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ABSTRACT 

Fail early, fail often, but ensure that when failure occurs, a learning period is part 

of the systems development process. Understanding the reasons a system can fail during 

the development process is key to maximizing mission effectiveness. Would it not be 

valuable to have a process that allows the designers to recognize when a system is failing 

to meet the user’s requirements early in the development process? Furthermore, would it 

not be useful for that process to be iterative, to allow the impacts of changes to be seen in 

real time, as the concept is defined and the system is designed? What would it be worth to 

have the ability to accomplish this inside the engineering safety net of Model-Based 

Systems Engineering? This research shows an alternative process to classic systems 

engineering and optimization analysis, where system design decisions are statically and 

dynamically modeled in a Model-Based Systems Engineering environment and “what if” 

types of changes are answered and analyzed using embedded simulation. This research 

demonstrates the process with the use case of a highly relevant real-world problem of 

countering the threat of small commercial unmanned systems to the security of naval 

installations.  
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EXECUTIVE SUMMARY 

All systems are designed for mission success, but many are delivered to the 

customer with inherent and undiscovered design problems, limiting system effectiveness. 

Understanding the reasons a system can fail during the development process, while time 

remains to fix the issues, is key to maximizing mission effectiveness. In fact, possessing 

an understanding of the reasons a system can fail is more important than understanding 

how the system succeeds, particularly if a system can fail in a catastrophic manner. This 

research demonstrates the means by which an iterative and interactive design process 

allows the designers to recognize, early in the development process, a system’s failure to 

meet the users’ requirements. This research illustrates the conduct of this design process 

inside the engineering safety net of Model-Based Systems Engineering (MBSE). This 

research presents an alternative process to classic systems engineering and optimization 

analysis, in which system design decisions are statically and dynamically modeled in a 

MBSE environment, and “what if” types of changes are answered and analyzed using 

embedded simulation. This process is demonstrated in this research with a use case 

involving a highly relevant real world problem of countering the threat of small 

commercial unmanned systems to the security of naval installations. 

Although requirements, assumptions, constraints, and stakeholders change and 

evolve rapidly, the current Department of Defense (DOD) 5000.2 process does not allow 

for periodic reassessment of the concept. This is the case even when the concept that was 

initially determined to be viable by the analysis of alternatives (AoA) may not be so 

when the program reaches preliminary design. With no AoA style reassessment built into 

the process, even if a stakeholder’s initial request is developed, that developed product 

may not meet the stakeholder’s true needs in the end.  By embedding the assessment into 

the system model, mission effectiveness is reassessed periodically against the design 

baseline. In this way, corrections can be made earlier in the process, and the needed 

change is discovered early. This may be viewed by some as requirements creep, but the 

goal is to ensure that the requirements remain valid. To help guide this research, the 

following questions were asked: 
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 How can MBSE be used to forecast and investigate mission effectiveness, 

caused by material and design limitations, to inform and influence the 

early stages of the system design process? 

 How can multiple runs of the simulation that vary the component level 

effectiveness be used to determine overall system sensitivity once the 

architectural model is complete with embedded mission effectivity 

analysis? 

 How can the results of the system sensitivity results and analysis be used 

to optimize design and reliability requirements?  

 How can one use sensitivity analysis techniques to adjust the project’s 

path forward by having a continuous positive impact on the early stages of 

the development process?  

To demonstrate this process, updates were made to the U.S. Naval Air Systems 

Command (NAVAIR) Counter Unmanned Aerial System (UAS) Architecture 

Framework model using the MBSE tools. This modeling process with embedded 

simulation offers clearer insight than classic fault analysis methods. 

This study uses a MBSE tool to define the Counter UAS capability, functionality, 

and integrated actions. The effectiveness of the actions are based on the component 

capabilities and the interactions between these components as work flows through the 

system and results in a positive or negative outcome. Based on multiple simulation runs 

in which system input values are varied, predicted system performance is assessed. In 

addition, the modeling engine embedded in the tool allows for scripting the decision 

branches with additional randomized capabilities to varied path selection decisions based 

on the range provided from user input. The user can vary the inputs in order to determine 

the effectiveness of a model, and can automate variation to understand the sensitivity of 

the model to the specific capabilities and grouping of capabilities. Areas found to be 

highly sensitive can then be further investigated and optimized. For example, a counter-

unmanned system (C-UxS) may be highly sensitive to a very high-end radar, thus driving 

cost and size, or it could have lower sensitivity, allowing for additional trade-space in the 

mixing of multiple lower cost sensors. The goal for a specific site is to allow the selection 
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of the correct combination of sensors to match cost with required mission effectiveness. 

The assumption is that a solution that is optimal in one location may not be ideal for 

another. 

This research developed an MBSE process with embedded simulation that is used 

to assess the mission effectiveness metric early in the process as well as throughout the 

design lifecycle. A realistic, though truncated, use case for a C-UxS using the MBSE 

process with simulation was provided by this research.  

This use case is intended to demonstrate a process that can be leveraged for all 

system development efforts. The actual MBSE process with integrated simulation for a 

large development effort would be much more extensive with all the additional 

capabilities, functionality, and action cases, to include the interactions between multiple 

system effectiveness metrics target values. Additionally, the ability to use the single 

source of truth with the built in simulation at any time in the lifecycle or a site-specific 

instantiation of the C-UxS allows for continuous knowledge of the systems mission 

effectiveness metric. 

The use case analysis illustrates that, with just a static view, the developers’ initial 

solution did not meet the stakeholders’ requirements. The knowledge gained by multiple 

runs through the solution space via simulation helped guide the process to a successful 

outcome. The interaction between sensors, fusion, and operator seem simple when looked 

at statically, but the dynamic interactions are complex for even this simplistic use case. 

For example, the initial three concept simulation runs did not meet the mission 

effectiveness requirements, although they all appeared perfectly viable from a static 

perspective. Therefore, a different focus was placed on system composition to create a 

more balanced sensor suite that in turn allowed the design to meet the requirement. 

Without the iterative dynamic analysis throughout the process, the stakeholders may have 

had to settle on a non-optimized solution that too strongly favored a radar solution over a 

balanced solution. The key for this research is not the numerical values determined to be 

the feasible optimized solution, but the fact that the simulation-added knowledge allows 

for a continual optimization process based on the MBSE process with embedded 

simulation. 
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This thesis provides a MBSE process with integrated simulation that allows 

engineers the flexibility to try many times and fail early, so they can succeed in the long 

term. Multiple designs can be quickly built, including some that have a higher risk to 

reward ratio, and then the performance of each can be evaluated relative to the others. 

The act of understanding the reasons that one solution is more effective than another 

helps one build a greater understanding of the system. It also allows the designer a better 

understanding of the possible sensitivity of a solution to a single technology. The process 

defined above provides a framework to conduct the definition and design phase of system 

development using a defined and iterative process built on previous MBSE development 

research on developing large complex systems. This research and the enhanced MBSE 

process helps in the development of future large, complex systems during system 

definition and design phases by providing validation of the system model though 

simulation and analysis.  This research shows that the MBSE process is available in all 

phases of the system lifecycle, as long as the model is maintained as part of the lifecycle 

process. A general MBSE process with integrated simulation is defined and verified by 

this research, and a representative C-UxS use case exercised the proposed process. This 

allowed validation of the process, as a use case provides a clear example of how the 

assessment provides a more effective overall product. 

The discoveries of the related research, the enhancement to the current MBSE 

process, and the example use case addressed many of the primary research questions that 

were proposed. The objectives of the thesis effort are met with the development of the 

MBSE process with embedded simulation and the C-UxS use case. The beneficiaries of 

the research will be developers of large complex systems in dynamic environments who 

are able to use the process as a function of fielding and maintaining an effort. The 

multiple research questions are discussed below, with corresponding details identified for 

each, based on the research. 

1) How is MBSE used to forecast and investigate mission effectiveness, 

caused by material and design limitations, to inform and influence the early stages of the 

system design process? The question is addressed in two parts - the first is defining the 

process of MBSE with embedded simulation, and the second is the use case, which 
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clearly shows the model being used in a relevant use case. The MBSE process with 

embedded simulation provides a powerful framework for complex system development. 

2) Once the architectural model is complete with an embedded mission 

effectivity analysis, how can multiple runs of the simulation, with varying component 

level effectiveness probabilities of design choices, be used to determine overall system 

sensitivity? The question is addressed with the use case, specifically with the inputs of 

the six runs shown in Table 2 and the results shown in Table 3. In the use case, the design 

choices are the sensor mix and the capabilities selected from each sensor type. The 

variation shows where the use cases are most sensitive. In this particular use case, 

unbalanced systems perform poorly compared to balanced systems. 

3) How can the results of the system sensitivity results and analysis be used 

to optimize design and reliability requirements? This effort leveraged previous work by 

Perez (2014), in which fault analysis is shown to be viable. This use case was based on 

capability and cost, but an additional dimension of fault and reliability could have been 

added based on past work and this research effort.  

4) Based on the architectural model with the simulation, how can one-use 

sensitivity analysis techniques to adjust the project’s path forward have a continuous 

positive impact on the early stages of the development process?  The recursive nature of 

the defined MBSE process with embedded simulation takes what one knows and allows 

for simulation of the unknown, in a representative environment. The varying inputs made 

to the model clearly show in a relative manner the sensitivity of the input. Based on the 

results of the simulation run, the path forward becomes relatively clear.  The designer can 

back out a negative change and try a different trade or continue to refine a positive 

change. When progress stalls, one may have to make seemingly random changes, simply 

to recognize the pattern of positive and negative effects and determine a new course of 

action. 

This thesis research provides a MBSE process with integrated simulation that 

allows engineers the flexibility to test many solutions and fail early, allowing them to 
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succeed in the long term. The opportunity to fail without catastrophic concrescence is 

truly a very powerful tool in system design. 
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I. INTRODUCTION 

Fail early, fail often, but ensure that when failure occurs, a learning period is part 

of the systems development process. This learning period should take place in a timely 

manner, such that time remains to fix the system before delivery to the customer. Most 

agree that all systems are designed for mission success, but many are delivered to the 

customer with inherent design problems, limiting the systems’ effectiveness. 

Understanding the reasons a system can fail during the development process is key to 

maximizing mission effectiveness. In fact, understanding system failure is more 

important than understanding how the system succeeds, particularly if the system can fail 

in a catastrophic manner. Would it not be valuable to have a process that allows the 

designers to recognize when a system is failing to meet the user’s requirements early in 

the development process? Furthermore, would it not be useful for that process to be 

iterative, to allow the impacts of changes to be seen in real-time, as the concept is defined 

and the system is designed?  What would it be worth to have the ability to accomplish 

this inside the engineering safety net of Model-Based Systems Engineering (MBSE)? 

This research shows an alternative process to classic systems engineering and 

optimization analysis, where system design decisions are statically and dynamically 

modeled in a MBSE environment and “what if” types of changes are answered and 

analyzed using embedded simulation. This research demonstrates the process with the use 

case of a highly relevant real-world problem of countering the threat of small commercial 

unmanned systems to the security of naval installations.  

As systems have grown in size and complexity, classic systems engineering 

methods and system optimization methods have become increasingly cumbersome and 

ineffective. As an alternative to classic systems engineering and optimization analysis, 

system and component responses can be statically and dynamically modeled in a MBSE 

environment to gain an understanding of system effectiveness, similar to classic discrete 

event simulation and fault analysis methods predicting system suitability. The results can 

inform the system designer of key areas on which to focus effort to maximize system 

effectiveness and minimize failure. 



 2

Typically, system optimization for a DOD development program starts with the 

analysis of alternatives (AoA) phase of the acquisition lifecycle. The AoA is conducted 

by an independent team to help move a program from idea, sometimes known as concept 

demonstrator, to a Program of Record. However, the AoA effort does not directly flow 

into the development process, even when performed optimally by the subject matter 

experts (SMEs) with the knowledge they possess at the time. Much of the AoA effort 

ends when the AoA phase is complete, and key knowledge is lost. This research 

demonstrates how moving MBSE techniques to the earliest phases of the lifecycle, 

including the AoA and concept development phases, can facilitate a deeper understanding 

of the problem statement and solution trade-space, while allowing the knowledge to be 

carried over into the later development phases.  

The supposition for this research is that optimizing solution trade-space needs to 

be a continuous effort, similar to managing cost and schedule, and not performed only 

during the AoA, but throughout the development lifecycle. If effort is initiated early on to 

capture and automate the trade-space analysis process inside the core systems 

engineering development tool, then, as assumptions, constraints, and capabilities evolve 

over time, the development effort can adjust accordingly to provide the best value to the 

customer.  

To help understand how MBSE can be used as part of the AoA trade-space 

analysis process and to continually re-look at the trade-space optimization, this research  

builds a system model of an example Counter Unmanned System (C-UxS), adds scripts 

for automated trade-space analysis, runs multiple simulations, and reports on the findings. 

A. BACKGROUND 

This background section establishes a common understanding on which this 

research is based. First, to tie the process to actual use, a real-world problem is described 

as the basis for a use case that exercises the defined process. This research builds on 

previous topics of research such as concept development, systems engineering, systems 

modeling, MBSE, and defining the use case’s operational concept, as expanded upon 
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below. The process defined in Section 3 builds on previous research described in the 

background and the related research sections.  

1. Real-World Problem 

In a world of low-cost unmanned aerial systems (UAS), such as the very 

advanced DJI Phantom 4, which is available to terrorists on web stores with just one-

click and one thousand dollars, the threat of low cost commercial-off-the-shelf (COTS) 

technologies for unmanned systems is a serious concern. Though the Phantom 4 is a 

small UAS, this class of technology presents a multi-domain problem: air, surface, sea, 

and ground, so one uses “UxS” as short hand for this considerable threat. Specifically, 

there are numerous open source articles citing the use of commercial small UAS “out of 

the box” and similar COTS technologies used in unmanned surface vessels (USV) as 

improvised weapons. For this research, smaller sized COTS UAS, also known as Group 

1, are modeled. The selection of small UAS is based on the significant challenges they 

present. Small COTS UAS are difficult to defeat consistently due to the rapid 

technological advancement cycle, their worldwide availability, and their small bird-like 

profile. These improvised weapons can be used in congested airspace, which adds 

complexity to detection and shortens engagement windows. Small COTS UAS may seem 

almost toy-like, but the reality is that they can easily be turned into dangerous 

autonomous weapons. 

2. Concept Development 

The systems engineering process is one of the principal methods used to achieve 

the goals of product development, and serves as the basis for this research, which focuses 

on the intersection between products and systems, and specifically on the intersection of 

complex products and systems. The intent for the generic product development process is 

to develop it in a manner that meets all of the stakeholder’s needs and is value-added to 

the end user. In other words, the positive value is significantly greater than the negative 

value, and the product is desirable in spite of some inherent risk in its use. For example, 

cars or motorcycles can be involved in deadly accidents, but there is value in their 

transportation features that overrides this risk.  
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3. Systems Engineering 

As defined by INCOSE, “Systems engineering is an important investment in the 

development of products, and the higher complexity of a product, the better value of that 

investment. As defined, systems engineering is an interdisciplinary approach and means 

to enable the realization of successful systems” (INCOSE 2017). The key term in the 

INCOSE definition is “successful,” and there are multiple processes, methods, and tasks 

to help a development effort be successful. INCOSE further defines systems engineering 

as: 

Systems engineering is an engineering discipline whose responsibility is 
creating and executing an interdisciplinary process to ensure that the 
customer and stakeholder’s needs are satisfied in a high quality, 
trustworthy, cost efficient and schedule compliant manner throughout a 
system’s entire lifecycle. This process is usually comprised of the 
following seven tasks: State the problem, investigate alternatives, model 
the system, integrate, launch the system, assess performance, and re-
evaluate. These functions can be summarized with the acronym 
SIMILAR: State, Investigate, Model, Integrate, Launch, Assess and Re-
evaluate. This Systems Engineering Process is shown in Figure 1. It is 
important to note that the Systems Engineering Process is not sequential. 
The functions are performed in a parallel and iterative manner. (INCOSE 
2017)  

 

 

Figure 1.  The Systems Engineering Process. Source: Bahill (1998). 

Relating the discussion above and the liner recursive systems engineering process, 

the first and second tasks are the initial tasks of concept development. As shown in 

Figure 1, the third task of the systems engineering process, Model the System, is the 

primary emphasis for this research. It uses the model to allow for constant reevaluation of 
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the design solution compared to the alternatives. For static development efforts, 

investment in building a model may not be required, but for dynamic efforts, it may be 

essential.  

4. System Modeling 

An alternative view of this linear recursive Systems Engineering Process 

definition, shown in Figure 2, provides additional emphasis on the modeling task. Model 

the System now encompasses the processes from defining the need to launching the 

system, which promotes the modeling from a sub-task in a linear process to a recursive 

wrapper encompassing the primary steps of the systems engineering development 

process. 

 

Figure 2.  Model-Centric Systems Engineering Process 

As shown, this is the manner by which the systems engineering process is 

transitioning from a linear process to a model-centric-based process. Now that the model 

is proposed to be the heart of the system development process, it is important to 

understand the “what and why” of modeling. 

As stated above, the goal is to design an effective and desirable system. To reduce 

the risk of creating a poor design, modeling allows the developers’ team a better 

understanding of the system. According to Rumbaugh, the models are important to 

accomplish the following: 
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1. Capture and state requirements and domain knowledge so that all 
stakeholders may understand them. 

2. Think about the design of the system. 

3. Capture design decisions in a mutable form separate from the 
requirements. 

4. Produce usable work products. 

5. Organize, find, examine, filter, manipulate, and edit information 
about large systems. 

6. Explore several solutions operationally, economically, and 
environmentally. 

7. Master complex systems. (Rumbaugh 1999, 16–17)  

Sussman (2000) also felt it is very important to good systems design to use 

viewpoints modeling techniques to better understand complex systems, to interactively 

experiment with different variations of the system, and to simulate the system in a 

representative environment. Adding to these insights by Rumbaugh and Sussman, this 

research expands the thought that models are also important to allow for efficient and 

detailed exploration of engineering trade-space.  

Expanding on Rumbaugh’s second point above, models positively influence the 

thought process on the design of a system. The memorable graphical views and the large 

amount of context that the right side of the brain can process and store are illustrated by 

the colloquialism, “A picture is worth a thousand words” (Ramos 2012, 103). Personal 

experience has shown that when one displays a spreadsheet with numerous values to a 

large audience, one gets limited response (the left brain); however, if the material is a 

graphical diagram, then there is an increase in audience response. Presenting an 

interactive graphic for which audience members are able to suggest inputs can yield an 

enthusiastic discussion that pushes design space (interaction between the right brain and 

left brain). In addition, after a vigorous discussion, participants remember and ponder the 

discussion and offer additional inputs long after the event. Also, if one can extend the 

event into a process, then one thereby enhances the design process and insight of one 
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team by capturing it into a single model for others to experience, rather than losing that 

knowledge in a stovepipe work environment. 

Merely modeling the system is not sufficient; all the developmental modeling 

must be performed simultaneously in an integrated development environment. By 

requiring the systems engineering team to use what some call a “Single Source of Truth” 

or a “Single Version of Truth” while refining the system, reduces the chance of 

incompatible changes that appear later during integration events. Both integrated 

development environment concepts are defined as “Single Source of Truth” (SSoT). 

Defined by Grealou, “SSoT is the practice of structuring information models and 

associated schemata, such that every data element is stored exactly once” (Grealou 2016, 

1). From a development perspective, at an engineering level, this means that engineering 

artifacts only have one instance, in the relevant master system, following a specific 

process or set of processes. “SVoT enables greater data accuracy, uniqueness, timeliness, 

alignment, etc.” (Grealou 2016, 1) The concept of SSoT for a development effort is 

extremely powerful, as there are currently many various disconnected models used for 

analysis of alternatives, tracking critical capabilities, and design development, allowing 

multiple incompatible versions of the truth to exist. For example, based on additional 

constraints imposed mid-development, design trades that were true during the analysis of 

alternatives modeling efforts, may not be true at this later stage. Additionally, if the 

model used for analysis of alternatives was not maintained past that initial portion of the 

design phase, the details of why a design trade was true at that time, but not true at the 

latter stage, are now lost. As a result, sub-optimal trades introduced to the system during 

the AoA could potentially persist into the design phase. 

5. Model-Based Systems Engineering 

As shown in Figure 2, a growing approach in systems engineering involves basing 

the systems engineering process on the model itself, and removing the need for paper-

based documentation. This is the emergence of MBSE as the primary framework for 

complex system development. As defined by Vaneman (2017a, 5), “MBSE is the 

formalized application of modeling (both static and dynamic) to support systems design 
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and analysis, throughout all phases of the system lifecycle, through the collection of 

modeling languages, structure, Model-Based processes, and presentation frameworks 

used to support the discipline of systems engineering in a ‘Model-Based’ or ‘model-

driven’ context.”  

The four tenets of this definition, according to OMG (2012) are as follows. 

 Modeling Languages—Serves as the basis of tools, and enables the 
development of system models. Modeling languages are based on a 
logical construct (visual representation) and/or an ontology. An 
ontology is a collection of standardized, defined terms and 
concepts and the relationships among the terms and concepts (Dam 
2015). 

 Structure—Defines the relationships between the system’s entities. 
These structures allow for the emergence of system behaviors and 
performance characterizations within the model. 

 Model-Based Processes—Provides the analytical framework to 
conduct the analysis of the system virtually defined in the model. 
The Model-Based processes may be traditional systems 
engineering processes such as requirements management, risk 
management, or analytical methods such as discrete event 
simulation, systems dynamics modeling, and dynamic 
programming. 

 Presentation Frameworks—Provides the framework for the logical 
constructs of the system data in visualization models that are 
appropriate for the given stakeholders. These visualization models 
take the form of traditional systems engineering models. These 
individual models are often grouped into frameworks that provide 
the standard views and descriptions of the models, and the standard 
data structure of architecture models. The Department of Defense 
Architecture Framework (DODAF) and the Zachman Framework 
are examples of frameworks that may be encountered. (OMG, 
2012) 

This research effort uses MBSE techniques to focus on the “model the conceptual 

system” phase of the program while fully understanding that the intent of the modeling 

effort is to show relevance to the complete lifecycle of a system, not merely to illustrate 

the concept development phase. Modeling is performed early in the development process 

to refine the problem statement and support the AoA process in an iterative manner until 

a viable design solution is agreed on by the stakeholders and end users. The power of 
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MBSE of complex systems is the investment in building a detailed model early in the 

concept development process to continue to provide value throughout the system’s entire 

lifecycle through the disposal phase. This research, as stated above, focuses on modeling 

the system in a manner by which the model can be leveraged to drive the decision-

making process during concept development. This requires a discussion about specifics 

on modeling the system. 

Model the system: Models will be developed for most alternative designs. 
The model views for the preferred alternative will be expanded and used 
to help manage the system throughout its entire lifecycle. Many types of 
system models are used, such as physical analogs, analytic equations, state 
machines, block diagrams, functional flow diagrams, object-oriented 
models, computer simulations, and mental models. Systems Engineering is 
responsible for creating a product, in this case a complex system, and also 
for the process to produce it. So, models should be constructed for both 
the product and the process. Process models allow us, for example, to 
study scheduling changes, create dynamic PERT charts and perform 
sensitivity analyses to show the effects of delaying or accelerating certain 
subprojects. Running the process models reveals bottlenecks and 
fragmented activities, reduces cost and exposes duplication of effort. 
Product models help explain the system, and are used in tradeoff studies 
and risk management. As previously stated, the Systems Engineering 
Process is not sequential: it is parallel and iterative. This is another 
example: models must be created before alternatives can be investigated. 
(Bahill 2009, 2–3) 

As an important part of MBSE different views, the concept of risk-informed 

design plays a large role during concept development. In fact, DOD 5000.2 forces the 

program manager to address risk as part of the AoA. The original intent of risk-informed 

design, as initially defined by the National Aeronautics and Space Administration 

(NASA), is to make informed design trades in order to continuously reduce risk to the 

crew and the mission, but this technique has been expanded to describe risk inside a 

MBSE approach (Moulds 2016).  

The goal for both risk management and system architecting is to limit the number 

and effect of unknowns causing failures during the system’s lifecycle. Management of 

what you know and what you do not know helps limit the chance that uncertainty drives 

the process and goals of development (Antunes 2015). “To people who lived centuries 
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ago, risk was simply the inevitable nature of chance; an occurrence beyond the realm of 

human control” (Mun 2015, 25). Today, with the use of modern MBSE methods, all areas 

that impact mission effectiveness can be discovered and mitigated early in the lifecycle of 

a system. In terms of system development, if the “hard stuff” is deferred, then the residual 

risk does not change, leaving a high risk of failure, or at least uncertain, to the very end 

(Maier 2009). For the purpose of this research, ineffective solutions, risks, faults, 

reliability issues and failures affecting mission performance are synonymous and 

represented in the model in a uniform manner. This means that one should first focus on 

correcting components and processes that have the greatest impact on mission 

effectiveness in order to have the greatest return on investment. This paper describes how 

the use of classic methods inside a modern system architecture modeling tool help in 

discovering, understanding, and documenting issues early enough in the program, thus 

optimizing resources and maximizing the impact on the development program. Engineers 

often aim to solve the exciting problems first, delaying resolution for the more mundane, 

yet relevant (and potentially costly), ones. 

6. Operational Concept 

To start the development process, the DOD has generated multiple urgent need 

statements and has purchased several COTS products for concept demonstration. 

Additionally, the DOD has hosted numerous events, such as Black Dart, where a live 

exercise environment allows developers to test their C-UxS technologies against live 

systems. The Design Reference Mission (DRM) has not selected any specific operational 

concept, but rather elected to develop a generic framework for C-UxS. This generic 

framework covers the entire kill chain of find, fix, track, target, engage, and assess, but it 

does not identify any particular technology. The operational requirement is to develop a 

solution to deter or defeat the representative UxS before they can enter the restricted zone 

as defined by the end user.  

The concept and the architecture is based on the kill chain defined above, but 

segregated so a technology in one sub-domain is not so tightly coupled with a technology 

in a separate sub-domain that the solution becomes vendor locked. 
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1. Find: This sub-domain is normally the trigger when the process transitions 

from a system waiting for an occurrence to one that is actively processing 

an event. The sub-domain has numerous names, such as detect, battlespace 

awareness, collection capability, and the sense function.  

2. Fix: This sub-domain is the transition between a raw detection and an 

establish track. The sub-domain has numerous names, such as classify, 

process exploitation capability, and performs tracking functions such as 

form track, fuse track measurements, correlate tracks, and associate tracks. 

3. Track: This sub-domain is the monitoring phase in which a detection event 

meets a minimum criteria such that it should be monitored and persist in 

the system. This sub-domain covers the transition from the battle space 

awareness capability to the command and control capability, and 

completes the perform tracking functionality started on the Fix sub-

domain described in item 2.  

4. Target: This sub-domain is primarily the classic decision loop. A track is 

evaluated based on risk, and when the risk reaches a defined threshold, an 

appropriate course of action is selected. This is part of the decision or the 

control part of the command and control capability and the decision part of 

the mission execution functionality. 

5. Engage: This sub-domain is one of the easier ones to understand and 

describe. It is part of the force application capability and the perform 

engagement group. 

6. Assess: This sub-domain is the final step of the active process in which all 

knowledge from the event is stored and analyzed. This sub-domain also 

completes the transition from active process back to the waiting phase. 

This is part of the Understand Command and Control capability and the 

mission analysis functionality. 

Other capabilities that are part of this DRM, but not explicitly part of the kill-

chain are force support, logistics, communications and computers, protection, corporate 
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management and support, and interactions with the UxS. Similarly, other functionalities 

that are also part of the DRM are mission planning, enterprise IT, and network 

infrastructure.  

From an implementation perspective, the C-UxS is composed of multiple 

interconnected capacities that either together or alone provide the required functionality, 

and as an integrated system provide the required capability. The government has the 

additional requirement to “own the middle” so a solution does not create a vendor 

monopoly, but at the same time allows for proprietary functionality for find and engage. 

In addition, other functionalities such as fusion, which technically “lives in the middle,” 

can also be proprietary, but still be subject to change by the Government Lead System 

Integrator (LSI). 

B. PROBLEM STATEMENT 

Requirements, assumptions, constraints, and stakeholders change and evolve 

rapidly, but the current DOD 5000.2 process does not allow for periodic reassessment of 

the concept, even when the concept that was initially viable as part of the AoA may no 

longer be viable when the program gets to preliminary design. Because of this lack of 

easy reassessment built into the process, many times the initial request is developed, but 

in the end it is not the solution that is needed. By imbedding the assessment into the 

system model, mission effectiveness can be reassessed periodically against the design 

baseline. In this way, corrections can be made earlier in the process, as early as the 

change in the need is discovered. Some would call this requirements creep, but the goal is 

to ensure that the requirements are valid. 

C. RESEARCH QUESTIONS 

 How can MBSE be used to forecast and investigate mission effectiveness, 

caused by material and design limitations, to inform and influence the 

early stages of the system design process? 

 How can multiple runs of the simulation with varied component level 

effectiveness probabilities of design choices be used to determine overall 
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system sensitivity once the architectural model is complete with embedded 

mission effectivity analysis?  

 How can the results of the system sensitivity results and analysis be used 

to optimize design and reliability requirements?  

 How can one use sensitivity analysis techniques to adjust the project’s 

path forward by having a continuous positive impact on the early stages of 

the development process?  

As depicted in Figure 3, early in the development of a complex system, the 

process presents the development team seemingly limitless possibilities with unknown 

correlation with mission effectiveness. The AoA process uses modeling and simulation 

linked to appropriate metrics to help the team understand cause and effect, but this 

process typically does not continue past the AoA stage. 

 

Figure 3.  MBSE Definitization Cycle 

This research examines whether the “what if” portion of the AoA process can be 

embedded into the system modeling process. The premise is that once embedded, it can 

persist throughout the system lifecycle, allowing consistent “what if” questions to be 

posed again as the system is refined and constrained. The architectural model provides 
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both a common knowledge base of the system along with embedded integrity checking 

and mission effective analysis. 

D. OBJECTIVES 

The objective of this research is to define an MBSE process that ensures that trade-space 

can be evaluated continuously throughout the lifecycle of a system. This process is based 

on existing MBSE research and current U.S. Navy engineering practices. Without a 

complete, repeatable, and embedded method of re-evaluating trade-space, the 

development effort could result in a sub-optimal design. This makes the real world 

problem and resulting research a critical process to define and demonstrate. 

E. OVERVIEW OF THE APPROACH 

1. Research 

This research examines the means to merge the AoA modeling process with 

MBSE developmental and lifecycle processes to capture and expand the “what if” 

process of concept development. Often the AoA is based on one set of constraints or one 

view of an ideal system, but shortly after development starts, a new set of constraints 

emerges. The process compensates, but not necessarily with the same information 

(model) the AoA used, allowing for sub-optimization of the designed solution. The 

premise is that if the AoA and the following development process are based on the 

common model, then, when constraints are added, the effect of the constraints are shown 

as a function or routine model analysis. 

To demonstrate this process, updates are made to the model of the NAVAIR 

Counter UAS Architecture Framework using the Innoslate MBSE tools. This modeling 

process with embedded simulation offers insights that are not revealed by classic fault 

analysis methods. 

2. Overview 

This study used the MBSE tool to define the Counter UAS capability, 

functionality, and integrated actions. The effectiveness of the actions are based on the 
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component capabilities and the interactions between these components as work flows 

through the system and results in a positive or negative result. Based on multiple 

simulation runs during which system input values are randomly varied, predicted system 

performance is assessed. In addition, the modeling engine embedded in the tool allows 

for scripting the decision branches with additional randomized capabilities to varied path 

selection decisions based on the range provided from user input. The user can vary the 

model inputs to view their impact on the outputs in order to understand the sensitivity of 

the model to specific capabilities and grouping of capabilities. Areas that are found to be 

highly sensitive can then be further investigated and optimized. For example, a C-UxS 

system may be highly sensitive to a very high-end radar, thus driving cost and size, or it 

could have lower sensitivity allowing for additional trade-space in the mixing of multiple 

lower cost sensors. The goal for a specific site is to enable the selection of the correct 

combination of sensors to match cost with required mission effectiveness. The 

assumption is that a solution that is optimal in one location may not be ideal for another. 

3. Tools 

The goal of the effort is to perform both the AoA and the system definition inside 

a MBSE tool. For this effort, a MBSE tool that supports modeling, scripting flow, and 

simulation is used.  

4. Scope 

While the concept and understanding of predicting mission effectiveness is almost 

limitless, this paper focus on the idea that model-based methods currently used to define 

a system as part of development, can also be used to address mission effectiveness 

analysis and system sensitivity to specific component capabilities. The simulation effort 

is limited to the current capability of the MBSE tool. The classes of the sensors are 

limited to three and the fusion engine is rule based. The use of a single tool with a single 

example system to demonstrate feasibility limits the scope of the effort to a manageable 

level, but does not attempt a complete proof of equivalence. In addition, the following 

assumptions guided the development of the example C-UxS model:  
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(1) UxS will become smaller, cheaper, and more capable as technology 
evolves; proliferation will increase as UxS become more capable and less 
expensive, related new technologies will emerge/evolve that enhance UxS 
operations. (2) Future decisions will provide adequate resources and 
organizational structure to support C-UxS capabilities development. (3) 
Current and future capabilities, to include surface-to-air systems, air-to-air 
systems, Command and Control Systems, are adequate to deal with large 
UAS. (4) The cyber domain and electromagnetic spectrum will be more 
contested in the future. (5) Adversaries will challenge the United States in 
these areas due to evolving technology and proliferation. (Army 2016)  

The model expands on cross-domain solutions where it makes sense, recognizing 

that the C-UxS mission set exists in every domain, not only in the air. The full DRM is on 

request for the C-UxS real-world problem. 

F. ORGANIZATION 

Chapter I of this research provides background for the challenge and defines the 

research questions and overview. Chapter II provides a detailed walk through of complex 

system development research in systems engineering, MBSE, and related use of MBSE 

tools for informing development efforts based on risk informed decision making. Chapter 

III presents the tools selected, the model development, model analysis, and key decisions 

to make based on the process. The goal of this chapter is to illustrate to the reader the 

process so one can re-use it, but it also demonstrates the process with a simple example 

of a generic C-UxS system. Chapter IV reveals the conclusions and provides 

recommendations for further research. Complete views of the C-UxS Use Case Model are 

provided in the Appendix.   

G. CONCEPT DEVELOPMENT PROCESS 

1. Introduction 

A key part of the development process is concept generation, as reflected in both 

commercial best practices and in the DOD 5000.2 acquisition process. As defined by 

Ulrich, “A product concept is an approximate description of the technology, working 

principles, and form of the product. It is a concise description of how a product satisfies 

the customer needs. A concept is usually expressed as a sketch or as a rough, three-
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dimensional model and is often accompanied by a brief technical description. The degree 

to which a product satisfies customers and can be successfully commercialized depends 

to a large measure on the quality of the underlying concept” (Ulrich 2012, 118). Ulrich 

also re-enforces the heuristic that “a good concept is sometimes poorly implemented in 

subsequent development process resulting in a commercial failure, but a poor concept can 

rarely be manipulated to achieve commercial success” (Ulrich, 2012, 118). The exception 

to this heuristic is that, at times, the DOD manipulates poor concepts into operational 

systems, or adds constraints on the process later in the design phase that cause an 

effective concept to morph into an ineffective one. A continual lack of insight does not 

allow the potential path to failure to be known until it is too late. Ulrich concludes, “The 

development of a non-optimal concept is unfortunate because good concept generation 

leaves the team with confidence that the full space of alternatives has been explored” 

(Ulrich 2012, 219). Typically, a model of the system is not developed during concept 

development, but if modeling can be part of the process, than knowledge gained in 

concept development can stay with the process throughout the lifecycle. 

2. AoA Guidance 

From the DOD perspective, “the AoA is an important element of the defense 

acquisition process” (DAU 2012). Similarly, an “AoA is an analytical comparison of the 

operational effectiveness, suitability, and lifecycle cost (or total ownership cost, if 

applicable) of alternatives that satisfy established capability needs” (DAU 2012). An 

important part of an AoA is one of the first DOTMLPF (Doctrine, Organizations, 

Training, Materiel, Leadership and Education, Personnel, and Facilities) assessments, as 

understanding limitations of non-material solutions early on allows the AoA process to 

maximize the understanding of the feasible material solutions. 

7. The guidebook goes on to state that, “The AoA is not a point analysis, but 

should be revisited” (DAU 2012). The concept of revisiting the analysis is often easier 

said than done, particularly on large programs in which the AoA is often more of a paper-

based effort, and therefore hard to revise. Additionally, the AoA team members who are 

able revise the concept, to have already moved onto the next project. The ability to 
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automate this process and meet the requirement to revisit the analysis could prove to be 

very powerful, as one now only needs continuity in the tools, not necessarily in the 

people.  

Additional guidance from the guidebook states, “The AoA is used to identify the 

most promising end-state materiel solution, but the AoA also can play a supporting role 

in crafting a cost-effective and balanced evolutionary acquisition strategy. The 

alternatives considered in the AoA may include alternative evolutionary paths, each path 

consisting of intermediate nodes leading to the proposed end-state solution. In this way, 

the analysis can help determine the best path to the end-state solution, based on a 

balanced assessment of technology maturity and risk, and cost, performance, and 

schedule considerations. In other words, doing the AoA inside the model allows for more 

than just the AoA itself, but it establishes a strong foundation and memory for a cost 

effective and balanced accusation strategy” (DAU 2012). 

The MITRE System Engineering Guide: Performing Analyses of Alternatives 

provides a very good guidance for AoAs, which is condensed below: 

Why do we perform AoAs? AoAs are performed to allow decision makers 
to understand choices and options for starting a new program or 
continuing an existing program.  

Commercial industry also uses “alternative analyses,” but they are usually 
more focused on lifecycle cost. The plan is important. It should include the 
following information: 
1. Understand the technology gaps and capability gaps—what needs 

are the intended system supposed to meet?  
2. Develop viable alternatives  

a. Define the critical questions 
b. List assumptions and constraints  
c. Define criteria for viable/non-viable 
d. Identify representative solutions (systems/programs) 
e. Develop operational scenarios to use for 

comparisons/evaluation 
3. Identify, request, and evaluate data from the representative 

systems/programs (determined to be viable) 
4. Develop models - Work through scenarios 

Know the baseline before starting the AoA, know your stakeholders, 
beware premature convergence, know your AoA Team, understand the 
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mission, obtain technical descriptions of the materiel solutions, anticipate 
problems, and be persistent! (MITRE 2017, 438) 

A recent Government Accountability Office (GAO) report on defense acquisitions 

“attributes premature focus on a particular solution or range of solutions as a failing of 

AoAs” (GAO 2009). The GAO report goes on to state that, “If stakeholders are already 

enamored of a particular solution, completing a full AoA may be difficult” (GAO 2009).  

The current best practice from this GAO report and practical experience only 

recommends that an AoA is completed before program requirements are set, but this 

research looks beyond the AoA guidance to determine the manner in which the AoA 

process can be part of the full system development process. 

H. MODEL-BASED SYSTEMS ENGINEERING 

MBSE was envisioned to transform systems engineering’s reliance on document-

based work products to an engineering environment that is based on models. This 

transformation means more than using model-based tools and processes to create hard-

copy text-based documents, drawings, and diagrams. Data in a MBSE environment is 

ideally maintained within a single repository, has a singular definition for any model 

element, and allows for the static and dynamic representations of a system from several 

different perspectives and levels of decomposition (Vaneman 2017a, 8). As stated above, 

this single repository can also be thought of as a Single Source of Truth (SSoT) for 

system development that is accessible to multiple tools and processes. An additional 

discriminator between document-based work products and Model-Based tools is that 

connections between paper documents is usually in the minds of the authors, but not 

captured in the model via interconnect views. Specifically, in a MBSE environment, each 

entity is represented as data, only once, with all necessary attributes and relationships of 

that entity portrayed. This data representation then allows the entity to be explored from 

the various engineering and programmatic perspectives (viewpoints). According to 

Vaneman’s paper, a viewpoint visualizes abstracts from one perspective in a way useful 

to programmatic decision-making. Vaneman defined the compilation of viewpoints (e.g., 

capability, operational, system, programmatic viewpoints) as representing the entire 
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system, where the system can be explored as a whole, or from a single perspective 

(Vaneman 2017a, 8). 

According to Topper (2013, 419), “the goal of this conceptual model, which is 

now to be built as a function of the MBSE process, is to build a complete, coherent 

representation of a system and its operating domain, including interactions with other 

systems and with its environment that is common across the stakeholder community.” 

Concept development is the early phase in system development where brainstorms turn 

into prototypes and prototypes can be assessed for individual and collective merit. These 

prototypes can be physical or modeled in a tool, which may or may not include 

simulation. The purpose behind conceptual modeling is to garner an understanding of 

successes and failures in the solution space. It also must show that there is at least one 

possible solution, including documented analysis that the proposed solutions are actual 

solutions to the problem. The process Topper developed and used to build the conceptual 

model described below, involves creating the following artifacts: 

 Domain model: This artifact describes the system and the 
environment. It captures the high-level components of the system 
and its operating environment and establishes the normalized 
referential framework particularly important for multi-disciplined 
stakeholder organizations.  

 Use cases: These written descriptions of what the system will do 
capture its expected behaviors and its interactions with external 
actors. 

 Functional model: The functional model describes how the system 
will accomplish its goals. It breaks the use cases into greater detail 
and shows activity flows and state transitions among components. 
Complex functionality, an increasingly common characteristic of 
modern systems, is difficult to address using traditional assessment 
techniques. In conjunction with other artifacts presented in this 
section, new techniques, outlined in the Functional Thread 
Analysis section, enable and enhance analysis, testing, and 
evaluation of complex systems, which are difficult to assess using 
traditional analytical methodologies and tools.  

 Structural model: This specification of system structure allocates 
attributes and operations to system components, expanding and 
adding detail to the domain model. (Topper 2013, 420) 

Note that with modern MBSE tools and languages, use case can be represented in 

a variety of ways such as Unified Modeling Language (UML), written use cases, 
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sequence diagrams, and action diagrams. Topper’s conceptual modeling process 

described above is shown in Figure 4.  

 

Figure 4.  Conceptual Modeling Process and the Systems Development Process. 
Source: Topper (2014, 421). 

The process defined by Topper above is very detailed in the modeling of the 

systems and the interactive process when modeling the systems, but does not specifically 

add simulation as part of the trade-space analysis.  This research defines a process that 

specifically incorporates simulation as part of the modeling process. 

1. Similar Areas of Research 

The use of MBSE is an area with rapidly advancing techniques, processes, and 

tool capabilities. Based on research, MBSE has been ongoing since at least 2010. The 

areas that are most relevant to this research are shown below. 
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a. MBSE Supporting Development of Systems Architectures in Naval Ship 
Design 

Research by Tepper (2010) in the MBSE Supporting Development of Systems 

Architectures in Naval Ship Design paper shows that the use of dynamic techniques in a 

static model adds value, particularly if the results remain inside the model. Tepper states 

that dynamic models can support an analysis of alternatives (AoA) by conducting system 

design trades based on defined use cases inside the model to assess if the system 

capability satisfies mission requirements (Tepper 2010).  Key decision-making artifacts 

of MBSE process are trade-space analysis, understanding the impact of changes, and the 

capability to have version control of changes along with the rationale of making the 

decisions. Additionally, Tepper’s research built in a version management process 

embedded in the tools that provides traceability for changes made and historical record of 

the alternatives. Tepper concludes with “the designer is able to see how a small change in 

one aspect of the design can drastically affect the whole” (Tepper 2010, 18).  Though this 

research is based on system architectures in U.S. Naval ship design, similar effects have 

been seen in the design of any complex system, where small changes have rippled 

through the design causing extensive and unneeded rework.  

b. MBSE Supporting Risk-Informed Design Methods 

Research by Perez (2014) into the application of MBSE tools and processes to 

Risk-Informed Design (RID) provides the capability to perform risk analysis early in the 

life-cycle. The research focused on spaceflight projects, but the concept of performing 

risk analysis inside the model is valid in many areas. Perez describes, “risk-informed 

design uses a ‘minimum functionality’ approach, whereby a minimal, single-string 

system design is first envisioned that only meets basic performance requirements without 

any regard to overall reliability or safety” (Perez 2014, 6). A key enabler for this research 

is that Perez was able to model risk inside the MBSE tool for the first time, which sets the 

stage for moving the AoA and the analyses inside the tool. Perez’s research is an 

excellent example of a MBSE based process applied to a basic system model with 

scripted simulation for part of the Altair lunar lander system (Perez 2014). Perez’s 
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research is also a prime example that, theoretically, MBSE is capable of supporting a full 

risk assessment and that a tool like Innoslate is able to actually support it.  

c. MBSE Supporting of Complex Systems Development  

Research by Topper (2014) operated on the premise that the MBSE technique 

facilitates complex design and documentation processes. As stated earlier, the key to the 

benefit based on this research states that these MBSE techniques best support complex 

systems. Topper goes on to state that “the resulting model is more useful than traditional 

documentation because it represents structure, data, and functions, along with associated 

documentation, in a multidimensional, navigable format.” Benefits extend beyond 

traditional system definition and documentation since language-based models also 

support automated analysis methods, such as functional thread extraction. The definition 

of functional thread analysis is relevant to this research and is defined by Topper (2014, 

424) as the following: “The state of a complex system changes continuously as the 

designed functionality is executed within changing mission phases and environmental 

conditions. These systems can invoke a large number of functional threads to accomplish 

(or fail) a required task, and as system complexity grows, it can be difficult to identify 

critical threads and accurately assess key system performance requirements.” Note that 

the emphasis is on the ability to accurately assess key system performance requirements.  

Topper’s conclusions state that, “The increase in system complexity precipitated 

by the advent of network-centric systems, MBSE techniques offer a way to capture, 

archive, and use information that is essential for complex system design, analysis, 

implementation, and test and evaluation (T&E) throughout a system’s lifecycle”  (2014, 

430). In Topper’s research, the “conceptual model includes entities, their important 

attributes and interrelationships, how they operate and behave, and any assumptions 

made about them.” Topper goes on to state that, “MBSE provides a basis for future 

analysis studies, model development, simulation efforts, system requirements definition, 

and program information management” (2014, 430). Topper (2014) believes that a robust 

conceptual model does the following:  

 Facilitates communication and collaboration among project stakeholders 
by standardizing and documenting a common reference blueprint for the 
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project. This basis allows the team to exhaustively explore the system’s 
conceptual and configuration spaces, and identify and assess key 
parameters in the evaluation of system alternatives. 

 Promotes reuse of components and analytical results among projects 
across a shared domain. 

 Enables information management and integrates business and engineering 
processes into a single model. A conceptual model of the project, 
particularly one that reuses components from previous projects and 
includes elements from the enterprise architecture as well as the system, 
allows managers to better estimate the scope, schedule, and resources 
needed to develop and deploy a complex system.  

 Documents traceability from needs to results, supporting verification and 
validation. (Topper 2014, 430) 
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II. METHODOLOGY 

Based on the literature review conducted on systems engineering, risk-based 

design, and MBSE, previous research is leveraged to define a MBSE process with 

embedded trade-space analysis that supports appropriate concept development, design, 

implementation, fielding, and support throughout the lifecycle of a system. This chapter 

identifies the basic MBSE process, discusses the specific challenges associated with 

design of complex systems in a rapidly changing world that need to be addressed by a 

MBSE approach, and details the embedded trade-space analysis approach, leveraging the 

research on MBSE process. 

A. GENERAL OVERVIEW 

A C-UxS system integrates capabilities to support, detect, classify, track, and 

defeat COTS unmanned system technologies. As no single capability or standalone 

system provides the required capability, the C-UxS system is considered a System of 

Systems with multiple complimentary capabilities or sub-systems integrated together. 

The C-UxS system is defined using MBSE processes and the Innoslate tools discussed in 

earlier chapters to fulfill the C-UxS mission as defined by the DRM with the appropriate 

level of mission effectiveness. Using the MBSE process, this research provides views of 

the system, as it is modeled, during the concept development (AoA) phase of the project. 

This research shows how embedding discrete events simulation into the Innoslate model 

using the scripting tools increases the overall understanding of the available trade-space. 

Analysis of the results is provided in a summary table showing the cause and effect of 

different trades indicated by the changes in the theoretical mission effectiveness reference 

metrics. 

B. DETAILED CHALLENGES 

There are numerous challenges associated with defining a C-UxS system 

reference architecture that can support the full lifecycle and multiple instantiations. This 

complex problem space renders it crucial to follow a defined and repeatable process 

while documenting capabilities, functionality, assumptions, and trade-space decisions. 
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With the high rate of change of COTS UxS threats and C-UxS capabilities, the process 

must be responsive, transparent, and flexible. If shortcuts to the process are made, then 

the C-UxS system does not support the capabilities required by the users as they are 

needed, and the design of the C-UxS Architecture does not fully meet the supportability 

and extendibility requirements. More importantly, if the initial trades made early in the 

process are not well understood and captured inside the development model, then the 

system is not able to evolve past the AoA baseline to support future threats, even if it was 

able to support them when initially fielded using the initial AoA based trades. 

The first challenge is that in early phases of concept development, the trade-space 

can have many dimensions, such as types and number of capabilities, so the combination 

that provides the best mission effectiveness value is not obvious. This challenge 

manifests itself when modeling a system and optimizing the composite architecture for 

maximum mission effectiveness when the exact value of each independent capability can 

be a range, not a point value, and all the possible combinations of each capability and the 

manner in which the capabilities are integrated can be very high. This can easily be an 

unsolvable problem from an optimization perspective, so the system designers are 

required to venture best guesses and assess them. In addition, the mission effectiveness of 

a system does not have to be optimal; it merely has to be equal to or above the required 

mission effectiveness value set by the end user. In some cases, a sub-optimal mission 

effectiveness value may be the best value when cost and reliability are considered. For 

system designers, it is very hard to resist the temptation to not proceed with the best 

technology, so a clear understanding needs to be developed and maintained when making 

selections and knowing the way in which those selections impact total system 

performance.  

The second challenge is combinational and dynamic complexity that can make 

determination of the direct impact of a change almost impossible. Combinational and 

dynamic complexity are concepts defined by the operational research community, but 

they can apply to the engineering community, as the line between system definition and 

system analysis is blurred. For this research, combination complexity is defined as the 

point where multiple combinations of systems, each with unique capabilities, are 
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integrated into a system of systems, but the unique aspect of each capability must still be 

accounted for in the design. For this research, dynamic complexity is defined as the 

common changes to input that can cause unique changes to output for each independent 

system that is part of the system of systems. In other words, changes to input can affect 

each system differently. This is a challenge, because what may be an obvious 

optimization trade to one part of the system or during one part of the process, may not be 

an optimal trade overall. For example, decisions made during the AoA phase may be 

misunderstood during the design phase and a subsequent trade may inadvertently cause 

the system to be less optimized rather than more optimized. Though not directly studied 

in MBSE, this has been assessed in other areas. For example, Vaneman (2017b) states, 

“the organization’s ability to master these transient periods is fundamental to achieving 

steady state operations more efficiently, thus reducing losses due to sub-optimal 

performance” (Vaneman 2017b). In terms of the DOD acquisition process, the DOD has 

been very successful in converging on an optimized solution during the AoA phase and 

during the design phase.  However, those two optimized solutions are frequently 

different, and the understanding of the basis on which they differ is lost, as the end result 

is the trades based on a down selection of many different possible combinations and the 

dynamic effect of those combinations. 

The third challenge is that each site can slightly vary, so a one-size-only solution 

may work for one site, but fail at another site. The variation to the external conditions at 

different sites can be obvious, (e.g., obvious differences in terrain), or be harder to 

visualize differences in regulations, (e.g., radio frequency spectrum interference and 

acoustic noise).  

The fourth challenge is that the COTS technology has a very fast refresh rate. In 

this case for C-UxS, there may be a new threat system introduced every six to 12 months, 

a time period that could easily be inside the typical development timeline, so a design 

solution that was valid during the AoA may not remain valid when the system is fielded. 

The awareness of when a threat improvement significantly moves the needle is critical to 

ensure that the C-UxS system remains relevant. 
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Together these challenges need a robust modeling process, automated trade-space 

analysis, and flexibility to do initial “what ifs” and to validate that capabilities and 

architecture designs made in the past are still valid in the present. 

C. MODELING METHODOLOGIES  

The modeling technique used defines the system from both a static and a dynamic 

perspective with the focus on the dynamic action views. For context, static modeling is 

used to represent the static constitutes of a system model such as the hierarchy, 

capabilities, functionality, and static interfaces between capabilities and functionalities. 

Examples of common static diagrams in a DODAF vernacular are Capability View-2 

(CV-2), a Operation View-2 and -5a (OV-2, OV-5a). Dynamic modeling is used to 

represent behavior of the static representation of a system, as well as interaction and 

emergent aspects as a system is exercised. Examples of common dynamic diagrams in a 

DODAF vernacular are System View-4 (SV-4) and Operation-5a (OV-5b). 

In addition, the dynamic models allow a “glimpse into the black-box” by taking 

the inner-workings of the internal structure into account. They also allow for inputs from 

one period to result in outputs for another period (Kao 2014). 

D. PROCESS TOOLS AND DEFINITIONS 

1. Modeling Languages 

For this research, the primary two modeling languages used are Systems 

Modeling Language (SysML) and Life Cycle Modeling Language (LML).  

a. System Modeling Language 

The Systems Modeling Language is best defined and described by the Open 

Management Group (OMG) SysML web page (OMG 2017), “What is SysML” and is 

included below: 

SysML is a general-purpose graphical modeling language for specifying, 
analyzing, designing, and verifying complex systems that may include 
hardware, software, information, personnel, procedures, and facilities. In 
particular, the language provides graphical representations with a semantic 
foundation for modeling system requirements, behavior, structure, and 
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parametrics, which is used to integrate with other engineering analysis 
models. (Open Management Group 2017) 

 

Figure 5.  UML and SysML Relationship. 
Source: Open Management Group (2017). 

The behavior diagrams include the use case diagram, activity diagram, 
sequence diagram, and state machine diagram. A use-case diagram 
provides a high-level description of functionality that is achieved through 
interaction among systems or system parts. The activity diagram 
represents the flow of data and control between activities. A sequence 
diagram represents the interaction between collaborating parts of a system. 
The state machine diagram describes the state transitions and actions that a 
system or its parts perform in response to events. 

SysML includes a graphical construct to represent text-based requirements 
and relate them to other model elements. The requirements diagram 
captures requirements hierarchies and requirements derivation, and they 
satisfy and verify relationships to allow a modeler to relate a requirement 
to a model element that satisfies or verifies the requirements. The 
requirement diagram provides a bridge between the typical requirements 
management tools and the system models. 

The parametric diagram represents constraints on system property values 
such as performance, reliability, and mass properties, and serves as a 
means to integrate the specification and design models with engineering 
analysis models. (Open Management Group 2017) 

The modeling method for this research uses many of the SysML extensions it 

provides to UML, as shown in Figure 5. Specifically, it uses the performance properties 

as defined in the Parametric Diagram. The parametric diagram, as shown in Figure 6, 

could lead one to believe that it is a single physical representative block for each 
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capability that is easily defined. However, for this effort, and for most modeling efforts, 

the parametric data is defined in multiple ways and at times in different ways, for each 

capability as part of the modeling and scripting effort. 

 

Figure 6.  SysML Basic Unit of Structure 

b. Lifecycle Modeling Language 

The Lifecycle Modeling Language is best defined and described by the Lifecycle 

Modeling Organization (2015) Lifecycle Modeling Language Specification 1.1: 

The basis for the LML formulation is the classic entity, relationship, and 
attribute meta-meta model. This formulation modifies the classical 
approach slightly by including attributes on relationships, to provide the 
adverb, as well as the noun (entity), relationship (verb), and attribute 
(adjective) language elements. Since LML was designed to translate to 
object languages, such as UML/SysML, these language elements 
correspond to classes (entity), relations (relationship), and properties 
(attribute). 

 

Extending the above reference from Lifecycle Modeling Language Steering 

Committee, Vaneman (2016, 5) states, “Once mapped, the LML visualization models can 

be associated to the corresponding LML entity, and by extension provides an ontology 

for SysML. Providing this ontology will prove important to practitioners as they will be 

able to better represent the complexities of a system.” In other words, LML attempts to 
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simplify the modeling effort; where DODAF may have had multiple names for very 

similar nodes leading to confusion by the modelers, LML has just one node. 

c. Mapping of SysML to LML Diagrams 

The good news is that the complexities and simplification of UML, SysML, and 

LML are now primarily handled by the tools that support the modeling process. This 

research uses primarily LML model language, but note that the tag of “Use Case” is 

overloaded and has different meaning to different architecture practitioners. For 

reference, a mapping between the SysML diagrams and the LML entities is shown in 

Table 4. This mapping provides an understanding of commonality among the SysML and 

LML visualization models (Vaneman 2016, 6). 

Table 1.   Mapping of SysML Diagrams to LML Diagrams and Entities. 
Source: Vaneman (2016). 

SysML 
Models 

LML Models LML Entities 

Activity Action Diagram Action, Input/Output 
Sequence Sequence Action, Asset 
State 
Machine 

State Machine Characteristic (State), Action (Event) 

Use Case Asset Diagram Asset, Connection 
Block 
Definition 

Class Diagram, 
Hierarchy Chart 

Input/Output (Data Class), Action 
(Method), Characteristic (Property) 

Internal 
Block 

Asset Diagram Asset, Connection 

Package Asset Diagram Asset, Connection 
Parametric Hierarchy, Spider, 

Radar 
Characteristic 

Requirement Hierarchy, Spider Requirement and related entities 

 

Vaneman goes on to state:  

The Lifecycle Modeling Language defines a new approach to MBSE that 
simplifies the ontologies and logical constructs found in previous MBSE 
methods and languages. Coupling SysML and LML provides an 
environment with an ontology that allows system concepts to be better 
represented by denoting underlying properties, relationships, and 
interrelationships. LML provides a means to improve how we model 
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system functionality to ensure functions are embedded in the design at the 
proper points and captured as part of the functional and physical 
requirements needed for design and test. (Vaneman 2016, 6) 

Therefore, while it is important to understand the basis of the modeling languages 

and the mapping between the UML extensions that are available for use, one does not 

need to fully understand all the details provided in the three specifications. 

2. Simulation 

 The simulation engine is based on a combination of discrete event simulation for 

known decision points selected by the user, and Monte Carlo simulation in which system 

performance effect can be randomized. Real Time Discrete Event Simulation is a model, 

both mathematical and logical, of a designed system with decision paths at precise points 

in the simulation flow. The discrete event simulator predicates key system and project 

metrics based on user input along with the randomization of the variable events. The 

Monte Carlo simulation definition that best fits this process is randomizing of decisions 

that impact the results, but are not specifically modeled. For this effort, the simulation 

capability allows the variation of design choices that impact the key mission effectiveness 

metric to indicate the best point in the solution space where mission effectiveness meets 

the required value. 

3. Tools 

a. Innoslate 

This effort was modeled in the Spec Innovations Innoslate tool. Innoslate includes 

the modern end-to-end design, modeling, and traceability capabilities systems in industry 

standard LML, SysML, and IDEF0. These models, (e.g., the activity diagram), can easily 

be simulated with integrated discrete event and Monte Carlo simulators, coupled with 

additional handwritten scripts to better specify flow. The Innoslate tool allows for local 

execution of the model and the ability to export the results to a comma separated value 

file for additional analysis. 
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The clean interface, simple relationships, and modern diagram 
visualizations make managing model entities easier than ever. Currently, 
there are over nine different diagrams to visualize behavioral models 
including executable Action, Sequence, N-squared, and IDEF0. Physical 
models have eight different diagrams including Asset, Class, Use Case, 
and Organization Chart. All of the diagrams are drag droppable, allowing 
for quick model design and construction. The diagrams conform to the 
LML, SysML, or the IDEF0 standard. Innoslate includes both a discrete 
event simulator and fully scalable discrete event and Monte Carlo 
simulator to execute system models and verify model correctness. These 
simulators can calculate a system’s time, cost, and resource levels, and 
produce easy to read graphical outputs (including Gantt charts, cost 
curves, resource usage). The model maturity checker evaluates the model 
according to best-practice heuristics developed by research at Naval 
Postgraduate School and Stevens Institute of Technology. (Innoslate 2016)  

As discussed above, the Innoslate tool provides an easy to use graphical interface, 

allowing us to build a well-defined model based on the UML, SysML, and LML well 

defined rules.  

4. A Tailored MBSE Process Flow  

The following sections describe the methodology to support system definition and 

assessment of trade-space decisions. This addresses the formal definition of a system and 

the interactive method of assessing and refining the system definition. The generalized 

recommended process is shown in Figure 7. The methodology for this research is broken 

up into four steps: system definition, sub-system definition, mission analysis, and 

assessment for the generic tailored MBSE Process. As discussed previously, the focus 

area is on mission analysis and assessment, but because the system must be defined 

before it can be analyzed and assessed, this research also develops a simple modeling 

plan, a use case reference mission, and a high-level set of requirements. The research and 

the use cases are based by a tailored version of the DODAF 2.0 products and views as 

defined in the All View -1 (AV-1) and available in the Appendix. As system definition 

and decomposition is not the focus area, the discussion is limited, but is included in the 

model for completeness. 
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Model Based System Engineering with Embedded AoA Process Flow 

Sy
st
em

 
D
ef
in
it
io
n

Su
b
‐S
y
st
e
m
 D
e
fin
it
io
n

M
is
si
on

 A
na
ly
si
s

A
ss
e
ss
m
e
n
t

Phase

Analyze System 
Level Requirements

Identify Key 
Stakeholders

Analyze System 
Capabilities

Analyze System 
Functions

Decompose Sub‐
System Capabilities

Decompose System 
Functions

Analyze System 
Collaboration to 
Satisfy Mission 
Effectiviness

Define Use Case
(Action Diagrams)

Develop Script 
Engine

Define Mission 
Effectiveness 

Metrics

Develop Simulation

Run Monte Carlo 
Simultion

Develop Simulation 
Inputs

Calculate Results

Meets 
Requirements?

No

Complete 
Phase

Yes

Start
Phase

Next 
Phase

State the Problem at 
System Level

State the Problem at 
Sub‐System Level

Investigate 
Alternativies

Success! Integrate

Re‐Evaluate

Return to 
Phase

 

Figure 7.  Generic Tailored MBSE Process 

5. System Definition of Capability and Functionality 

The system definition phase starts with the All View that presents the overall 

model development plan: define system level requirements, identify key stakeholders, 

develop the initial set of design reference missions, create the initial capability view 

defining the systems capabilities, and create the initial operational view defining the 
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system functionality.  It also defines the metrics and target values for determining 

mission effectiveness later in the process. A clear, concise system level definition is 

critical for overall success of the effort, as the analysis of the effectiveness to the trade-

space decisions is based on the simulation results compared to the system level required 

performance metrics. An example of the format for a Requirements and Performance 

Metrics table is shown in Table 1. The system stakeholders are able to use this table to 

capture and define the constraints for cost and mission effectiveness.  

Table 2.   Example of Requirements and Performance Metrics 

Capability 
Weight 

(1-3) Description of Metric 
Metric Target 

Value 
System Requirement 1 1 Plain English description 

of metric 
Value of required 
performance 

System Req N 3 Plain English description 
of metric 

Value of required 
performance 

 
 

6. Sub-system Definition with Action Flows 

The sub-system definition phase states the problem at the sub-systems level by 

decomposing the capability view and the operational view to the leaf level, and defining 

the appropriate action views for use case definition. At this point, the basic flow of the 

initial system is created and defined in the action views as well as in the decomposition of 

the action views. The action views perform a capability or a sub-function of the 

capability. All capabilities are fulfilled by an action that provides the required 

functionality. The inclusion of which capabilities (CVs) and functionality (OVs) are 

fulfilled by an action view provides the system traceability that can be used in the 

completeness and coverages metrics.  

7. Mission Analysis Phase with Integrated Simulation 

The mission analysis phase develops rules for the action flow defined by the SV-

4’s action views. By creating input blocks to define user inputs and environment 

variability with the random function, and by adding scripts to define characteristics of the 
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flow to the simulation engine as attributes to the action diagram logic blocks, the discrete 

event simulation predicts mission effectiveness. The discrete event simulation can be run 

at all phases of the process, with multiple operator selected combinations of capabilities, 

with results displayed at the end of each simulation runand exported to a common 

separated value (CSV) export file. Innoslate’s discrete event simulation run off the 

“advance functional flow diagram” allows for the operator input and scripted instructions 

to describe low-level flow. Note that the case study in Chapter IV describes one pass 

through evaluation process, however for a real program this would be continuous 

evaluation occurring as new trades are made as part of the development process. In this 

case study, the example pass is completed during the concept demonstration phase. 

8. Assessment of Trade-Space with Simulation 

Using both the MBSE tool and Excel spreadsheet calculations, the results are  

calculated and compared to the requirements and the system level metric target values. 

This step includes defining the input and recording the results into the spreadsheet, 

building an analysis summery to allow for comparisons, and documenting the results. 

Inside the spreadsheet, analysis utilizes pivot tables to organize raw data and summarize 

results. Based on the results, as compared to the mission effectiveness metrics, the 

process is repeated by re-entering the sub-system definition phase to update and/or refine 

the model to improve results. The process is continued throughout the lifecycle to 

account for system updates, changes in environment, and needs of the stakeholders. 

9. Recursive Refinement Based on Simulation Results 

The power of the process is that designers are not required to know all the optimal 

trades upfront prior to conducting an initial pass through the process. One can start with 

reasonable trades based on what is known at the time. The process is an iterative cycle in 

which the current information known about the design of desired system is modeled, 

simulated and assessed. Though the goal is to implement positive changes to the system 

based on the process, though many times implicit changes thought to be benign to system 

performance have a significant impact, which is why catching them early is critical.  



 37

10. Success-Oriented Exit Process 

The actual exit of the MBSE lifecycle process is not until the system is retired, but 

there are times when one may exit a phase of the lifecycle and hand it over to another 

entity for care and feeding. If the process is followed correctly and all the knowledge is 

already captured inside the Single Source of Truth (SSoT), then no further action is 

needed, but, if not, then this knowledge needs to be added. Because the exit of one phase 

is most likely the entrance to another phase, the handover from the previous knowledge 

manager to the current knowledge manager is key. For this effort, the exit of the process 

is the documentation of results by the use case to show the manner by which the above 

process fully supports the needs of the development process. The use case example in the 

next chapter shows one phase with six input refinement iterations to show how the MBSE 

is refined based on the feedback from the simulation and assessment efforts. A real effort 

would have many more refinement iterations over the lifecycle, but it is felt that 

demonstrating a single phase with multiple input refinement iterations has sufficient 

granularity to demonstrate the positive effect on the overall system development process. 
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III. COUNTER UNMANNED SYSTEMS CASE STUDY 

The previous section identified a tailored MBSE process for including a 

continuous AoA process within the SSoT model. This process uses a case study for a 

Navy C-UxS architecture to confirm that the process is applicable and effective. This use 

case makes one pass through the process shown in Figure 7 to demonstrate all the steps. 

The C-UxS, which requires flexibility and adaptability to support multiple unique sites 

provides a challenging case study for the proposed process. The proposed MBSE process 

with embedded simulation provides a iterative lifecycle framework that can be used from 

concept development through critical design activities phase. The research is that the 

MBSE process of defining the system provides valuable context and the simulation 

process of performing “what if” provides knowledge, but if completed together as a 

single process it combines the context and knowledge for much greater understanding of 

the system. 

A. COUNTER UNMANNED SYSTEMS PROCESS USE CASE 

The process identified in the previous chapter is applied to the C-UxS acquisition 

environment. The below sections go through each step of the process and employ the use 

case for a U.S. Navy architecture. For reference, Step One provides broad context back to 

the DoD domain. Step Two decomposes the broad context defined in Step One down to 

details relevant to the C-UxS problem statement and suitable to define a relevant action 

diagram. Step Three defines the actions that are relevant to the system metrics in the C-

UxS action diagram. Step Four links the system definition phase (context) with the 

system analysis phase by adding simulation flow and simulation scripts to the model. 

Finally, Step Five completes the process (knowledge) by assessing the simulation output 

based on the context of the model. For additional general context, the Appendix contains 

the full model views, and, on request, the model is available on-line via the Innoslate web 

application. The full DRM is also available on request for additional mission context.  
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1. System Definition 

The system definition phase uses the All View template for the overall model 

development plan.  That includes: define system level requirements, identify key 

stakeholders, develop the initial set of design reference missions, create the initial CV-2 

defining the systems capabilities, create the initial OV-5N defining the system 

functionality, and define the metrics and targets values for determining mission 

effectiveness later in the process. A clear, concise system level definition is critical for 

overall success of the effort, as the analysis on the effectiveness to the trade-space 

decisions is based on the simulation results compared to the system level required 

performance metrics. Note that NAVAIR used the fit for purpose view referred to as the 

OV-5N, to show the system level operation view and decomposition, because the initial 

operation view is closer to a system of systems, than a subcomponent to a system, which 

is the traditional definition of an OV-5. 

a. Overall Model Development Plan 

(1) Scope 

This architecture to counter all types of unmanned systems provides a 

government-owned, defined (open) architecture that supports current and future Navy 

acquisitions efforts. The architecture depicts and describes the capability requirements, 

operational activities, and the system views. The architecture provides the appropriate 

functional decomposition, functional interaction, and functional interoperability as 

appropriate. To enable commonality, the architecture builds on existing capability and 

functional decomposition and definitions, along with linkages in existing data 

dictionaries and data definitions. 

This architecture is intended for CONUS, OCONUS, and Maritime applications. 

The system is intended to initially counter Group 1 unmanned aerial systems (UAS); 

however, this architecture may be expanded to encompass unmanned ground, surface, 

and underwater systems as necessary. 
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(2) Viewpoints and Models Developed 

Table 3 lists the Department of Defense Architecture Framework (DODAF) 

version 2.02, August 2010 view required to satisfy the C-UAS purpose and intent. Please 

note the OV-5N is a fit for purpose view developed by the U.S. Navy to show 

functionality at the system or system of system level. 

Table 3.   Viewpoint and Models Developed 

Applicable 

Viewpoints 

Models Titles 

All AV-1 Overall Plan 

Capability CV-2 System Capability 

Decomposition 

Operational OV-1 Operational View 

Operational  OV-5N System Functionality 

Decomposition  

System SV-4 System Action Flow 

 

(3) Assumptions 

The architectures and associated data can be leveraged and reused by subsequent 

capability developers and program offices for the development of solutions for C-UxS. 

The required capabilities are reasonably covered by the Joint Capability Areas 

(JCAs), which provide a common vernacular and context. The JCAs are pruneable and 

extendable to allow for best fit to the C-UxS architecture. The JCAs are used as the bases 

for the CV-2 decomposition. 

The required functionality is reasonably covered by the Joint Common Systems 

Functional List (JCSFL), which provides a common vernacular and context. The JCSFL 
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is pruneable and extendable to allow for best fit to the C-UxS architecture. The JCSFLs 

are used as the bases for the OV-5N decomposition. 

(4) Constraints 

Developing the Countering Unmanned Systems ICD Architecture thoroughly and 

expeditiously to support the Counter-UAS Rapid Deployment Capability (RDC) and 

Rapid Prototype Engineering Development (RPED). The Speed to Fleet Initiative effort 

was limited to process development, process proof, and initial definition of the generic 

counter UAS architecture. 

(5) Purpose and Perspective 

The countering unmanned system architecture depicts and describes the capability 

requirements, operational activities, and system functionality involved in countering 

unmanned systems across all domains and operational environments. Because these are 

an initial set of architectures, they provide a basis for identifying follow-on capability 

developmental efforts. 

b. Define System Level Requirements 

The C-UxS system is designed to be flexible in nature, but with a Government-

owned core, so vendor specific solutions can be modified without requiring involvement 

of said vendors. The C-UxS System is initially designed to protect land-based sites 

against group 1 small COTS UASs, as the example C-UxS. The architecture is flexible 

enough to allow for growth in support of maritime-based sites (ships) and COTS-based 

equipment in unmanned surface vessels, underwater vessels, and ground vehicles. 

This use case focuses on the trade-space analysis for detect, sensor type, 

capabilities, numbers, and combinations. This is demonstrated by the capabilities and 

functionality included with the C-UxS action diagram (SV-4).   

The requirements and performance metrics table is shown in Table 4. This is 

where the system stakeholders can define the constraints for cost and mission 
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effectiveness. In a real world program, this requirement table would be more detailed, but 

for this effort, it is very simple to better show cause and effect on the process. 

Table 4.   Requirements and Performance Metrics 

Required Capability Weight 

(1-3) 

Description of Metric Metric 

Target 

Value 

1.0 The C-UxS shall classify 
threats over an area covering 10 
by 20 kilometers  

2 Coverage of the sensors by type 
of covered area divided by the 
total area 

> 90% 

2.0 The C-UxS shall have a 
deployed cost of the sensors be 
less than $500,000.00 

1 Cost of the material and installed 
cost of the sensors divided the 
allowed cost of the sensors 

< 90% 

3.0 The C-UxS shall defeat 80% 
of the threats 

3 Number of defeated threats 
divided by the total threats 

< 40% 

c. Identify Key Stakeholders 

The stakeholders for this use case are defined as the funding authority (OPNAV), 

the acquisition authority (PEO-U&W), the subject matter experts (SMEs), the 

representative end users (user community), and the test and evaluation team. For this use 

case, the user community has provided an initial starting point area size that needs to be 

protected and the required level of protection to allow for continuation of normal 

operations. The funding authority has provided the deployed cost of the sensors. The 

SMEs have provided type and realistic capability and cost of the sensors for analysis. The 

test and evaluation team has verified that the metrics are relevant and collectable. 

d. Initial Mission Definition 

The C-UxS OV-1 (see Figure 8) describes, at a high level, the operational 

scenario addressed by this architecture. The desired outcome for this architectural effort 

is to enable the development and acquisition of a suite of capabilities to prevent and 

mitigate the adversaries’ use of the UxS that capitalizes on both material and non-
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material approaches. Due to the diversity of this threat and the intentional domain 

agnostic approach to the architecture, capabilities resulting from this architecture should 

inform solutions in other domains and mission sets. This results in a suite of modular 

(open) capabilities that can be rapidly integrated to keep pace with the rapid growth of 

UxS technologies. 

 

Figure 8.  OV-1 C-UAS  

To keep this use case generic and unclassified, a simple circular area with an 

approximate diameter of 16 kilometers is used as the representative area to be protected. 

The circle has five zones; the outer three zones are a restricted area where small UASs 

are not allowed and where the sensor coverage starts. The fourth zone is the act and 

engage zone in which any UAS is considered as a threat to be acted on with appropriate 

defeat methods. The fifth and final zone is the failure zone, in which any entering threat 

is considered compromised, and all work must stop. The mission is a success if the 

required percentage is detected, classified, and defeated outside the failure zone. The 

mission is considered a failure if the required percentage is not defeated before entering 

the failure area. A simple diagram of the mission area is shown in Figure 9.  
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Figure 9.  C-UxS Mission Area 

e. Create the Initial CV-2 Defining the Systems Capabilities 

The CV-2 defines and decomposes the required capabilities at the appropriate 

level. As stated in the assumptions, the JCAs provide a common vernacular and context 

across the DOD and are applicable to the C-UxS. JCAs are pruned and extended to allow 

for the best fit to the C-UxS architecture, and are used as the basis for the CV-2 

decomposition shown in Figure 10 initial CV-2 snapshot. The entire CV-2 is too large to 

be shown in its entirety here, although it is shown in the Appendix, and is available in the 

associated model. However, the snapshot demonstrates the context in relation to the area 

relevant to the research. For this phase of the process, the CV-2 containing level 0 is the 

capability area heading, and level 1 and level 2 provide the additional context in terms of 

the DOD JCA. The use of the JCA and the additional context allows the stakeholders to 

verify that the initial context is correct. In this snapshot, the SMEs have selected 

Battlespace Awareness, Force Application, Logistics, and Command and Control as 

required high-level capabilities. An additional required high-level capability for the use 

case, not shown in the snapshot, is the Interact (External) capability. The most relevant 
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capabilities of Battlespace Awareness, Force Application, Command and Control, and 

Interact with the threat UxS are decomposed in the next step of the process. 

 

Figure 10.  Initial CV-2 Snapshot 

f. Create the Initial OV-5N Defining the System Functionality 

The OV-5N defines and decomposes the required functionalities at the 

appropriate level. Like the JCAs, the JCSFLs provide a common vernacular and context 

across the DOD and are applicable to the C-UxS. JCSFLs are pruned and extended to 

allow for best fit to the C-UxS architecture. The JCSFLs are used as the basis for the OV-

5N decomposition shown in Figure 11. The entire OV-5N is too large to be shown in its 

entirety here, although it is available in the Appendix and in the associated model, but the 

snapshot demonstrates the context in relation to this research. For this view, level 0 is the 

OV-5N heading, and level 1 and level 2 provide the context in terms of the DOD JCSF.  

 

Figure 11.  Initial OV-5N Snapshot 
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In this snap shot, the SMEs have identified Sense, Manage Tracking and Tracks, 

Generate Situational Awareness, and Mission Level Analysis as required high-level 

functionality. Additional required functionality in the use case, not shown in the 

snapshot, is Mission Execution Functionality. The most relevant capabilities of Sense, 

Manage Tracking and Tracks, Generate Situational Awareness, Mission Level Analysis, 

and Mission execution are decomposed in the next step of the process. 

2. Sub-system Definition 

The sub-system definition phase states the problem at the sub-systems level of the 

C-UxS by decomposing the CV-2 and the OV-5N to the leaf level and defining the 

appropriate SV-4A C-UxS Flow high-level action views for use case definition. The C-

UxS Flow shows the basic flow of the system and the manner in which the AoA 

simulation capability is integrated. The decomposition, simulation, and analysis of the 

action view C-UxS flow is the focus of the use case research and is expanded upon 

below. 

a. Decompose CV-2 to Leaf Node Capability 

In this phase, the CV-2 had to be decomposed to the leaf level so the action view 

components could be built with the relevant level of detail. This expanded the CV-2 from 

two levels to five levels, introducing the additional detail of specific types of sensors such 

as the radar. The example leave node shown in Figure 12 is the radar leaf capability that 

is part of the Battlespace Awareness Capability Group. Additional required leaf node 

capabilities for this research are Electronic Emissions sensing, Electro-optical sensing, 

Fuse tracks, Operator interactions, and Defeat, as shown in the Appendix.  
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Figure 12.  Decomposed CV-2 Snapshot 

b. Decompose OV-5N to Leaf Node Functionality 

Similarly, the OV-5N had to be decomposed to the leaf level so the action view 

flow could be built with the relevant level of detail. This expanded the OV-5N from two 

levels to three levels. The example leaf node shown in Figure 13 is the Search with 

Active Sensor, Search with Passive Sensor, Fuse Track Measurements, and Evaluate and 

Assess Engagement. Additional required leaf node functionalities for this research are 

Conduct Manual Engagement, Conduct Automatic Engagement, and Fly Threat Small 

UAS, as shown in the Appendix.  

 

 

Figure 13.  Decomposed OV-5N Snapshot 
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3. Create and Define the SV-4A Action View 

The action view is the first crossover point between the standard MBSE modeling 

process and the process presented in this paper.  The action view allows the static 

capabilities to be combined in a meaningful way for the C-UxS problem, and then 

dynamically simulated. For this effort, the goal is to balance cost, coverage, and mission 

effectiveness based on the top-level requirements and metrics defined above. To do so, 

the action view defines the interactions between the sensors, fusion, operator, defeat, and 

the threats. The top-level action flow is show in Figure 14 and defines the interactions 

and flow of the functionality across the capabilities. 

 

Figure 14.  SV-4 Top Level Action Flow 

Next, the flow of each top-level action is decomposed to the sub-level flow. For 

example, Figure 15 shows the radar decomposition. The decomposition allows the 

number of radars to be varied along with the capabilities of the radar to detect small 

UASs, and, if detected, to classify the detections as threat small UASs. 
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Figure 15.  SV-4 Subset Radar Action Flow Decomposition 

After radar is decomposed, Electronic Emission, Electro-optics, Fuse, and 

Operator are decomposed in the mode and shown in the Appendix. The Electronic 

Emission and Electro-optics decompose in a manner very similar to radar. The Fuse 

capability takes the output of the sensors and uses rules to command action or to 

recommend action to the operator, as shown in Figure 16. 
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Figure 16.  SV-4 Subset Fuse Action Flow Decomposition 

 The automatic defeat is based on output from Fuse, as show in Figure 14, when a 

UAS is classified as a threat by all three sensors types. The success of the automatic 

defeat is based on a simple probability, where there is an 80% chance of defeat based on 

a timely automatic response and clear fused data from heterogeneous sensors. If the 

sensor data is not unanimously seen as classified by Fuse, then an operator is brought into 
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the loop as shown in top level Figure 14 and decomposed in Figure 17. Figure 17 only 

shows a partial view due to its size, but based on rules it allows four choices by the 

operator. The full view is shown in the Appendix for additional context. 

 

Figure 17.  SV-4 Subset Operator Action Flow Decomposition 

The first operator choice is operator override, and is based on two sensor types 

classifying a threat, with the third detecting it. The second operator choice is to initiate a 

defeat attempt, and is based on one sensor classifying a threat and at least one other 

sensor detecting it. The third is the operator continuing to monitor detected, but not 

classified, threats. 

4. Mission Analysis 

The mission analysis phases take place during the AoA phase (concept 

development), prototyping phase, and final design phase to show the way by which 

metric achievement progresses. This first phase demonstrates the concept development 

phase design (AoA) compared to the metric target values. The user assesses and 

optimizes different concepts and continues to refine those concepts as more detailed 

information is available. Based on the metrics in Table 3, the user can vary the sensor 

type, numbers of sensors, and capability of the sensors. A constraint on the case study is 

that each sensor type must cover the entire operations area. Cost is a function of 
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(coverage * capability), such that the higher the coverage and capability, the higher the 

cost per sensor. A cost weighting value makes radars an order of magnitude more 

expensive than electronic emission sensor and electro-optic sensors. Rules for the 

decision process are developed to govern the action flow as defined by the SV-4’s action 

views. These rules remain constant throughout the case study for the purpose of 

simplicity.  

The first step is to set up the simulation to allow for user input of key areas of 

assessment. The user input blocks are shown in Figure 18, and the user input script is 

shown in Figure 19. 

 

Figure 18.  Discrete Event Simulation User input Blocks 

 

Figure 19.  User Input Script 
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This allows the user to vary the environment (threats), the sensor types, sensor 

numbers, and sensor capabilities to classify or detect a threat. Figure 18 shows input 

blocks for threats, radar parameters, emission values, and Electro-optic (EO) values. 

Figure 19 show an example for the threat and radar parameter script input. Figure 20 

shows the input block during execution of the script.  

 

Figure 20.  Simulation User Input Block 

Next, the threat parameters are created by a randomized function in the threat set 

up block shown in Figure 14, and defined by script shown in Figure 21.  
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Figure 21.  Threat Setup Script 

The threat signatures are scaled between 0 and 100, to be compared to the 

capabilities of the sensors as entered by the user and compared in the sensor block. The 

sensor detection is based on the threat signature (user input), and the distance factor of 

the threat to the sensor (random) compared to the sensor capacity to detect and classify 

(user input). The threat is visible to each sensor a single time. The script for radar 

detection is shown in Figure 23. The scripts for the other two sensor types, emission and 

EO, are performed in a similar manner. 
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Figure 22.  Radar Detection Script 

Next, the rules for the fuse capability shown above in Figure 15 are scripted as 

shown in Figure 23.  

 

Figure 23.  Fuse Track’s Script 
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The fuse script roles up the output from the sensors to a single value that 

effectively recommends an action to the system, such as automatic defeat as show in 

Figure 14 or passes information onto operator to manage final process as partially shown 

in Figure 17. The shorthand notation in the script cases of “CCC” indicates that all sensor 

types classified the threat. “CCD” indicates two of the three sensor types classified the 

detections as a threat and that all detected the threat. “CDD” indicates that all three sensor 

types detected the threat, with one classifying it as a threat. “DDX” indicates only two 

sensor types detected the threat. “NNN” indicates the threat was never detected by any 

sensor. This is a very simple fusion rule set for this case study, but the fusing capability 

can be greatly influenced by the trade-space if a more advanced version is used, but that 

is beyond the scope of this research.  

The final step in the action flow is to activate the defeat mechanism as shown in 

Figure 14 for automatic, or, as shown in Figure 17, for operator choice of override 

automatic defeat, initiate attempt defeat, operator monitor, or no action, based on the 

Fuse_Output variable. Whether the UxS is defeated or not is based on a simple 

probability, where it is biased such that the systems is more likely to be defeated when all 

sensors classify, and less likely to be defeated when only one sensor type can classify.  

The discrete simulation runs are based on the simulation input tables, which 

varies the input of the type of sensors, sensor capabilities, and number of each sensor 

type, for the simulation input values. Then each simulation run simulates 1,000 threats 

and the results are summed by the script and shown in the console window. Results are 

transferred by hand back to the spreadsheet for further analysis. With the model and 

scripts set up, the assessments are then completed. 

5. Assessment 

This case study focuses on the first recursive refinement phase completed in a 

multi-phase effort to demonstrate the effects of trade-space choices and the simulation 

refinement process. The first phase demonstrates the team’s knowledge during the AoA 

phase, and demonstrated the six simulation runs used to refine the design choices. The 

early work completed during the Rapid Development Capability (RDC) effort discovered 
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that a homogenous solution does not work, so this effort is starting at the point that they 

left off with the heterogeneous sensor mix and is refined from that starting point. The 

screen shot of the model coverage is shown in Figure 24, and the console output is shown 

on Figure 25. 

 

Figure 24.  Model Coverage in Simulation 

 

Figure 25.  Model Results in Console Window 

a. Input 

The AoA Phase starts the process with the SME’s best understanding of the 

simulation capabilities. The SMEs devised six different system combinations and types to 

compare capabilities of higher cost systems to lower cost systems, with coverage and cost 

kept constant to the threshold value of 95% coverage as shown in Table 2.  
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Table 5.   Initial Mission Values 

 

 

b. Results 

For each of the runs, the input values were entered into the Innoslate discrete 

event simulation tool, run, and the results captured from the console window and 

recorded below in Table 3. The use of the “print to console” capability greatly simplified 

the “what if” process. For this use case, the first three runs did not achieve the desired 

metric values, so the focus was shifted to a more balanced approach. This shift in focus 

Run Radars

# # Classify Detect

Coverage 

per Cost

Total 

Coverage

1 4 15 10 50 $374,850 100%

2 3 35 16 65 $260,852 98%

3 3 30 10 65 $300,983 98%

4 4 35 15 50 $270,725 100%

5 4 30 18 50 $281,260 100%

6 4 32 15 50 $283,220 100%

Run EM

# # Classify Detect

Coverage 

per Cost

Total 

Coverage

1 3 40 30 65 $102,375 98%

2 10 10 5 20 $213,750 100%

1 3 40 30 65 $102,375 98%

4 20 15 10 10 $191,250 100%

5 12 20 15 16 $163,200 96%

6 20 15 10 8 $153,000 80%

Run EO

# # Classify Detect per Cost Coverage

1 6 60 20 33 $28,512 99%

2 6 60 20 33 $28,512 99%

1 80 30 15 2.5 $53,550 100%

4 24 60 20 8 $27,648 96%

5 38 40 20 5 $41,040 95%

6 38 40 20 8 $65,664 152%
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led to finding at least three viable concepts for the AoA that can be carried forward, as 

shown by Runs 4–6, where Run 5 showed the most promise. 

Table 6.   First Phase Mission Effectiveness Results 

Run # 
Threats 
Defeated

Total 
Effectiveness

Sensor 
Cost 

1  682  68%  $505,737 

2  778  78%  $503,114 

3  685  69%  $456,908 

4  810  81%  $489,623 

5  870  87%  $485,500 

6  864  86%  $501,884 

 

c. Analysis 

For this use case, the cause and effect of changing the different sensor 

combinations in a static viewpoint prospective are not readily apparent. Though the 

model looks simple, each part adds significant complexity, with only the rule-based 

fusion engine being deterministic. In this use case, both the threats and the operator 

responses are dynamic and non-obvious. For example, early experimental runs, that were 

thought to have optimal sensor combinations, did not achieve expected results. 

Subsequent runs benefitted from these early failures to meet the required mission 

effectiveness, resulting in improved results. This demonstrated that knowledge and 

understanding gained by the trial and error process provided by the simulation to this 

relatively simple use case, is a valuable part of system design. This use case only shows 

the first phase, but one can easily understand that changes to the model, specifically 

refinement of the fusion engine, can greatly impact the mission effectiveness. For 

example, a simpler fusion technique may favor a single powerful sensor type, while a 

more complex fusion technique might allow for less capable sensors. In the analysis of 

this use case, sensor capability was directly related to system cost. For this effort, Runs 5 

and 6 showed the most promising results, which helped us understand the appropriate 

mix of capabilities for future systems. 
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6. Recursive Refinement 

As mentioned above, some mission effectiveness was driven by the choices made 

in the fusion engine design and rule set. The next natural step in the refinement process 

may be to leave the sensor combination the same, but to test different variations of the 

fusion engine rule set. Alternatively, the next natural step in the refinement process may 

be to add additional operator aids to assist with the defeat process, or to additionally 

automate the process so the variability of the operator is completely removed. 

7. Exit of Process 

 The actual exit of the MBSE lifecycle process and this use case is ultimately not 

until the system is retired, but following the process once through the cycle to build the 

model, action diagrams, and scripts allowed assessment of the proposed iterative process. 

One can easily envision the ways in which it will enhance the design process and later 

phases of the lifecycle. 

 

B. ANALYSIS OF THE PROCESS 

Chapter III provided MBSE process with simulation that can be used to assess the 

solution early in the process as well as throughout the design lifecycle. Chapter IV 

provided a realistic, though truncated, use case for a Counter Unmanned System using 

the MBSE process with simulation. The mission effectiveness metric assessed for each 

sensor combination at the end of each run compared the simulation output to the target 

values of the metrics.  Based on the knowledge gained, the stakeholders and the designers 

could adjust the sensor parameters for the next run and the target values for the next 

phase.  This allowed for gradual convergence on a viable solution for the stakeholders in 

the first phase. Though not shown by the use case, the process cycles can account for 

changes in the capabilities, environment, and threats, all of which have an impact on the 

overall effectiveness of the solution. For example, the radar capabilities used in the first 

phase may prove too optimistic after initial testing is complete, therefore the system then 

does not meet the mission effectiveness metric and may drive cost. Correspondingly, the 

opposite, advancement in artificial intelligence and image processing, may occur and 
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make optical sensors much more effective than first thought, greatly increasing mission 

effectiveness and reducing cost. 

This use case intends to demonstrate a process that can be leveraged for all system 

development efforts. The actual MBSE process with integrated simulation for a large 

development effort will be much more extensive with all additional capabilities, 

functionality, and action cases, to include the interactions between multiple system 

effectiveness metrics target values. Additionally, the ability to use the single source of 

truth with the built in simulation at any time in the lifecycle or a site-specific instantiation 

of the C-UxS allows for continuous knowledge of the systems mission effectiveness 

metric. 
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IV. CONCLUSIONS/FUTURE WORK 

A. SUMMARY OF THE ANALYSIS 

The use case analysis shows that neither the static view nor the dynamic analysis 

initial solution would have met the stakeholders’ requirements without the knowledge 

gained by multiple runs through the solution space via embedded simulation. The 

interaction between sensors, fusion, and operator seem simple when viewed statically, but 

the dynamic interactions are shown to be complex for even this simplistic use case. For 

example, the initial three concept simulation runs did not meet the mission effectiveness 

requirements, although they all appeared perfectly viable from a static perspective. 

Through the inner loop of the iterative process, one learned to apply a different focus, one 

that placed more of a balanced sensor selection approach, which in turn allowed the 

design to meet the requirement. Without the iterative dynamic analysis throughout the 

process, the stakeholders may have settled on a non-optimized solution that too strongly 

favored a radar solution over a more optimal, balanced solution. The key for this research 

is not the numerical values determined to be the feasible optimized solution, but the fact 

that iterative simulation added knowledge inside the engineering model. In turn, that 

knowledge allowed for system optimization inside the MBSE process. 

B. CONCLUSIONS 

Some say failure should be avoided and ignored, however many innovative ideas, 

including Thomas Edison’s light bulb, are built on a series of trials and errors that did not 

initially succeed. When asked by a reporter, “How did it feel to fail 1,000 times?" Edison 

replied, "I didn’t fail 1,000 times. The light bulb was an invention with 1,000 steps" 

(Edison 1890).  Edison went on to state that he learned 1,000 things not to do, as part of 

the development process. This process of trial and error still exists today. The only 

difference is that the systems are much more complex, so the failures can be much more 

costly. In the book “Black Box Thinking,” Syed (2015) presents the idea that failure is a 

fact of life, but one can choose to either learn from failure or to pretend that the failure 

was out of his personal control and not learn from it. Deming, in his breakthrough book 
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“Out of a Crisis” (1982) also stressed that understanding failure was the key to future 

success and the foundation of process improvement. For aviation, learning from failure 

has always been part of the culture, but almost all of these failures occur after the system 

is designed, and sometimes too late to be cost effectively fixed. This effort moves the 

power of learning from failure into the early phases of the process, exactly when it is the 

prime time for “the learn and fix cycle” to take place. The power to learn by failing is 

even greater than the power of early success, as failure causes one to consider the reasons 

for the failure. Knowledge is truly gained during this process of understanding the 

reasons for failure. This thesis therefore provided a MBSE process with integrated 

simulation that allows engineers the flexibility to test many solutions and fail early, 

allowing them to succeed in the long term. Multiple designs can be quickly built, 

including some that have a higher risk to reward, and then performance of each can be 

evaluated relative to each other. The act of understanding the reasons one solution is 

more successful than another helps one build a greater understanding of the system. It 

also allows the designer a better understanding of the sensitivity of a solution to a single 

technology. The process defined above provides a framework to conduct the definition 

and design phase of system development using a defined and iterative process built on 

previous MBSE development research on developing large complex systems. This 

research and the enhanced MBSE process will contribute to the development of future 

large, complex systems during system definition and design phases, by providing 

validation of the system model through simulation and analysis.  This benefit is available 

in all phases of the system lifecycle, as long as the model is maintained as part of the 

lifecycle process. A general MBSE process with integrated simulation and analysis was 

shown in Figure 7 and described in Chapter III. A representative Counter Unmanned 

System use case exercised the proposed process. This allowed validation of the process 

while a use case provided a clear example of the improved overall product provided by 

the assessment. 

The discoveries of the related research, the enhancement to the current MBSE 

process, and the example use case addressed many of the primary research questions that 

were proposed. The objectives of the thesis effort were met with the development of the 
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MBSE process with embedded simulation and the C-UxS use case. The beneficiaries of 

the research will be developers of large, complex systems in dynamic environments who 

are able to use the process as a function of fielding and maintaining the effort. The 

multiple research questions are discussed below, with corresponding details identified for 

each, based on the research. 

1) How can MBSE be used to forecast and investigate mission effectiveness, 

caused by material and design limitations, to inform and influence the 

early stages of the system design process? The question is addressed in 

two parts—the first is the process shown in Figure 7 and described in 

Chapter III; and the second is the use case, which clearly shows the model 

development, the action flow, and the scripting to interactively assess 

mission effectiveness. The MBSE process with embedded simulation 

provides a powerful framework for complex system development. 

2) How can multiple runs of the simulation that vary the component level 

effectiveness be used to determine overall system sensitivity once the 

architectural model is complete with embedded mission effectivity 

analysis? The question is addressed with the use case, specifically with the 

inputs of the six runs shown in Table 2 and the results shown in Table 3. 

In the use case, the design choices were the sensor mix and the capabilities 

selected from each sensor type. The variation shows the areas in which the 

use case was most sensitive. In this case, the unbalanced system 

performed poorly compared to balanced systems. 

3) How can the results of the system sensitivity results and analysis be used 

to optimize design and reliability requirements? This effort leveraged 

previous work by Perez (2014) where fault analysis was shown to be 

viable. The use case was based on capability and cost, but an additional 

dimension of fault/reliability could have been added based on past work 

and this research effort.  

4) How can one use sensitivity analysis techniques to adjust the project’s 

path forward by having a continuous positive impact on the early stages of 
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the development process?  The question was not explicitly addressed by 

the use case, as multiple phases would have been required, but it was 

addressed by the iterative portion on the MBSE process show in Figure 7. 

Specifically, the recursive step described in Chapter III, Section 6 takes 

existing knowledge and simulates it in a representative environment. 

Following performance assessment, the system is recursively refined 

based on the knowledge gained from the assessment. The changes clearly 

show, in a relative manner, if the change had a positive or negative impact 

on the system performance. The path forward becomes relatively clear - 

back out a negative change and try something else or continue to refine a 

positive change. At a time when progress stalls, one may be required to 

make seemingly random changes, simply to ascertain the pattern of 

positive and negative effects to determine a new course of action. 

C. RECOMMENDATIONS FOR FUTURE WORK 

As stated above, only the first phase of a development effort was performed in the 

C-UxS use case for a single action view. The process used should be expanded to follow 

a real program through multiple phases and with a broader use of action views to further 

refine the process. The third research area on using the process to relating reliability 

requirements was not expanded upon due to the limitation of the use case, but this is an 

interesting area for further research. Additionally, this research used a single tool set, but 

multiple tool sets are available that may provide additional insight. A broader 

investigation is required prior to recommendation of a single tool set. 
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APPENDIX. C-UXS MODEL 

The views created for the C-UxS Model are provided, for completeness, in this 

Appendix. The entire mode is available in the Innoslate web application on request, 

Thomas.Moulds@Navy.Mil. 

 

Figure 26.   CV-2: JCA-based capability view 
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Figure 26 cont’d. CV-2: JCA-based capability view 
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Figure 27.  OV-5N: C-UxS Conduct Counter UxS Operations 

 

Figure 28.  SV-4: Counter UxS Flow (Top Level View) 
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Figure 29.  SV-4: Counter UxS Flow (Radar View) 

 

Figure 30.  SV-4: Counter UxS Flow (Electronic Emissions View) 
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Figure 31.  SV-4: Counter UxS Flow (Electro optic View) 
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Figure 32.  SV-4: Counter UxS Flow (Fuse View ) 
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Figure 33.  SV-4: Counter UxS Flow (Operator View) 
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