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ABSTRACT 

Security at remote military bases is a difficult, yet critical, mission. 

Remote locations are generally closer to enemy combatants and farther from 

supporting forces; the individuals charged with defending the bases do so with less 

equipment. These locations are also usually reliant on air-resupply missions to 

maintain mission readiness and effectiveness. This thesis analyzes how swarms of 

small autonomous unmanned aerial vehicles (UAVs) could assist in defensive 

operations.  

To accomplish this, I created an agent-based computer simulation model, which 

creates a tactical problem (enemies attempting to attack or infiltrate a notional base) that 

a swarm of UAVs attempts to defend against. Results indicate that a swarm can 

effectively deter 95% of attackers if each UAV is responsible for covering no more than 

0.18 square miles and at least 40% of the UAVs are armed. I conclude that UAVs are an 

excellent addition to base defense and are particularly helpful at remote outposts with less 

organic capability (limited field of view, defensive assets, etc.). While this research deals 

specifically with countering a threat to a central base, the algorithms for swarm dynamics 

could be applied to future problems in mobile convoy or aircraft defense, and even 

peacetime applications like search and rescue. 
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I. INTRODUCTION 

A. BACKGROUND 

1. Strategic Situation 

The current endeavors by the United States against violent-extremist 

organizations (VEOs), appear to be increasingly reliant on small-force capabilities and 

U.S. Special Operations Forces (SOF). Rapid advances in commercially-available 

electronics technology during the last 25 years have resulted in non-state actors (NSA) 

being able to acquire devices that deliver instant communication, localized intelligence, 

surveillance, and reconnaissance (ISR) capability, and remote kinetic engagement. To 

combat this type of enemy, U.S. forces rely on traditional forms of intelligence gathering, 

human networks and relationships, and national ISR assets. These national assets, 

however, are not always available to SOF and other elements working in remote 

locations. As U.S. forces continue to operate in austere environments, it will become 

increasingly important for small units to be able to generate their own organic ISR and 

limited fires using small airborne platforms such as unmanned aerial vehicles (UAVs). 

The 2015 National Security Strategy (NSS) dictates that the fight against 

terrorism and VEOs must be accomplished through “a more sustainable approach that 

prioritizes targeted counterterrorism operations, collective action with responsible 

partners, and increased efforts to prevent the growth of violent extremism and 

radicalization that drives increased threats.”1 Here, the executive branch, in response to 

recognition that the “large-scale ground wars in Iraq and Afghanistan”2 were not overly 

effective in combating the spread of VEOs, admits its belief that small forces (like SOF) 

are likely the best method to target pockets of extremist groups. In addition to direct-

action (DA) missions, the NSS also supports further capacity-building operations. It 

states,  

                                                 
1 Barack Obama, “National Security Strategy 2015” (Washington, DC: Executive Office of the 

President, February 2015), 9. 

2 Obama, “NSS,” 9. 
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We will continue to bolster the capacity of the U.N. and regional 
organizations to help resolve disputes, build resilience to crises and 
shocks, strengthen governance, end extreme poverty, and increase 
prosperity, so that fragile states can provide for the basic needs of their 
citizens and can avoid being vulnerable hosts for extremism and 
terrorism.3 

This push for indirect operations is also relevant to SOF operators. SOF forces are, and 

will continue to be, used in these capacity-building missions and certainly demanded to 

assist in developing partner forces capable of DA missions against VEOs in austere 

environments. 

The logical marrying of SOF and remotely-operated (unmanned) vehicles was 

established in the 2015 National Military Strategy (NMS). In the NMS, they are listed in 

the “decisive advantage”4 category. It is recognized at the highest echelons of military 

leadership that these functions are essential to future fights and “[countering Anti-

Access/Area Denial], space, cyber, and hybrid threats.”5 The benefits from significant 

advantages in these areas could result in force-multiplying effects and asymmetric 

advantages in both conventional and irregular conflicts. 

An experienced military planner should quickly recognize that SOF elements will 

therefore be tasked with objectives falling anywhere along the spectrum of military 

operations. In order to meet the demands that the NSS and NMS present, SOF elements 

will be forced to continually innovate ways to create similar effects with potentially 

fewer personnel or against more sophisticated (resourceful) enemies. An organic drone 

capability could be an effective measure to support SOF, and other small-force, elements 

in the field. 

SOF operators, like many of their opposing VEO counterparts, often find 

themselves in remote locations with limited direct-support forces available to assist them. 

                                                 
3 Obama, “NSS,” 10. 

4 Joint Chiefs of Staff, “The National Military Strategy of the United States of America 2015,” 
(Washington, DC: Joint Staff Publications, June 2015), 16, 
http://www.jcs.mil/Portals/36/Documents/Publications/2015_National_Military_Strategy.pdf. 

5 Joint Chiefs of Staff, “NMS,” 16. 
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Howard explains, “As situations and adversaries become more complex, SOF leaders will 

need a greater capability for observing their targets. Surveillance, reconnaissance, and 

communication assets that deliver near-real-time, full-motion video for extended periods 

of time will be required.”6 Persistent ISR is an enduring request for operators and 

commanders at every level; this produces increased strain on availability for theater and 

national assets. Additionally, drones that can perform ISR functions are usually 

apportioned to operational and strategic-level priority missions, thus leaving some 

tactical-level operators to work-around the absence of dedicated ISR in ad hoc methods. 

This tactical capability gap must be addressed and, for it to be ubiquitous, the solution 

should be relatively inexpensive. With today’s technology, this may indeed be possible. 

2. Tactical Problem 

At remote (austere) airfields, security for both ground personnel and air 

operations is always a concern. Remote locations are generally closer to enemy 

combatants, farther from supporting forces, and the individuals charged with defending 

the bases do so with less equipment. These locations are also usually reliant on air-

resupply missions to maintain mission readiness and effectiveness. Because of the 

remoteness and, often times, increased threat to air operations, combatant commands may 

restrict operations to try to mitigate potential casualties. These restrictions can severely 

limit the number and type of aircraft that can operate at a base. Furthermore, organic air 

operations operate at greater risk due to the limited secure area surrounding the base. 

Could large clusters (swarms) of small autonomous unmanned-aerial vehicles (UAV) 

alleviate portions of these problems while also providing increased combat capability 

(survivability) to both personnel and assets? 

UAVs can perform vastly different missions by attaching different components. 

Swarms could potentially operate as an extended surveillance perimeter augmenting the 

field-of-view (FOV) from the base, perform limited air strikes, or even enhance missile-

                                                 
6 Stephen P. Howard, “Special Operations Forces and unmanned aerial vehicles : sooner or later?,” 

(Maxwell Air Force Base, Alabama: Air University Press, School of Advanced Airpower Studies, 1996), 1, 
http://aupress.maxwell.af.mil/digital/pdf/paper/t_howard_special_operations_forces.pdf.  
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warning awareness during aircraft operations. Additionally, traditional barriers to entry 

(cost, technology, sustainability) for operating small autonomous systems in austere 

locations are disappearing. Simple, yet capable, small units are continuously developed 

and improvements in processing power, small optics, and battery life will continue to 

revolutionize overall ubiquity and functionality. 

Remote airfields, however, do not utilize drone swarms for defense because it is 

an emerging capability that has not become part of any official operational defensive 

employment strategy. Despite its current absence, emerging evidence exists that swarm 

behavior is controllable and could be effective in military roles (such as the Marines’ 

Perdix Swarm).7 Once active, drones could allow for scalable operations, rapid 

reprogramming on the advent of enemies altering tactics, yet remain (relatively) cheap 

and replaceable. While many positive outcomes of usage are possible, issues such as 

over-reliance (complacency), interference with air operations (error or programmed), 

ethical concerns about autonomous surveillance and strike, and how to eliminate the 

possibility of fratricide must be also considered. 

B. SIGNIFICANCE OF STUDY 

It is important to start work on this problem set now because robotic, and likely 

autonomous, technology will soon dominate the battlefield.8 One aeronautical expert 

found that “Unmanned systems are expected to proliferate and the role of the human will 

increasingly be that of a user and operator more than a controller.”9 This push towards 

autonomy will lead to incredibly advanced UAVs capable of complex decision making, 

                                                 
7 Department of Defense, “Department of Defense Announces Successful Micro-Drone Demonstration 

Press Operations,” Release No: NR-008-17, January 9, 2017, https://www.defense.gov/News/News-
Releases/News-Release-View/Article/1044811/department-of-defense-announces-successful-micro-drone-
demonstration. 

8 Dan Gonzales and Sarah Harting, Designing Unmanned Systems with Greater Autonomy: Using a 
Federated, Partially Open Systems Architecture Approach (Santa Monica, CA: RAND Corporation, 2014), 
http://www.rand.org/pubs/research_reports/RR626.html, 2; Penny, Maryse, Tess Hellgren and Matt 
Bassford, Future Technology Landscapes: Insights, Analysis and Implications for Defence, (Santa Monica, 
CA: RAND Corporation, 2013), 96–101, http://www.rand.org/pubs/research_reports/RR478.html.  

9 Reg Austin, Unmanned Aircraft Systems: UAVS Design, Development and Deployment (New York: 
John Wiley & Sons, Incorporated, 2010), ProQuest Ebook Central, 316. 
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task management, and even integrated operations with human-operated machines. 

Already, drones and robotic counterparts are quickly becoming indispensable in fields 

like ISR and explosive-ordinance disposal, and soon may be common to other disciplines 

like battlefield-medical evacuation. A failure to address integration with non-human 

actors, specifically in the air domain, will leave the U.S. in a tactical disadvantage that in 

the aggregate could also amount to a strategic failure. An enemy able to exploit U.S. 

defenses because of drone capability (even low-threshold-to-entry solutions such as those 

adopted by the Islamic State of Syria and Iraq [ISIS]10), or otherwise able to utilize this 

space to their own benefit, will gain an asymmetric advantage in a battlespace. 

Ultimately, we must ask: how can a swarm of drones best support defensive operations at 

a base?  

                                                 
10 Thomas Gibbons-Neff, “ISIS drones are attacking U.S. troops and disrupting airstrikes in Raqqa, 

officials say,” The Washington Post, 14 June 2017, 
https://www.washingtonpost.com/news/checkpoint/wp/2017/06/14/isis-drones-are-attacking-u-s-troops-
and-disrupting-airstrikes-in-raqqa-officials-say/?utm_term=.3e1b890ed203.  
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II. LITERATURE REVIEW 

A. DEFINITIONS AND CONCEPTS 

While the term ‘drone’ is convenient and generates a similar image in both 

academic and military minds, it is not truly an appropriate term for what the robot, or 

agent, will accomplish in this role. The word ‘drone’ is also generally associated with its 

negative connotation concerning dull, mindless speech. Furthermore, when considered 

militarily, many people consider drones to simply be the physical manifestation of a 

remote operator hundreds, if not thousands, of miles away from the area of operations. 

Thus, most encapsulate the drone paradigm with a layer of either mindless monotony or 

lifeless metal bending to the will of a superior human mind.  

In this study, however, the drones I discuss are more accurately termed UAVs. 

Austin defines a UAV as an unmanned aircraft which has “some greater or lesser degree 

of ‘automatic intelligence’. It will be able to communicate with its controller and to 

return payload data such as electro-optic or thermal TV images, together with its primary 

state information – position, airspeed, heading and altitude.”11 In this study, I use the 

term drone interchangeably with UAV, but am speaking of the higher-functioning variety.  

 More complex UAVs are often better understood to be part of an Unmanned 

Aircraft (or Aerial) System (UAS).12 The UAS is composed of multiple parts (Figure 1) 

in which the UAV itself is only one piece. The system represents a holistic view and 

understanding of what enables a UAV to be airborne and accomplish its mission. In a 

UAS, a particular drone may be a semi- or fully-autonomous agent intentionally 

performing actions based on its own artificial intelligence (programming) and 

understanding of a particular environment. It is a being that can act autonomously, under 

the direct control of an operator, or any mix of the two.  

                                                 
11 Austin, Unmanned Aircraft Systems, 3. 

12 Shira Efron, The Use of Unmanned Aerial Systems for Agriculture in Africa: Can It Fly? (Santa 
Monica, CA: RAND Corporation, 2015), 9, http://www.rand.org/pubs/rgs_dissertations/RGSD359.html. 
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Figure 1.  Unmanned Aircraft System13 

The physical manifestations of the UAV agents addressed in this research fall 

mainly into Efron’s Vertical Takeoff and Landing category (3–180 pounds)14 and are 

predominantly on the lower end of that scale. In conventional military nomenclature, they 

are most like Mini UAVs (under 20 kg), but due to some being armed with air-to-ground 

ordnance (a grenade), a Mini UCAV (unmanned combat air vehicle) may be more 

appropriate.15 Regardless of the UAV’s weight, size, or capability, the important piece 

here is how the agents act and interoperate. While the individual agent is a system on its 

own, in the sense that it is a complex machine, it is the system of systems that makes the 

intellectual space challenging. 

Accomplishing tasks with swarms of robotic agents is an emerging field with 

roots in computer science. These swarms are “a collection of (physical) agents moving in 

                                                 
13 Exact image borrowed from: Austin, Unmanned Aircraft Systems, 9. 

14 Efron, Unmanned Aerial Systems, 17. 

15 Austin, Unmanned Aircraft Systems, 4–5. 
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real 2- or 3- dimensional space to fulfill certain mission requirements.”16 Swarms, or 

multi-agent dynamic systems, can accomplish tasks (missions) by following pre-

established rules governing their geometries, formations, and methods. Gazi and Fidan 

point out that in multi-agent dynamic systems, the potential for emergent swarm 

properties, those that are greater than the individual physical pieces, is high.17 Allen 

refines this premise, “Emergence is the manner of interaction of large numbers of entities 

and the patterns that arise from these interactions. The associated multiplicity makes the 

systems complicated enough that simple physics equations cannot accurately predict the 

‘emergent’ system properties.”18 In computational simulation efforts, one may desire to 

design methodologies and rules which enable the agents to act in a way that creates these 

emergent properties. Conversely, regimented, centrally-controlled models, may have 

difficulty generating such characteristics.  

B. AIRFIELD DEFENSE 

Defending bases is not a new concept. Scores of studies, theses, governmental 

reports, and other publications all point to a need to defend key logistical and operational 

hubs.19 However, these works focus almost entirely either on the systems and soldiers 

that work inside a base’s perimeter, or on how the chain of command should work in 

forward operating locations. Ditlevson presents some information on UAS operations but 

only in reference to a single-entity platform and not swarms.20 A few of Ditlevson’s ideas 

appear to have been accepted as truth at the national-command level as the joint 

                                                 
16 Veysel Gazi and Baris Fidan, “Coordination and Control of Multi-agent Dynamic Systems: Models 

and Approaches,” in Swarm Robotics: SAB 2006 International Workshop: Revised Selected Papers, edited 
by Erol Şahin, William M. Spears, and Alan F. T. Winfield, 71–102 (Berlin; New York: Springer, 2007), 
72, https://link.springer.com.libproxy.nps.edu/chapter/10.1007/978-3-540-71541-2_6. 

17 Gazi and Fidan, 73. 

18 Theodore T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling: Voting 
Systems, Health Care, Military, and Manufacturing (London ; New York : Springer, 2011), 175. 

19 See Vick (2015); Shlapak and Vick (1995); Schneider (1971); Penny, Hellgren, and Bessford 
(2013); Gray (2006); Ditlevson (2006); Covault (2009); Christensen (2007); Buonaugurio (2001). 

20 Jeffery T. Ditlevson, “Air Base Defense: Different Times Call for Different Methods,” (master’s 
thesis, Naval Postgraduate School, 2006), 90–92. 
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publication authors incorporated them in some ways into the most recent Joint 

Publication (JP) 3–10, Joint Security Operations in Theater.21  

JP 3–10 broadly aims to provide “guidelines to plan and execute operations to 

protect a joint security area (JSA)22 outside the continental United States. Within [JP 3–

10], these operations are referred to as joint security operations (JSO).”23 The regulation 

goes on to discuss levels of threats to bases in three categories: single or few actors, 

small-scale (irregular warfare) forces, and significant (overwhelming) forces.24 

Understanding base defense in terms of these categories allows one to see what the Joint 

community believes an individual base is nominally supposed to be able to handle. In 

other words, the defensive footprint at a forward location must be able to deter and defeat 

single to small-scale forces on its own, and therefore should optimize itself to be superior 

against those types of forces. However, as asymmetric and sub-peer nations obtain more 

advanced weaponry, communications, and operational capabilities (night-vision, IR 

suppressants, etc.), the diverse list of potential threats to the air base continues to grow.  

JP 3–10 calls for base commanders to pay particular attention to standoff weapons 

(mortars, missiles, other projectiles, and UASs).25 The regulation warns, “Aircraft 

approach and departure corridors and the standoff weapons footprint immediately 

contiguous to air bases are elements of key terrain from which threats must be deterred 

and mitigated.”26 Unfortunately, many authors found base security doctrine and 

implementation to be lacking. Ditlevson echoes Shlapak, “USAF counters for the 

standoff threat are somewhat limited, and without a serious effort to detect standoff 

                                                 
21 Joint Staff, Joint Publication 3–10 Joint Security Operations in Theater, Joint Electronic Library 

(JEL), November 13, 2014, accessed February 12, 2017, 
http://www.dtic.mil/doctrine/new_pubs/jointpub_operations.htm. 

22 “JSAs may be small or may span national boundaries, each with a distinct security environment and 
different policies and resources to address threats.”—Joint Staff, JP 3–10, I-2. 

23 Joint Staff, JP 3–10, I-1. 

24 Joint Staff, JP 3–10, I-3—I-4. 

25 Joint Staff, JP 3–10, I-2. 

26 Joint Staff, JP 3–10, I-7. 
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attacks, high-value aircraft and other base operations could be jeopardized.”27 Vick adds, 

“The USAF has no organic ground-based defenses against aircraft; armed remotely 

piloted vehicle; or cruise-missile, ballistic-missile, rocket, artillery, or mortar attack.”28 

Future analysis must address the specifics of that claim because Gray praises a joint 

Army/Air Force “integrated standalone security system (wireless mass notification 

systems, long range wide angle surveillance thermal imagers [with] infrared, ground 

surveillance radars, counter rocket, mortar technology)”29 that is incorporated into the 

physical security measures for the base. Regardless of the base’s interior technical 

capability, line-of-sight and logistic (including training and maintenance of expensive 

equipment) problems remain. 

Buonaugurio believes that better, more effective, defensive posturing would occur 

if the Air Force returned to previous Security Forces Squadron manning levels, thereby 

supporting a largely defunct corps of tactical Emergency Services Teams (ESTs).30 

Additionally, he states that dispersal of high-value assets across multiple locations could 

assist defenders in the force protection problem. However, neither these solutions nor 

Vick’s31 are particularly suited to austere locations and they may be entirely impossible 

to implement due to funding or operational constraints. As the United States military 

continues to operate globally across the “spectrum of operations,” it also requires a 

scalable, reconfigurable package that can operate in in a diverse set of conditions and 

provide defensive forces with emerging technology that can counter newer asymmetric 

tactics and threats. A UAV swarm could potentially support base defense in this manner, 

but one must analyze its abilities. 

 

                                                 
27 Ditlevson, “Air Base Defense,” 7. 

28 Alan Vick, Air Base Attacks and Defensive Counters: Historical Lessons and Future Challenges, 
(Santa Monica, CA: RAND Corporation, 2015), 39. 

29 Ron Gray, ”Integrated Swarming Operations for Air Base Defense Applications in Irregular 
Warfare” (master’s thesis, Naval Postgraduate School, 2006), 59. 

30 Michael P. Buonaugurio, ”Air Base Defense in the 21st Century: USAF Security Forces Protecting 
the Look of the Joint Vision” (master’s thesis, Marine Corps Command and Staff College, 2001), 32. 

31 Conceal and Camouflage, Hardening, Dispersal—in Vick, Air Base Attacks, 40–54. 
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C. AGENT-BASED MODELING 

A potential investigative method is to use Agent-Based Modeling (ABM) to 

create and optimize an algorithm for UAS swarms. Allen states that “Agent-based 

modeling involves the development of rules for individuals or entities and for the 

environment or background. The simulation proceeds as individuals execute their actions 

as allowed by the environment.”32 An ABM model (a computer program), essentially 

defines how certain actors interact with one another and the environment. Gazi and Fidan 

posit two types of models that are applicable to robotic swarms: higher-level and fully 

actuated.33 The higher-level model (also known as a kinematic model) “ignores the 

lower-level vehicle dynamics of the individual agents (e.g., robots). However, it is a 

relevant and useful model since it can be used for studying higher level algorithms 

independent of the agent/vehicle dynamics and obtaining ‘proof of concept’ type results 

for swarm behavior.”34 In this effort, I aim at this “proof of concept” level, abstracting 

away from the details of physical mechanics, to focus on the problems of force posture 

and decision-making within an autonomous system of systems.  

Since ABM is a relatively new field, there is a lack of literature on how to 

accurately model emergent properties in swarms.35 Additionally, as there are no 

examples of UAS swarms in airfield defense roles,36 evaluators must use multiple 

methods must to determine if it is best for swarms to operate autonomously/semi-

autonomously and if a single program or “collective perception”37 should govern actions. 

Schmickl, Möslinger, and Crailsheim assert that “swarm density”38 is a critical element 

                                                 
32 Allen, Introduction to Discrete Event Simulation and Agent-based Modeling, 177. 

33 Gazi and Fidan, “Coordination and Control of Multi-agent Dynamic Systems,” 75–77. 

34 Gazi and Fidan, “Coordination and Control of Multi-agent Dynamic Systems,” 76. 

35 Gazi and Fidan, “Coordination and Control of Multi-agent Dynamic Systems,” 73. 

36 This author knows of no unclassified published examples of this type of research. 

37 Thomas Schmickl, Christoph Möslinger, and Karl Crailsheim, “Collective Perception in a Robot 
Swarm,” in Swarm Robotics: SAB 2006 International Workshop: Revised Selected Papers, edited by Erol 
Şahin, William M. Spears, and Alan F.T. Winfield, 144–157 (Berlin ; New York: Springer, 2007), 144, 
https://link.springer.com.libproxy.nps.edu/chapter/10.1007/978-3-540-71541-2_10. 

38 Schmickl, Möslinger, and Crailsheim, “Collective Perception,” 151. 
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in robotic swarms, though it is currently unknown what level that should be in defensive 

operations.  

Lastly, the swarm itself, even if optimized, must either explicitly support existing 

structures and practices, or drive a complete shift in operations. Hubbard’s research 

confirms this assertion; he found that while autonomous actors offer many advantages, 

warfighters will still “require that unmanned systems be interoperable on many levels, to 

include the ability to dynamically share information, including situational awareness and 

targeting information, with other unmanned systems and with manned platforms.”39 The 

swarm can conduct its own operations, but should support the base’s overall defensive 

scheme. 

Regardless of how the base-defense model changes, the UAS must still deconflict 

with traditional aircraft operations. This can be accomplished through scheduling (at the 

expense of effectiveness), lateral offset (potentially detrimental), or by onboard systems 

“such as traffic collision avoidance systems (TCAS) that are now used by human pilots 

on passenger aircraft.”40 However, with each added on-board system, an individual agent 

will carry less payload or it will suffer an endurance penalty due to the increased weight.  

D. POTENTIAL ISSUES 

Skeptics will point to, among others, ethical concerns, sustainability, or even a 

lack of technical capability. Ethically, some find UAV strikes to be appalling, “But 

sometimes imminent and intolerable threats do arise and drone strikes are the best way to 

eliminate them.”41 Concerns about autonomous UAVs conducting strikes are valid even 

with the benefit of advanced image matching. It is well within the realm of possibility 

either noncombatants could be targeted erroneously, or that enemies could determine 
                                                 

39 Hubbard, Curtis W, “Base Defense at the Special Forces Forward Operating Base” (master’s thesis, 
U.S. Army Command and General Staff College, 2002), 2. 

40 Gonzales, Dan and Sarah Harting, Designing Unmanned Systems with Greater Autonomy: Using a 
Federated, Partially Open Systems Architecture Approach (Santa Monica, CA: RAND Corporation, 2014), 
49, http://www.rand.org/pubs/research_reports/RR626.html. 

41 Byman, Daniel L, “Why Drones Work: The Case for Washington’s Weapon of Choice,” June 17, 
2013, Brookings, https://www.brookings.edu/articles/why-drones-work-the-case-for-washingtons-weapon-
of-choice. 
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ways to increase their own survivability by subverting the autonomous system’s 

judgment criteria. Therefore, initially, this type of system would likely best be used in 

remote locations which have fewer local civilians and strict rules about approaching the 

base.  

Addressing sustainability, if swarms can help foster safer environments for air 

operations then they implicitly support the logistics of resupply. If the airbase is safer, 

more aircraft can arrive at greater frequencies. Advances in 3D printing, material 

engineering, and even nanotechnology also will continue to increase UAS life cycles and 

options for sustainability.42 Emerging technological evidence indicates that swarm-based 

approaches are increasingly feasible. Researchers at major universities have created 

instances of successful swarming behaviors and some of those efforts are in unison with 

DOD efforts.43 The Johns Hopkins University Applied Physics Laboratory demonstrated 

“UAVs [that] could take off and land autonomously and could swarm cooperatively to 

detect targets.”44 Additionally, from successes like the aerially-deployed Perdix swarm, 

one finds that a swarm of UAVs working with a “distributed brain,”45 essentially shared 

repository of information, can be used to execute military missions. These examples point 

to the need for further study of the conditions for successful deployment of autonomous 

aerial systems. 

  

                                                 
42 Maryse Penny, Tess Hellgren, and Matt Bassford, Future Technology Landscapes: Insights, 

Analysis and Implications for Defence (Santa Monica, CA: RAND Corporation, 2013), 96, 
http://www.rand.org/pubs/research_reports/RR478.html. 

43 Johns Hopkins, MIT, Georgia Tech, and NPS (author knowledge) all have demonstrated UAV 
swarm capability—Gonzales and Harting, Designing Unmanned Systems, 46–47. 

44 Gonzales and Harting, Designing Unmanned Systems, 46. 

45 Department of Defense, “Department of Defense Announces Successful Micro-Drone 
Demonstration,” 9 Jan 2017, https://www.defense.gov/News/News-Releases/News-Release-
View/Article/1044811/department-of-defense-announces-successful-micro-drone-demonstration.  
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III. MODEL 

A. WHY AGENT-BASED MODELING? 

ABM represents a particularly promising approach to tackle this problem. Macal 

and North argue that “the systems that we need to analyze and model are becoming more 

complex in terms of their interdependencies. Traditional modeling tools are no longer as 

applicable as they once were.”46 ABM allows one to create and mold the specific 

construct that matches the desired environment and actions. ABM provides a mechanism 

to define the exact actors, capabilities, environment, and types of interactions that a 

modeler knows will occur in the real world. However, an exact model which perfectly 

mirrors its actual counterpart is nearly impossible to create and therefore, one aims to use 

ABM to evaluate hypotheses about projected outcomes using quantitative data, gathered 

from the best-available models. 

The principal pieces of ABM are the agents, or various types of agents, 

themselves. “The fundamental feature of an agent is the capability to make independent 

decisions. This requires agents to be active responders and planners rather than purely 

passive components.”47 In ABM, the model is, in essence, the result of a pairing of an 

environment and the agents, or actors, which work within it. These agents may exhibit 

completely autonomous behavior where they choose their own paths and react to stimuli, 

be semi-autonomous where some actions are self-decided and others are directed by a 

central authority, or may be controlled completely by that central controller. Each type of 

model has distinct advantages, but the true advantage is how closely the agents mimic the 

real-world behavior that is being modeled. The degree to which an agent’s decision-

making process and priorities match its real-world counterpart’s adds to the realism and 

usefulness of ABM.  

                                                 
46 Charles M. Macal and Michael J. North, “Agent-Based Modeling and Simulation: ABMS 

examples,” in Proceedings of the 2008 Winter Simulation Conference (2008): 103. 

47 Macal and North, “Agent-Based Modeling and Simulation,” 101. 
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Macal and North define 10 criteria if one needs to deliberate on whether to use an 

ABM approach to a problem.48 The airbase defense problem meets all 10 premises. Of 

particular importance is their argument that ABM is appropriate for models that require 

decisions and behaviors, where actors interact with one another for finite periods of time, 

that have a spatial component that affects both actors and interactions, and that must be 

scalable.  

The first few items are not complex. It is not difficult for one to imagine actors of 

any variety, and certainly not robots, making decisions based on known parameters. It 

follows that an interaction between two or more actors is merely a change in each distinct 

actor’s “known parameters.” That these interactions happen within a contextually-defined 

space is also logical. Therefore, what is left to understand about why this type of model is 

so appropriate for base defense concerns scaling.  

A base of operations, while a common term in military parlance, is also quite 

vague. It could be something as little as a remote-observation post for a few soldiers, or a 

massive combined air-sea hub for major military missions. Thus, to say that “UAVs 

could support base defense” implies that the mission of UAVs, and the number of them, 

would be different given a different base, or in modeling terms, a new environment.  

ABM’s inherent adaptability to change and its scalability are therefore quite 

important to modeling in this highly variable domain. One can force the software to run 

the gamut of options to see what happens in a model given different values in key 

variables. Afterwards, one can, given a set of variables and corresponding outputs, 

conduct statistical analysis to determine if there are key elements, a particular value or 

relationship ratio between variables, or sequence of events, that indicate a higher 

probability of particular outcomes. That conclusion can help decision makers determine 

best courses of action or drive future changes in operating constructs or procedures. 

Additionally, modelers can run thousands of iterations testing the model under different 

circumstances testing the validity of premises and defensive algorithms. Then, if the 

                                                 
48 Macal and North, “Agent-Based Modeling and Simulation,” 110. 
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situation changes, one can simply recode the background environment while leaving all 

the high-level swarm interaction rules unchanged. The same swarm dynamics should, in 

principle, apply to any situation and the only changes one would need to make are to the 

environment variables and potentially some of the UAV’s distinctive behaviors or 

decision-trees. 

B. THE DEFENSIVE SWARM AGENT-BASED MODEL 

1. Premise 

To analyze how to best utilize the swarming UAVs, I developed a scenario along 

with associated computer algorithms49 for swarm dispersion, patrol, investigation, and 

kinetic engagement in Python, an object-oriented programming (OOP) language with 

extensible libraries for ABM and performance analysis.50 The model pits a swarm of 

defending UAVs against a variable set of enemies while recording the major interactions 

and outcomes that occur during execution. A user can run a model as a single instance 

and watch the interactions unfold, or create a batch process, where the computer runs 

multiple iterations with identical or altered settings without visualizing the model.  

                                                 
49 Source code for all of my files is located in a NPS library repository; a basic explanation of the files 

is located in an Appendix at the end of this document. 

50 Python Software Foundation, “python,” 2017, https://www.python.org/.  
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Figure 2.  Defensive-Swarm Model Environment 

The scenario in the Defensive-Swarm model focuses on a remote outpost that 

enemy militants are attempting to assault. The outpost, or base, is the primary focus for 

enemies and drones, which both have multiple types of agents. Enemies consist of mortar 

units, snipers, and UAVs. The defenders consist of UAVs, of which some or all may be 

armed with grenades, and the base itself. Visually, the computer depicts the environment, 

in a web-browser, as a grid. Each grid-square represents a 0.1 square-mile area, and one 

can set the model’s size, its grid, to be any value between 30 and 300 (3–30 miles wide). 

To the left of the grid is a list of variables that the user can manipulate via sliders, drop-

down menus, and toggle switches. These variables control important aspects like the 

number of drones, percentage of armed drones, which algorithms the defenders should 

use, and the numbers of enemies. 

When a simulation is started, after a user chooses the parameters to be used in the 

model, the model’s clock begins. In ABM, one method of controlling, and monitoring, 

the simulation is to have time steps. While the simulation represents continuous time, 

time steps are discrete portions of the overall period when the model updates (e.g., agents 
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move and interact) and the steps are sized to balance fidelity with overall efficiency in 

run-time. In these scenarios, the combat between enemies and drones is expected to be 

over in a matter of a few hours. Thus, each time step in the model is defined as a 15-

second period (at step 40, 10 minutes of “real” time have passed).  

During each step, the computer iterates through each agent in the model and gives 

it a turn to choose what to do. The enemies attempt to move closer to their firing 

positions by either taking the most direct or most concealed route (utilizing tree cover). 

Eventually, they will use their turns to attack the base. The defensive drones, conversely, 

spread out and search the area for enemies and engage them based on probabilistic 

chances of finding, identifying, and successfully targeting an enemy.  

The parameters that a user chooses (swarm size, number of enemies, etc.) can 

drastically affect the outcome of the model. Therefore, in my testing, I ran the model 

using a batch process which creates, and evaluates, new instances of the model with 

different parameter values a set number of times. By checking a range of values on 

multiple occasions, I was able to examine whether the result values converged toward a 

standard outcome for a given scenario. This allowed for assessment of how a particular 

value may impact the probability of a certain type of outcome.  

Whether one is running a batch or single instance, the model considers itself to be 

completed when all enemy agents have exhausted their available moves (they have been 

killed, escaped, or fired all their rounds). In batch processes, I limited this to 400 steps 

but with a world size of 7.5 miles, most trials only lasted into the high-200s to low-300s, 

or roughly 1.25 hours of real time. Of note, because the enemies always generate at the 

outer rim of the model, smaller-sized models invariably take less time to complete and 

larger ones take longer. 

The base itself, always centered in the grid, is made up of four sections (squares): 

2 runway/airfield operations pieces (large enough for some short-field aircraft and all 

U.S. Army rotary wing),51 a housing piece, and a Command and Control (C2) block (a 

                                                 
51 Department of the Army, FM 3–21.38 Pathfinder Operations, April 2006, 4–3, 

http://www.apd.army.mil/epubs/DR_pubs/DR_a/pdf/web/fm3_21x38.pdf. 
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headquarters, operations center). In the model, the mortars will target any of the base’s 

pieces, but snipers will always target the housing or headquarters area. This does not 

change how the drones behave, but does impact the pathfinding that a sniper or mortar 

agent will use to navigate towards its target.  

The entire base is surrounded by a fence which is meant to represent not only a 

physical fence, but some basic fortified positions from which the base’s personnel can 

defend against enemies. Constructed in this way, the base covers about 0.4 square miles 

of land. While not as large as major forward-operating bases, which often feature 

significantly larger runways (often between 6000–12000 feet), the same principles of 

perimeter defense apply to larger bases. With a larger base, there could potentially be a 

penalty to drone loiter time due to the increased distance required to move outside the 

perimeter from the airfield. However, as the drone agents modeled are quad-copters, 

there is no requirement for them to have any sort of a runway. Indeed, were there to be 

UAVs assigned to a base-defense role, the logistic setup within the base itself would 

require careful research and analysis itself.  

The surrounding area (white squares) simulates undulating, semi-prepared (rough) 

terrain which prevents unlimited line-of-sight (LOS) surveillance from the base. To add 

to the enemies’ advantage, the tree squares represent small forests or clumps of trees 

where an enemy sniper is able to attempt to hide from the drones flying overhead. The 

mountains represent impassable trails that drones are also unable to overfly. Thus, they 

inhibit either side from moving through those particular areas.  

2. Code Implementation 

For this study, I implemented my code by extending the Mesa ABM framework52 

developed by Jackie Kazil and the Project Mesa team.53 The developers state that Mesa 

“allows users to quickly create agent-based models using built-in core components (such 

as spatial grids and agent schedulers) or customized implementations; visualize them 

                                                 
52 Source code repository for Mesa located on GitHub at: https://github.com/projectmesa/mesa.  

53 Mesa Team, “Mesa: Agent-based modeling in Python 3+,” http://mesa.readthedocs.io/en/master/.  
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using a browser-based interface; and analyze their results using Python’s data analysis 

tools.”54 Their software controls the basic structure of the user interface and the engine 

behind the model. One can think of it as a template where a programmer can pick and 

choose which pieces best work for a particular problem set. Within Mesa, there are 

different types of models and schedulers that one can use to create a simulation (e.g., 

models where all the actors move at the same time or where a type of actor always gets to 

move first). I chose Mesa due to its scalability, non-operating system specific 

visualization library, and because it appears to be the most actively developed ABM 

library in Python 3. 

C. AGENTS 

1. Operator 

The Operator agent does not actually appear in the model but rather provides 

common functionality for both protagonists (Base, Command and Control, Defending 

UAV) and antagonists (Sniper, Mortar, Enemy UAV). All agents adopt the inherent 

capabilities of an Operator. Therefore, every agent (each an Operator) has a basic 

understanding of the model’s grid (the simulated area’s map), can identify that other 

agents are within a defined proximity (sharing a square), and understand route-traversal 

logic which allows them to create pathing solutions. Each agent is able to use this 

overarching logic to look for an optimal path toward a goal position. Additionally, an 

agent also knows its current position relative to a goal or other position. This mimics a 

real-world awareness of where one is relative to a target or objective.  

2. Base 

The Base agent represents the organic defensive capability at the remote base. It 

has an ability to detect an enemy UAV within 1000 meters at a probability of 75% via 

sensor.55 The degradation in detection is modeled to allow for altered enemy drones that 

are operating outside of expected frequency bands or due to interference with the large 
                                                 

54 Mesa Team, “Mesa: Agent-based modeling in Python 3+,” http://mesa.readthedocs.io/en/master/. 

55 Drone Labs LLC, “How We Compare,” 2017, http://dronedetector.com/compare-detection-systems.  
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numbers of friendly UAVs in the area. It will engage an Enemy UAV within its range at a 

probability of kill of 50%, simulating the difficulty of hitting a small target hovering 

hundreds of feet above a defending rifleman. The model gives ground enemies (sniper, 

mortar) the advantage of surprise in that the base’s personnel will never identity a 

potential enemy (thus relying completely on drones for threat identification and 

engagement). Additionally, the base agent does not fight back against any attacking 

enemies, furthering the enemy’s advantage. The following figure, and after each 

subsequent section describing an agent, shows the visual depiction of how the agent 

appears in the simulation. 

 

Figure 3.  Base (Barracks) Icon56 

3. Command and Control (C2) 

While each drone is responsible for its own search pattern, the C2 agent is the 

predominant brain of the defensive swarm. It creates and assigns the initial geometric 

dispersion (formation) of drones based on whether the user desires to have a threat-based 

or full-area algorithm. Under the threat-based algorithm, the drones will only patrol out to 

0.8 miles beyond the maximum engagement distance for the enemies that are present in 

the model. Under the full-area algorithm, the drones will patrol the model’s entire area. 

Once an area is set, smaller sectors are created for each drone to scan based on the 

number available. Essentially, the C2 unit divides up the defendable area into smaller 
                                                 

56 Exact image from http://www.clipartpanda.com/clipart_images/clip-art-categories-60036150.  
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blocks and sets a patrol-distance limit for each individual drone (to eliminate excessive 

overlap and maintain coverage over the entire area).  

The C2 agent tracks all available drones and receives reports from each of them 

when potential threats are discovered and when targets are engaged or terminated. The 

C2 element also tracks all reported threats and, each turn, checks its known-threat matrix 

against assigned assets. When there are many targets and fewer drones, the C2 element 

prioritizes its available fires against what it perceives to be the most lethal threat. In the 

model, snipers are considered the highest-priority, and then mortars, because a mortar 

round can be “stopped” by a small team of drones hovering over the tube (at a 100% loss 

to the drones overhead), while snipers can only be stopped by kinetic strikes. The C2 

agent assigns the lowest priority to enemy UAVs as these units have no ability to directly 

damage the base. 

In general, the C2 agent looks for the closest available drone to support any 

tracking or targeting missions. Until assigned to a target, each drone is responsible for its 

own scan pattern and decision-making. Once assigned, the drone begins moving towards 

the target and switches its behavior from a patrol logic to either investigating or 

attacking.  

 

Figure 4.  C2 Icon57 

                                                 
57 Exact image from https://publicdomainvectors.org/en/free-clipart/Satellite-dish-vector-clip-

art/9878.html.  
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4. Defensive UAV 

These UAVs are the primary defensive force in the model. They operate 

exclusively external to the base and do not support operations inside the base’s perimeter. 

In this simulation, all drones have an optical capability (high-definition video camera), a 

transmit and receive antenna, and optionally, two grenades for target engagement. In this 

model, drone kinematics are roughly based on the capabilities of a DJI Phantom 4.58 The 

Phantom 4 is able to climb at 20 feet per second, descend at 13 feet per second, move at 

66 feet per second, has a maximum flight time of 28 minutes, and can achieve a 

maximum altitude of 19,685 feet.59 The major difference in the batch-simulation models 

is that the drones were allowed a one-hour flight time, after which they had to return to 

the base. This decision was made in order to test the effectiveness of the initial dispersion 

and search algorithms, without the added complication of unit replacements to ensure 

formation integrity. If successful, future research could focus on the question of how best 

to maintain the persistent presence (drone formation). 

Every time-step for a drone on patrol simulates covering 0.1 square miles 

(278,784 square feet). The presumptive scan pattern takes approximately 11 seconds to 

fly (at 50 feet per second) at an altitude of 200–300 feet (observing a 360 foot by 240 foot 

area with its field of view). Processing of images is assumed to be accomplished onboard 

each drone, but in the future could be assisted by a neural network as part of the C2 

element.60 The unit moves to the next area during the final 4 seconds of each step. The 

drone’s optical capability includes full-motion video and analysts report that acquisition  

 

 

                                                 
58 DJI, “Phantom 4,” 2017, https://www.dji.com/phantom-4.  

59 DJI, “Phantom 4 Specs,” 2017, http://www.dji.com/phantom-4/info#specs.  

60Jangwon Lee, Jingya Wang, David Crandall, Selma Šabanović, and Geoffrey Fox, “Real-Time, 
Cloud-Based Object Detection for Unmanned Aerial Vehicles.” Extracted from 2017 First IEEE 
International Conference on Robotic Computing (IRC), (Taichung, 2017), 6, 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7926512&isnumber=7926477; Additionally, see 
sample recognition capabilities by Vicomtech-IK4, “Real Time Detection of Events for Surveillance 
Applications,” 2013, 
http://www.viulib.org/solutions/s24/real_time_detection_of_events_for_surveillance_applications.  
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of a person requires the drone maintain “line-of-sight to the target at a range of less than 

500 meters, but often much closer distances (about 100–200 meters).”61 At planned 

altitudes, the drone should be able to discern human characters or other threats. A 

defending UAV can identify mortar and enemy UAVs immediately. For snipers, the 

drone tracks the unit until it determines that the person it is following is indeed hostile 

(observes the sniper attack, identifies the figure as a sniper62). Upon that realization, it 

alerts C2 of the new threat. 

While in its “patrol” logic, a drone chooses its next move by checking the 

“neighborhood” of locations (0.1 miles in any direction, but it may not choose its current 

position) into which it can move. Internally, the drone eliminates a square from 

consideration if it is beyond its individual patrol distance, is beyond the necessary search 

area (usually set to 0.8 miles beyond the maximum threat’s range), or is an invalid 

position (e.g., overhead the base or a mountain). Once the drone establishes a list of 

potential moves, it pings the C2 unit to get a list of the most recently visited (searched) 

areas. Then it chooses the least recently searched part of its neighborhood and reports its 

decision to the C2 unit.  

“Seeker” (purely ISR) drones and “Bomber” drones behave identically, except 

that bomber drones can launch up to two direct kinetic strikes to destroy ground-based 

enemy units. As this is a higher-level model, the specifics of how a drone turns, hovers, 

or physically performs actions is not analyzed. The model assumes that a drone can 

takeoff, land, move to locations, and conduct strikes. The specifics of exactly how a 

drone tilts its rotors or positions itself are not considered. Instead, the model focuses on 

the drone’s operational mission. Additionally, the model also sets six minutes as the time 

61 E. Peters, Somi Seong, Aimee Bower, Harun Dogo, Aaron L. Martin and Christopher G. Pernin, 
Unmanned Aircraft Systems for Logistics Applications (Santa Monica, CA: RAND Corporation, 2011), 52, 
https://www.rand.org/pubs/monographs/MG978.html. 

62 This behavior simulates that the defending UAV has the ability to compare its images with a 
database of images or templates to appropriately identify the target. 
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it takes the base’s personnel to replace a battery and rearm a drone to full operating 

capacity. It assumes drone batteries all provide the exact same loiter time with no 

variation. Finally, the model assumes that, kinematically, a drone sub-swarm can hover 

perfectly over a mortar tube such that if a round impacts a set of four drones, it will 

detonate. 

Allowable numbers of agent: 10 to 300 
Range (of detection and engagement): 0.1 miles 
Movement: 45 miles per hour  
Capabilities: Block a mortar shot; collide with and damage or  
destroy Enemy UAV (one collision to destroy an Enemy UAV) 
Battery Depletion Rate: 1 unit every 15 seconds 

Figure 5.  Defensive UAV (“Seeker”) Icon63 

63 Exact image from http://bestairdrone.net/horizon-hobby-blade-nano-qx-rtf-quadcopter/.  
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Allowable numbers of agent: 10 to 300 
Range (of detection and engagement): 0.1 miles 
Movement: 45 miles per hour 
Capabilities: Kinetic strike against ground units; collide with Enemy 
UAV (only if 0 grenades) 
Battery Depletion Rate: 1 plus 0.1 units per grenade (drag/weight 
penalty) every 15 seconds 

Figure 6.  Defensive UAV (“Bomber”) Icons64 

5. Enemy 

The Enemy type is essentially just a shell for the subsequent sub-varieties (Sniper, 

Mortar, and UAV). Similar to Operator, the Enemy agent definition provides common 

functionality to the antagonist types, including turn logic (what each agent should do on 

its turn), ingress logic to a firing position, and path-finding based on avoiding opponents 

and returning to its origin (only used by Snipers). 

                                                 
64 Exact image of bomber graphic from https://bagera3005.deviantart.com/art/Lockheed-EA-22b-

Eraser-198837080; Exact image of grenade clipart from http://www.clker.com/clipart-grenade-2.html, 
combination of graphics by author.  
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6. Sniper 

The Sniper type emulates a real-world sniper (or team) that moves into a position, 

shoots at the base’s defenders and then egresses to safety once out of ammunition 

(50 rounds, at 5 shots per time step). The Sniper does not ever try to get closer to base 

than necessary to take its shot. Additionally, its movement logic favors the utilization of 

environmental protection (e.g., going through trees instead of the open field) to minimize 

detection. Snipers are different than Mortars in that their visibility to drones is masked by 

66%. A RAND report suggests drones can detect about one-third of threats like snipers 

using real-time sensors;65 this report addressed fixed positions but the concept is applied 

here to simulate the intrinsic ability of a sniper to hide himself from his opponents. The 

model assumes that there is some level of cover even in the open area, but if a sniper is 

able to maneuver through trees, his likelihood of detection drops to zero while in cover 

(once discovered, the model presumes that the multiple seekers will be able to maintain 

visibility on a target). A sniper will die if one Bomber UAV conducts a single successful 

strike against him.  

                                                 
65 E. Peters, Somi Seong, Aimee Bower, Harun Dogo, Aaron L. Martin and Christopher G. Pernin, 

Unmanned Aircraft Systems for Logistics Applications (Santa Monica, CA: RAND Corporation, 2011), 20,  
https://www.rand.org/pubs/monographs/MG978.html. 
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Allowable numbers of agent: 0 to 50 
Range: 0.4 miles (~ 400 meters) 
Movement: 4 miles per hour over semi-
improved terrain on foot 
Capabilities: Damage base 
Survivability: Killed by a single grenade 

Figure 7.  Sniper Icon66 

7. Mortar 

Mortars simulate a real-world team of personnel moving a mortar into position, 

via vehicle, to take a time-delayed shot. In the model, the mortar team moves as quickly 

as possible into position and sets the mortar. After 10 minutes, the mortar fires regardless 

of whether it has been discovered or not by drones. This time simulates allowing the 

mortar team (adversaries) to leave the premises and either trigger a remote engagement, 

or allow a timer to expire. If the drones discover the mortar before it fires, and assemble a 

sub-swarm above the mortar, the shot is blocked by defenders. Here, the simulation 

presumes that the mortar round is on an impact-fuse and will detonate upon striking the 

swarm of drones hovering above its muzzle.  

The mortar is based on the 2B-14 Podnos 82-millimeter mortar, which has a 

maximum range of 4,000 meters (~2.5 miles).67 In this simulation, the mortar fires a 

single shot and there is no ability for enemies to resupply or reuse them. For the 

                                                 
66 Image from http://www.iconsplace.com/search/sniper+rifle-black, recolored by author.  

67 Jane’s Defence Equipment & Technology Intelligence Centre, “2B14 Podnos 82 mm light mortar,” 
Jane’s by IHS Markit, 2017, https://janes.ihs.com.libproxy.nps.edu/Janes/Display/jiw_0909-jiw.  
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defenders to defeat the mortar, requires 3 successful grenade strikes. While a high-

explosive grenade is not likely to damage the hardened muzzle, the blast or damage to the 

terrain near the mortar’s legs should knock it over, or at least off target. 

 
Allowable numbers of agent: 0 to 50 
Range: 2.5 miles 
Movement: 12 miles per hour over semi-
improved terrain68 
Capabilities: Damage base 
Survivability: Killed by 3 grenade strikes 

Figure 8.  Mortar Icon69  

8. Enemy UAV 

An Enemy UAV provides intelligence to the adversaries. Once the UAV 

launches, it flies in the most direct route toward its target and loiters over the base, 

simulating that it is collecting intelligence and camera footage that would support the 

sniper and mortar attacks. In this model, however, since the snipers and mortars attack 

with a 100% accuracy rate (to consistently penalize a failed defense), UAV intelligence 

has no impact on the ground attackers’ capabilities. While the UAVs themselves do not 

physically attack the base, they do draw seekers away from their positions. As the seekers 

attempt to attack inbound UAVs, their presence can detract from the integrity of the 

                                                 
68 John E. Peters, Somi Seong, Aimee Bower, Harun Dogo, Aaron L. Martin and Christopher G. 

Pernin, Unmanned Aircraft Systems for Logistics Applications (Santa Monica, CA: RAND Corporation, 
2011), 54, https://www.rand.org/pubs/monographs/MG978.html. 

69 Image from http://www.iconsplace.com/search/mortar-black, recolored by author. 
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defensive formation either temporarily or permanently (any collision destroys both the 

enemy and defending UAVs). In future models, UAVs could carry their own armament 

to attack the base or its personnel, attack defending drones, or increase the accuracy of 

remaining (future) enemy attacks. 

 
Allowable numbers of agent: 0 to 50 
Range (of observation): 0.1 miles (per 15 seconds) 
Movement: 30 miles per hour 
Survivability: Killed by 1 collision with a Defensive UAV 
or by the base’s personnel 

Figure 9.  Enemy UAV Icon70 

9. Tree and Mountain 

Trees and mountains provide cover and obstacles to the other mobile agents. 

While feasible that a DJI Phantom 4 could vertically clear most any mountain, the time it 

would take to climb above a large obstacle and descend to the opposite side would render 

its loiter time to fractions (if any) of its potential. Additionally, the signal interference 

imposed by having a mountain in between the drone and its C2 would likely result in zero 

connectivity.  

                                                 
70 Image adapted from http://clipground.com/quadrocopter-clipart.html/, recolored by author.  
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Figure 10.  Tree Icon71 

  

Figure 11.  Mountain Icon72 

D. MODELING DECISIONS 

In creating a model like this, one could focus on a singular threat or strive to 

include every variation of weapons and tactics that enemies use to target a base. In order 

to work towards a “proof of concept,” I chose to limit the number of threats and types of 

actions to focus attention on variation in the control-logic used by the central arbiter (the 

C2 agent). In limiting the number of threats, I also limit the simulation to be one overall 

contest such that no external forces exist that can assist either side in the conflict. There 

are no reinforcements available to either side with the exception that Defensive UAVs are 

able to return to base to refuel and rearm. 

                                                 
71 Exact image from http://cliparting.com/free-tree-clipart-1214/.  

72 Exact image from https://gallery.yopriceville.com/Free-Clipart-Pictures/Winter-
PNG/Snowy_Mountain_Transparent_PNG_Clip_Art_Image#.WhySlkqnHt8.  
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1. System Dynamics 

The defensive-logic system for a drone is a series of behaviors that switch based 

on interactions with or inputs from other actors, or from its own internal status. A drone 

will generally stay in its patrol behavior unless it encounters an enemy actor, is ordered to 

a different function by the C2 element, or hits its “bingo”73 point and is forced to return 

to base (RTB) to get a new battery. Bombers will do the same except that they have the 

added logic of potentially returning to base if they are out of grenades and not currently 

tasked to an investigation mission. 

Once a drone finds a human target, it passes the position of the target to C2 along 

with an “unknown” status of whether it is a threat or not (e.g., not yet know whether it is 

a sniper, or just a person hiking in the hills). If the drone finds an object which it 

determines to be a threat immediately, as is the case with a mortar and enemy UAV 

(these objects have no non-threatening reason to be near the base), then in its initial alert 

to C2 it also reports that its object is a threat. Depending on the message, the C2 element 

will task drones to investigate (observe and track the target), or attack (which also entails 

an investigative sub-swarm to assist with tracking or blocking, in the case of the mortar). 

Table 1 lists the C2’s desired sub-swarm sizes, which are contingent on the type 

of enemy.  

Table 1.   Desired Sub-swarm Sizes 

 
 
 

                                                 
73 A term used in military aviation meaning that there is not enough fuel to continue the mission and 

that it is time to return to base. In this model, a drone will return to base and plan to land with just over a 
minute of battery life left. 

Enemy  Track Target

Mortar 4 3

Sniper 2 2

UAV 1
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After tasking a sub-swarm, the C2 element continues to reevaluate its tracking 

and targeting matrices. A sub-swarm will continue to track a person (sniper) and once the 

swarm declares it as hostile to the C2 element, the C2 arbiter dispatches a bomber force 

to target the enemy. For targeting prioritization, in each time step (and after every 

engagement), the C2 agent checks its known-untargeted enemies list to see if a higher-

priority target should be attacked. If a higher priority targets exists, or if a like-priority 

target has no bombers assigned to it and another has more than enough to kill the 

assigned target, it will reallocate the closest drone (from the target with multiple 

bombers) to address the untargeted enemy. This prioritization function (further refined in 

Figure 12) is one of the most important pieces of artificial intelligence decision-making 

in the model and it is especially important to the defenders in simulations that have 

fewer bombers available as it minimizes the number of assets the C2 agent assigns 

to each target.  

 

Figure 12.  C2 System-Dynamics Diagram 
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Once a target is eliminated, all forces assigned to it are released back to their 

patrol points. The exception is when drones have been killed by either attacking an 

enemy UAV (crashing into it) or by mortar fire. Those drones are lost and no new drones 

are launched from the base to replace the missing members. Bombers with no remaining 

grenades request to RTB to rearm and seekers invariably move back to their patrol points. 

Pictorial representations of the seeker and bomber system dynamics are in Figures 13 and 

14, respectively. 

 
Note that the C2 agent will select bombers with no armament remaining if there are no 
seekers available to support tracking or Enemy UAV engagement. Otherwise, that 
bomber will return to base, rearm, and follow Bomber System Dynamics (next figure).  

Figure 13.  Seeker System-Dynamics Diagram  
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Figure 14.  Bomber System-Dynamics Diagram 

2. Variables 

In the model, there are a number of system- and user-defined variables. The major 

system variables define agent capabilities and the coefficients that govern the likelihood 

of agent interactions, visibility, or probability of detection. The user-defined variables are 

all available to see upon launching a new instance of the model. These parameters shape 

the overall number of actors in a model as well as the defensive scheme that a user 

wishes to test. Changing any of these variables can have a substantive effect on the 

model’s outcome. This is desirable because in different environments, in defenses against 

different types of enemies, or upon the advent of new drone technology, one would need 

to update the model to more accurately reflect the situation at hand. 
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a. System Defined (Actor—Variable) 

(1) C2—Bombers Required: Controls how many bombers the C2 agent 
believes are necessary to engage a particular target. This provides 
additional grenades to target each enemy should an attack miss. In the 
model, this is set to two for snipers and three for mortars.  

(2) C2—Offset: The amount of extra distance beyond the maximum threat 
range that drones should patrol. In the model, this value is set to 0.8 miles. 

(3) Defending UAV—Patrol Distance: A value set by the C2 agent to inform a 
drone of how far from its patrol point it should be willing to stray during 
patrol. This allows each drone to have its own operating space with some 
minor overlap. This value is dynamic and is dependent on the type of 
patrol algorithm and how many drones are available for defense at a given 
time. 

(4) Defending UAV—Probability of Detecting a Person: The probability (set 
to 95%) of detecting a person (sniper) when it is not hiding in terrain 
(trees). This does not imply that there is a 95% chance of finding a sniper 
if a drone is in the same location, but rather interacts with the sniper’s 
ability to mask himself from a drone to determine the outcome. This value 
indicates the chance that a drone would find a human figure during its 
scan of an area and allots a 5% chance of error to that likelihood.  

(5) Defending UAV—Probability of Identifying a Sniper (prior to attack): The 
probability of a drone matching the person it is tracking to a “sniper 
template” in its database before the sniper begins shooting (set to 65%). 
Once a sniper begins to attack, a Defending UAV always recognizes the 
actor as a threat. 

(6) Defending UAV (Bomber)—Probability of Attack (Success): The 
probability that a bombing attack will succeed in striking the opponent 
(90% against mortars and 60% against snipers). This reflects the 
presumption that a mortar emplacement is a stationary target which 
enables the bomber to be able to descend to an effective altitude and 
engage. A sniper, alternatively, has greater ability to maneuver. 

b. User Defined (Actor-Variable)  

(1) Patrol Algorithm—Random: All drones start from the runway and move 
randomly in any direction and all drones (both types) are available for 
assignment. On each turn, a drone will continue to choose its next position 
randomly regardless of its position relative to other drones or the base. 
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Figure 15.  Random Patrol 

(2) Patrol Algorithm—Grid: The drones are dispersed in a grid format. They 
protect individual sectors and are all available for C2 assignments. If there 
are excessive drones that do not fit evenly into the spacing algorithm or 
would be assigned to patrol on top of the base, they are placed randomly 
near the base’s perimeter to support close-in defense.  

 

Drones are in position after launching from the runway and moving to their assigned 
locations. 

Figure 16.  Grid Patrol 
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(3) Patrol Algorithm—Passive: The drones create the largest box (it appears 
rectangular because the grid boxes themselves are not actually square) 
around the base that they can using 90% of the available assets (C2 agent 
reserves 10% of available drones inside the perimeter for additional threat 
tracking and engagement). The reserved drones operate within the ring 
and will stay close to the base in attempt to minimize the distance they 
may have to travel to support any taskings. 

 

Perimeter drones will remain stationary until interacting with an enemy while interior 
drones scan inside the perimeter. 

Figure 17.  Passive Patrol/Defense 

(4) Threat-Based Defense (ON/OFF switch): An attribute used by the C2 
element to decide whether to use the maximum range of the threats present 
in the model when determining the maximum patrol distance for the 
drones. If “OFF,” the drones will patrol the entire operating area.  

(5) Bombers Airborne Before Threat (ON/OFF switch): This switch provides 
the user the ability to decide whether the defending swarm is authorized to 
operate in an armed configuration prior to discovering any threats to the 
base. If “OFF,” every bomber will remain on the runway in a ready state 
waiting for a tasking. 

(6) Bomber Algorithm—Dispersed: The bombers are dispersed evenly 
throughout the formation, in accordance with the user-prescribed bomber 
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percentage. This algorithm represents a potential dispersion plan which 
could be used in situations where it may be necessary to have bombers 
farther away from the base to stop enemies with long-range weapons. 

 

Figure 18.  Dispersed Bombers 

(7) Bomber Algorithm—Centered: The centered bomber algorithm focuses on 
keeping the bombers within a perimeter made up of seekers. As the user 
increases the percentage of bombers, more bombers will begin to appear 
along the periphery of the formation. This algorithm represents a potential 
dispersion which could be used in situations in which it may be better to 
have the bombing capability closer to the base itself to stop imminent 
threats. 
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Figure 19.  Centered Bombers 

(8) Time Before Enemies Appear (0–100 steps): This slide bar allows the user 
to define how many steps the drones should get to setup before the 
enemies spawn and begin their approach to the base. Depending on the 
model’s size, this value could be especially important because of the 
mortar’s relatively long range. If the enemies are allowed to advance 
immediately, it may result in mortars firing before drones are able to 
discover and engage or block them. 

3. Measures of Effectiveness 

To determine the success or failure of a defensive formation, I needed measures 

of effectiveness. In this model, I graded the defending UAVs on the following 

parameters: 

(1) Average Time of Discovery: The average number of time steps before a 
drone began tracking an enemy compared to when it could have been 
found (drones are not penalized for not finding an enemy that is on the 
grid but beyond the search perimeter). 

(2) Average Time to Eliminate: Once discovered, the average number of time 
steps required to then eliminate the threat. 
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(3) Unique Sniper Attacks: The number of unique snipers that were able to 
ingress and attack the base. 

(4) Unique Mortar Attacks: The number of unique mortars that were able to 
fire and damage the base. 

(5) Successful Attacks: The raw total number of attacks that enemies were 
able to successfully launch against the base. If a sniper is able to 
accomplish multiple attacks, I add each one to this total. 

(6) Blocked-Attack Percentage: The proportion of attacks stopped relative to 
the total number of Successful Attacks. 

(7) Enemies Stopped: The total number of enemy units that that the swarm 
prevented from making any successful attack on the base.  

(8) Enemies-Stopped Percentage: The total number of Enemies Stopped 
relative to the total number of enemies in the model. 

Each measure has its own importance; but the overwhelming objective for the 

drones is to stop attacks. Therefore, while all metrics have their own merit and relay 

some understanding about the effectiveness of a particular swarm size or algorithm, the 

ultimate goal is to protect the base and its personnel while developing a method to 

minimize the need for forces to go “outside the wire” to patrol the surrounding area. 

Therefore, though the blocked-attacks percentage metric is the truest measure of a 

successful defense, the enemies-stopped percentage value is also used to evaluate the 

swarm so as not to overly weight the success of a single sniper (capable of multiple 

“successful” attacks by itself) relative to the whole of the defense.  
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IV. ANALYSIS  

A. INITIAL ALGORITHM (SINGLE-RUN) TESTING 

Prior to running any batch jobs, I tested each algorithm to observe drone behavior 

and search for positive and negative aspects in the various defensive postures (algorithm 

combinations). Initial testing focused on identifying errors in drone dispersion (the C2 

process of setting up the initial positions for the swarm based on the patrol algorithm), 

determining appropriate model sizes, viewing interactive patterns of drones, ensuring the 

C2 element was appropriately reassigning bombers as new threats emerged, and checking 

enemy infiltration and exfiltration (for snipers) mechanics. Finally, the single-run tests 

helped me to eliminate the need for high-iteration batch analysis on a few of the 

algorithms, as I noticed some faults in operational application.  

1. Patrol Algorithm—Passive 

This plan did not survive first contact with the enemy. The Passive algorithm, in 

its current definition, was ineffective in almost every trial. The two primary issues with 

this defensive setup were that smaller swarms were not able to generate a large enough 

perimeter to stop mortars, and larger perimeters were prone to breaches, especially by 

snipers.  
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Figure 20.  Mortars Preparing to Fire from Outside the Perimeter 

The first issue is a major problem. While small swarms were generally ineffective 

regardless of the algorithm, the passive box had a distinct shortcoming in that there was 

no chance that a drone could intercept a mortar prior to firing because the box was 

generated well inside the mortar’s maximum shot distance. This alone proved fatal to the 

algorithm’s effectiveness, but additional detractors are worth mentioning in order to 

document improvements modelers should make in future developments.  

Snipers were able to move through the line fairly effectively because of their 

ability to mask themselves from drones. If a sniper was not discovered by the drone 

guarding the space he moved through, then it was unlikely that he would be discovered 

by the reserve drones (the 10% operating inside the perimeter) prior to attacking. In 

smaller swarms, there was too little time to discover the sniper once through the line 

whereas in larger ones, the area inside the perimeter was too great to be effectively 

covered by the remaining 10%.  
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Note the four untargeted mortars able to ingress through the perimeter in the east because 
other defending UAVs are tracking and targeting other mortars. Without sufficiently 
high-percentages of bombers, the drones operating in this type of algorithm were 
susceptible to this behavior. 

Figure 21.  Passive Box after Penetration 

Aside from their ability to sneak through, snipers also benefited heavily from the 

presence of UAVs or mortars. Both of those actors, faster than snipers, drew sub-swarms 

for tracking and engagement, which created holes in the perimeter. If the seekers were 

killed by either collision with an enemy UAV or from mortar fire, the hole became 

permanent and snipers could pass through with no chance of detection. 

Due to its numerous shortcomings, I elected to forgo batch-testing of this 

algorithm because it did not appear to stymie any noteworthy level of threat to the base. 

Despite its issues, however, this defensive concept should not be discounted entirely, as it 

is reasonably effective against widely dispersed or small (less than 10) numbers of 

enemies. As the drones are meant to support, and not supplant, current base defense 



 46

constructs, it may be acceptable for them to solely be used as an and early-warning 

system or interior defense against snipers while relying on counter-rocket, artillery, 

mortar (C-RAM)74 systems or other defensive measures for long-range threats. Remote 

bases may not have these measures though, so for them, designers would need to update 

the passive scheme.  

One could improve the passive algorithm by coding in limited search between 

grid squares in order to allow smaller swarm sizes to monitor a larger perimeter. While 

this allows the swarm to create a larger defensible zone, it also means that there may be a 

defined period of time that an enemy could exploit to move across an open area. 

Randomizing movement or having overlap between sectors could alleviate some ability 

for an enemy to simply time its movement, but this creates variability that could lead to 

excessive scanning of one area or larger swaths of open space as the drones attempt to 

scan along the perimeter. An additional option is to use the perimeter drones as a 

tripwire, of sorts, which trigger a reaction from the C2 element to send portions, or the 

entirety, of the reserve forces to the area of interest; this would leave the perimeter itself 

intact. The responding drones could setup in a block geometry and move as a singular 

unit to cover multiple grid squares during the same time before moving to the next logical 

location. By having a basic knowledge of an enemy’s speed and exact time of first 

identification, the responding drones would be able to develop a basic concept of where 

the enemy could be by the time they arrive in the area(s) of interest. 

2. Patrol Algorithm—Random 

While not a logical choice for actual base defense, I analyzed the random 

algorithm to create a baseline for comparison against the other two patrol schemes. 

Swarms executing this algorithm generally failed to locate mortars because drones did 

not move far enough away from the base prior to the mortar shooting. Snipers, 

conversely, were actually caught fairly often because the swarm tended to be quite dense 

                                                 
74 United States Army Acquisitions Support Center, “Counter-Rocket, Artillery, Mortar (C-RAM) 

Intercept Land-Based Phalanx Weapon System (LPWS),” http://asc.army.mil/web/portfolio-item/ms-c-
ram_lpws/.  
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(drone proximity to another) closer to the base. This provided more opportunities to 

locate them and since few or no bombs were used on mortars, bombers tended to be 

armed and nearby.  

 
Mortars preparing to fire and drones have discovered only one mortar (#10, in northwest) 
at step 60. 

Figure 22.  Random Dispersion and Search 

3. Patrol Algorithm—Grid  

Under the Grid patrol algorithm, the C2’s initial assignment of drones is based on 

mathematically dividing up the operational area (the maximum range plus the additional 

search area from each portion of the base) amongst the number of drones available for 

initial tasking (variable as to whether this includes bombers due to the user-settable 

parameter of having weaponized-drones airborne at the start of simulation). In testing 

(when combined with a “threat-based defense”), I found that while the C2’s initial 
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dispersal design was a grid (square), the drones quickly altered their formation by moving 

to a more optimized circular-shaped defense. Their logic, hard-coded to correct for being 

beyond the search range, led to drones returning to a closer “patrol point” (the assigned 

position that a drone uses as a reference to start its scan from) and limiting the amount of 

time it spends patrolling beyond the defined threat area.  

 

Figure 23.  Circular Dispersion Due to Enemy’s Threat Range 

While this behavior is appropriate and desirable (in the sense that drones are 

aware of and correct for inefficiencies), it does indicate that designers could make 

improvements to dispersion in future iterations. First, using a “search range” to define a 

patrol space may not even be desirable. A defending commander may also desire for the 

drones to check a rectangular area because he may be concerned with all threats within a 
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given border, or grid. As the U.S. military uses the military grid reference system75 for 

many of its operations, it may be more appropriate for the drones to be responsible for 

anything that happens within a particular cell. Additionally, there may be other 

operational considerations which require this type of dispersion. 

In real-world applications, and subsequent versions of this model, the option to 

define a non-traditional shape, or to allow the drones themselves to determine an 

appropriate spread based on what they encounter (mountains, cliffs, swamps, etc.) may be 

better alternatives. For this model, I deemed the repositioning of drones to be acceptable 

as it just reinforced small portions of the drone’s perimeter and did not lead to excessive 

overlap. This algorithm appeared to be effective, and was selected for batch testing.  

4. Bomber Algorithms—Dispersed and Centered 

Both the dispersed and centered bomber algorithms appeared to warrant batch 

analysis. Swarms seemed to target enemies appropriately and with similar effectiveness 

under both conditions. Initial observations suggested that the dispersed algorithm may be 

more effective at preserving swarm integrity because bombers were able to target mortars 

more quickly than those patrolling just in the center. This tended to increase survivability 

for seekers assigned along the exterior of the patrol area. The centered algorithm 

appeared to showcase a swarm readily able to quickly respond to snipers that had 

penetrated deep into the defensive region and were close to firing positions. 

                                                 
75 National Geospatial-Intelligence Agency, “Universal Grids and Grid Reference Systems, Version 

2.0.0,” 28 February 2014, http://earth-
info.nga.mil/GandG/update/coordsys/resources/NGA.STND.0037_2.0.0_GRIDS.pdf, 3–1 – 3–10. 
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The swarm identifies Mortar #2 (“M2”) in the southwest at step 40. Note that only the 
bomber that discovered the mortar and three other drones are dispatched by C2 to thwart 
this attacker. The C2 agent chooses the four closest entities to block the mortars shot but 
then recognizes that three of its blockers are bombers and does not task any further assets. 
This minimizes force allocation to this target and allows for more units to continue 
patrolling. 

Figure 24.  Grid Patrol with Dispersed Bombers 
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The swarm identifies Mortar #5 (“M5”) in the north at step 40. Note here that the seeker 
that discovered the mortar along with the three closest assets (two seekers and a bomber) 
are dispatched by C2 to block the mortar from shooting. Additionally, C2 then chooses 
two additional, the closest, bombers which are slightly farther away due to their centrally 
defined patrol positions.  

Figure 25.  Grid Patrol with Centered Bombers 

5. Threat-Based Defense 

Most of my testing was done with a 7.5-mile grid as this allowed for the enemies 

to begin their approach from beyond the drone patrol area (6.8 square miles due to the 

mortar threat) while not exacerbating how much time it took for individual and batch 

iterations to complete. Because the entire area was not significantly larger than what the 

defenders were already patrolling, selecting non-threat-based defense did not generate a 

significant change in how far the drones had to patrol. Therefore, I ran all batch tests with 

a threat-based defense. 
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6. Environmental Factors 

For the purposes of evaluation, I chose to only include trees in the batch 

processes, and not mountains. While both mountains and trees are generated using 

random numbers (based on the size of the model), some mountainous formations, namely 

ones where the range blocks all but one grid square in a quadrant, cause a substantial 

delay in how long it takes for the enemies to ingress (increasing the time needed to allow 

the model to run), and also funnel the enemies into one spot (Figure 26). This funneling, 

observed to some degree even with smaller mountain ranges, tended to lead to all 

enemies being eliminated since the defenders only had to prosecute one threat at a time 

instead of having multiple ones on a given side.  

 
While an extreme example, this picture represents the funneling features of a large 
(randomly generated) mountain range. Enemies along the west side must all ingress 
through the same single pass in the northwest. 

Figure 26.  Mountain-Range Funneling 
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Future modelers improving this program may desire to either change how the 

mountains are constructed, change enemy behavior in routing around them, or develop 

drone-swarm mechanics to discern “zero-threat” areas that do not require scanning. In 

principle, one could incorporate this behavior into dynamic formation geometry changes 

where the swarm is less reliant on positional assignment from the C2 element, and 

instead determines its own best geometry based on a distance from the base and 

maintaining some separation from fellow drones. A potential danger here is, whether 

determined by the defending commander or by the drones themselves, in deciding that an 

access corridor is not traversable, defenders forfeit the opportunity to control the terrain 

and invite their enemies to innovate a method of ingress.  

B. BATCH SIMULATION TESTING 

1. Control and Test Variables 

After eliminating the aforementioned algorithms, I used a batch-running process 

to iteratively test different scenarios in my model to help judge the significance of the 

remaining variables. In the batch process, as in most statistical modeling, an effective 

method is for modelers to hold some variables constant while varying others. In testing 

the Defensive Swarm model using the Mesa framework, I was able to define which of the 

user-defined parameters (see Chapter 3.D.2.b) would be “fixed” (constant) or “variable.” 

I constrained the parameters’ values in all simulations to be within the following fixed 

and variable distributions:  

a. Fixed Terms 

 Threat-Based Defense — On 

 Steps Before Enemies Appear — 25  

 Enemies — Snipers, Mortars, and UAVs 

 Trees — On 

 Mountains — Off 
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b. Independent Variables 

 Patrol Algorithm — Grid, Random 

 Bomber Algorithm — Dispersed, Centered 

 Initial Defending UAVs — 20 to 300 

 Percentage of Defending UAVs with Grenades (Bombers)—10 to 100 

 Bombers Aloft — On, Off (Yes, No) 

 Initial Snipers — 5 to 50 

 Initial Mortars — 5 to 50 

 Initial Enemy UAVs — 1 to 10 

2. Results 

I subjected the model to batch testing consisting of 78,580 iterations using 

combinations of the independent variables listed above. Overall, the drones operating 

under a grid-patrol algorithm were able to defend against 67.7% of attacks (Table 2). The 

two airborne-bomber algorithms (dispersed and centered) netted similar results with a 

defense-percentage average of 79.6%, but the version where the bombers had to launch 

from the ground (not allowed to be airborne before a swarm identifies a threat) to move 

towards an enemy was not as effective (44%). A swarm operating under the Random 

algorithm was able to stop a 45.4% of enemies, superior to the Ground algorithm, but 

surpassed the benchmark of blocking more than 95% of enemy attacks only once in 

19,645 iterations.  
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Table 2.   Results from Batch Simulations  

 

 

Bomber Algorithm “Ground,” set by when the user variable Bombers Airborne Before Threat is “Off,” means the bombers were not allowed to be 
airborne at the beginning of the simulation.
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f  

All iterations and algorithms. 

Figure 27.  Overall Swarm Performance  
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All iterations and algorithms. 

Figure 28.  Frequency of Percentage of Enemies Stopped before Attacking 

In the scatter plot (Figure 27), the three colors represent the different bomber 

percentages relative to the size of the swarm denoted on the horizontal axis. With the 

results depicted graphically, one sees how there is no consistent correlation between an 

increase in swarm size and the percentage of blocked attacks. While the graphic appears 

to show some uncertainty overall, one does note the lack of high percentages in swarms 

under 100 UAVs as well as a reduction in the frequency for low-percentage results in 

swarms with greater than 200 UAVs.  
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The histogram (Figure 28) displays the frequency at which the defensive swarm 

was able to achieve a particular overall enemies-stopped percentage (listed along the 

horizontal axis). This success-rate chart shows a high count for 90–100% but its relative 

peak height is somewhat dulled by the inclusion of the results from the random search 

and the ground-based bomber algorithms; both of those algorithms generally had less 

successful results than the directed ones. This also explains the lack of clarity from the 

scatter plot. In fact, in order to truly analyze the effectiveness of the swarm, one must 

derive subsets of the data. With subsets, one can analyze the particular algorithms 

themselves, determine strengths, tradeoffs, and deficiencies, and develop statistical 

models to assist with allocating swarm sizes to a real-world problem.  

a. Random Search 

I utilized the batch process to test the Random Search algorithm as a point of 

comparison for the directed search methods. As expected, this algorithm was ineffective 

throughout its trials. While not a viable method for defending a base, the swarm’s ability 

to block enemies did trend towards a normal distribution, albeit heavier-tailed on the 

lower half. In Figure 29, one notes not only the shape of the graph, but also the lack of 

results in the 95%–100% range (only one instance in all trials, 0.0051%). The random 

algorithm did not generate swarms able to effectively defend against mortars (4.5% 

stopped from attacking) and because mortars were present in all models (at least 7.7% of 

total enemies), the algorithm overall was unable to lead to successful defenses. 
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Figure 29.  Random Algorithm Results Distribution 

While a poor defensive algorithm, one may see the low “Steps from Find to 

Eliminate” value; a lower value than in many of the deliberate methods. This 

phenomenon occurs because the swarm density in the random algorithm tends to stay 

higher than the grid patrol algorithm as many drones fail to maneuver a substantial 

distance away from the base. Bombers, then, whether smaller or larger percentages of the 

total swarm, are more likely to be near an enemy since the enemy is often discovered 

very late in its ingress phase (close to the base). As observed in the single-run tests, 

snipers were then caught, and eliminated, at a relatively high rate because of the 

likelihood for multiple drones to observe them and be available for immediate targeting.  



 60

b. Grid Patrol with Centered, Dispersed, and Ground Bomber Algorithms 

The main objective of my batch analysis was to determine whether the centered or 

dispersed bomber algorithm was the most effective. Through 39,290 iterations, the drones 

operating with airborne bombers achieved an average stop-enemy percentage of 79.6% 

and achieved higher than 95% stops in a third of all trials. When user options relegated 

bombers to launch from the ground after enemy contact, the swarm still generally 

performed well in acquiring and stopping mortars, but due to the increased time for the 

bombers to travel to and eliminate an enemy far from the base, mortars tended to kill the 

exterior seekers that had found and were blocking its firing path. This action results in a 

successful block for the defenders, but creates two second-order problems. First, since 

there are fewer drones in the swarm (no reinforcements), it is less-likely that a sniper will 

be discovered. Second, since the swarm does not dynamically resize after a loss, if there 

was a second wave of enemies (not modeled), there would be fewer drones patrolling at 

the distance from which a mortar could shoot.  
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Figure 30.  Percentage of Enemies Stopped under Grid-Patrol Algorithms 

The Centered and Dispersed bomber methods achieved quite similar results. Their 

Steps to Acquire metrics should be exact, as there is no difference in the inherent search 

pattern, just where the bombers are in the formation. However, as discussed later, mortars 

have a higher likelihood of killing seekers in the centered bomber formations, which 

leads to an overall smaller swarm and could cause this deviation. The centrally-confined 

bombers are, however, likely the reason for the “Steps from Find to Eliminate” being 

slightly higher for that type of swarm. Bombers must travel farther to target enemies 

discovered early in the simulation and, logically, take longer to get to an enemy. 

Conversely, there should be ample bombers available to quickly target a sniper that has 

penetrated the defensive perimeter.  
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With the dispersed algorithm, if a bomber along the periphery of the formation 

uses its ammunition early in the simulation, it will RTB and rearm. The snipers move six-

times slower than drones, so often times, a bomber can attack a mortar, RTB, and re-

launch to arrive back in its patrol zone before a sniper can move through it completely 

(other drones also continue to patrol the bomber’s area during its absence due to designed 

overlap). While the centered-bomber algorithm will have more bombers to target a close-

in sniper, only one grenade is needed to kill the sniper, so the dispersed formation does 

not suffer a major loss in response time (if any). A lower response time for eliminating a 

target, is therefore likely an attribute of the dispersed swarm. One should note that the 

size of the defensive area could drastically affect the difference between response times 

for dispersed and centrally-located bombers, especially when the bomber fleet or overall 

swarm size is low in quantity. 

The values presented in Table 2, while comprehensive, are not fully 

representative of the effectiveness of swarms of a given size. To further refine the 

evaluation and to determine which combinations of swarm density and composition 

achieves the highest success rate, one must continue to split the statistics into more 

specific categories. This type of analysis is instructive in developing recommended 

courses of action for base commanders. 

In order to determine the correlation of an algorithm’s operation to effectiveness, 

I ran 36,000 iterations of the model using a constant set of parameters (24,000 of strictly 

grid-patrol algorithm models). While all iterations assist in overall modeling, in order to 

ascertain any relationship between various swarm sizes or algorithms, one must use a 

consistent set of variables to subject each type of swarm to the exact same testing. In 

Tables 3, 4, and 5, I show the differences in results between swarms of the two airborne-

bomber algorithms (blue, orange) and the ground algorithm (green).  

Previous testing indicated that swarms smaller than 140 UAVs rarely stopped 

50% of the enemies and virtually never achieved a 95%-success rate. Therefore, for this 

test, the smallest swarm consisted of 140 UAVs. While not likely to be successful in 

defense, the swarm’s performance at that size could lead to insight or provide a point of 

comparison for larger swarms. Bomber percentages ranged from 10% to 100% by 
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increments of 30%. Hence, in the tables, one sees the swarms divided by the number of 

UAVs, and then by bomber percentage. 
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Table 3.   Results from Simulations: Grid Patrol with Centered Bombers 
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Table 4.   Results from Simulations: Grid Patrol with Dispersed Bombers 
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Table 5.   Results from Simulations: Grid Patrol with Ground-Based Bombers 
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In Tables 3 and 4, one recognizes the nearly congruent rise of how many enemies 

are stopped relative to the swarm size regardless of the bomber algorithm. Swarms with 

220 UAVs and at least 40% bombers are able to deter 90% or more of the attackers. 

Minor variations between percentiles are possibly due to the random placement of 

enemies on the map, or the probabilistic nature of the agent interactions during the 

drones’ search and engagement profiles. This potential randomness is evident in the 

100% bomber-swarms, where there is no difference between the two airborne algorithms, 

yet they still have minor deviations in success percentages. What is striking, however, are 

a few statistics that have larger differences between the two algorithms. 

First, there appears to be a distinct advantage, at 10% bombers, for the dispersed 

swarms in their ability to defeat enemies quicker than the centered ones. If one discounts 

the ineffective 140-sized UAV swarms, a trend emerges where the dispersed-bomber 

swarms attack their targets 7–8 steps (105–120 seconds) faster than an equivalently sized 

centered-bomber swarm. Note, however, that with larger bomber percentages, this 

advantage disappears.  

Another finding is that all dispersed swarms with 70% bombers, and most with 

40% bombers, outperform their centered counterparts by values ranging from 5%–14% 

with regard to how many times the swarms stop greater than 95% of the attackers. Again, 

the overall effectiveness between the two algorithms is quite similar, indicating that 

across the range of simulations, they have similar performance characteristics. A curious 

outlier, is that in trials with the centered-bomber swarm with 260 UAVs and 10% 

bombers, it outperforms the dispersed variant by 11%. This could be an issue with the 

dispersed algorithm in that at this particular size, with so few bombers, that the bombers 

are simply patrolling too far away from base to quickly respond to snipers that have made 

it fairly close to the base before the drones discover them. More testing is necessary to 

see if this trend continues, or if this is an abnormality caused by random variation in the 

simulation (during either the centered or dispersed trials). 

Overall, the dispersed swarms’ ability to achieve higher counts of stopping more 

than 95% of enemies is potentially attributable to the previously mentioned concept that a 
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centered-bomber swarm suffers from losing exterior seekers during a successful blocking 

of a mortar. Unlike the dispersed swarm, which features drones returning to their patrol 

position after a mortar is bombed, the centered bombers lose some effectiveness along the 

perimeter once sub-swarms of seekers assigned to block the mortar tubes die during 

defensive operations. This problem is potentially more pronounced with middling 

numbers of bombers because swarms with only 10% bombers are somewhat equally 

likely to be unable to maneuver enough bombers to defeat larger numbers of mortars 

along the perimeter. The centered-bomber swarms stop the attack with seekers, while the 

dispersed ones appear to be able to bomb the mortars more quickly. This phenomenon 

also likely explains why the Steps to Acquire metric is so much higher (nearly double) in 

10%-bomber swarms than swarms of the same size but with higher bomber percentages.  

Thus, the dispersed-bombers obtain a slight advantage when bomber counts are in 

the 40%–70% range by having a higher likelihood of being able to quickly maneuver a 

team of bombers to attack a mortar before shooting. While more bombers will need to 

RTB to rearm, more seekers will remain alive and continuing to assist with the search. As 

the number of bombers increases beyond 70%, so does the distance that a bomber may be 

from a base in its assigned patrol position. Therefore, the two types of algorithms should 

achieve similar results at higher-bomber percentages and results should be equivalent 

once the entire formation consists of bombers.  

The results from the ground-based bomber simulations (Table 5) were not overly 

promising, but that is largely expected. I constructed this algorithm in order to study the 

potential usefulness of a swarm in situations where bombers could not be a part of the 

persistent, airborne-swarm. In Table 5, one sees an inverse relation between the 

percentage of bombers and the effectiveness of the swarm. This happens because as that 

percentage increases, more of the formation is confined to the runway awaiting orders. 

Therefore, the most applicable numbers from this table are from the 10%-bomber 

swarms. Although they were not as effective as the airborne variants, these data still 

demonstrate that these swarms could potentially be of use even with limited rules of 

operation. 
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3. Statistical Models 

I aggregated the results of the simulations and used them as an input into a 

statistical modeling script that I wrote using R, “a free software environment for 

statistical computing and graphics.”76 I formulated generalized-linear models to examine 

how the independent variables, or corresponding interactions amongst them, aligned with 

the successfulness of the defensive swarm. In these models, the dependent variable was 

the percentage of enemies the drones blocked from attacking, relative to the total number 

of possible attacks. 

I developed and tested over 30 different statistical models, but am reporting only 

the final four that best portray both swarm effectiveness and also the importance of 

individual variables. These models had statistically significant coefficients with 

substantive effects, and also had the lowest Akaike Information Criterion (AIC) scores, 

which indicate relative superiority to the other models given a particular dataset.77 To 

compare swarm effectiveness across the range of conditions, I developed two separate 

types of models.  

The first type of model compared swarms based on using all descriptor variables 

(initial drones, bomber percentage, initial mortars, etc.) but also applied relationship 

terms of Seeker Ratio and Bomber Ratio. Seeker Ratio is the number of seekers compared 

to the total number of enemies in the model. Bomber Ratio is similar, but the number of 

Enemy UAVs is not considered because, by design, a bomber does not target an Enemy 

UAV. The bomber ratio, therefore, is strictly the relationship of bombers to the enemies 

which maneuver on the ground. 

 

 

                                                 
76 The R Foundation, “The R Project for Statistical Computing,” https://www.r-project.org/about.html. 

77 Mike Christie, Andrew Cliffe, Philip Dawid, and Stephen S. Senn, eds, Simplicity, Complexity and 
Modelling (New York: John Wiley & Sons, Incorporated, 2011), ProQuest Ebook Central, 21–22. 
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The second type of model removes the ratio terms and instead attempts to gauge 

the importance of the interaction between the number, and type, of offensive and 

defensive units. This interactive modeling creates additional terms that are only 

applicable to the model in which the interaction occurs. As a result, in cases where either 

I stop using the first type of model, or use a different set of interactions, a blank space for 

that term appears in the statistical model table (Table 6). 

a. Statistical Model Description 

The four models presented here fall within the previously mentioned two 

categories of models. Models 1 and 2 use the ratio terms, while Models 3 and 4 utilize the 

interaction between offensive and defensive agents. Model 1 (m1) analyzes the basic 

combination of initial drones, mortars, snipers, Enemy UAVs, the percentage of bombers 

in the formation, as well as seeker and bomber ratios. Model 2 (m2) has the same 

variables but introduces an interactive term, (Defending UAVs :: Bomber %) which I 

refer to as the “Drone-Bomber” term; the value of this term is dependent on both values 

simultaneously, their interactive effect. In Model 3 (m3), I remove the ratio terms and the 

“Drone-Bomber” term and instead allow the interaction between defenders and enemies 

to account for that information. Model 3’s interaction, then, is between each defensive 

and offensive unit individually. Finally, Model 4 (m4) uses the same interactive 

methodology as Model 3, but I add the “Drone-Bomber” term back in, which then creates 

an additional set of interactions, those between the “Drone-Bomber” term and each of the 

enemy units.  
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Table 6.   Defensive Swarm Statistical Models 
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The results of the models show a high level of statistical significance (p < 0.01) 

for many variables in how they affect the percentage of blocked attacks. The notable 

exceptions are Bomber Percentage (m3, m4), Initial Snipers (m1, m2), Initial Enemy 

UAVs (all), Bomber Ratio (m2), and some of the interactive terms. While these terms are 

still part of the model, they are not statistically significant at even the p < 0.1 level.  

The statistical insignificance of the Bomber Percentage term in the last two 

models, and for Bomber Ratio in Model 2, is likely because the variable’s effect is 

accounted for by the interactive terms. In fact the only two variables which maintain a 

statistical significance (at least p < .05) throughout all models are Initial Defending UAVs 

and Initial Mortars (though Seeker Ratio is significant in each of the two models it 

appears in). The interaction between these two terms (m3, m4) is also deemed to be of 

high significance (p < 0.01).  

The absence of Initial Snipers from the list of statistically significant terms, in 

Models 1 and 2, is an unexpected finding. Still, there are possible explanations for this 

evident within the table itself. In those models, the two ratio terms include the number of 

snipers and it may be that mortars, significant on their own, are simply more dangerous to 

the base’s safety because of their range and the fact that they may destroy defending 

UAVs during the contest.  

The fact that the Enemy UAV term and any interactions involving it do not factor 

heavily into the model’s importance is due to the somewhat limited effect that Enemy 

UAVs themselves have in the scenario. While Enemy UAVs do not target the base or 

achieve successful attacks themselves, they do serve as another target for the drones to 

track. Any drone that is not in its patrol position presents an opportunity for increased-

ingress success for a sniper or mortar unit. Therefore, while the term is generally 

insignificant (one interactive term in m3 is significant at the p < 0.1 level) to these 

statistical models, further testing with higher volumes of UAVs could change the 

importance of the term, even without adding any more capability to the units within the 

Defensive Swarm agent-based model. 
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Otherwise, one sees a significant, positive correlation between the percentage of 

enemies stopped before attacking and an increase in Initial Defending UAVs or Bomber 

Percentage (including interactive) terms. Correspondingly, either the Initial Mortars or 

Initial Sniper term or a form interaction involving them have statistically significant, 

negative coefficient relationships with the likelihood of the swarm stopping attacks (more 

enemies trend towards more successful attacks and a poorer defense).  

Finally, one should observe the AIC scores for the various models. Models 1 and 

2 are the weakest. Models 3 and 4 score nearly identically, but the AIC method penalizes 

models for additional terms, which may account for the difference. Model 3 ultimately 

achieved the lowest (superior) score. However, both models, due to their statistically 

significant coefficients, merit further analysis.  

b. Analysis of Statistical Models 

To conduct a supplementary evaluation of Models 3 and 4, it is useful for one to 

analyze statistically significant variables using estimates of substantive effect sizes. I 

created visual regression plots that display the outcomes of the models with regard to the 

two airborne-bomber algorithms. The graphs, in Figures 31 and 32, depict the results of 

the parameters using the coefficients from Table 6. Along the vertical axis, one sees the 

resultant percentage of enemies the drones should stop before the adversaries could attack 

the base. The horizontal axis shows the number of Defending UAVs. Rather than a single 

line or scatter plot, I use four individually-colored lines to show the results of various 

bomber percentage levels relative to the total number of Defending UAVs. The red, 

green, blue, and purple lines represent the model’s results for a given UAV value paired 

with the distinct values listed in the legend for the percentage of bombers in the 

formation. 
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Figure 31.  Statistical Model of Grid Patrol with Centered Bombers 
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Figure 32.  Statistical Model of Grid Patrol with Dispersed Bombers 

The overall shape and slope of both graphs show that as the number of defending 

UAVs increase, so does the percentage of enemies the drones stop. By using the bomber 

percentage to differentiate the results, one can discern levels of effectiveness between 

various compositions of swarms. While slight, one should also visually distinguish the 

shaded area (a 95% confidence band) around each line. This shaded area is particularly 

noticeable at the left edge (Number of UAVs = 20) of the red and purple lines and 

illustrates an area of uncertainty; an area in which the model is less exact and has a 

broader range in which the results could exist. Here, the relatively small, and with 

minimally overlapping, bands indicate that the statistical model is generally unambiguous 

in its ability to determine a likely outcome for a given set of parameters. Additionally, it 
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appears to be more exact in its determinations at UAV values greater than 100 (the 

confidence band shrinks). 

Under closer scrutiny, one observes when there are fewer UAVs, instances of 

swarms with larger bomber numbers are able to perform slightly better. In smaller 

swarms, a greater bomber percentage can increase effectiveness by roughly 10%, but in 

larger swarms, it becomes less important to the overall result. As bombers can perform 

any action that a seeker does, it is sound to expect a sufficiently-sized swarm to be able to 

overcome having a small amount of seekers, since they mainly serve as a frontline 

defense against Enemy UAVs and as a blocking force overhead mortars that have not 

been attacked by bombers. Consequently, the swarms with the smallest number of 

Defending UAVs and bomber-percentage subsets suffer due to low density (increased 

coverage requirements per drone) and generally tally significantly lower defense 

percentages. 

When the bomber-force sizes are low (red lines), it becomes increasingly more 

important to have more seekers until the overall effectiveness begins to converge as 

swarm sizes approach 200 UAVs. There is a two-fold explanation for this. First, seekers 

have the ability to thwart a mortar attack without any support from bombers (via the 

hovering over muzzle technique). The C2 agent prioritizes sending bombers to target 

snipers, however, if the seekers find mortars prior to snipers, which is invariably the case 

due to the mortar’s faster speed, the C2 agent will send bombers to attack them as no 

higher-priority target exists.78 By eliminating the mortars with bombers, the overall 

health of the swarm is improved because there is no need to sacrifice any sub-swarm of 

seekers assigned to block mortars. Therefore, the second explanation is that with an 

increase in seekers, it is more likely that mortars will be discovered earlier, allowing for 

bombers to attack them before the mortars fire (aided by the C2’s prioritization function 

and subsequent reallocation of bomber assets). If successful, the swarm benefits from 

preserving more seekers to continue to search for other enemies.  

                                                 
78 The logic is that the seekers hovering above a mortar will stop the shell, while the seekers tracking 

the sniper cannot stop him from firing. 
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Otherwise, once a swarm is at or greater than 200 drones, the model suggests that 

they will score consistently in the 80–95% range, regardless of the number of bombers 

present in the formation. These data support the logic from the preceding paragraph in 

that at a certain size, the swarm simply patrols the area faster and more often. At 200 

drones, with bombers accounting for as little as 10% of the total swarm, the swarm can 

still obtain a defense percentage of 80%.  

When viewing the interactions from Model 3, using similar chart construction, but 

different variables, one better sees the impact of the different coefficients to the 

interaction terms listed in Table 6. The first graph of Figure 33 shows the interaction 

between the overall number of defending UAVs and the number of mortars. In it, one 

observes a similar shape to the previously displayed graphics. This is expected given the 

consistent statistical significance of the mortar term in all models and its seeming 

importance to the overall model. The second graph demonstrates the interaction of the 

bomber percentage term coupled with the number of mortars present in a model. This 

graph shows that a larger mortar force has a substantive effect on the overall result and it 

is most significant at lower bomber percentages. 

 

Figure 33.  Statistical Model of the Defending Swarm Paired 
with the Number of Mortars 
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When analyzing the same independent variables’ interaction with snipers (Figure 

34), once again one sees the same shape in the first graph, but this time not the individual 

lines. When snipers are paired with the bomber percentage term, a similar almost 

coincident line appears. These results indicate that though the sniper has an important 

effect on the overall percentage, that the unit’s effect is more consistent across the range 

of sniper force counts, as well as against various bomber fleets. 

  

Figure 34.  Statistical Model of the Defending Swarm Paired with the Number of Snipers 

Invariably, a higher swarm density after the mortars are killed or have fired is 

tantamount to stopping the snipers. Drone formations must be dense enough to patrol the 

area and get enough chances to find the furtive snipers. During this search period, the 

swarm benefits from the sniper’s long travel route towards the base and also the ease in 

which they can eliminate him due to his lack of armor. With the bombers only needing to 

successfully conduct one grenade strike (at probability of kill of 90%), if the swarm has 

more than a one-to-one ratio of grenades-available to snipers-remaining then it is very 

likely that the swarm can successfully finish defending in the scenario, provided it can 

locate the remaining threats. 
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4. Receiver Operating Characteristic  

A final way that I used to evaluate the defenders was utilizing a receiver operating 

characteristic (ROC) graph (Figure 35). A ROC graph depicts where the model correctly 

guessed the result (True Positive) compared to when it thought it should be positive, but 

then was wrong (False Positive). To set the binary nature of whether the prediction was 

correct, I set a threshold value of 95% success in stopping enemies before attacking, and 

ran separate logit regressions on this binary outcome, using the same independent 

variables and models as shown in Table 6. In this type of graph, better results have 

greater area-under-the-curve (AUC) scores, implying that they achieve a higher success 

rate in predictability. Therefore, with a higher AUC score, one can have more faith in the 

model’s reliability.  

 

Figure 35.  ROC Analysis 
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The ROC Analysis (Figure 35) shows that the four models yield a similar 

predictive capability (AUC scores were nearly identical with Model 4 obtaining the best 

score: m1, m2, m3 = 0.9332, m4 = 0.9336). This assessment enables one to state, that 

each of these models could correctly rank the probability of a successful outcome for a 

particular swarm, against a known amount of enemies, approximately 93% of the time. 

For base defense purposes, this means that a commander can work with his intelligence 

and operations staffs to determine what they believe is the most-dangerous and most-

likely threat. Once that is established, the staff can conduct risk assessments concerning 

the likely effectiveness of a swarm as the sole exterior defense. In low-threat 

environments, this may relegate the need for as many personnel patrolling beyond the 

base’s perimeter. If the threat-assessment is higher (more enemies are expected to be 

operating in vicinity of the base), a commander may need to increase force postures and 

the number of patrols, harden defensive fortifications at the base, request additional 

drones, or request reserve forces to help augment the base’s defensive posture. In 

addition, further refinements suggested in the next section should push the robustness of 

the overall defensive algorithms, and, accordingly, the corresponding new model’s 

accuracy.  
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V. CONCLUSION 

A. SIGNIFICANT FINDINGS 

1. Overall Usefulness of ABM 

This study demonstrated that ABM is an effective and efficient tool for modeling 

and analyzing how a swarm of drones could best support airfield defense. The ability to 

quickly change behaviors, parameters, and interaction variables makes for a protean 

modeling environment rich with possibility for both current and future studies. While 

substantial and significant updates to this model are possible, there are some baseline 

conclusions that one can draw from this effort. 

2. Are Swarms Effective? 

According to the results presented here, drone swarms can be an effective method 

of support to external base defense given the appropriate resources and underlying 

logistic architecture. This model intentionally severed the support that the swarm could 

receive from base personnel by not allowing it to pass key information such as known 

areas of interest, areas to avoid (increases swarm density by limiting operating area), and 

locations of suspects to investigate or current attackers. This type of support could greatly 

increase drone effectiveness. Conversely, the enemies in this model, though high in 

number, are also not optimized and a vigorous study of counter-UAS and advanced 

infiltration tactics for enemy actors is likely necessary to improve this model. 

3. Which Algorithm Should Defenders Use? 

With regard to the algorithms and enemies presented in this study, one can 

conclude that defensive swarms are best implemented in a grid patrol, with dispersed 

bomber, formation. This type of swarm provides the best acquisition time, find-to-

eliminate time, and also increases survivability for the drones themselves. Additionally, 

the grid-dispersed swarm is easily tailorable to longer-range threats and has closely-

defined coverage patterns once the swarm is in execution (as opposed to the rigidity of 
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the passive defense). Of note, if a commander is able to choose to use 100% armed 

UAVs, only the Grid Patrol portion of the algorithm is truly relevant. 

4. How Many Drones to Deploy 

Unfortunately for mission planners and base defenders, it does not appear that the 

number of enemies the best indicator for how many drones a base needed to deploy to 

ensure its protection, and a strict force-ratio calculation is not necessarily applicable to 

solving the problem. If there is only one sniper threatening a base, a swarm of 50 UAVs 

may still be unable to locate the lone enemy. Conversely, testing in this study shows that 

swarms of 220 UAVs are able to counter 100 enemies over 93% of the time. Knowing 

the number of enemies does not entirely drive the answer for how many drones are 

needed, but it does provide planners with the ability to project the successfulness of the 

defensive swarm.  

Instead of the number of enemies, it seems, rather, that success is based more on 

the concept of swarm density. This is evidenced by not only the general success of large 

formations, but even by those depleted of bombers. Formations with smaller-percentages 

of bombers still provided adequate protection in most cases once there were a sufficient 

number of UAVs patrolling the area. Therefore, the model implies that, in order to stop 

95% of threats, a potential value for the minimum swarm density is 5.62 drones per 

square mile, with at least 40% armed for defensive situations. I arrive at this number by 

analyzing outputs of multiple models and noting that swarms with bomber percentages 

below 40% will sometimes score well-below 95% in cases with many adversaries (80-

100 enemies). The swarms in this model operated in a 7.5 by 7.5-mile world, but only 

patrolled 6.8 by 6.8 miles of it based on the enemy’s maximum-threat capability (the 

mortar). Thus, the swarm patrols a 46.24 square-mile-search area. The results presented 

indicate that a swarm of 260 drones (with 40% bombers) should be capable of obtaining a 

95% protection rate (260 / 46.24 = 5.62) over this sized area. The resultant equation, is 

therefore Minimum Swarm Size = Operational Area * 5.62. However, because the model 

presented here did not consider variation in the size of the defended area, further research 
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is needed to determine whether this minimum density would be sufficient under 

alternative circumstances. 

B. CONSIDERATIONS AND RECOMMENDATIONS 

There are a multitude of directions future modelers and researchers could take 

with this study and underlying computer code. While this study focused exclusively on 

military applications, aerial search algorithms could be entirely applicable to areas of 

interest such as police operations (from riot control to traffic management), land surveys, 

agriculture, and search and rescue (on land or sea).  

1. Prolonged Time of Operations 

Future modelers should develop the model further with multiple engagements 

over prolonged periods of time, thereby testing the logistic requirements for how many 

drones need to be at an airfield to conduct a swarming defense. This model shows what 

sizes may be appropriate, but does not truly test the longevity of operations save for the 

refueling (changing batteries) and rearming logic. Furthermore, this addition to the model 

would test the C2’s ability to hand-off assignments during continuous operations. Finally, 

adding in multiple waves of enemies (reinforcements or new attacks) will likely 

illuminate new requirements for search, C2 assignment, and potentially new optimal 

geometries. 

2. Environment 

There are many important upgrades to the environment that modelers could 

implement in future versions of the model. I recommend expanded consideration of the 

following environmental factors: 

 Further subdivide all grid squares to increase realism on drone scanning 

times and whether they actually are on top of an enemy at the exact time 

of discovery.  

 Add roads and avenues for high-speed ingress (e.g., vehicle-borne 

improvised explosive devices).  
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 Further define the terrain to add more agents (dense woods, hills, caves, 

swamps, etc.). The enemies would then be affected with decreased 

visibility, increased or decreased mobility, or even be able to pass through 

some regions (like caves) completely undetected. The swarm must then be 

optimized to understand the exact terrain surrounding the base and 

understand that watching the entries and exits from these important terrain 

features is critical to area defense. 

3. Analysis of Deterrence Factors 

While this model analyzed the ability to kinetically defeat the opposition, it 

completely ignores any deterrent value a swarm may have concerning base defense. It is 

possible that some actors would be deterred by a persistent swarm guarding a base. 

However, no defense is impenetrable nor so daunting that dedicated actors would not 

innovate a way to continue their attack. Thus, the appropriate questions to ask may be 

what types of attacks will become less likely, and what type of attacks does a swarm 

enable?  

4. Ethical and Safety Concerns for Grenades Overhead 

Drones may physically fail, be shot down, or experience artificial-intelligence 

errors that lead to performing inappropriate actions. In these instances, how safe is it to 

have hundreds of, potentially armed, actors flying over friendly or non-combatant 

populations? This model focused on a remote outpost where there was limited concern 

over a drone failure due to the lack of civilian population near the base. In cases where 

there are more civilians, is it permissible to chance having armament on commercial-

grade hardware overhead civilians? More fundamentally, further research will be 

required to determine the appropriate engagement criteria for drones. 

5. Dynamic Swarm Resizing 

Future models should also account for dynamic swarm resizing, especially if 

modeling multiple waves of enemies or logistics. This can be as simple as increasing the 

search area for each drone based on how many are airborne (potentially highly 
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inefficient) or recalculating the appropriate grid dispersion. In recalculating, however, 

modelers must be aware that due to the continuously changing numbers of drones 

available for patrol (due to death, a need to RTB, or already assigned to a target), that 

reassigning drones to separate spots may lead to inefficiencies in swarm behavior. Drones 

on patrol could end up spending more time moving to their newly assigned locations and 

less time actively patrolling an area.  

6. Remove the C2 

It may be entirely beneficial, both to complexity and overall demand on computer 

hardware, to remove the C2 agent and allow the agents to solve the problems themselves. 

Although this behavior would be interesting, and potentially desirable, my analysis of the 

initial algorithms suggested that a central controller would be necessary to ensure that 

bombers were re-allocated based on threats, especially ones that may be outside of the 

communications range of a drone on the opposite side of the formation.  

For that problem, I considered using a relay amongst the drones but concluded 

there would be too many signals and instructions for the individual agents to 

continuously parse. However, as implemented, it is still complicated to monitor and 

assign everything with a central controller. A better solution may be to simply have the 

drones attempt to maintain a minimum or maximum distance from one another to create 

automatic expansions from and collapses towards the base as a swarm (though this could 

leave the perimeter exposed to incoming mortar or other long-range attacks). It is 

certainly a possibility to implement and a non-C2 solution may result in phenomena like 

the emergent properties discussed in chapter two. 

C. IMPACT ON SOF AND FUTURE APPLICATIONS 

The U.S. Special Operations Command is actively fielding drone technology that 

can support the warfighter. Versprille reports, “Everything is being considered - from a 

macro-sized unmanned aerial vehicle weighing 20 pounds or less, up to an MQ-9 sized 
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capability, which weighs 4,900 pounds without a payload.”79 Regardless of the chosen 

platform, the requirement for the vehicle to be “flexible, adaptable and proficient”80 

remains. For a UAV to truly support SOF operators, it must have similar characteristics 

to the force, and mission, it is assisting.  

Based on the analysis above, I would argue that small drones, ranging from palm 

sized to medium quad-copters (approximately 15–30 inches in diameter), can be the next 

iteration of organic ISR and limited strike. Engineers and designers could augment a 

drone’s inherent capability by adding an ability to link drones together into groups, or 

swarms. Singular drones, carrying a payload of a high-definition camera and a small 

weapon (grenade, shape-charge, etc.), or even a swarm working in concert, would 

provide SOF operators with a solution tailorable at the tactical level to support the team’s 

specific needs given a set mission, operating area, or other mission-related variables.  

In tactical situations, these small drones could work as forward ISR elements, 

base perimeter patrol and defense sentries, or as a new method of fires in kinetic fights. 

Advances in optics and wireless networking allow for smaller drones to conduct 

advanced surveillance and engagement profiles. Technologies, such as “Convolutional 

Neural Networks … allow UAVs to detect hundreds of object categories”81 and cloud-

computing infrastructure enable these drones to perform a vast array of tasks at an 

incredibly efficient and effective rate.82 Increases in small motor power and battery 

performance have also increased flight-dynamic envelopes, loiter time, and operational 

payload capacity. All of the aforementioned fields still expect significant growth in the 

next decade so one can assume a correlated rise in drone capabilities.  

                                                 
79 Allyson Versprille, “Affordable Surveillance a Priority for Special Operations,” National 

Defense, no. 746 (January 1, 2016), http://search.proquest.com/docview/1759029995/. 

80 Versprille, “Affordable Surveillance.” 

81 Jangwon Lee, Jingya Wang, David Crandall, Selma Šabanović, and Geoffrey Fox, “Real-Time, 
Cloud-Based Object Detection for Unmanned Aerial Vehicles.” Extracted from 2017 First IEEE 
International Conference on Robotic Computing (IRC), (Taichung, 2017), 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7926512&isnumber=7926477, 6. 

82 Lee et al., “Real-Time,” 1–7.  
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Combat operations will also benefit from the scalability of drones. A singular 

drone may be most appropriate to a small team’s operations, but in larger-scale conflicts, 

SOF forces should still benefit from the increased ISR, fires, and support functions that a 

swarm could deliver. Futurists postulate that “Swarms of low-priced, autonomous drones 

can operate in a hostile environment, because they can be collectively programmed to 

undertake all types of emergent behavior (search, swarm to attack, relay information, 

spook surveillance systems).”83 Thus, SOF forces may increasingly be able to get 

“effects” without having to rely on major theater assets. SOF teams using small drones 

will likely be able to get a particular effect without theater commanders worrying about 

losing an expensive asset in a heavily contested region or the team fearing being exposed 

by a larger air platform on a sensitive operation. 

For humanitarian or non-combat civil affairs missions, important distinctions may 

need to be made about the type of drones supporting the mission. During a UN mission in 

Africa, due to concern over whether the use of ISR drones would incite fear of airstrikes, 

“UN headquarters [referred to their assets as] Unarmed Unmanned Aerial Vehicles 

(UUAVs) and deliberately avoided the term drones.”84 Such a simple point of 

clarification may be essential and effective in humanitarian or peacekeeping support 

missions. However, it could be necessary to have altogether different equipment. Dorn 

and Webb believe, “According to the principle of ‘humanitarian space’, there should be a 

clear separation of physical aircraft by purpose, as mixing humanitarian and 

military/intelligence flights would be a ‘clear compromise of neutrality’, especially in 

missions where the UN is carrying out combat operations.”85 This same logic could be 

applied to U.S. forces operating unilaterally or as part of a coalition. 

                                                 
83 James J. Wirtz, “The ‘Terminator Conundrum’ and the Future of Drone Warfare,” Intelligence 

and National Security 32, no. 4 (June 7, 2017): 434, 
http://dx.doi.org.libproxy.nps.edu/10.1080/02684527.2017.1303127. 

84 A. Walter Dorn and Stewart Webb, “Eyes in the Sky for Peacekeeping: the Emergence of 
UAVs in UN Operations,” Intelligence and National Security 32, no. 4 (June 7, 2017): 413, 
http://dx.doi.org.libproxy.nps.edu/10.1080/02684527.2017.1303127. 

85 Dorn and Webb, “Eyes,” 415. 
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Outside of kinetic and ISR capabilities, swarms of drones could also act as a relay 

for secure beyond-line-of-sight (BLOS) communications. Jeoun writes, “A solution for 

the communication requirements to enable C2 is the utilization of mobile wireless 

networks with UAV relays to increase the effectiveness of a SOF unit.”86 Figure 36 

shows how a swarm of drones could support disparate elements utilizing a 

communication’s architecture supported by UAVs. A network like this could be 

preferable to using satellite communication in cases of limited bandwidth or an enemy 

jamming the low-power satellite link. 

 

Figure 36.  Network Operations Center (NOC) Communications Relay87 

Regardless of which mission drones are used for or how they are employed, it is 

important to recognize that drone technology is rapidly improving and will be present in 

(virtually) all foreseeable future operations. Additionally, artificial intelligence (AI), via 

computer learning and image recognition, will soon support these missions at 

exponentially greater magnitudes due to advances in computing power and networking. 

Wirtz discuses, “Field experimentation also has revealed that the performance of fully 

                                                 
86 Kristina S. Jeoun, “The Tactical Network Operations Communication Coordinator in Mobile 

UAV Networks,” (Naval Postgraduate School, 2004), 3. 

87 Exact image borrowed from: Jeoun, “Tactical Network,” 7. 
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autonomous drones will probably exceed the performance of their human-piloted 

counterparts in counter-terror missions.”88 With increased capability, the only remaining 

debate will be over ethical concerns of computer-directed hostile engagement, which may 

also soon subside as AI and robots become more integrated into mainstream society. 

Opponents will suggest that “Drones lack the endurance or the search aperture to 

acquire targets through random surveillance of some countryside and, instead, rely on a 

massive intelligence infrastructure to be vectored toward likely targets.”89 However, 

drones working in support of SOF do not need to cover as much terrain and will likely be 

used in more discreet or limited missions where there is a known target or smaller area of 

operations. Others will suggest that because an advanced drone like the MQ-9 is so 

costly,90 it is simply too expensive to procure enough assets to support each individual 

unit. This critique is valid but also emphasizes why the answer could be to procure small, 

cheap, disposable drones. A SOF team cannot employ an MQ-9 without a massive 

logistic footprint or additional personnel to physically operate and maintain the vehicle. 

This is too large of a requirement and often provides excessive capability or worse yet, 

may not be capable of supporting a small, covert action. 

Finally, the ability to conduct kinetic strikes from drones of any size does not 

create a ubiquitous solution. The success of SOF actions, “along with policymakers’ 

reliance on raids and drones, has encouraged a misperception of such actions as quick, 

easy solutions that allow Washington to avoid prolonged, messy wars.”91 The truth is far 

from it. One does not need to have mastered Arreguín-Toft’s theories92 to know that 

small kinetic attacks will not win over a populace, nor defeat insurgents or conventional 

forces. In the case of SOF, drones should be used in support of limited DA missions or as 

part of a defensive network while SOF forces establish “long-term relationships fostered 
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by the indirect approach [which generate] conduits for understanding and influence.”93 

The people are still an inextricable part of the mission.  

Ultimately, UAVs are certainly an important part of the future of air combat and 

support. “Technological developments will make drones fly faster, higher, for longer 

periods of time, and capable of carrying a variety of different payloads …. Drones are 

much cheaper than ordinary aircraft, both in purchase price and in maintenance.”94 Since 

the U.S. military leadership has already identified that UAVs can create a decisive 

advantage, it is incumbent on acquisitions personnel to work with operators to ensure that 

the right equipment is sought after, and not just the most capable. Being able to place 

hundreds of “capability-limited” drones out in defense of an airbase, to send a few out 

with each deployed SOF team, or simply allowing users to operate them without fear of 

reprisal should the units become damaged has potentially greater upside than getting a 

few top-tier UAV platforms. As the saying goes, “Quantity has a quality all its own.”95 
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APPENDIX.  PYTHON CODE EXPLANATIONS 

A. MODEL 

The Model file is where the specific base, environment, agents, and data 

collection are created. This file receives the inputs from the Server file and any updated 

User-Settable Parameters. Once created the Model creates a randomized order each step 

(time unit), and allows each agent to effectively have a turn to choose what it will do. The 

randomly-selected agents then accomplish their turn logic sequentially, and once all 

agents have chosen an action, the GUI is updated and the model moves to the next step. 

B. AGENT 

The Agent file is where the individual ABM logic is defined. Each type of agent 

in the simulation is coded into a distinct class. A class is a staple data-type of object-

oriented programming (OOP). I use class structures to define the attributes, states, and 

capabilities for any given type of agent (drones, mountains, command and control, 

snipers, etc.). This type of programming provides the designer with the ability to create 

multiple instances (each an “object”) of a Class which all have the same inherent 

attributes, but yet are distinct.  

Mesa provides basic Agent capabilities (create, add to schedule, know what is in 

the surrounding squares, its “neighborhood”). I created the “Operator” class to serve as 

the main parent class for many of the other classes; in OOP, the classes that use logic 

from a parent class are referred to as extensions or child classes. Here, Agent is 

Operator’s parent, and the specific actors in the model are all extensions of Operator. It 

provides common functionality for both protagonists (Base, Command and Control, 

Drone) and antagonists (Enemy, Sniper, Mortar, UAV). 

In the model, all drones, defined as seekers (no grenades) and bombers (those 

with grenades) are inherently the same, but individually have different states of available 

fuel or grenades based on what has happened to that particular instance of a drone. This is 

an essential piece of my design. Because of the structured class system in my code, it is 

incredibly simple to scale the number of actors in the model. Each specific instance of an 
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agent is created with a unique identification number (ID) so that my software can track 

which agents are currently performing certain actions. Mesa uses that same ID to ensure 

that each agent gets a turn on every step. 

C. SERVER 

I use the Server file to create the actual representation of the model. This is the 

graphical-user interface (GUI) that the user actually sees on her monitor.96 This file 

controls the specific depiction of all the different actors as well as defining what variables 

the model will collect and graph during execution. Finally, the Server file is where the 

initial conditions for all “User-Settable Parameters,” as Mesa calls them, are set. In a 

single-run instance, all of these variables can be changed once the model’s webpage is 

created (by running the model). The types of parameters include drop-down menus, 

switches, and sliders that allow the user to define the number of a particular object at the 

model’s outset.  

 

                                                 
96 Unless they use the “batch-run” process, which then provides no GUI. 
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These first two graphs appear below the gridded area depicting the interactions. The 
server file defines which variables to show in these real-time charts. The top graph shows 
the size of the drone force (black and green for seekers and bombers), and the enemy 
forces. The bottom graph depicts the presence of enemies along with the C2’s current 
awareness of threats that the drones are tracking or targeting. 

Figure 37.  Swarm and Enemy Forces  
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The final two graphs depict the current results of the simulation at the present step. The 
top graph shows the number of successful mortar and sniper attacks (red, black), as well 
as how many enemy UAVs were able to penetrate the base’s perimeter (orange). The 
bottom graph shows the number of enemies stopped by the swarm (green) and the 
number of unique mortar and sniper attacks (red and blue). 

Figure 38.  Real-Time Results Tracking 
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Figure 39.  User-Settable Parameters in Defensive-Swarm Model 
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