
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

ANALYSIS OF MISSION EFFECTIVENESS:
MODERN SYSTEM ARCHITECTURE TOOLS

FOR PROJECT DEVELOPERS

by

Thomas E. Moulds

December 2017

Thesis Advisor: Warren K Vaneman
Co-Advisor: Kristin M Giammarco

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
ANALYSIS OF MISSION EFFECTIVENESS: MODERN SYSTEM
ARCHITECTURE TOOLS FOR PROJECT DEVELOPERS

5. FUNDING NUMBERS

6. AUTHOR(S) Thomas E. Moulds

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Fail early, fail often, but ensure that when failure occurs, a learning period is part of the systems

development process. Understanding the reasons a system can fail during the development process is key
to maximizing mission effectiveness. Would it not be valuable to have a process that allows the designers
to recognize when a system is failing to meet the user’s requirements early in the development process?
Furthermore, would it not be useful for that process to be iterative, to allow the impacts of changes to be
seen in real-time, as the concept is defined and the system is designed? What would it be worth to have
the ability to accomplish this inside the engineering safety net of Model-Based Systems Engineering? This
research shows an alternative process to classic systems engineering and optimization analysis, where
system design decisions are statically and dynamically modeled in a Model-Based Systems Engineering
environment and “what if” types of changes are answered and analyzed using embedded simulation. This
research demonstrates the process with the use case of a highly relevant real world problem of countering
the threat of small commercial unmanned systems to the security of naval installations.

14. SUBJECT TERMS
Model-based system engineering, analysis of alternatives, concept Development, Simulation,
trade-space, system engineering

15. NUMBER OF
PAGES

103

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release. Distribution is unlimited.

ANALYSIS OF MISSION EFFECTIVENESS: MODERN SYSTEM
ARCHITECTURE TOOLS FOR PROJECT DEVELOPERS

Thomas E. Moulds
Civilian, Department of the Navy

B.S., Virginia Polytechnic Institute and State University, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
December 2017

Approved by: Dr. Warren K. Vaneman
Thesis Advisor

Dr. Kristin Giammarco
Co-Advisor

Dr. Ron Giachetti
Chair, Department of System Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Fail early, fail often, but ensure that when failure occurs, a learning period is part

of the systems development process. Understanding the reasons a system can fail during

the development process is key to maximizing mission effectiveness. Would it not be

valuable to have a process that allows the designers to recognize when a system is failing

to meet the user’s requirements early in the development process? Furthermore, would it

not be useful for that process to be iterative, to allow the impacts of changes to be seen in

real time, as the concept is defined and the system is designed? What would it be worth to

have the ability to accomplish this inside the engineering safety net of Model-Based

Systems Engineering? This research shows an alternative process to classic systems

engineering and optimization analysis, where system design decisions are statically and

dynamically modeled in a Model-Based Systems Engineering environment and “what if”

types of changes are answered and analyzed using embedded simulation. This research

demonstrates the process with the use case of a highly relevant real-world problem of

countering the threat of small commercial unmanned systems to the security of naval

installations.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..2

1. Real-World Problem ..3
2. Concept Development ..3
3. Systems Engineering ..4
4. System Modeling ..5
5. Model-Based Systems Engineering ..7
6. Operational Concept ..10

B. PROBLEM STATEMENT ...12
C. RESEARCH QUESTIONS ...12
D. OBJECTIVES ..14
E. OVERVIEW OF THE APPROACH ...14

1. Research ..14
2. Overview ...14
3. Tools ..15
4. Scope..15

F. ORGANIZATION ...16
G. CONCEPT DEVELOPMENT PROCESS ..16

1. Introduction ..16
2. AoA Guidance ..17

H. MODEL-BASED SYSTEMS ENGINEERING19
1. Similar Areas of Research ...21

II. METHODOLOGY ..25
A. GENERAL OVERVIEW ..25
B. DETAILED CHALLENGES ..25
C. MODELING METHODOLOGIES ...28
D. PROCESS TOOLS AND DEFINITIONS ...28

1. Modeling Languages ..28
2. Simulation ...32
3. Tools ..32
4. A Tailored MBSE Process Flow ...33
5. System Definition of Capability and Functionality...................34
6. Sub-system Definition with Action Flows35
7. Mission Analysis Phase with Integrated Simulation.................35
8. Assessment of Trade-Space with Simulation36
9. Recursive Refinement Based on Simulation Results36

 viii

10. Success-Oriented Exit Process ..37

III. COUNTER UNMANNED SYSTEMS CASE STUDY39
A. COUNTER UNMANNED SYSTEMS PROCESS USE CASE39

1. System Definition ...40
2. Sub-system Definition ..47
3. Create and Define the SV-4A Action View49
4. Mission Analysis ...52
5. Assessment ..57
6. Recursive Refinement ..61
7. Exit of Process ..61

B. ANALYSIS OF THE PROCESS ..61

IV. CONCLUSIONS/FUTURE WORK ..63
A. SUMMARY OF THE ANALYSIS ...63
B. CONCLUSIONS ..63
C. RECOMMENDATIONS FOR FUTURE WORK66

APPENDIX. C-UXS MODEL ..67

LIST OF REFERENCES ..75

INITIAL DISTRIBUTION LIST ...79

 ix

LIST OF FIGURES

Figure 1. The Systems Engineering Process. Source: Bahill (1998).4

Figure 2. Model-Centric Systems Engineering Process ..5

Figure 3. MBSE Definitization Cycle ...13

Figure 4. Conceptual Modeling Process and the Systems Development
Process. Source: Topper (2014, 421). ..21

Figure 5. UML and SysML Relationship. Source: Open Management Group
(2017). ..29

Figure 6. SysML Basic Unit of Structure ..30

Figure 7. Generic Tailored MBSE Process ...34

Figure 8. OV-1 C-UAS ...44

Figure 9. C-UxS Mission Area ..45

Figure 10. Initial CV-2 Snapshot ..46

Figure 11. Initial OV-5N Snapshot ...46

Figure 12. Decomposed CV-2 Snapshot ...48

Figure 13. Decomposed OV-5N Snapshot ..48

Figure 14. SV-4 Top Level Action Flow ..49

Figure 15. SV-4 Subset Radar Action Flow Decomposition50

Figure 16. SV-4 Subset Fuse Action Flow Decomposition ..51

Figure 17. SV-4 Subset Operator Action Flow Decomposition52

Figure 18. Discrete Event Simulation User input Blocks ...53

Figure 19. User Input Script ..53

Figure 20. Simulation User Input Block ...54

Figure 21. Threat Setup Script ..55

Figure 22. Radar Detection Script ...56

 x

Figure 23. Fuse Track’s Script ..56

Figure 24. Model Coverage in Simulation ..58

Figure 25. Model Results in Console Window ...58

Figure 26. CV-2: JCA-based capability view ...67

Figure 27. OV-5N: C-UxS Conduct Counter UxS Operations69

Figure 28. SV-4: Counter UxS Flow (Top Level View) ...69

Figure 29. SV-4: Counter UxS Flow (Radar View) ..70

Figure 30. SV-4: Counter UxS Flow (Electronic Emissions View)70

Figure 31. SV-4: Counter UxS Flow (Electro optic View) ...71

Figure 32. SV-4: Counter UxS Flow (Fuse View) ...72

Figure 33. SV-4: Counter UxS Flow (Operator View) ...73

 xi

LIST OF TABLES

Table 1. Mapping of SysML Diagrams to LML Diagrams and Entities.
Source: Vaneman (2016). ..31

Table 2. Example of Requirements and Performance Metrics35

Table 3. Viewpoint and Models Developed ...41

Table 4. Requirements and Performance Metrics ..43

Table 5. Initial Mission Values ..59

Table 6. First Phase Mission Effectiveness Results ...60

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AOA analysis of alternatives

AV all view

C-UxS counter unmanned system

CONUS continental United States

COTS commercial-off-the-shelf

CV capabilities view

DOD Department of Defense

DODAF Department of Defense Architecture Framework

DOTMLPF doctrine, organizations, training, materiel, leadership and
education, personnel and facilities

DRM design reference mission

EM electronic measures

EO electro optical

ICD initial capabilities document

IDEF0 integrated computer aided manufacturing definition

IT information technology

JCA Joint Capability Area

JCSFL Joint Common System Functional List

LML life-cycle modeling language

LSI Lead System Integrator

MBSE model-based systems engineering

NAVAIR U.S. Naval Air Systems Command

OCONUS outside the continental United States

OMG open management group

OPNAV Naval Operations

OV operational view

PDR preliminary design review

PEO-U&W Program Executive Office—Unmanned Aviation and Strike
Weapons

RCD rapid capability development

 xiv

RPED rapid prototyping engineering development

SME subject matter expert

SSoT single source of truth

SV system view

SysML system modeling language

UAS unmanned aerial system

UxS unmanned system (all)

UML unified modeling language

USV unmanned surface vessel

 xv

EXECUTIVE SUMMARY

All systems are designed for mission success, but many are delivered to the

customer with inherent and undiscovered design problems, limiting system effectiveness.

Understanding the reasons a system can fail during the development process, while time

remains to fix the issues, is key to maximizing mission effectiveness. In fact, possessing

an understanding of the reasons a system can fail is more important than understanding

how the system succeeds, particularly if a system can fail in a catastrophic manner. This

research demonstrates the means by which an iterative and interactive design process

allows the designers to recognize, early in the development process, a system’s failure to

meet the users’ requirements. This research illustrates the conduct of this design process

inside the engineering safety net of Model-Based Systems Engineering (MBSE). This

research presents an alternative process to classic systems engineering and optimization

analysis, in which system design decisions are statically and dynamically modeled in a

MBSE environment, and “what if” types of changes are answered and analyzed using

embedded simulation. This process is demonstrated in this research with a use case

involving a highly relevant real world problem of countering the threat of small

commercial unmanned systems to the security of naval installations.

Although requirements, assumptions, constraints, and stakeholders change and

evolve rapidly, the current Department of Defense (DOD) 5000.2 process does not allow

for periodic reassessment of the concept. This is the case even when the concept that was

initially determined to be viable by the analysis of alternatives (AoA) may not be so

when the program reaches preliminary design. With no AoA style reassessment built into

the process, even if a stakeholder’s initial request is developed, that developed product

may not meet the stakeholder’s true needs in the end. By embedding the assessment into

the system model, mission effectiveness is reassessed periodically against the design

baseline. In this way, corrections can be made earlier in the process, and the needed

change is discovered early. This may be viewed by some as requirements creep, but the

goal is to ensure that the requirements remain valid. To help guide this research, the

following questions were asked:

 xvi

 How can MBSE be used to forecast and investigate mission effectiveness,

caused by material and design limitations, to inform and influence the

early stages of the system design process?

 How can multiple runs of the simulation that vary the component level

effectiveness be used to determine overall system sensitivity once the

architectural model is complete with embedded mission effectivity

analysis?

 How can the results of the system sensitivity results and analysis be used

to optimize design and reliability requirements?

 How can one use sensitivity analysis techniques to adjust the project’s

path forward by having a continuous positive impact on the early stages of

the development process?

To demonstrate this process, updates were made to the U.S. Naval Air Systems

Command (NAVAIR) Counter Unmanned Aerial System (UAS) Architecture

Framework model using the MBSE tools. This modeling process with embedded

simulation offers clearer insight than classic fault analysis methods.

This study uses a MBSE tool to define the Counter UAS capability, functionality,

and integrated actions. The effectiveness of the actions are based on the component

capabilities and the interactions between these components as work flows through the

system and results in a positive or negative outcome. Based on multiple simulation runs

in which system input values are varied, predicted system performance is assessed. In

addition, the modeling engine embedded in the tool allows for scripting the decision

branches with additional randomized capabilities to varied path selection decisions based

on the range provided from user input. The user can vary the inputs in order to determine

the effectiveness of a model, and can automate variation to understand the sensitivity of

the model to the specific capabilities and grouping of capabilities. Areas found to be

highly sensitive can then be further investigated and optimized. For example, a counter-

unmanned system (C-UxS) may be highly sensitive to a very high-end radar, thus driving

cost and size, or it could have lower sensitivity, allowing for additional trade-space in the

mixing of multiple lower cost sensors. The goal for a specific site is to allow the selection

 xvii

of the correct combination of sensors to match cost with required mission effectiveness.

The assumption is that a solution that is optimal in one location may not be ideal for

another.

This research developed an MBSE process with embedded simulation that is used

to assess the mission effectiveness metric early in the process as well as throughout the

design lifecycle. A realistic, though truncated, use case for a C-UxS using the MBSE

process with simulation was provided by this research.

This use case is intended to demonstrate a process that can be leveraged for all

system development efforts. The actual MBSE process with integrated simulation for a

large development effort would be much more extensive with all the additional

capabilities, functionality, and action cases, to include the interactions between multiple

system effectiveness metrics target values. Additionally, the ability to use the single

source of truth with the built in simulation at any time in the lifecycle or a site-specific

instantiation of the C-UxS allows for continuous knowledge of the systems mission

effectiveness metric.

The use case analysis illustrates that, with just a static view, the developers’ initial

solution did not meet the stakeholders’ requirements. The knowledge gained by multiple

runs through the solution space via simulation helped guide the process to a successful

outcome. The interaction between sensors, fusion, and operator seem simple when looked

at statically, but the dynamic interactions are complex for even this simplistic use case.

For example, the initial three concept simulation runs did not meet the mission

effectiveness requirements, although they all appeared perfectly viable from a static

perspective. Therefore, a different focus was placed on system composition to create a

more balanced sensor suite that in turn allowed the design to meet the requirement.

Without the iterative dynamic analysis throughout the process, the stakeholders may have

had to settle on a non-optimized solution that too strongly favored a radar solution over a

balanced solution. The key for this research is not the numerical values determined to be

the feasible optimized solution, but the fact that the simulation-added knowledge allows

for a continual optimization process based on the MBSE process with embedded

simulation.

 xviii

This thesis provides a MBSE process with integrated simulation that allows

engineers the flexibility to try many times and fail early, so they can succeed in the long

term. Multiple designs can be quickly built, including some that have a higher risk to

reward ratio, and then the performance of each can be evaluated relative to the others.

The act of understanding the reasons that one solution is more effective than another

helps one build a greater understanding of the system. It also allows the designer a better

understanding of the possible sensitivity of a solution to a single technology. The process

defined above provides a framework to conduct the definition and design phase of system

development using a defined and iterative process built on previous MBSE development

research on developing large complex systems. This research and the enhanced MBSE

process helps in the development of future large, complex systems during system

definition and design phases by providing validation of the system model though

simulation and analysis. This research shows that the MBSE process is available in all

phases of the system lifecycle, as long as the model is maintained as part of the lifecycle

process. A general MBSE process with integrated simulation is defined and verified by

this research, and a representative C-UxS use case exercised the proposed process. This

allowed validation of the process, as a use case provides a clear example of how the

assessment provides a more effective overall product.

The discoveries of the related research, the enhancement to the current MBSE

process, and the example use case addressed many of the primary research questions that

were proposed. The objectives of the thesis effort are met with the development of the

MBSE process with embedded simulation and the C-UxS use case. The beneficiaries of

the research will be developers of large complex systems in dynamic environments who

are able to use the process as a function of fielding and maintaining an effort. The

multiple research questions are discussed below, with corresponding details identified for

each, based on the research.

1) How is MBSE used to forecast and investigate mission effectiveness,

caused by material and design limitations, to inform and influence the early stages of the

system design process? The question is addressed in two parts - the first is defining the

process of MBSE with embedded simulation, and the second is the use case, which

 xix

clearly shows the model being used in a relevant use case. The MBSE process with

embedded simulation provides a powerful framework for complex system development.

2) Once the architectural model is complete with an embedded mission

effectivity analysis, how can multiple runs of the simulation, with varying component

level effectiveness probabilities of design choices, be used to determine overall system

sensitivity? The question is addressed with the use case, specifically with the inputs of

the six runs shown in Table 2 and the results shown in Table 3. In the use case, the design

choices are the sensor mix and the capabilities selected from each sensor type. The

variation shows where the use cases are most sensitive. In this particular use case,

unbalanced systems perform poorly compared to balanced systems.

3) How can the results of the system sensitivity results and analysis be used

to optimize design and reliability requirements? This effort leveraged previous work by

Perez (2014), in which fault analysis is shown to be viable. This use case was based on

capability and cost, but an additional dimension of fault and reliability could have been

added based on past work and this research effort.

4) Based on the architectural model with the simulation, how can one-use

sensitivity analysis techniques to adjust the project’s path forward have a continuous

positive impact on the early stages of the development process? The recursive nature of

the defined MBSE process with embedded simulation takes what one knows and allows

for simulation of the unknown, in a representative environment. The varying inputs made

to the model clearly show in a relative manner the sensitivity of the input. Based on the

results of the simulation run, the path forward becomes relatively clear. The designer can

back out a negative change and try a different trade or continue to refine a positive

change. When progress stalls, one may have to make seemingly random changes, simply

to recognize the pattern of positive and negative effects and determine a new course of

action.

This thesis research provides a MBSE process with integrated simulation that

allows engineers the flexibility to test many solutions and fail early, allowing them to

 xx

succeed in the long term. The opportunity to fail without catastrophic concrescence is

truly a very powerful tool in system design.

 xxi

ACKNOWLEDGMENTS

A big thank you to my wife, Danielle Moulds, and to my family, for supporting

all my many days and nights of conducting my research.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Fail early, fail often, but ensure that when failure occurs, a learning period is part

of the systems development process. This learning period should take place in a timely

manner, such that time remains to fix the system before delivery to the customer. Most

agree that all systems are designed for mission success, but many are delivered to the

customer with inherent design problems, limiting the systems’ effectiveness.

Understanding the reasons a system can fail during the development process is key to

maximizing mission effectiveness. In fact, understanding system failure is more

important than understanding how the system succeeds, particularly if the system can fail

in a catastrophic manner. Would it not be valuable to have a process that allows the

designers to recognize when a system is failing to meet the user’s requirements early in

the development process? Furthermore, would it not be useful for that process to be

iterative, to allow the impacts of changes to be seen in real-time, as the concept is defined

and the system is designed? What would it be worth to have the ability to accomplish

this inside the engineering safety net of Model-Based Systems Engineering (MBSE)?

This research shows an alternative process to classic systems engineering and

optimization analysis, where system design decisions are statically and dynamically

modeled in a MBSE environment and “what if” types of changes are answered and

analyzed using embedded simulation. This research demonstrates the process with the use

case of a highly relevant real-world problem of countering the threat of small commercial

unmanned systems to the security of naval installations.

As systems have grown in size and complexity, classic systems engineering

methods and system optimization methods have become increasingly cumbersome and

ineffective. As an alternative to classic systems engineering and optimization analysis,

system and component responses can be statically and dynamically modeled in a MBSE

environment to gain an understanding of system effectiveness, similar to classic discrete

event simulation and fault analysis methods predicting system suitability. The results can

inform the system designer of key areas on which to focus effort to maximize system

effectiveness and minimize failure.

 2

Typically, system optimization for a DOD development program starts with the

analysis of alternatives (AoA) phase of the acquisition lifecycle. The AoA is conducted

by an independent team to help move a program from idea, sometimes known as concept

demonstrator, to a Program of Record. However, the AoA effort does not directly flow

into the development process, even when performed optimally by the subject matter

experts (SMEs) with the knowledge they possess at the time. Much of the AoA effort

ends when the AoA phase is complete, and key knowledge is lost. This research

demonstrates how moving MBSE techniques to the earliest phases of the lifecycle,

including the AoA and concept development phases, can facilitate a deeper understanding

of the problem statement and solution trade-space, while allowing the knowledge to be

carried over into the later development phases.

The supposition for this research is that optimizing solution trade-space needs to

be a continuous effort, similar to managing cost and schedule, and not performed only

during the AoA, but throughout the development lifecycle. If effort is initiated early on to

capture and automate the trade-space analysis process inside the core systems

engineering development tool, then, as assumptions, constraints, and capabilities evolve

over time, the development effort can adjust accordingly to provide the best value to the

customer.

To help understand how MBSE can be used as part of the AoA trade-space

analysis process and to continually re-look at the trade-space optimization, this research

builds a system model of an example Counter Unmanned System (C-UxS), adds scripts

for automated trade-space analysis, runs multiple simulations, and reports on the findings.

A. BACKGROUND

This background section establishes a common understanding on which this

research is based. First, to tie the process to actual use, a real-world problem is described

as the basis for a use case that exercises the defined process. This research builds on

previous topics of research such as concept development, systems engineering, systems

modeling, MBSE, and defining the use case’s operational concept, as expanded upon

 3

below. The process defined in Section 3 builds on previous research described in the

background and the related research sections.

1. Real-World Problem

In a world of low-cost unmanned aerial systems (UAS), such as the very

advanced DJI Phantom 4, which is available to terrorists on web stores with just one-

click and one thousand dollars, the threat of low cost commercial-off-the-shelf (COTS)

technologies for unmanned systems is a serious concern. Though the Phantom 4 is a

small UAS, this class of technology presents a multi-domain problem: air, surface, sea,

and ground, so one uses “UxS” as short hand for this considerable threat. Specifically,

there are numerous open source articles citing the use of commercial small UAS “out of

the box” and similar COTS technologies used in unmanned surface vessels (USV) as

improvised weapons. For this research, smaller sized COTS UAS, also known as Group

1, are modeled. The selection of small UAS is based on the significant challenges they

present. Small COTS UAS are difficult to defeat consistently due to the rapid

technological advancement cycle, their worldwide availability, and their small bird-like

profile. These improvised weapons can be used in congested airspace, which adds

complexity to detection and shortens engagement windows. Small COTS UAS may seem

almost toy-like, but the reality is that they can easily be turned into dangerous

autonomous weapons.

2. Concept Development

The systems engineering process is one of the principal methods used to achieve

the goals of product development, and serves as the basis for this research, which focuses

on the intersection between products and systems, and specifically on the intersection of

complex products and systems. The intent for the generic product development process is

to develop it in a manner that meets all of the stakeholder’s needs and is value-added to

the end user. In other words, the positive value is significantly greater than the negative

value, and the product is desirable in spite of some inherent risk in its use. For example,

cars or motorcycles can be involved in deadly accidents, but there is value in their

transportation features that overrides this risk.

 4

3. Systems Engineering

As defined by INCOSE, “Systems engineering is an important investment in the

development of products, and the higher complexity of a product, the better value of that

investment. As defined, systems engineering is an interdisciplinary approach and means

to enable the realization of successful systems” (INCOSE 2017). The key term in the

INCOSE definition is “successful,” and there are multiple processes, methods, and tasks

to help a development effort be successful. INCOSE further defines systems engineering

as:

Systems engineering is an engineering discipline whose responsibility is
creating and executing an interdisciplinary process to ensure that the
customer and stakeholder’s needs are satisfied in a high quality,
trustworthy, cost efficient and schedule compliant manner throughout a
system’s entire lifecycle. This process is usually comprised of the
following seven tasks: State the problem, investigate alternatives, model
the system, integrate, launch the system, assess performance, and re-
evaluate. These functions can be summarized with the acronym
SIMILAR: State, Investigate, Model, Integrate, Launch, Assess and Re-
evaluate. This Systems Engineering Process is shown in Figure 1. It is
important to note that the Systems Engineering Process is not sequential.
The functions are performed in a parallel and iterative manner. (INCOSE
2017)

Figure 1. The Systems Engineering Process. Source: Bahill (1998).

Relating the discussion above and the liner recursive systems engineering process,

the first and second tasks are the initial tasks of concept development. As shown in

Figure 1, the third task of the systems engineering process, Model the System, is the

primary emphasis for this research. It uses the model to allow for constant reevaluation of

Customer
Needs

State the
Problem

Investigate
Alternatives

Model the
System Integrate Launch

 the System Output

Re-evaluate Re-evaluate Re-evaluate Re-evaluate Re-evaluate

Assess
Performance

Re-evaluate

 5

the design solution compared to the alternatives. For static development efforts,

investment in building a model may not be required, but for dynamic efforts, it may be

essential.

4. System Modeling

An alternative view of this linear recursive Systems Engineering Process

definition, shown in Figure 2, provides additional emphasis on the modeling task. Model

the System now encompasses the processes from defining the need to launching the

system, which promotes the modeling from a sub-task in a linear process to a recursive

wrapper encompassing the primary steps of the systems engineering development

process.

Figure 2. Model-Centric Systems Engineering Process

As shown, this is the manner by which the systems engineering process is

transitioning from a linear process to a model-centric-based process. Now that the model

is proposed to be the heart of the system development process, it is important to

understand the “what and why” of modeling.

As stated above, the goal is to design an effective and desirable system. To reduce

the risk of creating a poor design, modeling allows the developers’ team a better

understanding of the system. According to Rumbaugh, the models are important to

accomplish the following:

 6

1. Capture and state requirements and domain knowledge so that all
stakeholders may understand them.

2. Think about the design of the system.

3. Capture design decisions in a mutable form separate from the
requirements.

4. Produce usable work products.

5. Organize, find, examine, filter, manipulate, and edit information
about large systems.

6. Explore several solutions operationally, economically, and
environmentally.

7. Master complex systems. (Rumbaugh 1999, 16–17)

Sussman (2000) also felt it is very important to good systems design to use

viewpoints modeling techniques to better understand complex systems, to interactively

experiment with different variations of the system, and to simulate the system in a

representative environment. Adding to these insights by Rumbaugh and Sussman, this

research expands the thought that models are also important to allow for efficient and

detailed exploration of engineering trade-space.

Expanding on Rumbaugh’s second point above, models positively influence the

thought process on the design of a system. The memorable graphical views and the large

amount of context that the right side of the brain can process and store are illustrated by

the colloquialism, “A picture is worth a thousand words” (Ramos 2012, 103). Personal

experience has shown that when one displays a spreadsheet with numerous values to a

large audience, one gets limited response (the left brain); however, if the material is a

graphical diagram, then there is an increase in audience response. Presenting an

interactive graphic for which audience members are able to suggest inputs can yield an

enthusiastic discussion that pushes design space (interaction between the right brain and

left brain). In addition, after a vigorous discussion, participants remember and ponder the

discussion and offer additional inputs long after the event. Also, if one can extend the

event into a process, then one thereby enhances the design process and insight of one

 7

team by capturing it into a single model for others to experience, rather than losing that

knowledge in a stovepipe work environment.

Merely modeling the system is not sufficient; all the developmental modeling

must be performed simultaneously in an integrated development environment. By

requiring the systems engineering team to use what some call a “Single Source of Truth”

or a “Single Version of Truth” while refining the system, reduces the chance of

incompatible changes that appear later during integration events. Both integrated

development environment concepts are defined as “Single Source of Truth” (SSoT).

Defined by Grealou, “SSoT is the practice of structuring information models and

associated schemata, such that every data element is stored exactly once” (Grealou 2016,

1). From a development perspective, at an engineering level, this means that engineering

artifacts only have one instance, in the relevant master system, following a specific

process or set of processes. “SVoT enables greater data accuracy, uniqueness, timeliness,

alignment, etc.” (Grealou 2016, 1) The concept of SSoT for a development effort is

extremely powerful, as there are currently many various disconnected models used for

analysis of alternatives, tracking critical capabilities, and design development, allowing

multiple incompatible versions of the truth to exist. For example, based on additional

constraints imposed mid-development, design trades that were true during the analysis of

alternatives modeling efforts, may not be true at this later stage. Additionally, if the

model used for analysis of alternatives was not maintained past that initial portion of the

design phase, the details of why a design trade was true at that time, but not true at the

latter stage, are now lost. As a result, sub-optimal trades introduced to the system during

the AoA could potentially persist into the design phase.

5. Model-Based Systems Engineering

As shown in Figure 2, a growing approach in systems engineering involves basing

the systems engineering process on the model itself, and removing the need for paper-

based documentation. This is the emergence of MBSE as the primary framework for

complex system development. As defined by Vaneman (2017a, 5), “MBSE is the

formalized application of modeling (both static and dynamic) to support systems design

 8

and analysis, throughout all phases of the system lifecycle, through the collection of

modeling languages, structure, Model-Based processes, and presentation frameworks

used to support the discipline of systems engineering in a ‘Model-Based’ or ‘model-

driven’ context.”

The four tenets of this definition, according to OMG (2012) are as follows.

 Modeling Languages—Serves as the basis of tools, and enables the
development of system models. Modeling languages are based on a
logical construct (visual representation) and/or an ontology. An
ontology is a collection of standardized, defined terms and
concepts and the relationships among the terms and concepts (Dam
2015).

 Structure—Defines the relationships between the system’s entities.
These structures allow for the emergence of system behaviors and
performance characterizations within the model.

 Model-Based Processes—Provides the analytical framework to
conduct the analysis of the system virtually defined in the model.
The Model-Based processes may be traditional systems
engineering processes such as requirements management, risk
management, or analytical methods such as discrete event
simulation, systems dynamics modeling, and dynamic
programming.

 Presentation Frameworks—Provides the framework for the logical
constructs of the system data in visualization models that are
appropriate for the given stakeholders. These visualization models
take the form of traditional systems engineering models. These
individual models are often grouped into frameworks that provide
the standard views and descriptions of the models, and the standard
data structure of architecture models. The Department of Defense
Architecture Framework (DODAF) and the Zachman Framework
are examples of frameworks that may be encountered. (OMG,
2012)

This research effort uses MBSE techniques to focus on the “model the conceptual

system” phase of the program while fully understanding that the intent of the modeling

effort is to show relevance to the complete lifecycle of a system, not merely to illustrate

the concept development phase. Modeling is performed early in the development process

to refine the problem statement and support the AoA process in an iterative manner until

a viable design solution is agreed on by the stakeholders and end users. The power of

 9

MBSE of complex systems is the investment in building a detailed model early in the

concept development process to continue to provide value throughout the system’s entire

lifecycle through the disposal phase. This research, as stated above, focuses on modeling

the system in a manner by which the model can be leveraged to drive the decision-

making process during concept development. This requires a discussion about specifics

on modeling the system.

Model the system: Models will be developed for most alternative designs.
The model views for the preferred alternative will be expanded and used
to help manage the system throughout its entire lifecycle. Many types of
system models are used, such as physical analogs, analytic equations, state
machines, block diagrams, functional flow diagrams, object-oriented
models, computer simulations, and mental models. Systems Engineering is
responsible for creating a product, in this case a complex system, and also
for the process to produce it. So, models should be constructed for both
the product and the process. Process models allow us, for example, to
study scheduling changes, create dynamic PERT charts and perform
sensitivity analyses to show the effects of delaying or accelerating certain
subprojects. Running the process models reveals bottlenecks and
fragmented activities, reduces cost and exposes duplication of effort.
Product models help explain the system, and are used in tradeoff studies
and risk management. As previously stated, the Systems Engineering
Process is not sequential: it is parallel and iterative. This is another
example: models must be created before alternatives can be investigated.
(Bahill 2009, 2–3)

As an important part of MBSE different views, the concept of risk-informed

design plays a large role during concept development. In fact, DOD 5000.2 forces the

program manager to address risk as part of the AoA. The original intent of risk-informed

design, as initially defined by the National Aeronautics and Space Administration

(NASA), is to make informed design trades in order to continuously reduce risk to the

crew and the mission, but this technique has been expanded to describe risk inside a

MBSE approach (Moulds 2016).

The goal for both risk management and system architecting is to limit the number

and effect of unknowns causing failures during the system’s lifecycle. Management of

what you know and what you do not know helps limit the chance that uncertainty drives

the process and goals of development (Antunes 2015). “To people who lived centuries

 10

ago, risk was simply the inevitable nature of chance; an occurrence beyond the realm of

human control” (Mun 2015, 25). Today, with the use of modern MBSE methods, all areas

that impact mission effectiveness can be discovered and mitigated early in the lifecycle of

a system. In terms of system development, if the “hard stuff” is deferred, then the residual

risk does not change, leaving a high risk of failure, or at least uncertain, to the very end

(Maier 2009). For the purpose of this research, ineffective solutions, risks, faults,

reliability issues and failures affecting mission performance are synonymous and

represented in the model in a uniform manner. This means that one should first focus on

correcting components and processes that have the greatest impact on mission

effectiveness in order to have the greatest return on investment. This paper describes how

the use of classic methods inside a modern system architecture modeling tool help in

discovering, understanding, and documenting issues early enough in the program, thus

optimizing resources and maximizing the impact on the development program. Engineers

often aim to solve the exciting problems first, delaying resolution for the more mundane,

yet relevant (and potentially costly), ones.

6. Operational Concept

To start the development process, the DOD has generated multiple urgent need

statements and has purchased several COTS products for concept demonstration.

Additionally, the DOD has hosted numerous events, such as Black Dart, where a live

exercise environment allows developers to test their C-UxS technologies against live

systems. The Design Reference Mission (DRM) has not selected any specific operational

concept, but rather elected to develop a generic framework for C-UxS. This generic

framework covers the entire kill chain of find, fix, track, target, engage, and assess, but it

does not identify any particular technology. The operational requirement is to develop a

solution to deter or defeat the representative UxS before they can enter the restricted zone

as defined by the end user.

The concept and the architecture is based on the kill chain defined above, but

segregated so a technology in one sub-domain is not so tightly coupled with a technology

in a separate sub-domain that the solution becomes vendor locked.

 11

1. Find: This sub-domain is normally the trigger when the process transitions

from a system waiting for an occurrence to one that is actively processing

an event. The sub-domain has numerous names, such as detect, battlespace

awareness, collection capability, and the sense function.

2. Fix: This sub-domain is the transition between a raw detection and an

establish track. The sub-domain has numerous names, such as classify,

process exploitation capability, and performs tracking functions such as

form track, fuse track measurements, correlate tracks, and associate tracks.

3. Track: This sub-domain is the monitoring phase in which a detection event

meets a minimum criteria such that it should be monitored and persist in

the system. This sub-domain covers the transition from the battle space

awareness capability to the command and control capability, and

completes the perform tracking functionality started on the Fix sub-

domain described in item 2.

4. Target: This sub-domain is primarily the classic decision loop. A track is

evaluated based on risk, and when the risk reaches a defined threshold, an

appropriate course of action is selected. This is part of the decision or the

control part of the command and control capability and the decision part of

the mission execution functionality.

5. Engage: This sub-domain is one of the easier ones to understand and

describe. It is part of the force application capability and the perform

engagement group.

6. Assess: This sub-domain is the final step of the active process in which all

knowledge from the event is stored and analyzed. This sub-domain also

completes the transition from active process back to the waiting phase.

This is part of the Understand Command and Control capability and the

mission analysis functionality.

Other capabilities that are part of this DRM, but not explicitly part of the kill-

chain are force support, logistics, communications and computers, protection, corporate

 12

management and support, and interactions with the UxS. Similarly, other functionalities

that are also part of the DRM are mission planning, enterprise IT, and network

infrastructure.

From an implementation perspective, the C-UxS is composed of multiple

interconnected capacities that either together or alone provide the required functionality,

and as an integrated system provide the required capability. The government has the

additional requirement to “own the middle” so a solution does not create a vendor

monopoly, but at the same time allows for proprietary functionality for find and engage.

In addition, other functionalities such as fusion, which technically “lives in the middle,”

can also be proprietary, but still be subject to change by the Government Lead System

Integrator (LSI).

B. PROBLEM STATEMENT

Requirements, assumptions, constraints, and stakeholders change and evolve

rapidly, but the current DOD 5000.2 process does not allow for periodic reassessment of

the concept, even when the concept that was initially viable as part of the AoA may no

longer be viable when the program gets to preliminary design. Because of this lack of

easy reassessment built into the process, many times the initial request is developed, but

in the end it is not the solution that is needed. By imbedding the assessment into the

system model, mission effectiveness can be reassessed periodically against the design

baseline. In this way, corrections can be made earlier in the process, as early as the

change in the need is discovered. Some would call this requirements creep, but the goal is

to ensure that the requirements are valid.

C. RESEARCH QUESTIONS

 How can MBSE be used to forecast and investigate mission effectiveness,

caused by material and design limitations, to inform and influence the

early stages of the system design process?

 How can multiple runs of the simulation with varied component level

effectiveness probabilities of design choices be used to determine overall

 13

system sensitivity once the architectural model is complete with embedded

mission effectivity analysis?

 How can the results of the system sensitivity results and analysis be used

to optimize design and reliability requirements?

 How can one use sensitivity analysis techniques to adjust the project’s

path forward by having a continuous positive impact on the early stages of

the development process?

As depicted in Figure 3, early in the development of a complex system, the

process presents the development team seemingly limitless possibilities with unknown

correlation with mission effectiveness. The AoA process uses modeling and simulation

linked to appropriate metrics to help the team understand cause and effect, but this

process typically does not continue past the AoA stage.

Figure 3. MBSE Definitization Cycle

This research examines whether the “what if” portion of the AoA process can be

embedded into the system modeling process. The premise is that once embedded, it can

persist throughout the system lifecycle, allowing consistent “what if” questions to be

posed again as the system is refined and constrained. The architectural model provides

 14

both a common knowledge base of the system along with embedded integrity checking

and mission effective analysis.

D. OBJECTIVES

The objective of this research is to define an MBSE process that ensures that trade-space

can be evaluated continuously throughout the lifecycle of a system. This process is based

on existing MBSE research and current U.S. Navy engineering practices. Without a

complete, repeatable, and embedded method of re-evaluating trade-space, the

development effort could result in a sub-optimal design. This makes the real world

problem and resulting research a critical process to define and demonstrate.

E. OVERVIEW OF THE APPROACH

1. Research

This research examines the means to merge the AoA modeling process with

MBSE developmental and lifecycle processes to capture and expand the “what if”

process of concept development. Often the AoA is based on one set of constraints or one

view of an ideal system, but shortly after development starts, a new set of constraints

emerges. The process compensates, but not necessarily with the same information

(model) the AoA used, allowing for sub-optimization of the designed solution. The

premise is that if the AoA and the following development process are based on the

common model, then, when constraints are added, the effect of the constraints are shown

as a function or routine model analysis.

To demonstrate this process, updates are made to the model of the NAVAIR

Counter UAS Architecture Framework using the Innoslate MBSE tools. This modeling

process with embedded simulation offers insights that are not revealed by classic fault

analysis methods.

2. Overview

This study used the MBSE tool to define the Counter UAS capability,

functionality, and integrated actions. The effectiveness of the actions are based on the

 15

component capabilities and the interactions between these components as work flows

through the system and results in a positive or negative result. Based on multiple

simulation runs during which system input values are randomly varied, predicted system

performance is assessed. In addition, the modeling engine embedded in the tool allows

for scripting the decision branches with additional randomized capabilities to varied path

selection decisions based on the range provided from user input. The user can vary the

model inputs to view their impact on the outputs in order to understand the sensitivity of

the model to specific capabilities and grouping of capabilities. Areas that are found to be

highly sensitive can then be further investigated and optimized. For example, a C-UxS

system may be highly sensitive to a very high-end radar, thus driving cost and size, or it

could have lower sensitivity allowing for additional trade-space in the mixing of multiple

lower cost sensors. The goal for a specific site is to enable the selection of the correct

combination of sensors to match cost with required mission effectiveness. The

assumption is that a solution that is optimal in one location may not be ideal for another.

3. Tools

The goal of the effort is to perform both the AoA and the system definition inside

a MBSE tool. For this effort, a MBSE tool that supports modeling, scripting flow, and

simulation is used.

4. Scope

While the concept and understanding of predicting mission effectiveness is almost

limitless, this paper focus on the idea that model-based methods currently used to define

a system as part of development, can also be used to address mission effectiveness

analysis and system sensitivity to specific component capabilities. The simulation effort

is limited to the current capability of the MBSE tool. The classes of the sensors are

limited to three and the fusion engine is rule based. The use of a single tool with a single

example system to demonstrate feasibility limits the scope of the effort to a manageable

level, but does not attempt a complete proof of equivalence. In addition, the following

assumptions guided the development of the example C-UxS model:

 16

(1) UxS will become smaller, cheaper, and more capable as technology
evolves; proliferation will increase as UxS become more capable and less
expensive, related new technologies will emerge/evolve that enhance UxS
operations. (2) Future decisions will provide adequate resources and
organizational structure to support C-UxS capabilities development. (3)
Current and future capabilities, to include surface-to-air systems, air-to-air
systems, Command and Control Systems, are adequate to deal with large
UAS. (4) The cyber domain and electromagnetic spectrum will be more
contested in the future. (5) Adversaries will challenge the United States in
these areas due to evolving technology and proliferation. (Army 2016)

The model expands on cross-domain solutions where it makes sense, recognizing

that the C-UxS mission set exists in every domain, not only in the air. The full DRM is on

request for the C-UxS real-world problem.

F. ORGANIZATION

Chapter I of this research provides background for the challenge and defines the

research questions and overview. Chapter II provides a detailed walk through of complex

system development research in systems engineering, MBSE, and related use of MBSE

tools for informing development efforts based on risk informed decision making. Chapter

III presents the tools selected, the model development, model analysis, and key decisions

to make based on the process. The goal of this chapter is to illustrate to the reader the

process so one can re-use it, but it also demonstrates the process with a simple example

of a generic C-UxS system. Chapter IV reveals the conclusions and provides

recommendations for further research. Complete views of the C-UxS Use Case Model are

provided in the Appendix.

G. CONCEPT DEVELOPMENT PROCESS

1. Introduction

A key part of the development process is concept generation, as reflected in both

commercial best practices and in the DOD 5000.2 acquisition process. As defined by

Ulrich, “A product concept is an approximate description of the technology, working

principles, and form of the product. It is a concise description of how a product satisfies

the customer needs. A concept is usually expressed as a sketch or as a rough, three-

 17

dimensional model and is often accompanied by a brief technical description. The degree

to which a product satisfies customers and can be successfully commercialized depends

to a large measure on the quality of the underlying concept” (Ulrich 2012, 118). Ulrich

also re-enforces the heuristic that “a good concept is sometimes poorly implemented in

subsequent development process resulting in a commercial failure, but a poor concept can

rarely be manipulated to achieve commercial success” (Ulrich, 2012, 118). The exception

to this heuristic is that, at times, the DOD manipulates poor concepts into operational

systems, or adds constraints on the process later in the design phase that cause an

effective concept to morph into an ineffective one. A continual lack of insight does not

allow the potential path to failure to be known until it is too late. Ulrich concludes, “The

development of a non-optimal concept is unfortunate because good concept generation

leaves the team with confidence that the full space of alternatives has been explored”

(Ulrich 2012, 219). Typically, a model of the system is not developed during concept

development, but if modeling can be part of the process, than knowledge gained in

concept development can stay with the process throughout the lifecycle.

2. AoA Guidance

From the DOD perspective, “the AoA is an important element of the defense

acquisition process” (DAU 2012). Similarly, an “AoA is an analytical comparison of the

operational effectiveness, suitability, and lifecycle cost (or total ownership cost, if

applicable) of alternatives that satisfy established capability needs” (DAU 2012). An

important part of an AoA is one of the first DOTMLPF (Doctrine, Organizations,

Training, Materiel, Leadership and Education, Personnel, and Facilities) assessments, as

understanding limitations of non-material solutions early on allows the AoA process to

maximize the understanding of the feasible material solutions.

7. The guidebook goes on to state that, “The AoA is not a point analysis, but

should be revisited” (DAU 2012). The concept of revisiting the analysis is often easier

said than done, particularly on large programs in which the AoA is often more of a paper-

based effort, and therefore hard to revise. Additionally, the AoA team members who are

able revise the concept, to have already moved onto the next project. The ability to

 18

automate this process and meet the requirement to revisit the analysis could prove to be

very powerful, as one now only needs continuity in the tools, not necessarily in the

people.

Additional guidance from the guidebook states, “The AoA is used to identify the

most promising end-state materiel solution, but the AoA also can play a supporting role

in crafting a cost-effective and balanced evolutionary acquisition strategy. The

alternatives considered in the AoA may include alternative evolutionary paths, each path

consisting of intermediate nodes leading to the proposed end-state solution. In this way,

the analysis can help determine the best path to the end-state solution, based on a

balanced assessment of technology maturity and risk, and cost, performance, and

schedule considerations. In other words, doing the AoA inside the model allows for more

than just the AoA itself, but it establishes a strong foundation and memory for a cost

effective and balanced accusation strategy” (DAU 2012).

The MITRE System Engineering Guide: Performing Analyses of Alternatives

provides a very good guidance for AoAs, which is condensed below:

Why do we perform AoAs? AoAs are performed to allow decision makers
to understand choices and options for starting a new program or
continuing an existing program.

Commercial industry also uses “alternative analyses,” but they are usually
more focused on lifecycle cost. The plan is important. It should include the
following information:
1. Understand the technology gaps and capability gaps—what needs

are the intended system supposed to meet?
2. Develop viable alternatives

a. Define the critical questions
b. List assumptions and constraints
c. Define criteria for viable/non-viable
d. Identify representative solutions (systems/programs)
e. Develop operational scenarios to use for

comparisons/evaluation
3. Identify, request, and evaluate data from the representative

systems/programs (determined to be viable)
4. Develop models - Work through scenarios

Know the baseline before starting the AoA, know your stakeholders,
beware premature convergence, know your AoA Team, understand the

 19

mission, obtain technical descriptions of the materiel solutions, anticipate
problems, and be persistent! (MITRE 2017, 438)

A recent Government Accountability Office (GAO) report on defense acquisitions

“attributes premature focus on a particular solution or range of solutions as a failing of

AoAs” (GAO 2009). The GAO report goes on to state that, “If stakeholders are already

enamored of a particular solution, completing a full AoA may be difficult” (GAO 2009).

The current best practice from this GAO report and practical experience only

recommends that an AoA is completed before program requirements are set, but this

research looks beyond the AoA guidance to determine the manner in which the AoA

process can be part of the full system development process.

H. MODEL-BASED SYSTEMS ENGINEERING

MBSE was envisioned to transform systems engineering’s reliance on document-

based work products to an engineering environment that is based on models. This

transformation means more than using model-based tools and processes to create hard-

copy text-based documents, drawings, and diagrams. Data in a MBSE environment is

ideally maintained within a single repository, has a singular definition for any model

element, and allows for the static and dynamic representations of a system from several

different perspectives and levels of decomposition (Vaneman 2017a, 8). As stated above,

this single repository can also be thought of as a Single Source of Truth (SSoT) for

system development that is accessible to multiple tools and processes. An additional

discriminator between document-based work products and Model-Based tools is that

connections between paper documents is usually in the minds of the authors, but not

captured in the model via interconnect views. Specifically, in a MBSE environment, each

entity is represented as data, only once, with all necessary attributes and relationships of

that entity portrayed. This data representation then allows the entity to be explored from

the various engineering and programmatic perspectives (viewpoints). According to

Vaneman’s paper, a viewpoint visualizes abstracts from one perspective in a way useful

to programmatic decision-making. Vaneman defined the compilation of viewpoints (e.g.,

capability, operational, system, programmatic viewpoints) as representing the entire

 20

system, where the system can be explored as a whole, or from a single perspective

(Vaneman 2017a, 8).

According to Topper (2013, 419), “the goal of this conceptual model, which is

now to be built as a function of the MBSE process, is to build a complete, coherent

representation of a system and its operating domain, including interactions with other

systems and with its environment that is common across the stakeholder community.”

Concept development is the early phase in system development where brainstorms turn

into prototypes and prototypes can be assessed for individual and collective merit. These

prototypes can be physical or modeled in a tool, which may or may not include

simulation. The purpose behind conceptual modeling is to garner an understanding of

successes and failures in the solution space. It also must show that there is at least one

possible solution, including documented analysis that the proposed solutions are actual

solutions to the problem. The process Topper developed and used to build the conceptual

model described below, involves creating the following artifacts:

 Domain model: This artifact describes the system and the
environment. It captures the high-level components of the system
and its operating environment and establishes the normalized
referential framework particularly important for multi-disciplined
stakeholder organizations.

 Use cases: These written descriptions of what the system will do
capture its expected behaviors and its interactions with external
actors.

 Functional model: The functional model describes how the system
will accomplish its goals. It breaks the use cases into greater detail
and shows activity flows and state transitions among components.
Complex functionality, an increasingly common characteristic of
modern systems, is difficult to address using traditional assessment
techniques. In conjunction with other artifacts presented in this
section, new techniques, outlined in the Functional Thread
Analysis section, enable and enhance analysis, testing, and
evaluation of complex systems, which are difficult to assess using
traditional analytical methodologies and tools.

 Structural model: This specification of system structure allocates
attributes and operations to system components, expanding and
adding detail to the domain model. (Topper 2013, 420)

Note that with modern MBSE tools and languages, use case can be represented in

a variety of ways such as Unified Modeling Language (UML), written use cases,

 21

sequence diagrams, and action diagrams. Topper’s conceptual modeling process

described above is shown in Figure 4.

Figure 4. Conceptual Modeling Process and the Systems Development Process.
Source: Topper (2014, 421).

The process defined by Topper above is very detailed in the modeling of the

systems and the interactive process when modeling the systems, but does not specifically

add simulation as part of the trade-space analysis. This research defines a process that

specifically incorporates simulation as part of the modeling process.

1. Similar Areas of Research

The use of MBSE is an area with rapidly advancing techniques, processes, and

tool capabilities. Based on research, MBSE has been ongoing since at least 2010. The

areas that are most relevant to this research are shown below.

 22

a. MBSE Supporting Development of Systems Architectures in Naval Ship
Design

Research by Tepper (2010) in the MBSE Supporting Development of Systems

Architectures in Naval Ship Design paper shows that the use of dynamic techniques in a

static model adds value, particularly if the results remain inside the model. Tepper states

that dynamic models can support an analysis of alternatives (AoA) by conducting system

design trades based on defined use cases inside the model to assess if the system

capability satisfies mission requirements (Tepper 2010). Key decision-making artifacts

of MBSE process are trade-space analysis, understanding the impact of changes, and the

capability to have version control of changes along with the rationale of making the

decisions. Additionally, Tepper’s research built in a version management process

embedded in the tools that provides traceability for changes made and historical record of

the alternatives. Tepper concludes with “the designer is able to see how a small change in

one aspect of the design can drastically affect the whole” (Tepper 2010, 18). Though this

research is based on system architectures in U.S. Naval ship design, similar effects have

been seen in the design of any complex system, where small changes have rippled

through the design causing extensive and unneeded rework.

b. MBSE Supporting Risk-Informed Design Methods

Research by Perez (2014) into the application of MBSE tools and processes to

Risk-Informed Design (RID) provides the capability to perform risk analysis early in the

life-cycle. The research focused on spaceflight projects, but the concept of performing

risk analysis inside the model is valid in many areas. Perez describes, “risk-informed

design uses a ‘minimum functionality’ approach, whereby a minimal, single-string

system design is first envisioned that only meets basic performance requirements without

any regard to overall reliability or safety” (Perez 2014, 6). A key enabler for this research

is that Perez was able to model risk inside the MBSE tool for the first time, which sets the

stage for moving the AoA and the analyses inside the tool. Perez’s research is an

excellent example of a MBSE based process applied to a basic system model with

scripted simulation for part of the Altair lunar lander system (Perez 2014). Perez’s

 23

research is also a prime example that, theoretically, MBSE is capable of supporting a full

risk assessment and that a tool like Innoslate is able to actually support it.

c. MBSE Supporting of Complex Systems Development

Research by Topper (2014) operated on the premise that the MBSE technique

facilitates complex design and documentation processes. As stated earlier, the key to the

benefit based on this research states that these MBSE techniques best support complex

systems. Topper goes on to state that “the resulting model is more useful than traditional

documentation because it represents structure, data, and functions, along with associated

documentation, in a multidimensional, navigable format.” Benefits extend beyond

traditional system definition and documentation since language-based models also

support automated analysis methods, such as functional thread extraction. The definition

of functional thread analysis is relevant to this research and is defined by Topper (2014,

424) as the following: “The state of a complex system changes continuously as the

designed functionality is executed within changing mission phases and environmental

conditions. These systems can invoke a large number of functional threads to accomplish

(or fail) a required task, and as system complexity grows, it can be difficult to identify

critical threads and accurately assess key system performance requirements.” Note that

the emphasis is on the ability to accurately assess key system performance requirements.

Topper’s conclusions state that, “The increase in system complexity precipitated

by the advent of network-centric systems, MBSE techniques offer a way to capture,

archive, and use information that is essential for complex system design, analysis,

implementation, and test and evaluation (T&E) throughout a system’s lifecycle” (2014,

430). In Topper’s research, the “conceptual model includes entities, their important

attributes and interrelationships, how they operate and behave, and any assumptions

made about them.” Topper goes on to state that, “MBSE provides a basis for future

analysis studies, model development, simulation efforts, system requirements definition,

and program information management” (2014, 430). Topper (2014) believes that a robust

conceptual model does the following:

 Facilitates communication and collaboration among project stakeholders
by standardizing and documenting a common reference blueprint for the

 24

project. This basis allows the team to exhaustively explore the system’s
conceptual and configuration spaces, and identify and assess key
parameters in the evaluation of system alternatives.

 Promotes reuse of components and analytical results among projects
across a shared domain.

 Enables information management and integrates business and engineering
processes into a single model. A conceptual model of the project,
particularly one that reuses components from previous projects and
includes elements from the enterprise architecture as well as the system,
allows managers to better estimate the scope, schedule, and resources
needed to develop and deploy a complex system.

 Documents traceability from needs to results, supporting verification and
validation. (Topper 2014, 430)

 25

II. METHODOLOGY

Based on the literature review conducted on systems engineering, risk-based

design, and MBSE, previous research is leveraged to define a MBSE process with

embedded trade-space analysis that supports appropriate concept development, design,

implementation, fielding, and support throughout the lifecycle of a system. This chapter

identifies the basic MBSE process, discusses the specific challenges associated with

design of complex systems in a rapidly changing world that need to be addressed by a

MBSE approach, and details the embedded trade-space analysis approach, leveraging the

research on MBSE process.

A. GENERAL OVERVIEW

A C-UxS system integrates capabilities to support, detect, classify, track, and

defeat COTS unmanned system technologies. As no single capability or standalone

system provides the required capability, the C-UxS system is considered a System of

Systems with multiple complimentary capabilities or sub-systems integrated together.

The C-UxS system is defined using MBSE processes and the Innoslate tools discussed in

earlier chapters to fulfill the C-UxS mission as defined by the DRM with the appropriate

level of mission effectiveness. Using the MBSE process, this research provides views of

the system, as it is modeled, during the concept development (AoA) phase of the project.

This research shows how embedding discrete events simulation into the Innoslate model

using the scripting tools increases the overall understanding of the available trade-space.

Analysis of the results is provided in a summary table showing the cause and effect of

different trades indicated by the changes in the theoretical mission effectiveness reference

metrics.

B. DETAILED CHALLENGES

There are numerous challenges associated with defining a C-UxS system

reference architecture that can support the full lifecycle and multiple instantiations. This

complex problem space renders it crucial to follow a defined and repeatable process

while documenting capabilities, functionality, assumptions, and trade-space decisions.

 26

With the high rate of change of COTS UxS threats and C-UxS capabilities, the process

must be responsive, transparent, and flexible. If shortcuts to the process are made, then

the C-UxS system does not support the capabilities required by the users as they are

needed, and the design of the C-UxS Architecture does not fully meet the supportability

and extendibility requirements. More importantly, if the initial trades made early in the

process are not well understood and captured inside the development model, then the

system is not able to evolve past the AoA baseline to support future threats, even if it was

able to support them when initially fielded using the initial AoA based trades.

The first challenge is that in early phases of concept development, the trade-space

can have many dimensions, such as types and number of capabilities, so the combination

that provides the best mission effectiveness value is not obvious. This challenge

manifests itself when modeling a system and optimizing the composite architecture for

maximum mission effectiveness when the exact value of each independent capability can

be a range, not a point value, and all the possible combinations of each capability and the

manner in which the capabilities are integrated can be very high. This can easily be an

unsolvable problem from an optimization perspective, so the system designers are

required to venture best guesses and assess them. In addition, the mission effectiveness of

a system does not have to be optimal; it merely has to be equal to or above the required

mission effectiveness value set by the end user. In some cases, a sub-optimal mission

effectiveness value may be the best value when cost and reliability are considered. For

system designers, it is very hard to resist the temptation to not proceed with the best

technology, so a clear understanding needs to be developed and maintained when making

selections and knowing the way in which those selections impact total system

performance.

The second challenge is combinational and dynamic complexity that can make

determination of the direct impact of a change almost impossible. Combinational and

dynamic complexity are concepts defined by the operational research community, but

they can apply to the engineering community, as the line between system definition and

system analysis is blurred. For this research, combination complexity is defined as the

point where multiple combinations of systems, each with unique capabilities, are

 27

integrated into a system of systems, but the unique aspect of each capability must still be

accounted for in the design. For this research, dynamic complexity is defined as the

common changes to input that can cause unique changes to output for each independent

system that is part of the system of systems. In other words, changes to input can affect

each system differently. This is a challenge, because what may be an obvious

optimization trade to one part of the system or during one part of the process, may not be

an optimal trade overall. For example, decisions made during the AoA phase may be

misunderstood during the design phase and a subsequent trade may inadvertently cause

the system to be less optimized rather than more optimized. Though not directly studied

in MBSE, this has been assessed in other areas. For example, Vaneman (2017b) states,

“the organization’s ability to master these transient periods is fundamental to achieving

steady state operations more efficiently, thus reducing losses due to sub-optimal

performance” (Vaneman 2017b). In terms of the DOD acquisition process, the DOD has

been very successful in converging on an optimized solution during the AoA phase and

during the design phase. However, those two optimized solutions are frequently

different, and the understanding of the basis on which they differ is lost, as the end result

is the trades based on a down selection of many different possible combinations and the

dynamic effect of those combinations.

The third challenge is that each site can slightly vary, so a one-size-only solution

may work for one site, but fail at another site. The variation to the external conditions at

different sites can be obvious, (e.g., obvious differences in terrain), or be harder to

visualize differences in regulations, (e.g., radio frequency spectrum interference and

acoustic noise).

The fourth challenge is that the COTS technology has a very fast refresh rate. In

this case for C-UxS, there may be a new threat system introduced every six to 12 months,

a time period that could easily be inside the typical development timeline, so a design

solution that was valid during the AoA may not remain valid when the system is fielded.

The awareness of when a threat improvement significantly moves the needle is critical to

ensure that the C-UxS system remains relevant.

 28

Together these challenges need a robust modeling process, automated trade-space

analysis, and flexibility to do initial “what ifs” and to validate that capabilities and

architecture designs made in the past are still valid in the present.

C. MODELING METHODOLOGIES

The modeling technique used defines the system from both a static and a dynamic

perspective with the focus on the dynamic action views. For context, static modeling is

used to represent the static constitutes of a system model such as the hierarchy,

capabilities, functionality, and static interfaces between capabilities and functionalities.

Examples of common static diagrams in a DODAF vernacular are Capability View-2

(CV-2), a Operation View-2 and -5a (OV-2, OV-5a). Dynamic modeling is used to

represent behavior of the static representation of a system, as well as interaction and

emergent aspects as a system is exercised. Examples of common dynamic diagrams in a

DODAF vernacular are System View-4 (SV-4) and Operation-5a (OV-5b).

In addition, the dynamic models allow a “glimpse into the black-box” by taking

the inner-workings of the internal structure into account. They also allow for inputs from

one period to result in outputs for another period (Kao 2014).

D. PROCESS TOOLS AND DEFINITIONS

1. Modeling Languages

For this research, the primary two modeling languages used are Systems

Modeling Language (SysML) and Life Cycle Modeling Language (LML).

a. System Modeling Language

The Systems Modeling Language is best defined and described by the Open

Management Group (OMG) SysML web page (OMG 2017), “What is SysML” and is

included below:

SysML is a general-purpose graphical modeling language for specifying,
analyzing, designing, and verifying complex systems that may include
hardware, software, information, personnel, procedures, and facilities. In
particular, the language provides graphical representations with a semantic
foundation for modeling system requirements, behavior, structure, and

 29

parametrics, which is used to integrate with other engineering analysis
models. (Open Management Group 2017)

Figure 5. UML and SysML Relationship.
Source: Open Management Group (2017).

The behavior diagrams include the use case diagram, activity diagram,
sequence diagram, and state machine diagram. A use-case diagram
provides a high-level description of functionality that is achieved through
interaction among systems or system parts. The activity diagram
represents the flow of data and control between activities. A sequence
diagram represents the interaction between collaborating parts of a system.
The state machine diagram describes the state transitions and actions that a
system or its parts perform in response to events.

SysML includes a graphical construct to represent text-based requirements
and relate them to other model elements. The requirements diagram
captures requirements hierarchies and requirements derivation, and they
satisfy and verify relationships to allow a modeler to relate a requirement
to a model element that satisfies or verifies the requirements. The
requirement diagram provides a bridge between the typical requirements
management tools and the system models.

The parametric diagram represents constraints on system property values
such as performance, reliability, and mass properties, and serves as a
means to integrate the specification and design models with engineering
analysis models. (Open Management Group 2017)

The modeling method for this research uses many of the SysML extensions it

provides to UML, as shown in Figure 5. Specifically, it uses the performance properties

as defined in the Parametric Diagram. The parametric diagram, as shown in Figure 6,

could lead one to believe that it is a single physical representative block for each

 30

capability that is easily defined. However, for this effort, and for most modeling efforts,

the parametric data is defined in multiple ways and at times in different ways, for each

capability as part of the modeling and scripting effort.

Figure 6. SysML Basic Unit of Structure

b. Lifecycle Modeling Language

The Lifecycle Modeling Language is best defined and described by the Lifecycle

Modeling Organization (2015) Lifecycle Modeling Language Specification 1.1:

The basis for the LML formulation is the classic entity, relationship, and
attribute meta-meta model. This formulation modifies the classical
approach slightly by including attributes on relationships, to provide the
adverb, as well as the noun (entity), relationship (verb), and attribute
(adjective) language elements. Since LML was designed to translate to
object languages, such as UML/SysML, these language elements
correspond to classes (entity), relations (relationship), and properties
(attribute).

Extending the above reference from Lifecycle Modeling Language Steering

Committee, Vaneman (2016, 5) states, “Once mapped, the LML visualization models can

be associated to the corresponding LML entity, and by extension provides an ontology

for SysML. Providing this ontology will prove important to practitioners as they will be

able to better represent the complexities of a system.” In other words, LML attempts to

 31

simplify the modeling effort; where DODAF may have had multiple names for very

similar nodes leading to confusion by the modelers, LML has just one node.

c. Mapping of SysML to LML Diagrams

The good news is that the complexities and simplification of UML, SysML, and

LML are now primarily handled by the tools that support the modeling process. This

research uses primarily LML model language, but note that the tag of “Use Case” is

overloaded and has different meaning to different architecture practitioners. For

reference, a mapping between the SysML diagrams and the LML entities is shown in

Table 4. This mapping provides an understanding of commonality among the SysML and

LML visualization models (Vaneman 2016, 6).

Table 1. Mapping of SysML Diagrams to LML Diagrams and Entities.
Source: Vaneman (2016).

SysML
Models

LML Models LML Entities

Activity Action Diagram Action, Input/Output
Sequence Sequence Action, Asset
State
Machine

State Machine Characteristic (State), Action (Event)

Use Case Asset Diagram Asset, Connection
Block
Definition

Class Diagram,
Hierarchy Chart

Input/Output (Data Class), Action
(Method), Characteristic (Property)

Internal
Block

Asset Diagram Asset, Connection

Package Asset Diagram Asset, Connection
Parametric Hierarchy, Spider,

Radar
Characteristic

Requirement Hierarchy, Spider Requirement and related entities

Vaneman goes on to state:

The Lifecycle Modeling Language defines a new approach to MBSE that
simplifies the ontologies and logical constructs found in previous MBSE
methods and languages. Coupling SysML and LML provides an
environment with an ontology that allows system concepts to be better
represented by denoting underlying properties, relationships, and
interrelationships. LML provides a means to improve how we model

 32

system functionality to ensure functions are embedded in the design at the
proper points and captured as part of the functional and physical
requirements needed for design and test. (Vaneman 2016, 6)

Therefore, while it is important to understand the basis of the modeling languages

and the mapping between the UML extensions that are available for use, one does not

need to fully understand all the details provided in the three specifications.

2. Simulation

 The simulation engine is based on a combination of discrete event simulation for

known decision points selected by the user, and Monte Carlo simulation in which system

performance effect can be randomized. Real Time Discrete Event Simulation is a model,

both mathematical and logical, of a designed system with decision paths at precise points

in the simulation flow. The discrete event simulator predicates key system and project

metrics based on user input along with the randomization of the variable events. The

Monte Carlo simulation definition that best fits this process is randomizing of decisions

that impact the results, but are not specifically modeled. For this effort, the simulation

capability allows the variation of design choices that impact the key mission effectiveness

metric to indicate the best point in the solution space where mission effectiveness meets

the required value.

3. Tools

a. Innoslate

This effort was modeled in the Spec Innovations Innoslate tool. Innoslate includes

the modern end-to-end design, modeling, and traceability capabilities systems in industry

standard LML, SysML, and IDEF0. These models, (e.g., the activity diagram), can easily

be simulated with integrated discrete event and Monte Carlo simulators, coupled with

additional handwritten scripts to better specify flow. The Innoslate tool allows for local

execution of the model and the ability to export the results to a comma separated value

file for additional analysis.

 33

The clean interface, simple relationships, and modern diagram
visualizations make managing model entities easier than ever. Currently,
there are over nine different diagrams to visualize behavioral models
including executable Action, Sequence, N-squared, and IDEF0. Physical
models have eight different diagrams including Asset, Class, Use Case,
and Organization Chart. All of the diagrams are drag droppable, allowing
for quick model design and construction. The diagrams conform to the
LML, SysML, or the IDEF0 standard. Innoslate includes both a discrete
event simulator and fully scalable discrete event and Monte Carlo
simulator to execute system models and verify model correctness. These
simulators can calculate a system’s time, cost, and resource levels, and
produce easy to read graphical outputs (including Gantt charts, cost
curves, resource usage). The model maturity checker evaluates the model
according to best-practice heuristics developed by research at Naval
Postgraduate School and Stevens Institute of Technology. (Innoslate 2016)

As discussed above, the Innoslate tool provides an easy to use graphical interface,

allowing us to build a well-defined model based on the UML, SysML, and LML well

defined rules.

4. A Tailored MBSE Process Flow

The following sections describe the methodology to support system definition and

assessment of trade-space decisions. This addresses the formal definition of a system and

the interactive method of assessing and refining the system definition. The generalized

recommended process is shown in Figure 7. The methodology for this research is broken

up into four steps: system definition, sub-system definition, mission analysis, and

assessment for the generic tailored MBSE Process. As discussed previously, the focus

area is on mission analysis and assessment, but because the system must be defined

before it can be analyzed and assessed, this research also develops a simple modeling

plan, a use case reference mission, and a high-level set of requirements. The research and

the use cases are based by a tailored version of the DODAF 2.0 products and views as

defined in the All View -1 (AV-1) and available in the Appendix. As system definition

and decomposition is not the focus area, the discussion is limited, but is included in the

model for completeness.

 34

Model Based System Engineering with Embedded AoA Process Flow

Sy
st
em

D
ef
in
it
io
n

Su
b
‐S
y
st
e
m
 D
e
fin
it
io
n

M
is
si
on

 A
na
ly
si
s

A
ss
e
ss
m
e
n
t

Phase

Analyze System
Level Requirements

Identify Key
Stakeholders

Analyze System
Capabilities

Analyze System
Functions

Decompose Sub‐
System Capabilities

Decompose System
Functions

Analyze System
Collaboration to
Satisfy Mission
Effectiviness

Define Use Case
(Action Diagrams)

Develop Script
Engine

Define Mission
Effectiveness

Metrics

Develop Simulation

Run Monte Carlo
Simultion

Develop Simulation
Inputs

Calculate Results

Meets
Requirements?

No

Complete
Phase

Yes

Start
Phase

Next
Phase

State the Problem at
System Level

State the Problem at
Sub‐System Level

Investigate
Alternativies

Success! Integrate

Re‐Evaluate

Return to
Phase

Figure 7. Generic Tailored MBSE Process

5. System Definition of Capability and Functionality

The system definition phase starts with the All View that presents the overall

model development plan: define system level requirements, identify key stakeholders,

develop the initial set of design reference missions, create the initial capability view

defining the systems capabilities, and create the initial operational view defining the

 35

system functionality. It also defines the metrics and target values for determining

mission effectiveness later in the process. A clear, concise system level definition is

critical for overall success of the effort, as the analysis of the effectiveness to the trade-

space decisions is based on the simulation results compared to the system level required

performance metrics. An example of the format for a Requirements and Performance

Metrics table is shown in Table 1. The system stakeholders are able to use this table to

capture and define the constraints for cost and mission effectiveness.

Table 2. Example of Requirements and Performance Metrics

Capability
Weight

(1-3) Description of Metric
Metric Target

Value
System Requirement 1 1 Plain English description

of metric
Value of required
performance

System Req N 3 Plain English description
of metric

Value of required
performance

6. Sub-system Definition with Action Flows

The sub-system definition phase states the problem at the sub-systems level by

decomposing the capability view and the operational view to the leaf level, and defining

the appropriate action views for use case definition. At this point, the basic flow of the

initial system is created and defined in the action views as well as in the decomposition of

the action views. The action views perform a capability or a sub-function of the

capability. All capabilities are fulfilled by an action that provides the required

functionality. The inclusion of which capabilities (CVs) and functionality (OVs) are

fulfilled by an action view provides the system traceability that can be used in the

completeness and coverages metrics.

7. Mission Analysis Phase with Integrated Simulation

The mission analysis phase develops rules for the action flow defined by the SV-

4’s action views. By creating input blocks to define user inputs and environment

variability with the random function, and by adding scripts to define characteristics of the

 36

flow to the simulation engine as attributes to the action diagram logic blocks, the discrete

event simulation predicts mission effectiveness. The discrete event simulation can be run

at all phases of the process, with multiple operator selected combinations of capabilities,

with results displayed at the end of each simulation runand exported to a common

separated value (CSV) export file. Innoslate’s discrete event simulation run off the

“advance functional flow diagram” allows for the operator input and scripted instructions

to describe low-level flow. Note that the case study in Chapter IV describes one pass

through evaluation process, however for a real program this would be continuous

evaluation occurring as new trades are made as part of the development process. In this

case study, the example pass is completed during the concept demonstration phase.

8. Assessment of Trade-Space with Simulation

Using both the MBSE tool and Excel spreadsheet calculations, the results are

calculated and compared to the requirements and the system level metric target values.

This step includes defining the input and recording the results into the spreadsheet,

building an analysis summery to allow for comparisons, and documenting the results.

Inside the spreadsheet, analysis utilizes pivot tables to organize raw data and summarize

results. Based on the results, as compared to the mission effectiveness metrics, the

process is repeated by re-entering the sub-system definition phase to update and/or refine

the model to improve results. The process is continued throughout the lifecycle to

account for system updates, changes in environment, and needs of the stakeholders.

9. Recursive Refinement Based on Simulation Results

The power of the process is that designers are not required to know all the optimal

trades upfront prior to conducting an initial pass through the process. One can start with

reasonable trades based on what is known at the time. The process is an iterative cycle in

which the current information known about the design of desired system is modeled,

simulated and assessed. Though the goal is to implement positive changes to the system

based on the process, though many times implicit changes thought to be benign to system

performance have a significant impact, which is why catching them early is critical.

 37

10. Success-Oriented Exit Process

The actual exit of the MBSE lifecycle process is not until the system is retired, but

there are times when one may exit a phase of the lifecycle and hand it over to another

entity for care and feeding. If the process is followed correctly and all the knowledge is

already captured inside the Single Source of Truth (SSoT), then no further action is

needed, but, if not, then this knowledge needs to be added. Because the exit of one phase

is most likely the entrance to another phase, the handover from the previous knowledge

manager to the current knowledge manager is key. For this effort, the exit of the process

is the documentation of results by the use case to show the manner by which the above

process fully supports the needs of the development process. The use case example in the

next chapter shows one phase with six input refinement iterations to show how the MBSE

is refined based on the feedback from the simulation and assessment efforts. A real effort

would have many more refinement iterations over the lifecycle, but it is felt that

demonstrating a single phase with multiple input refinement iterations has sufficient

granularity to demonstrate the positive effect on the overall system development process.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

III. COUNTER UNMANNED SYSTEMS CASE STUDY

The previous section identified a tailored MBSE process for including a

continuous AoA process within the SSoT model. This process uses a case study for a

Navy C-UxS architecture to confirm that the process is applicable and effective. This use

case makes one pass through the process shown in Figure 7 to demonstrate all the steps.

The C-UxS, which requires flexibility and adaptability to support multiple unique sites

provides a challenging case study for the proposed process. The proposed MBSE process

with embedded simulation provides a iterative lifecycle framework that can be used from

concept development through critical design activities phase. The research is that the

MBSE process of defining the system provides valuable context and the simulation

process of performing “what if” provides knowledge, but if completed together as a

single process it combines the context and knowledge for much greater understanding of

the system.

A. COUNTER UNMANNED SYSTEMS PROCESS USE CASE

The process identified in the previous chapter is applied to the C-UxS acquisition

environment. The below sections go through each step of the process and employ the use

case for a U.S. Navy architecture. For reference, Step One provides broad context back to

the DoD domain. Step Two decomposes the broad context defined in Step One down to

details relevant to the C-UxS problem statement and suitable to define a relevant action

diagram. Step Three defines the actions that are relevant to the system metrics in the C-

UxS action diagram. Step Four links the system definition phase (context) with the

system analysis phase by adding simulation flow and simulation scripts to the model.

Finally, Step Five completes the process (knowledge) by assessing the simulation output

based on the context of the model. For additional general context, the Appendix contains

the full model views, and, on request, the model is available on-line via the Innoslate web

application. The full DRM is also available on request for additional mission context.

 40

1. System Definition

The system definition phase uses the All View template for the overall model

development plan. That includes: define system level requirements, identify key

stakeholders, develop the initial set of design reference missions, create the initial CV-2

defining the systems capabilities, create the initial OV-5N defining the system

functionality, and define the metrics and targets values for determining mission

effectiveness later in the process. A clear, concise system level definition is critical for

overall success of the effort, as the analysis on the effectiveness to the trade-space

decisions is based on the simulation results compared to the system level required

performance metrics. Note that NAVAIR used the fit for purpose view referred to as the

OV-5N, to show the system level operation view and decomposition, because the initial

operation view is closer to a system of systems, than a subcomponent to a system, which

is the traditional definition of an OV-5.

a. Overall Model Development Plan

(1) Scope

This architecture to counter all types of unmanned systems provides a

government-owned, defined (open) architecture that supports current and future Navy

acquisitions efforts. The architecture depicts and describes the capability requirements,

operational activities, and the system views. The architecture provides the appropriate

functional decomposition, functional interaction, and functional interoperability as

appropriate. To enable commonality, the architecture builds on existing capability and

functional decomposition and definitions, along with linkages in existing data

dictionaries and data definitions.

This architecture is intended for CONUS, OCONUS, and Maritime applications.

The system is intended to initially counter Group 1 unmanned aerial systems (UAS);

however, this architecture may be expanded to encompass unmanned ground, surface,

and underwater systems as necessary.

 41

(2) Viewpoints and Models Developed

Table 3 lists the Department of Defense Architecture Framework (DODAF)

version 2.02, August 2010 view required to satisfy the C-UAS purpose and intent. Please

note the OV-5N is a fit for purpose view developed by the U.S. Navy to show

functionality at the system or system of system level.

Table 3. Viewpoint and Models Developed

Applicable

Viewpoints

Models Titles

All AV-1 Overall Plan

Capability CV-2 System Capability

Decomposition

Operational OV-1 Operational View

Operational OV-5N System Functionality

Decomposition

System SV-4 System Action Flow

(3) Assumptions

The architectures and associated data can be leveraged and reused by subsequent

capability developers and program offices for the development of solutions for C-UxS.

The required capabilities are reasonably covered by the Joint Capability Areas

(JCAs), which provide a common vernacular and context. The JCAs are pruneable and

extendable to allow for best fit to the C-UxS architecture. The JCAs are used as the bases

for the CV-2 decomposition.

The required functionality is reasonably covered by the Joint Common Systems

Functional List (JCSFL), which provides a common vernacular and context. The JCSFL

 42

is pruneable and extendable to allow for best fit to the C-UxS architecture. The JCSFLs

are used as the bases for the OV-5N decomposition.

(4) Constraints

Developing the Countering Unmanned Systems ICD Architecture thoroughly and

expeditiously to support the Counter-UAS Rapid Deployment Capability (RDC) and

Rapid Prototype Engineering Development (RPED). The Speed to Fleet Initiative effort

was limited to process development, process proof, and initial definition of the generic

counter UAS architecture.

(5) Purpose and Perspective

The countering unmanned system architecture depicts and describes the capability

requirements, operational activities, and system functionality involved in countering

unmanned systems across all domains and operational environments. Because these are

an initial set of architectures, they provide a basis for identifying follow-on capability

developmental efforts.

b. Define System Level Requirements

The C-UxS system is designed to be flexible in nature, but with a Government-

owned core, so vendor specific solutions can be modified without requiring involvement

of said vendors. The C-UxS System is initially designed to protect land-based sites

against group 1 small COTS UASs, as the example C-UxS. The architecture is flexible

enough to allow for growth in support of maritime-based sites (ships) and COTS-based

equipment in unmanned surface vessels, underwater vessels, and ground vehicles.

This use case focuses on the trade-space analysis for detect, sensor type,

capabilities, numbers, and combinations. This is demonstrated by the capabilities and

functionality included with the C-UxS action diagram (SV-4).

The requirements and performance metrics table is shown in Table 4. This is

where the system stakeholders can define the constraints for cost and mission

 43

effectiveness. In a real world program, this requirement table would be more detailed, but

for this effort, it is very simple to better show cause and effect on the process.

Table 4. Requirements and Performance Metrics

Required Capability Weight

(1-3)

Description of Metric Metric

Target

Value

1.0 The C-UxS shall classify
threats over an area covering 10
by 20 kilometers

2 Coverage of the sensors by type
of covered area divided by the
total area

> 90%

2.0 The C-UxS shall have a
deployed cost of the sensors be
less than $500,000.00

1 Cost of the material and installed
cost of the sensors divided the
allowed cost of the sensors

< 90%

3.0 The C-UxS shall defeat 80%
of the threats

3 Number of defeated threats
divided by the total threats

< 40%

c. Identify Key Stakeholders

The stakeholders for this use case are defined as the funding authority (OPNAV),

the acquisition authority (PEO-U&W), the subject matter experts (SMEs), the

representative end users (user community), and the test and evaluation team. For this use

case, the user community has provided an initial starting point area size that needs to be

protected and the required level of protection to allow for continuation of normal

operations. The funding authority has provided the deployed cost of the sensors. The

SMEs have provided type and realistic capability and cost of the sensors for analysis. The

test and evaluation team has verified that the metrics are relevant and collectable.

d. Initial Mission Definition

The C-UxS OV-1 (see Figure 8) describes, at a high level, the operational

scenario addressed by this architecture. The desired outcome for this architectural effort

is to enable the development and acquisition of a suite of capabilities to prevent and

mitigate the adversaries’ use of the UxS that capitalizes on both material and non-

 44

material approaches. Due to the diversity of this threat and the intentional domain

agnostic approach to the architecture, capabilities resulting from this architecture should

inform solutions in other domains and mission sets. This results in a suite of modular

(open) capabilities that can be rapidly integrated to keep pace with the rapid growth of

UxS technologies.

Figure 8. OV-1 C-UAS

To keep this use case generic and unclassified, a simple circular area with an

approximate diameter of 16 kilometers is used as the representative area to be protected.

The circle has five zones; the outer three zones are a restricted area where small UASs

are not allowed and where the sensor coverage starts. The fourth zone is the act and

engage zone in which any UAS is considered as a threat to be acted on with appropriate

defeat methods. The fifth and final zone is the failure zone, in which any entering threat

is considered compromised, and all work must stop. The mission is a success if the

required percentage is detected, classified, and defeated outside the failure zone. The

mission is considered a failure if the required percentage is not defeated before entering

the failure area. A simple diagram of the mission area is shown in Figure 9.

 45

Figure 9. C-UxS Mission Area

e. Create the Initial CV-2 Defining the Systems Capabilities

The CV-2 defines and decomposes the required capabilities at the appropriate

level. As stated in the assumptions, the JCAs provide a common vernacular and context

across the DOD and are applicable to the C-UxS. JCAs are pruned and extended to allow

for the best fit to the C-UxS architecture, and are used as the basis for the CV-2

decomposition shown in Figure 10 initial CV-2 snapshot. The entire CV-2 is too large to

be shown in its entirety here, although it is shown in the Appendix, and is available in the

associated model. However, the snapshot demonstrates the context in relation to the area

relevant to the research. For this phase of the process, the CV-2 containing level 0 is the

capability area heading, and level 1 and level 2 provide the additional context in terms of

the DOD JCA. The use of the JCA and the additional context allows the stakeholders to

verify that the initial context is correct. In this snapshot, the SMEs have selected

Battlespace Awareness, Force Application, Logistics, and Command and Control as

required high-level capabilities. An additional required high-level capability for the use

case, not shown in the snapshot, is the Interact (External) capability. The most relevant

 46

capabilities of Battlespace Awareness, Force Application, Command and Control, and

Interact with the threat UxS are decomposed in the next step of the process.

Figure 10. Initial CV-2 Snapshot

f. Create the Initial OV-5N Defining the System Functionality

The OV-5N defines and decomposes the required functionalities at the

appropriate level. Like the JCAs, the JCSFLs provide a common vernacular and context

across the DOD and are applicable to the C-UxS. JCSFLs are pruned and extended to

allow for best fit to the C-UxS architecture. The JCSFLs are used as the basis for the OV-

5N decomposition shown in Figure 11. The entire OV-5N is too large to be shown in its

entirety here, although it is available in the Appendix and in the associated model, but the

snapshot demonstrates the context in relation to this research. For this view, level 0 is the

OV-5N heading, and level 1 and level 2 provide the context in terms of the DOD JCSF.

Figure 11. Initial OV-5N Snapshot

 47

In this snap shot, the SMEs have identified Sense, Manage Tracking and Tracks,

Generate Situational Awareness, and Mission Level Analysis as required high-level

functionality. Additional required functionality in the use case, not shown in the

snapshot, is Mission Execution Functionality. The most relevant capabilities of Sense,

Manage Tracking and Tracks, Generate Situational Awareness, Mission Level Analysis,

and Mission execution are decomposed in the next step of the process.

2. Sub-system Definition

The sub-system definition phase states the problem at the sub-systems level of the

C-UxS by decomposing the CV-2 and the OV-5N to the leaf level and defining the

appropriate SV-4A C-UxS Flow high-level action views for use case definition. The C-

UxS Flow shows the basic flow of the system and the manner in which the AoA

simulation capability is integrated. The decomposition, simulation, and analysis of the

action view C-UxS flow is the focus of the use case research and is expanded upon

below.

a. Decompose CV-2 to Leaf Node Capability

In this phase, the CV-2 had to be decomposed to the leaf level so the action view

components could be built with the relevant level of detail. This expanded the CV-2 from

two levels to five levels, introducing the additional detail of specific types of sensors such

as the radar. The example leave node shown in Figure 12 is the radar leaf capability that

is part of the Battlespace Awareness Capability Group. Additional required leaf node

capabilities for this research are Electronic Emissions sensing, Electro-optical sensing,

Fuse tracks, Operator interactions, and Defeat, as shown in the Appendix.

 48

Figure 12. Decomposed CV-2 Snapshot

b. Decompose OV-5N to Leaf Node Functionality

Similarly, the OV-5N had to be decomposed to the leaf level so the action view

flow could be built with the relevant level of detail. This expanded the OV-5N from two

levels to three levels. The example leaf node shown in Figure 13 is the Search with

Active Sensor, Search with Passive Sensor, Fuse Track Measurements, and Evaluate and

Assess Engagement. Additional required leaf node functionalities for this research are

Conduct Manual Engagement, Conduct Automatic Engagement, and Fly Threat Small

UAS, as shown in the Appendix.

Figure 13. Decomposed OV-5N Snapshot

 49

3. Create and Define the SV-4A Action View

The action view is the first crossover point between the standard MBSE modeling

process and the process presented in this paper. The action view allows the static

capabilities to be combined in a meaningful way for the C-UxS problem, and then

dynamically simulated. For this effort, the goal is to balance cost, coverage, and mission

effectiveness based on the top-level requirements and metrics defined above. To do so,

the action view defines the interactions between the sensors, fusion, operator, defeat, and

the threats. The top-level action flow is show in Figure 14 and defines the interactions

and flow of the functionality across the capabilities.

Figure 14. SV-4 Top Level Action Flow

Next, the flow of each top-level action is decomposed to the sub-level flow. For

example, Figure 15 shows the radar decomposition. The decomposition allows the

number of radars to be varied along with the capabilities of the radar to detect small

UASs, and, if detected, to classify the detections as threat small UASs.

 50

Figure 15. SV-4 Subset Radar Action Flow Decomposition

After radar is decomposed, Electronic Emission, Electro-optics, Fuse, and

Operator are decomposed in the mode and shown in the Appendix. The Electronic

Emission and Electro-optics decompose in a manner very similar to radar. The Fuse

capability takes the output of the sensors and uses rules to command action or to

recommend action to the operator, as shown in Figure 16.

 51

Figure 16. SV-4 Subset Fuse Action Flow Decomposition

 The automatic defeat is based on output from Fuse, as show in Figure 14, when a

UAS is classified as a threat by all three sensors types. The success of the automatic

defeat is based on a simple probability, where there is an 80% chance of defeat based on

a timely automatic response and clear fused data from heterogeneous sensors. If the

sensor data is not unanimously seen as classified by Fuse, then an operator is brought into

 52

the loop as shown in top level Figure 14 and decomposed in Figure 17. Figure 17 only

shows a partial view due to its size, but based on rules it allows four choices by the

operator. The full view is shown in the Appendix for additional context.

Figure 17. SV-4 Subset Operator Action Flow Decomposition

The first operator choice is operator override, and is based on two sensor types

classifying a threat, with the third detecting it. The second operator choice is to initiate a

defeat attempt, and is based on one sensor classifying a threat and at least one other

sensor detecting it. The third is the operator continuing to monitor detected, but not

classified, threats.

4. Mission Analysis

The mission analysis phases take place during the AoA phase (concept

development), prototyping phase, and final design phase to show the way by which

metric achievement progresses. This first phase demonstrates the concept development

phase design (AoA) compared to the metric target values. The user assesses and

optimizes different concepts and continues to refine those concepts as more detailed

information is available. Based on the metrics in Table 3, the user can vary the sensor

type, numbers of sensors, and capability of the sensors. A constraint on the case study is

that each sensor type must cover the entire operations area. Cost is a function of

 53

(coverage * capability), such that the higher the coverage and capability, the higher the

cost per sensor. A cost weighting value makes radars an order of magnitude more

expensive than electronic emission sensor and electro-optic sensors. Rules for the

decision process are developed to govern the action flow as defined by the SV-4’s action

views. These rules remain constant throughout the case study for the purpose of

simplicity.

The first step is to set up the simulation to allow for user input of key areas of

assessment. The user input blocks are shown in Figure 18, and the user input script is

shown in Figure 19.

Figure 18. Discrete Event Simulation User input Blocks

Figure 19. User Input Script

 54

This allows the user to vary the environment (threats), the sensor types, sensor

numbers, and sensor capabilities to classify or detect a threat. Figure 18 shows input

blocks for threats, radar parameters, emission values, and Electro-optic (EO) values.

Figure 19 show an example for the threat and radar parameter script input. Figure 20

shows the input block during execution of the script.

Figure 20. Simulation User Input Block

Next, the threat parameters are created by a randomized function in the threat set

up block shown in Figure 14, and defined by script shown in Figure 21.

 55

Figure 21. Threat Setup Script

The threat signatures are scaled between 0 and 100, to be compared to the

capabilities of the sensors as entered by the user and compared in the sensor block. The

sensor detection is based on the threat signature (user input), and the distance factor of

the threat to the sensor (random) compared to the sensor capacity to detect and classify

(user input). The threat is visible to each sensor a single time. The script for radar

detection is shown in Figure 23. The scripts for the other two sensor types, emission and

EO, are performed in a similar manner.

 56

Figure 22. Radar Detection Script

Next, the rules for the fuse capability shown above in Figure 15 are scripted as

shown in Figure 23.

Figure 23. Fuse Track’s Script

 57

The fuse script roles up the output from the sensors to a single value that

effectively recommends an action to the system, such as automatic defeat as show in

Figure 14 or passes information onto operator to manage final process as partially shown

in Figure 17. The shorthand notation in the script cases of “CCC” indicates that all sensor

types classified the threat. “CCD” indicates two of the three sensor types classified the

detections as a threat and that all detected the threat. “CDD” indicates that all three sensor

types detected the threat, with one classifying it as a threat. “DDX” indicates only two

sensor types detected the threat. “NNN” indicates the threat was never detected by any

sensor. This is a very simple fusion rule set for this case study, but the fusing capability

can be greatly influenced by the trade-space if a more advanced version is used, but that

is beyond the scope of this research.

The final step in the action flow is to activate the defeat mechanism as shown in

Figure 14 for automatic, or, as shown in Figure 17, for operator choice of override

automatic defeat, initiate attempt defeat, operator monitor, or no action, based on the

Fuse_Output variable. Whether the UxS is defeated or not is based on a simple

probability, where it is biased such that the systems is more likely to be defeated when all

sensors classify, and less likely to be defeated when only one sensor type can classify.

The discrete simulation runs are based on the simulation input tables, which

varies the input of the type of sensors, sensor capabilities, and number of each sensor

type, for the simulation input values. Then each simulation run simulates 1,000 threats

and the results are summed by the script and shown in the console window. Results are

transferred by hand back to the spreadsheet for further analysis. With the model and

scripts set up, the assessments are then completed.

5. Assessment

This case study focuses on the first recursive refinement phase completed in a

multi-phase effort to demonstrate the effects of trade-space choices and the simulation

refinement process. The first phase demonstrates the team’s knowledge during the AoA

phase, and demonstrated the six simulation runs used to refine the design choices. The

early work completed during the Rapid Development Capability (RDC) effort discovered

 58

that a homogenous solution does not work, so this effort is starting at the point that they

left off with the heterogeneous sensor mix and is refined from that starting point. The

screen shot of the model coverage is shown in Figure 24, and the console output is shown

on Figure 25.

Figure 24. Model Coverage in Simulation

Figure 25. Model Results in Console Window

a. Input

The AoA Phase starts the process with the SME’s best understanding of the

simulation capabilities. The SMEs devised six different system combinations and types to

compare capabilities of higher cost systems to lower cost systems, with coverage and cost

kept constant to the threshold value of 95% coverage as shown in Table 2.

 59

Table 5. Initial Mission Values

b. Results

For each of the runs, the input values were entered into the Innoslate discrete

event simulation tool, run, and the results captured from the console window and

recorded below in Table 3. The use of the “print to console” capability greatly simplified

the “what if” process. For this use case, the first three runs did not achieve the desired

metric values, so the focus was shifted to a more balanced approach. This shift in focus

Run Radars

Classify Detect

Coverage

per Cost

Total

Coverage

1 4 15 10 50 $374,850 100%

2 3 35 16 65 $260,852 98%

3 3 30 10 65 $300,983 98%

4 4 35 15 50 $270,725 100%

5 4 30 18 50 $281,260 100%

6 4 32 15 50 $283,220 100%

Run EM

Classify Detect

Coverage

per Cost

Total

Coverage

1 3 40 30 65 $102,375 98%

2 10 10 5 20 $213,750 100%

1 3 40 30 65 $102,375 98%

4 20 15 10 10 $191,250 100%

5 12 20 15 16 $163,200 96%

6 20 15 10 8 $153,000 80%

Run EO

Classify Detect per Cost Coverage

1 6 60 20 33 $28,512 99%

2 6 60 20 33 $28,512 99%

1 80 30 15 2.5 $53,550 100%

4 24 60 20 8 $27,648 96%

5 38 40 20 5 $41,040 95%

6 38 40 20 8 $65,664 152%

 60

led to finding at least three viable concepts for the AoA that can be carried forward, as

shown by Runs 4–6, where Run 5 showed the most promise.

Table 6. First Phase Mission Effectiveness Results

Run #
Threats
Defeated

Total
Effectiveness

Sensor
Cost

1 682 68% $505,737

2 778 78% $503,114

3 685 69% $456,908

4 810 81% $489,623

5 870 87% $485,500

6 864 86% $501,884

c. Analysis

For this use case, the cause and effect of changing the different sensor

combinations in a static viewpoint prospective are not readily apparent. Though the

model looks simple, each part adds significant complexity, with only the rule-based

fusion engine being deterministic. In this use case, both the threats and the operator

responses are dynamic and non-obvious. For example, early experimental runs, that were

thought to have optimal sensor combinations, did not achieve expected results.

Subsequent runs benefitted from these early failures to meet the required mission

effectiveness, resulting in improved results. This demonstrated that knowledge and

understanding gained by the trial and error process provided by the simulation to this

relatively simple use case, is a valuable part of system design. This use case only shows

the first phase, but one can easily understand that changes to the model, specifically

refinement of the fusion engine, can greatly impact the mission effectiveness. For

example, a simpler fusion technique may favor a single powerful sensor type, while a

more complex fusion technique might allow for less capable sensors. In the analysis of

this use case, sensor capability was directly related to system cost. For this effort, Runs 5

and 6 showed the most promising results, which helped us understand the appropriate

mix of capabilities for future systems.

 61

6. Recursive Refinement

As mentioned above, some mission effectiveness was driven by the choices made

in the fusion engine design and rule set. The next natural step in the refinement process

may be to leave the sensor combination the same, but to test different variations of the

fusion engine rule set. Alternatively, the next natural step in the refinement process may

be to add additional operator aids to assist with the defeat process, or to additionally

automate the process so the variability of the operator is completely removed.

7. Exit of Process

 The actual exit of the MBSE lifecycle process and this use case is ultimately not

until the system is retired, but following the process once through the cycle to build the

model, action diagrams, and scripts allowed assessment of the proposed iterative process.

One can easily envision the ways in which it will enhance the design process and later

phases of the lifecycle.

B. ANALYSIS OF THE PROCESS

Chapter III provided MBSE process with simulation that can be used to assess the

solution early in the process as well as throughout the design lifecycle. Chapter IV

provided a realistic, though truncated, use case for a Counter Unmanned System using

the MBSE process with simulation. The mission effectiveness metric assessed for each

sensor combination at the end of each run compared the simulation output to the target

values of the metrics. Based on the knowledge gained, the stakeholders and the designers

could adjust the sensor parameters for the next run and the target values for the next

phase. This allowed for gradual convergence on a viable solution for the stakeholders in

the first phase. Though not shown by the use case, the process cycles can account for

changes in the capabilities, environment, and threats, all of which have an impact on the

overall effectiveness of the solution. For example, the radar capabilities used in the first

phase may prove too optimistic after initial testing is complete, therefore the system then

does not meet the mission effectiveness metric and may drive cost. Correspondingly, the

opposite, advancement in artificial intelligence and image processing, may occur and

 62

make optical sensors much more effective than first thought, greatly increasing mission

effectiveness and reducing cost.

This use case intends to demonstrate a process that can be leveraged for all system

development efforts. The actual MBSE process with integrated simulation for a large

development effort will be much more extensive with all additional capabilities,

functionality, and action cases, to include the interactions between multiple system

effectiveness metrics target values. Additionally, the ability to use the single source of

truth with the built in simulation at any time in the lifecycle or a site-specific instantiation

of the C-UxS allows for continuous knowledge of the systems mission effectiveness

metric.

 63

IV. CONCLUSIONS/FUTURE WORK

A. SUMMARY OF THE ANALYSIS

The use case analysis shows that neither the static view nor the dynamic analysis

initial solution would have met the stakeholders’ requirements without the knowledge

gained by multiple runs through the solution space via embedded simulation. The

interaction between sensors, fusion, and operator seem simple when viewed statically, but

the dynamic interactions are shown to be complex for even this simplistic use case. For

example, the initial three concept simulation runs did not meet the mission effectiveness

requirements, although they all appeared perfectly viable from a static perspective.

Through the inner loop of the iterative process, one learned to apply a different focus, one

that placed more of a balanced sensor selection approach, which in turn allowed the

design to meet the requirement. Without the iterative dynamic analysis throughout the

process, the stakeholders may have settled on a non-optimized solution that too strongly

favored a radar solution over a more optimal, balanced solution. The key for this research

is not the numerical values determined to be the feasible optimized solution, but the fact

that iterative simulation added knowledge inside the engineering model. In turn, that

knowledge allowed for system optimization inside the MBSE process.

B. CONCLUSIONS

Some say failure should be avoided and ignored, however many innovative ideas,

including Thomas Edison’s light bulb, are built on a series of trials and errors that did not

initially succeed. When asked by a reporter, “How did it feel to fail 1,000 times?" Edison

replied, "I didn’t fail 1,000 times. The light bulb was an invention with 1,000 steps"

(Edison 1890). Edison went on to state that he learned 1,000 things not to do, as part of

the development process. This process of trial and error still exists today. The only

difference is that the systems are much more complex, so the failures can be much more

costly. In the book “Black Box Thinking,” Syed (2015) presents the idea that failure is a

fact of life, but one can choose to either learn from failure or to pretend that the failure

was out of his personal control and not learn from it. Deming, in his breakthrough book

 64

“Out of a Crisis” (1982) also stressed that understanding failure was the key to future

success and the foundation of process improvement. For aviation, learning from failure

has always been part of the culture, but almost all of these failures occur after the system

is designed, and sometimes too late to be cost effectively fixed. This effort moves the

power of learning from failure into the early phases of the process, exactly when it is the

prime time for “the learn and fix cycle” to take place. The power to learn by failing is

even greater than the power of early success, as failure causes one to consider the reasons

for the failure. Knowledge is truly gained during this process of understanding the

reasons for failure. This thesis therefore provided a MBSE process with integrated

simulation that allows engineers the flexibility to test many solutions and fail early,

allowing them to succeed in the long term. Multiple designs can be quickly built,

including some that have a higher risk to reward, and then performance of each can be

evaluated relative to each other. The act of understanding the reasons one solution is

more successful than another helps one build a greater understanding of the system. It

also allows the designer a better understanding of the sensitivity of a solution to a single

technology. The process defined above provides a framework to conduct the definition

and design phase of system development using a defined and iterative process built on

previous MBSE development research on developing large complex systems. This

research and the enhanced MBSE process will contribute to the development of future

large, complex systems during system definition and design phases, by providing

validation of the system model through simulation and analysis. This benefit is available

in all phases of the system lifecycle, as long as the model is maintained as part of the

lifecycle process. A general MBSE process with integrated simulation and analysis was

shown in Figure 7 and described in Chapter III. A representative Counter Unmanned

System use case exercised the proposed process. This allowed validation of the process

while a use case provided a clear example of the improved overall product provided by

the assessment.

The discoveries of the related research, the enhancement to the current MBSE

process, and the example use case addressed many of the primary research questions that

were proposed. The objectives of the thesis effort were met with the development of the

 65

MBSE process with embedded simulation and the C-UxS use case. The beneficiaries of

the research will be developers of large, complex systems in dynamic environments who

are able to use the process as a function of fielding and maintaining the effort. The

multiple research questions are discussed below, with corresponding details identified for

each, based on the research.

1) How can MBSE be used to forecast and investigate mission effectiveness,

caused by material and design limitations, to inform and influence the

early stages of the system design process? The question is addressed in

two parts—the first is the process shown in Figure 7 and described in

Chapter III; and the second is the use case, which clearly shows the model

development, the action flow, and the scripting to interactively assess

mission effectiveness. The MBSE process with embedded simulation

provides a powerful framework for complex system development.

2) How can multiple runs of the simulation that vary the component level

effectiveness be used to determine overall system sensitivity once the

architectural model is complete with embedded mission effectivity

analysis? The question is addressed with the use case, specifically with the

inputs of the six runs shown in Table 2 and the results shown in Table 3.

In the use case, the design choices were the sensor mix and the capabilities

selected from each sensor type. The variation shows the areas in which the

use case was most sensitive. In this case, the unbalanced system

performed poorly compared to balanced systems.

3) How can the results of the system sensitivity results and analysis be used

to optimize design and reliability requirements? This effort leveraged

previous work by Perez (2014) where fault analysis was shown to be

viable. The use case was based on capability and cost, but an additional

dimension of fault/reliability could have been added based on past work

and this research effort.

4) How can one use sensitivity analysis techniques to adjust the project’s

path forward by having a continuous positive impact on the early stages of

 66

the development process? The question was not explicitly addressed by

the use case, as multiple phases would have been required, but it was

addressed by the iterative portion on the MBSE process show in Figure 7.

Specifically, the recursive step described in Chapter III, Section 6 takes

existing knowledge and simulates it in a representative environment.

Following performance assessment, the system is recursively refined

based on the knowledge gained from the assessment. The changes clearly

show, in a relative manner, if the change had a positive or negative impact

on the system performance. The path forward becomes relatively clear -

back out a negative change and try something else or continue to refine a

positive change. At a time when progress stalls, one may be required to

make seemingly random changes, simply to ascertain the pattern of

positive and negative effects to determine a new course of action.

C. RECOMMENDATIONS FOR FUTURE WORK

As stated above, only the first phase of a development effort was performed in the

C-UxS use case for a single action view. The process used should be expanded to follow

a real program through multiple phases and with a broader use of action views to further

refine the process. The third research area on using the process to relating reliability

requirements was not expanded upon due to the limitation of the use case, but this is an

interesting area for further research. Additionally, this research used a single tool set, but

multiple tool sets are available that may provide additional insight. A broader

investigation is required prior to recommendation of a single tool set.

 67

APPENDIX. C-UXS MODEL

The views created for the C-UxS Model are provided, for completeness, in this

Appendix. The entire mode is available in the Innoslate web application on request,

Thomas.Moulds@Navy.Mil.

Figure 26. CV-2: JCA-based capability view

 68

Figure 26 cont’d. CV-2: JCA-based capability view

 69

Figure 27. OV-5N: C-UxS Conduct Counter UxS Operations

Figure 28. SV-4: Counter UxS Flow (Top Level View)

 70

Figure 29. SV-4: Counter UxS Flow (Radar View)

Figure 30. SV-4: Counter UxS Flow (Electronic Emissions View)

 71

Figure 31. SV-4: Counter UxS Flow (Electro optic View)

 72

Figure 32. SV-4: Counter UxS Flow (Fuse View)

 73

Figure 33. SV-4: Counter UxS Flow (Operator View)

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

LIST OF REFERENCES

Antunes, Ricardo, and Vicente Gonzalez. 2015. A Production Model for Construction: A
Theoretical Framework. Buildings 5(1): 209–228.

Bahill, A. Terry, and B. Gissing. 1998. “Re-evaluating Systems Engineering Concepts
Using Systems Thinking,” IEEE Transaction on Systems, Man and Cybernetics,
Part C: Applications and Reviews, 28(4):516–527, 1998.

Bahill, Terry. 2009. “What is Systems Engineering? A Consensus of the INCOSE
Fellows.” Created spring 2001, revised 2004, 2006 and 2009.
http://www.incose.org/AboutSE/WhatIsSE

Deming, Edward W. 1982. Out of the Crisis. Cambridge MA: MIT Press.

Department Acquisition University. 2012. “Defense Acquisition Guidebook.” Defense
Acquisition University/ Tools Catalog/ Defense Acquisition Guidebook. Accessed
9 November 2016. https://dag.dau.mil.

Edison. 1890. Interview with Thomas Edison, Harper’s Monthly Magazine.

GAO Report. 2009. “Many Analyses of Alternatives Have Not Provided a Robust
Assessment of Weapon System Options.” GAO Reports. Accessed 7 April 2016.
www.gao.gov/products/GAO-09-665

Grealou, Lionel. 2016. “Single Source of Truth vs Single Version of Truth.” In. Accessed
3 May 2017. https://www.linkedin.com/pulse/single-source-truth-vs-version-
lionel-grealou

INCOSE. 2017 “What is SE”. INCOSE Publications. Accessed 5 Jan 2017.
http://www.incose.org/AboutSE/WhatIsSE

Kao, Chiang. 2014. “Network Data Envelopment Analysis: A Review.” European
Journal of Operations Research, 239(1): 1–16.

Lifecycle Modeling Organization. 2015. “LML Specification 1.1.” Lifecycle Modeling
Language. Accessed Jun 2, 2017. http://www.lifecyclemodeling.org/specification/

Maier, Mark W., and Eberhardt Rechtin. 2015. The Art of System Architecting (3rd
edition). Boca Raton: CRC PRESS.

MITRE. 2017. “System Engineering Guide, Analysis of Alternatives,” MITRE.org.
Accessed 5 June 2017, https://www.mitre.org/publications/systems-engineering-
guide/acquisition-systems-engineering/acquisition-program-planning/performing-
analyses-of-alternatives

 76

Mun, Johnathan. 2015. Readings in Certified Quantitative Risk Management Third
edition California, USA. Thompson-Shore, ROV Press, and IIPER Press.

Object Management Group (OMG). 2012.”OMG Systems Modeling Language (OMG
SysML).” sysMML Spec. Accessed May 12, 2017. www.omg.org/spec.SysML
/20120401’SysML.xm1

———. 2017. “What is Systems Modeling Language (OMG SysML.)?” What is sysML.
Accessed March 2, 2019. http://www.omgsysml.org/what-is-sysml.htm

Perez, Rafael M. 2014, “Application of MBSE to Risk-Informed Design Methods for
Space Mission Applications.” SPACE Conferences and Exposition.

Ramos, Ana Louise, Jose Vasconcelos Ferreira, and James Barcelo. 2012. “Model-Based
Systems Engineering: An Emerging Approach For Modern Systems,” IEEE
Transactions On Systems, Man, and Cybernetics—Part C: Applications and
Reviews, 42(1): 101–111.

Rumbaugh, J., and I. Jacobson, G. Booch. 1999. The Unified Modeling Language
Reference Manual. Reading, MA Addison-Wesley Longman.

Subcommittee NDIA. 2011. “Final Report of the Model-Based Engineering (MBE),”
Systems Engineering Division M&S Committee.

Subcommittee NDIA Systems Engineering Division M&S Committee, 2011. “Final
Report of the Model-Based Engineering (MBE).”

Sussman, J. 2000. Introduction to transportation systems. Dedham, MA: Artech house.

Syed, Matthew. 2015. Black Box Thinking. New York, New York: Penguim.

Tepper, Nadia A. 2010. “Exploring the Use of Model-Based Systems Engineering
(MBSE) to Develop Systems Architectures in Naval Ship Design.” Cambridge,
MA: Massachusetts Institute of Technology.

Topper, J. S., and N. C. Horner. 2013. “Model-Based Systems Engineering in Support of
Complex Systems Development.” JOHNS HOPKINS APL TECHNICAL
DIGEST, VOLUME 32, NUMBER 1.

Ulrich Karl T., and Steven D. Eppinger. 2012. Product Design and Development. 5th ed.

United States Army 2016 Counter - Unmanned Aircraft System (C-UAS) Strategy
Extract October 5, 2016, Http://www.arcic.army.mil/App_Documents/Army-
CUAS-Strategy.pdf

 77

Vaneman, Warren K. 2016. Enhancing Model-Based Systems Engineering with the
Lifecycle Modeling Language. Proceedings of the10th Annual IEEE Systems
Conference, April 18–21, 2016, Orlando, FL.

——. (draft) 2017a. Model-Based System Engineering De-Mystified.

——. (draft) 2017b. Measuring and Controlling System Efficiency during Transitional
Periods.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

