailablevehicles>len(solo):   
374.                 print 'Vehicle Check: No vehicles available.'   
375.                 continuecheck='n'   
376.                 break   
377.    
378.             vehicle=solo[vehicleindex]   
379.             sortienum+=1   
380.    
381.             # Dynamic test parameters   
382.             battery_level_limit=0 # Set higher for testing   
383.    
384.             print("Connected to solo: %s" % (soloname[vehicleindex]))   
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385.    
386.             # If connection is not current, skip vehicle and go to next 

  
387.             if vehicle.last_heartbeat>10:   
388.                 vehicleindex+=1   
389.                 break   
390.    
391.             # If the next vehicle does not have enough battery   
392.             if vehicle.battery.level < battery_level_critical_limit:   
393.                 print " %s battery too low for designated flight." %(sol

oname[vehicleindex])   
394.    
395.             # Else, continue   
396.             else:   
397.    
398.                 # If vehicle is not already airborne (likely same vehicl

e)   
399.                 if vehicle.location.global_relative_frame.alt < takeoffa

lt-1:       
400.    
401.                     try:                           
402.                         cmds = vehicle.commands   
403.                         cmds.download()   
404.                         cmds.wait_ready()   
405.    
406.                         # Arm and take off - receive status   
407.                         takeoffstatus=arm_and_takeoff(vehicle,takeoffalt

,soloname[vehicleindex])   
408.                        
409.                         # If launch fail   
410.                         if takeoffstatus=="fail":   
411.                             print "Launch failed, vehicleindex=%s" %(veh

icleindex)   
412.                             vehicleindex+=1   
413.                             print "Find next vehicle, vehicleindex=%s" %

(vehicleindex)   
414.                             break   
415.    
416.                     except:   
417.                         if takeoffstatus=="fail":   
418.                             print "Take off aborted, vehicleindex=%s" %(

vehicleindex)   
419.                         vehicleindex+=1   
420.                         print "Find next vehicle, new vehicleindex=%s" %

(vehicleindex)   
421.                         break   
422.    
423.                     # Increasing vehicle airspeed to max (30)   
424.                     print "Set vehicle airspeed to 30"   
425.                     vehicle.airspeed = 30   
426.    
427.                     # Set home location as the location above takeoff   
428.                     # (for return later)   
429.                     homelat[vehicleindex]=(vehicle.location.global_frame

.lat)   
430.                     homelon[vehicleindex]=(vehicle.location.global_frame

.lon)   
431.    
432.                     # Print for debug   
433.                     print " Home Latitude: %s" % homelat[vehicleindex]   
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434.                     print " Home Longitude: %s" % homelon[vehicleindex] 
  

435.    
436.                 else:   
437.                     print "Vehicle (%s) already airborne" %(soloname[veh

icleindex])   
438.    
439.                 # Mission location   
440.                 loiterpoint = LocationGlobalRelative(loiterlat,loiterlon

, loiteralt)   
441.                 vehicle.simple_goto(loiterpoint)   
442.    
443.    
444.                 print "*****************Go to loiter point**************

***"   
445.    
446.                 storesortiedata(soloname[vehicleindex],vehicle)        
447.    
448.                 # Loop to track distance to loiter. Print distance to go

 until   
449.                 # at loiter   
450.                 while True:    
451.                     currentaltitude=vehicle.location.global_relative_fra

me.alt   
452.    
453.                     dist = get_distance_metres(vehicle.location.global_f

rame, loiterpoint)   
454.                     print " Distance to go: %s Altitude goal: %s Current

: %s"%(dist,loiteralt,currentaltitude)   
455.    
456.                     if currentaltitude>loiteralt:   
457.                         goalpct=1.02   
458.                     else:    
459.                         goalpct=0.98   
460.    
461.                     if dist < 1 and currentaltitude>=(loiteralt)*0.98:   
462.                         print 'Within 1m of waypoint'   
463.                         break   
464.    
465.                     time.sleep(1)   
466.    
467.                 storesortiedata(soloname[vehicleindex],vehicle)        
468.    
469.    
470.                 print "*******************Maintain loiter point*********

**********"   
471.    
472.                 # Maintain loiter position until battery level too low   
473.                 while True:   
474.    
475.                     try:   
476.                         print ' %s Battery limit: %s  Current battery: %

s'%(soloname[vehicleindex],max(battery_level_limit,battery_level_critical_limit)
,vehicle.battery.level)   

477.                         time.sleep(1)   
478.    
479.                         # If battery level below limit or voltage level 

below limit, break loop   
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480.                         if vehicle.battery.voltage < battery_volt_limit 
or vehicle.battery.level < battery_level_limit or vehicle.battery.level < batter
y_level_critical_limit:   

481.                             print 'Battery below limit'                 
   

482.                             break      
483.    
484.                     except:   
485.                         # When battery loop is manually exited (CTRL+C) 

  
486.                         print " BATTERY CHECK ABORTED"   
487.                         break   
488.    
489.                 storesortiedata(soloname[vehicleindex],vehicle)        
490.    
491.                 if vehicleindex==len(solo)-1:   
492.                     vehicle2=solo[0]   
493.                     vehicleindex2=0   
494.                 else:                      
495.                     vehicle2=solo[vehicleindex+1]   
496.                     vehicleindex2=vehicleindex+1   
497.    
498.                 # Look for replacement if more than one solo online   
499.                 if len(solo) > 1:   
500.                     print 'Checking for replacement'   
501.    
502.                     vehiclecheck=0   
503.                     while vehiclecheck <= len(solo) and (vehicle2.batter

y.level < battery_level_critical_limit or vehicle==vehicle2 or vehicle2.last_hea
rtbeat>5):   

504.                         if vehicleindex==len(solo)-1:   
505.                             vehicle2=solo[0]   
506.                             vehicleindex2=0   
507.                         else:                      
508.                             vehicle2=solo[vehicleindex+1]   
509.                             vehicleindex2=vehicleindex+1   
510.                         vehiclecheck+=1   
511.                         print "Vehicle check count: %s"%(vehiclecheck)   
512.    
513.                     # Check if replacements are able to replace (battery

 checks)   
514.                     if vehiclecheck > len(solo) or vehicle2.battery.leve

l < battery_level_critical_limit:   
515.                         replacementfails=vehiclecheck   
516.                         # break   
517.                     else:   
518.                         replacementfails=0   
519.    
520.                     # Reset takeoffstatus before trying another takeoff 

  
521.                     takeoffstatus="fail"   
522.    
523.                     # Start takeoff sequence until a replacement is laun

ched or all fail   
524.                     while takeoffstatus=="fail" and replacementfails<len

(solo):   
525.                         if vehicleindex2==vehicleindex:   
526.                             vehicleindex2+=1   
527.                         if vehicleindex2>len(solo)-1:   
528.                             vehicleindex2=0   
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529.                         if solo[vehicleindex2].last_heartbeat<5:   
530.                             print 'Launch replacement'   
531.                             print 'Launch vehicleindex2=%s' %(vehicleind

ex2)   
532.                             try:   
533.                                 takeoffstatus=arm_and_takeoff(solo[vehic

leindex2],takeoffalt,soloname[vehicleindex2])   
534.                             except:   
535.                                 takeoffstatus="fail"   
536.    
537.                         nextvehicle=vehicleindex2+1   
538.                         if nextvehicle>len(solo):   
539.                             nextvehicle=0   
540.    
541.                         if nextvehicle==vehicleindex2 or nextvehicle==ve

hicleindex:   
542.                             time.sleep(15)   
543.    
544.                         if takeoffstatus=="fail":   
545.                             print 'Launch replacement failed'   
546.                             vehicleindex2+=1   
547.                             replacementfails+=1   
548.                             # break   
549.    
550.                     vehicle2=solo[vehicleindex2]   
551.    
552.                     if replacementfails>len(solo):   
553.                         print "Replacement Launch Failed %s times, quitt

ing" %(replacementfails)   
554.                         continuecheck='n'   
555.                     else:   
556.    
557.                         print "Set vehicle airspeed to 30"   
558.                         vehicle2.airspeed = 30   
559.    
560.                         storesortiedata(soloname[vehicleindex],vehicle) 

  
561.                         storesortiedata(soloname[vehicleindex2],vehicle2

)   
562.    
563.                         if vehicleindex2>len(homelat)-1:   
564.                             print "Adding home point for %s" %(soloname[

vehicleindex2])   
565.    
566.                             cmds = vehicle2.commands   
567.                             cmds.download()   
568.                             cmds.wait_ready()   
569.    
570.                             homelat[vehicleindex2]=(vehicle2.location.gl

obal_frame.lat)   
571.                             homelon[vehicleindex2]=(vehicle2.location.gl

obal_frame.lon)   
572.    
573.                             print 'Home: (%s,%s)' %(homelat[vehicleindex

2],homelon[vehicleindex2])   
574.    
575.                         else:   
576.                             print "Home already exists, ignoring!"   
577.    
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578.                     print "**************Vehicle: %s airborne, takeoffst
atus=%s"%(soloname[vehicleindex2],takeoffstatus)   

579.    
580.                     # Raise original vehicle   
581.                     print 'Raising vehicle from %s to %s' %(vehicle.loca

tion.global_relative_frame.alt,loiteralt+vehiclealtseparation)   
582.                     highloiterpoint = LocationGlobalRelative(loiterlat,l

oiterlon, loiteralt+vehiclealtseparation)   
583.                     vehicle.simple_goto(highloiterpoint)   
584.    
585.                     # Loop to track raised altitude   
586.                     while True and takeoffstatus!="fail":      
587.                         currentaltitude=vehicle.location.global_relative

_frame.alt   
588.    
589.                         print ' Altitude goal: %s Current: %s' %(loitera

lt+vehiclealtseparation,currentaltitude)   
590.                         if currentaltitude>loiteralt+vehiclealtseparatio

n:   
591.                             goalpct=1.02   
592.                         else:    
593.                             goalpct=0.98   
594.                         if currentaltitude>=(loiteralt+vehiclealtseparat

ion)*goalpct:   
595.                             break   
596.    
597.                         time.sleep(1)   
598.    
599.                     # Changing to guided mode in case vehicle coming onl

ine is not already   
600.                     print 'Change mode to guided'   
601.                     vehicle.mode = VehicleMode("GUIDED")   
602.    
603.                     # If repacement launched, send to loiter point   
604.                     if len(solo) > 1 and takeoffstatus!="fail":   
605.    
606.                         print 'Send replacement'   
607.    
608.                         storesortiedata(soloname[vehicleindex],vehicle) 

  
609.                         storesortiedata(soloname[vehicleindex2],vehicle2

)   
610.    
611.                         while True:    
612.                             vehicle2.simple_goto(loiterpoint)   
613.    
614.                             currentaltitude=vehicle2.location.global_rel

ative_frame.alt   
615.    
616.                             dist = get_distance_metres(vehicle2.location

.global_frame, loiterpoint)   
617.                             print " Distance to loiter pt: %s Altitude g

oal: %s Current: %s"%(dist,loiteralt,currentaltitude)   
618.    
619.                             if currentaltitude>loiteralt:   
620.                                 goalpct=1.02   
621.                             else:    
622.                                 goalpct=0.98   
623.    
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624.                             if dist < 1 and currentaltitude>=(loiteralt)
*goalpct:   

625.                                 print 'Within 1m of waypoint'   
626.                                 break   
627.    
628.                             time.sleep(1)   
629.    
630.    
631.                 print 'Check altitude: %s' %(vehicle.location.global_rel

ative_frame.alt)   
632.                 print 'Take off alt minus 2: %s' %(takeoffalt-2)   
633.    
634.             # If original vehicle still airborn (should be), return to l

aunch position   
635.             # this check is conducted using vehicle's altitude. If loite

r position is lower   
636.             # than takeoff alt, this will need to be rewritten   
637.             if vehicle.location.global_relative_frame.alt > takeoffalt-

2:       
638.    
639.                 # Return to launch point   
640.                 print 'Vehicle index=%s' %(vehicleindex)   
641.                 print 'Returning to launch position: (%s,%s)' %(homelat[

vehicleindex],homelon[vehicleindex])   
642.    
643.                 homepoint = LocationGlobalRelative(homelat[vehicleindex]

,homelon[vehicleindex], takeoffalt+vehiclealtseparation)   
644.                 vehicle.simple_goto(homepoint)   
645.    
646.                 print " Go to %s" %(homepoint)   
647.    
648.                 storesortiedata(soloname[vehicleindex],vehicle)   
649.                 storesortiedata(soloname[vehicleindex2],vehicle2)       

       
650.    
651.                 while True:    
652.                     currentaltitude=vehicle.location.global_relative_fra

me.alt   
653.    
654.                     dist = get_distance_metres(vehicle.location.global_f

rame, homepoint)   
655.                     print " Distance to home: %s Altitude goal: %s Curre

nt: %s"%(dist,takeoffalt+vehiclealtseparation,currentaltitude)   
656.    
657.                     if currentaltitude>loiteralt+vehiclealtseparation:   
658.                         goalpct=1.02   
659.                     else:    
660.                         goalpct=0.98   
661.    
662.                     if dist < 1 and currentaltitude<=(loiteralt+vehiclea

ltseparation)*goalpct:   
663.                         print 'Within 1m of waypoint'   
664.                         break   
665.    
666.                     time.sleep(1)   
667.    
668.                 # Land original vehicle   
669.                 print ' Landing'   
670.                 vehicle.mode = VehicleMode("LAND")   
671.    
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672.                 storesortiedata(soloname[vehicleindex],vehicle)   
673.                 storesortiedata(soloname[vehicleindex2],vehicle2)       

       
674.    
675.                 # Loop to track landing. Was used for data storing   
676.                 while True:   
677.                     print " Landing %s Altitude: %s" %(soloname[vehiclei

ndex],vehicle.location.global_relative_frame.alt)         
678.    
679.                     if vehicle.location.global_relative_frame.alt<=2: #T

rigger just below target alt.   
680.                         print "Vehicle On Deck"   
681.                         break   
682.                     time.sleep(1)   
683.    
684.                 storesortiedata(soloname[vehicleindex],vehicle)   
685.    
686.             # showplot()   
687.             vehicleindex+=1   
688.    
689.         if unavailablevehicles >= len(solo):   
690.             break   
691.    
692.    
693. # If interrupt   
694. except:   
695.    
696.     print "\n\n\n**************************Exited script early.*********

*******************"   
697.    
698.     vehicleindex=0   
699.     for vehicle in solo:   
700.         print "%s control released. Returned to LOITER mode"%(soloname[v

ehicleindex])   
701.         vehicle.mode = VehicleMode("LOITER")   
702.         vehicleindex+=1   
703.    
704.     showplot()   
705.     plt.show(block=True)   
706.     sys.exit(0)   
707.    
708.    
709. # If script errors out   
710. if continuecheck=='y' and len(solo)==0:   
711.     print 'No solo present for operation. Exited script.'   
712. elif continuecheck=='n':   
713.     print 'Exited script.'     
714. else:   
715.     print "\n\n\n*************************Errored out of script early.**

**************************"   
716.    
717.     vehicleindex=0   
718.     for vehicle in solo:   
719.         print "%s control released. Returned to LOITER mode"%(soloname[v

ehicleindex])   
720.         vehicle.mode = VehicleMode("LOITER")   
721.         vehicleindex+=1   
722.    
723. if len(solo)!=0:   
724.     showplot()   
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725.     plt.show(block=True)   
726.     sys.exit(0)   
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APPENDIX C.  FIELD TESTING RAW DATA 

Table C-1 presents raw data collected at Camp Roberts, California, August 8, 

2017. 

Table C-1. Field Testing Results 

 
Altitude (m)    

ID 
Time 

(MM:SS) Latitude Longitude Veh 1 Veh 2 Veh 3 
Battery 

(%) 
Battery 

(V) 
Vehicle 1 00:03 35.7156929 -120.7635823 0.01     96 16.214 
Vehicle 1 00:11 35.7156898 -120.7635802 14.55     95 16.113 
Vehicle 1 00:48 35.7167919 -120.7625102 99.88     91 15.774 
Vehicle 1 11:17 35.7167971 -120.7625096 100.01     29 14.405 
Vehicle 2 11:20 35.7155735 -120.7635051 100.01 0.01   95 16.457 
Vehicle 2 11:28 35.715574 -120.76351 100.01 14.55   94 16.215 
Vehicle 1 11:28 35.7167979 -120.762511 99.98 14.55   28 14.4 
Vehicle 2 11:28 35.715574 -120.76351 99.98 14.55   94 16.215 
Vehicle 1 11:32 35.7168006 -120.7625096 103.49 14.55   28 14.358 
Vehicle 2 11:32 35.7155716 -120.7635059 103.49 14.9   94 16.149 
Vehicle 1 12:11 35.7167976 -120.76251 104.97 14.9   24 14.312 
Vehicle 2 12:11 35.7167941 -120.7625084 104.97 99.96   90 15.899 
Vehicle 1 13:04 35.7156978 -120.7635808 20.39 99.96   19 14.215 
Vehicle 2 13:04 35.7167983 -120.7625094 20.39 100.07   85 15.771 
Vehicle 1 13:04 35.7156978 -120.7635808 20.39 100.07   19 14.215 
Vehicle 1 13:28 35.7156866 -120.7635829 1.99 100.07   7 14.256 
Vehicle 2 13:28 35.716797 -120.7625081   100.03   83 15.672 
Vehicle 2 13:28 35.716797 -120.7625081   100.03   83 15.672 
Vehicle 2 22:22 35.7167982 -120.7625094   99.97   29 14.537 
Vehicle 3 22:25 35.7155368 -120.7633986   99.97 0.01 95 16.327 
Vehicle 3 22:33 35.7155362 -120.7633981   99.97 14.61 94 16.236 
Vehicle 2 22:33 35.7167964 -120.7625089   100.03 14.61 28 14.512 
Vehicle 3 22:33 35.7155362 -120.7633981   100.03 14.61 94 16.236 
Vehicle 2 22:36 35.7167974 -120.7625098   103.45 14.61 28 14.484 
Vehicle 3 22:36 35.7155349 -120.7633984   103.45 14.95 94 16.165 
Vehicle 2 23:11 35.7167969 -120.7625086   105 14.95 24 14.47 
Vehicle 3 23:11 35.716791 -120.7625165   105 99.68 89 15.895 
Vehicle 2 24:05 35.7155795 -120.7635053   19.88 99.68 19 14.426 
Vehicle 3 24:05 35.7167971 -120.7625085   19.88 100.05 84 15.737 
Vehicle 2 24:05 35.7155795 -120.7635053   19.88 100.05 19 14.426 
Vehicle 2 24:29 35.7155807 -120.7635056   1.76 100.05 17 14.567 
Vehicle 3 24:29 35.716797 -120.7625075     100.02 81 15.633 
Vehicle 3 24:29 35.716797 -120.7625075     100.02 81 15.633 
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Altitude (m)    

ID 
Time 

(MM:SS) Latitude Longitude Veh 1 Veh 2 Veh 3 
Battery 

(%) 
Battery 

(V) 
Vehicle 3 32:34 35.7167968 -120.7625096     99.97 29 14.629 
Vehicle 1 32:37 35.715692 -120.763558 0.01   99.97 94 16.45 
Vehicle 1 32:45 35.7156886 -120.7635546 14.67   99.97 93 16.162 
Vehicle 3 32:45 35.716796 -120.7625091 14.67   100.1 28 14.616 
Vehicle 1 32:45 35.7156886 -120.7635546 14.67   100.1 93 16.162 
Vehicle 3 32:48 35.7167977 -120.7625106 14.67   103.58 28 14.562 
Vehicle 1 32:48 35.7156896 -120.7635573 14.89   103.58 93 16.109 
Vehicle 3 33:24 35.7167964 -120.7625094 14.89   104.94 24 14.564 
Vehicle 1 33:24 35.7167932 -120.762512 99.98   104.94 89 15.848 
Vehicle 3 34:19 35.7155351 -120.7633912 99.98   20.23 19 14.539 
Vehicle 1 34:19 35.7168003 -120.76251 99.92   20.23 84 15.694 
Vehicle 3 34:19 35.7155351 -120.7633912 99.92   20.23 19 14.539 
Vehicle 3 34:42 35.7155326 -120.7633931 99.92   1.63 17 14.656 
Vehicle 1 34:43 35.7167928 -120.7625049 100.06     82 15.599 
Vehicle 1 34:46 35.7167978 -120.7625091 100.07     82 15.612 
Vehicle 1 43:24 35.7167965 -120.7625094 99.98     29 14.541 
Vehicle 2 43:28 35.7155635 -120.7635258 99.98 0.1   95 16.278 
Vehicle 2 43:36 35.7155628 -120.7635253 99.98 14.65   94 16.082 
Vehicle 1 43:36 35.7167962 -120.7625093 100 14.65   28 14.531 
Vehicle 2 43:36 35.7155628 -120.7635253 100 14.65   94 16.082 
Vehicle 1 43:39 35.7167941 -120.7625073 103.48 14.65   28 14.527 
Vehicle 2 43:39 35.7155639 -120.7635255 103.48 14.95   94 16.011 
Vehicle 1 44:16 35.7167969 -120.7625075 105.07 14.95   24 14.486 
Vehicle 2 44:16 35.7167925 -120.7625099 105.07 99.91   90 15.813 
Vehicle 1 45:10 35.7156956 -120.7635865 20.2 99.91   20 14.433 
Vehicle 2 45:10 35.7167985 -120.7625085 20.2 100.17   85 15.617 
Vehicle 1 45:10 35.7156956 -120.7635865 20.2 100.17   20 14.433 
Vehicle 1 45:33 35.7156894 -120.7635844 1.92 100.17   18 14.384 
Vehicle 2 45:33 35.7167977 -120.7625088   100.05   83 15.511 
Vehicle 2 45:33 35.7167977 -120.7625088   100.05   83 15.511 
Vehicle 2 54:11 35.7167977 -120.7625084   100.02   29 14.413 
Vehicle 2 54:11 35.7167977 -120.7625084   100.02   29 14.413 
Vehicle 3 54:11 35.715537 -120.7633971   100.02 2.7 17 14.793 
Vehicle 2 55:03 35.7155802 -120.7635055   19.9 2.7 25 14.348 
Vehicle 3 55:03 35.715537 -120.7633971   19.9 2.7 17 14.793 
Vehicle 2 55:03 35.7155802 -120.7635055   19.9 2.7 25 14.348 
Vehicle 2 55:25 35.7155778 -120.7635076   1.95 2.7 22 14.338 
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