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ARO Final Report—Scientific Progress and Accomplishments 
Ryan C. Hayward, University of Massachusetts Amherst 

PECASE: Active Microstructured Polymer Systems 
Project Dates: 2/22/2011 – 2/21/2016  

 
 

The goal of this project has been to develop the materials chemistry and fundamental 
understanding needed to enable fabrication of new classes of micro-patterned polymer constructs 
containing stimuli-responsive elements that give rise to, for example, controlled shape morphing, 
motion, and adaptive material properties. As summarized below, the project was highly 
successful, leading to 13 peer-reviewed publications, including both primary research articles in 
high impact journals (Science, Angewandte Chemie International Edition, ACS Applied 
Materials & Interfaces) and two invited review papers (in Journal of Polymer Science B and 
Accounts of Chemical Research) describing work supported by this award alongside other 
important work in the field. We divide the progress made during this project into three major 
themes: (i) chemistry of photo-crosslinkable copolymer materials, (ii) geometry and mechanics 
of shape-morphing hydrogels, and (iii) continuously reprogrammable materials. 
 
Chemistry of photo-crosslinkable copolymer materials 

 
The first aim of our work has focused on 

the development of libraries of copolymers 
containing pendent benzophenone (BP) 
photo-crosslinkers, which can be excited to a 
triplet diradical state under UV irradiation 
and, under appropriate conditions, yield 
covalent crosslinking via hydrogen 
abstraction and radical coupling (Figure 1a). 
Although this basic photochemistry has long 
been known, and even applied to generate 
photo-crosslinkable polymer films, our 
fundamental studies shed new light on the 
mechanism of crosslinking and the 
dependence on the chemistry of the BP-
containing copolymer [1]. In particular, we 
established that the placement of highly 
abstractable hydrogen species (such as on 
tertiary or benzylic carbons, or those located 
alpha to ethers or amines) pendent to the 
copolymer chain, rather that on the polymer 
backbone, are essential for efficient 
crosslinking. Using this understanding, we have shown how a wide variety of materials can be 
effectively photo-patterned [1], including numerous examples of stimuli-responsive hydrogels, 
rigid (glassy) polymers, elastomers, and biodegradable polymers [2]. We further extended these 
studies to photografting of polymers to nanoparticles (NPs) bearing ligands with sites highly 
reactive to abstraction by triplet BP, yielding a simple approach to well-dispersed and photo-
crosslinkable polymer nanocomposites (Figure 1b) [3]. Finally, we used BP-containing photo-
crosslinkable hydrogel films, in concert with a newly developed method for measuring the elastic 
modulus of thin films through elasto-capillary bending, to correlate the degree of cosslinking 
with the modulus and swelling ratio of these materials [4]. This allowed us to verify the 

 
Figure 1. (a) UV-crosslinking of copolymers 
containing pendent BP moieties. (b) Schematic 
(left) of photo-patterning of a BP-containing 
film and optical micrograph (right) of a 
patterned film of a polymer nanocomposite 
containing gold NPs (scale bar: 300 µm). 
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previously untested prediction that the volumetric swelling ratio depends on crosslink density to 
the - 3/2 power in polyelectrolyte gels at low salt concentrations, in strong contrast to the much 
weaker -3/5 dependence for neutral gels, a key enabling feature in the use of these materials for 
shape-morphing hydrogels.  

 
Geometry and mechanics of shape-morphing hydrogels  
  

Enabled by this powerful material system of photo-crosslinkable BP-containing copolymers, 
we were able to develop a new paradigm for fabrication of shape-morphing materials and shed 
fundamental insight on the underlying geometry and mechanics. As the conversion of BP units to 
crosslinks depends on the dose of light received, it is straightforward to pattern the degree of 
crosslinking, and therefore the volumetric swelling of the resulting hydrogel, simply by exposing 
a polymer film to different doses in different regions. Since crosslinking is carried out in a 
polymer film (often in the glassy state), lateral diffusion is essentially negligible, leading to a 
spatial resolution that is limited only by the lithographic patterning process employed. As 
described in more detail in our review articles [5,6], and references therein, such lateral 
variations in swelling drive buckling of the initially planar sheet into curved 3D shapes. 
Critically, this provides a route to shapes with non-zero Gaussian curvature, i.e. having 
curvature along multiple directions at each point on the surface (like a sphere or a saddle). This is 
in stark contrast to strategies based on through-thickness variations in swelling, which generally 
yield only shapes that are locally cylindrical. This principle is well known in differential 
geometry (i.e., Gauss’s Theorema Egregium) and cartography (i.e., the distortion inherent to 
flattening the globe), and has been appreciated as a key mechanism in biological morphogenesis, 
but prior to our work, no methods existed for introducing truly 2D patterns of swelling in 
stimuli-responsive polymer films.    

In one approach, we use a maskless grayscale 
lithographic method, enabled by a digital 
micromirror array device connected to an inverted 
optical microscope (Figure 1b) to assign the UV 
dose received at each pixel to one of a large 
number of discretely spaced values (e.g., 256). 
Since the difference in swelling between each of 
the discrete levels is very small, and the spacing 
between pixels (1.4 µm) is similar to the optical 
resolution of the projection system, the resulting 
spatial distribution of swelling is smooth. This 
allows us to prepare precisely defined 3D shapes in 
a deterministic fashion based on the geometric 
correspondence between variations in swelling and 
Gaussian curvature, for example the spherical cap 
and 5-fold wrinkled surfaces shown in Figure 2a 
[7].  

Although quite powerful for defining 
controlled 3D shapes, this grayscale approach is 
likely to be challenging to scale to smaller 
dimensions and parallel fabrication. Thus, we also 
sought to understand how hydrogel films with 
discrete features, which can easily be prepared by 
conventional high-contrast (“black and white”) 
photolithography, as well as any number of other 

 
Figure 2. (a) Programmed shapes 
prepared by grayscale lithography. (b) 
Sheets with alternating stripe width w roll 
for large w but remain flat for small w 
(scale bar: 400 µm). (c) Programmed 
shapes prepared by halftone lithography. 
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patterning/printing methods across a wide range of length-scales. Previous to our work, however, 
there was little understanding of how a sharp in-plane discontinuity in swelling would drive 
deformation of a thin film. Thus, we first studied the simple case of sheets patterned with 
alternating parallel stripes of high- and low-swelling regions [8, 9]. Interestingly, we discovered 
that the sheets seek to roll around the axis perpendicular to the interfaces, yielding a ‘bottleneck’ 
shape around each interface that connects two (zero Gaussian curvature) cylinders of different 
sizes via a transition zone that contains both positive and negative Gaussian curvature (Figure 
2b). The sharp contrast in swelling favors a tight transition, but this also requires a small radius 
of curvature, which costs a large amount of bending energy. Thus, the system selects an 
intermediate value of curvature that depends on both the sheet thickness and the lateral 
dimensions of the stripes. Remarkably, for ribbons of hydrogel with sufficiently small in-plane 
dimensions and nominally homogeneous crosslinking, it is even possible to see this effect due to 
the swelling variations at each edge of the ribbon (defined by the lateral broadening introduced 
by the lithographic process) [10].      

While this picture works well for sufficiently thin sheets (or sufficiently wide stripes), it 
breaks down as the sheet thickness approaches the stripe dimensions, and instead the sheet 
becomes an anisotropic composite that swells unequally along the two in-plane directions, but 
remains globally flat (Figure 2b). At some level this transition is not surprising, as we know that 
embedding stiff fibers that are very small compared to the sheet thickness should provide a 
composite response. What is remarkable, however, is that the transition occurs when the 
characteristic spacing between stripes is still fairly large, roughly 5 times the film thickness in 
our experiments. Thus, even with a relatively low-resolution lithographic process and/or a 
relatively thin film, it is possible to prepare micro-patterned composites. Importantly, similar 
arguments apply equally well for two-dimensional swelling patterns, and indeed we found that 
for circular dots on a hexagonal lattice, the transition to a composite response occurred at a 
slightly larger multiple of the film thickness (≈ 8) [11]. Using this principle, we showed how a 
‘halftone’ lithography approach, requiring only two high-contrast photo-masks, could be used to 
effectively simulate smooth patterns in swelling simply by introducing spatial variations the size 
of highly crosslinked dots in a lightly crosslinked matrix (and therefore the local composite 
swelling response). Similar to the grayscale method, we were able to prepare a variety of 
precisely-targeted and non-zero Gaussian curvature shapes, including the nearly complete sphere 
and corrugated surface shown in Figure 2c [11, 12].  

 
Continuously reprogrammable materials 

 
A key limitation of the shape-

morphing materials described above, and 
nearly all other approaches in the field 
prior to our work, is that they can only 
access a continuous trajectory of shapes 
between the initial flat state and one (or 
sometime several closely related) target 
shape pre-programmed into the material. 
This informed the third major goal of the 
project, which was to develop a route to 
continuously reprogrammable materials. 
To achieve this goal, we designed a 
system of nanocomposite photo-
thermally responsive hydrogels based on 
poly(N-isopropyl acrylamide) copolymer networks containing embedded plasmonic gold NPs 

 
Figure 3. An initially planar (i) sheet of photo-
thermally addressable nanocomposite hydrogel is 
reversibly deformed into four qualitatively different 
shapes in sequence (ii – v) by shining spatially 
patterned light as denoted by the dotted boxes.  



	 4	

[13]. Local illumination of a thin sheet of composite gel with visible light leads to heating based 
on the surface plasmon absorption of the gold particles. Although the resulting temperature 
profile is broadened by thermal diffusion, this effect can easily be modeled and accounted for. 
Thus, by shining a time-varying pattern of light on the material, it is possible to continuously 
redefine the spatial temperature (and therefore swelling) profile, and thus the 3D shape adopted. 
The reliance on photo-thermal heating, rather than photochemical switching, provides rapid 
response kinetics for sufficiently thin sheets (limited by mass transfer of water into and out of the 
hydrogel) and a high degree of reversibility. In addition to allowing a single composite sheet to 
be shaped and reshaped into several qualitatively different shapes (Figure 3) designed according 
the principles described above, repeated sweeping of a band of light across the sheet was found 
to drive controlled locomotion.    
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