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ABSTRACT

Final Report: Design of adaptive load mitigating materials using nonlinear stress wave tailoring

Report Title

This six-year effort focused on (i) a fundamental understanding of wave propagation of solitary and solitary-like pulses in one- two- and 
three-dimensional (1D, 2D and 3D) ordered granular media, and (ii) material design, based on these findings, of novel materials with 
unprecedented impact response properties. Modeling and experimental efforts on wave propagation in 1D, 2D and 3D granular structures 
were conducted. These were focused on analyzing the dynamic response of granular materials over a range of loading conditions, evaluating 
scaling laws for force attenuation and energy dissipation, and design using a robust simulation framework optimized granular structures for 
specific wave management tasks. Novel physical phenomena such as new nonlinear normal modes in dimers, pass bands, stop bands, and 
breathers in coupled quasi-1D granular chains embedded in an elastic matrix, lateral energy partition in weakly coupled chains, wave motion 
control through confinement, etc. were discovered. The material design efforts mainly focused on 1D and 2D geometries involving either 
granular distributions with spatially optimized granule positions for specific wave mitigation or wave deflection applications, and on rank 
laminate materials forming a “continuum” specifically designed for wave tailoring. This report provides a summary of both novel physical 
phenomena and material design performed.



(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of 
the project to the date of this printing.  List the papers, including journal references, in the 
following categories:

02/24/2016

02/24/2016

02/24/2016

02/24/2016

02/24/2016

02/24/2016

02/24/2016

02/24/2016

02/24/2016

02/24/2016

02/24/2016

02/24/2016

Received Paper

76

75

74

73

72

71

70

80

83

82

79

78

Raj Kumar Pal, Jeremy Morton, Erheng Wang, John Lambros, Philippe H. Geubelle. Impact Response of 
Elasto-Plastic Granular Chains Containing an Intruder Particle,
Journal of Applied Mechanics,  (11 2014): 0. doi: 10.1115/1.4028959

Raj Kumar Pal, Philippe H. Geubelle. Wave tailoring by precompression in confined granular systems,
Physical Review E,  (10 2014): 0. doi: 10.1103/PhysRevE.90.042204

Mohith Manjunath, Amnaya P. Awasthi, Philippe H. Geubelle. Family of plane solitary waves in dimer 
granular crystals,
Physical Review E,  (09 2014): 0. doi: 10.1103/PhysRevE.90.032209

Erheng Wang, Mohith Manjunath, Amnaya P. Awasthi, Raj Kumar Pal, Philippe H. Geubelle, John 
Lambros. High-amplitude elastic solitary wave propagation in 1-D granular chains with preconditioned 
beads: Experiments and theoretical analysis,
Journal of the Mechanics and Physics of Solids,  (12 2014): 0. doi: 10.1016/j.jmps.2014.08.002

E. Kim, R. Chaunsali, H. Xu, J. Jaworski, J. Yang, P. G. Kevrekidis, A. F. Vakakis. Nonlinear low-to-high-
frequency energy cascades in diatomic granular crystals,
Physical Review E,  (12 2015): 0. doi: 10.1103/PhysRevE.92.062201

M. A. Hasan, L. Pichler, Y. Starosvetsky, D. M. McFarland, A. F. Vakakis. Effects of uncertainties on pulse 
attenuation in dimer granular chains with and without pre-compression,
Continuum Mechanics and Thermodynamics,  (10 2014): 0. doi: 10.1007/s00161-014-0389-y

M. Arif Hasan, Alexander F. Vakakis, D. Michael McFarland. Nonlinear localization, passive wave arrest 
and traveling breathers in two-dimensional granular networks with discontinuous lateral boundary 
conditions,
Wave Motion,  (01 2016): 0. doi: 10.1016/j.wavemoti.2015.10.001

P.B. Nakshatrala, D.A. Tortorelli. Topology optimization for effective energy propagation in rate-
independent elastoplastic material systems,
Computer Methods in Applied Mechanics and Engineering,  (10 2015): 0. doi: 10.1016/j.cma.2015.05.004

M. Arif Hasan, Shinhu Cho, Kevin Remick, Alexander F. Vakakis, D. Michael McFarland, Waltraud M. 
Kriven. Experimental study of nonlinear acoustic bands and propagating breathers in ordered granular 
media embedded in matrix,
Granular Matter,  (12 2014): 0. doi: 10.1007/s10035-014-0536-y

Christian J. Espinoza Santos, Arif Z. Nelson, Elena Mendoza, Randy H. Ewoldt, Waltraud M. Kriven. 
Design and fabrication of ceramic beads by the vibration method,
Journal of the European Ceramic Society,  (11 2015): 0. doi: 10.1016/j.jeurceramsoc.2015.05.018

Pathikumar Sellappan, Erheng Wang, Christian J. Espinoza Santos, Tommy On, John Lambros, Waltraud 
M. Kriven. Wave propagation through alumina-porous alumina laminates,
Journal of the European Ceramic Society,  (01 2015): 0. doi: 10.1016/j.jeurceramsoc.2014.08.013

Tommy On, Erheng Wang, John Lambros. Plastic waves in one-dimensional heterogeneous granular 
chains under impact loading: Single intruders and dimer chains,
International Journal of Solids and Structures,  (06 2015): 0. doi: 10.1016/j.ijsolstr.2015.02.006



02/24/2016

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/07/2014

09/08/2014

09/08/2014

77

41

53

52

51

50

49

48

47

46

45

44

43

42

54

57

Amnaya Awasthi, Ziyi Wang, Natalie Broadhurst, Philippe Geubelle. Impact response of granular layers,
Granular Matter,  (01 2015): 0. doi: 10.1007/s10035-015-0547-3

A. Leonard, C. Chong, P. G. Kevrekidis, C. Daraio. Traveling waves in 2D hexagonal granular crystal 
lattices,
Granular Matter,  (4  2014): 0. doi: 10.1007/s10035-014-0487-3

Guillaume F Nataf, Pedro O Castillo-Villa, Pathikumar Sellappan, Waltraud M Kriven, Eduard Vives, 
Antoni Planes, Ekhard K H Salje. Predicting failure: acoustic emission of berlinite under compression,
Journal of Physics: Condensed Matter,  (07 2014): 0. doi: 10.1088/0953-8984/26/27/275401

Kevin C. Seymour, Waltraud M. Kriven, L. Pinckney. Synthesis and Thermal Expansion of ?-Eucryptite 
Powders Produced by the Inorganic-Organic Steric Entrapment Method,
Journal of the American Ceramic Society,  (07 2014): 0. doi: 10.1111/jace.13102

Christian J. Espinoza Santos, Teng-Sing Wei, Bumrae Cho, Waltraud M. Kriven, L. Gauckler. A Forming 
Technique to Produce Spherical Ceramic Beads Using Sodium Alginate as a Precursor Binder Phase,
Journal of the American Ceramic Society,  (11 2013): 0. doi: 10.1111/jace.12584

Amnaya P. Awasthi, Kyle J. Smith, Philippe H. Geubelle, John Lambros. Propagation of solitary waves in 
2D granular media: A numerical study,
Mechanics of Materials,  (11 2012): 0. doi: 10.1016/j.mechmat.2012.07.005

Raj Kumar Pal, Amnaya P. Awasthi, Philippe H. Geubelle. Wave propagation in elasto-plastic granular 
systems,
Granular Matter,  (10 2013): 0. doi: 10.1007/s10035-013-0449-1

Mohith Manjunath, Amnaya P. Awasthi, Philippe H. Geubelle. Wave propagation in 2D random granular 
media,
Physica D: Nonlinear Phenomena,  (1  2014): 0. doi: 10.1016/j.physd.2013.10.004

Mohith Manjunath, Amnaya P. Awasthi, Philippe H. Geubelle. Plane wave propagation in 2D and 3D 
monodisperse periodic granular media,
Granular Matter,  (1  2014): 0. doi: 10.1007/s10035-013-0475-z

Raj Kumar Pal, Amnaya P. Awasthi, Philippe H. Geubelle. Characterization of wave propagation in elastic 
and elastoplastic granular chains,
Physical Review E,  (1  2014): 0. doi: 10.1103/PhysRevE.89.012204

Philippe H. Geubelle, Raj Kumar Pal. Impact response of elasto-plastic granular and continuum media: A 
comparative study,
Mechanics of Materials,  (06 2014): 0. doi: 10.1016/j.mechmat.2014.02.006

Joseph Lydon, K. R. Jayaprakash, Duc Ngo, Yuli Starosvetsky, Alexander F. Vakakis, Chiara Daraio. 
Frequency bands of strongly nonlinear homogeneous granular systems,
Physical Review E,  (7  2013): 0. doi: 10.1103/PhysRevE.88.012206

Miguel Molerón, Andrea Leonard, Chiara Daraio. Solitary waves in a chain of repelling magnets,
Journal of Applied Physics,  (05 2014): 0. doi: 10.1063/1.4872252

Devvrath Khatri, Stephane Griffiths, Duc Ngo, Chiara Daraio. Highly nonlinear solitary waves in chains of 
hollow spherical particles,
Granular Matter,  (1  2013): 0. doi: 10.1007/s10035-012-0377-5

E. Wang, T. On, J. Lambros. An Experimental Study of the Dynamic Elasto-Plastic Contact Behavior of 
Dimer Metallic Granules,
Experimental Mechanics,  (12 2012): 0. doi: 10.1007/s11340-012-9696-z

Thibaut Detroux, Yuli Starosvetsky, Gaetan Kerschen, Alexander F. Vakakis. Classification of periodic 
orbits of two-dimensional homogeneous granular crystals with no pre-compression,
Nonlinear Dynamics,  (1  2014): 0. doi: 10.1007/s11071-013-1160-9



09/08/2014

09/08/2014

09/11/2013

09/11/2013

09/11/2013

09/11/2013

09/11/2013

09/11/2013

09/11/2013

09/11/2013

09/11/2013

09/11/2013

56

55

31

32

34

35

33

36

37

38

39

40

Erheng Wang, Philippe Geubelle, John Lambros. An Experimental Study of the Dynamic Elasto-Plastic 
Contact Behavior of Metallic Granules,
Journal of Applied Mechanics,  (01 2013): 0. doi: 10.1115/1.4007254

Tommy On, Peter A. LaVigne, John Lambros. Development of plastic nonlinear waves in one-dimensional 
ductile granular chains under impact loading,
Mechanics of Materials,  (1  2014): 0. doi: 10.1016/j.mechmat.2013.06.013

Mariana Silva, Daniel A. Tortorelli, Kevin Brittain. Minmax topology optimization,
Structural and Multidisciplinary Optimization,  (10 2011): 657. doi: 10.1007/s00158-011-0715-y

Pedro O Castillo-Villa, Jordi Baró, Antoni Planes, Ekhard K H Salje, Pathikumar Sellappan, Waltraud M 
Kriven, Eduard Vives. Crackling noise during failure of alumina under compression: the effect of porosity,
Journal of Physics: Condensed Matter,  (07 2013): 0. doi: 10.1088/0953-8984/25/29/292202

Chau Le, Tyler E. Bruns, Daniel A. Tortorelli. Material microstructure optimization for linear elastodynamic 
energy wave management,
Journal of the Mechanics and Physics of Solids,  (02 2012): 351. doi: 10.1016/j.jmps.2011.09.002

A. Leonard, C. Daraio. Stress Wave Anisotropy in Centered Square Highly Nonlinear Granular Systems,
Physical Review Letters,  (05 2012): 214301. doi: 10.1103/PhysRevLett.108.214301

K. R. Jayaprakash, Alexander F. Vakakis, Yuli Starosvetsky. Nonlinear resonances in a general class of 
granular dimers with no pre-compression,
Granular Matter,  (04 2013): 327. doi: 10.1007/s10035-013-0404-1

I. Szelengowicz, M. A. Hasan, Y. Starosvetsky, A. Vakakis, C. Daraio. Energy equipartition in two-
dimensional granular systems with spherical intruders,
Physical Review E,  (03 2013): 32204. doi: 10.1103/PhysRevE.87.032204

Chiara Daraio, Surajit Sen, Diankang Sun. Nonlinear repulsive force between two solids with axial 
symmetry,
Physical Review E,  (06 2011): 66605. doi: 10.1103/PhysRevE.83.066605

G. Theocharis, N. Boechler, P. G. Kevrekidis, S. Job, Mason A. Porter, C. Daraio. Intrinsic energy 
localization through discrete gap breathers in one-dimensional diatomic granular crystals,
Physical Review E,  (11 2010): 56604. doi: 10.1103/PhysRevE.82.056604

M. Arif Hasan, Shinhu Cho, Kevin Remick, Alexander F. Vakakis, D. Michael McFarland, Waltraud M. 
Kriven. Primary pulse transmission in coupled steel granular chains embedded in PDMS matrix: 
Experiment and modeling,
International Journal of Solids and Structures,  (10 2013): 3207. doi: 10.1016/j.ijsolstr.2013.05.029

I. Szelengowicz, P. G. Kevrekidis, C. Daraio. Wave propagation in square granular crystals with spherical 
interstitial intruders,
Physical Review E,  (12 2012): 61306. doi: 10.1103/PhysRevE.86.061306

TOTAL: 40



Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

5.00

(b) Papers published in non-peer-reviewed journals (N/A for none)

Wei-Hsun Lin Fourth Conference on Particle-Based Methods, September 28-30, 2015 (Particle 2015), Session MoA05: IS-From Discrete 
Particles to Continuum Models of Granular Mechanics: Elasticity and Wave Propagation II “Study of wave propagation in aqueous close-
packed colloidal monolayers using laser based excitation”.

Wei-Hsun Lin International Congress on Ultrasonics, May 10-14, 2015 (2 015 ICU Metz), Session: Waves in granular media and structures 
“Measurement of wave propagating in 1D micro-scale Granular chain”.

Waymel R., Salazar de Troya M., Tortorelli D. and Lambros J., “Force Optimization in a 2D Packing of Spheres by Selective Placement of 
Interstitial Intruders”, SEM 2015 Annual Conference & Exposition on Experimental and Applied Mechanics, Costa Mesa, CA, June 8-11, 
2015.

Waymel R., Salazar de Troya M., Wang E., Tortorelli D. and Lambros J., “Tailored Elasto-Plastic Wave Redirection in a 2D Granular 
Array of Spheres by Interstitial Element Control”, PACAM XV, Fifteenth Pan-American Congress of Applied Mechanics, Urbana-
Champaign, IL, May 18–21, 2015.

Geubelle, P. H., and Manjunath, M. “A new family of solitary plane waves in ordered granular crystals.” McMat 2015, Seattle, WA. June 
30-July 2, 2015.

(c) Presentations

Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Received Paper

TOTAL:



Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts): 

Received Paper

TOTAL:



Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 

(d) Manuscripts

10.00

11.00

12.00

13.00

14.00

15.00

17.00

18.00

19.00

20.00

22.00

23.00

24.00

09/16/2012

09/16/2012

09/16/2012

09/16/2012

09/16/2012

09/16/2012

09/16/2012

09/16/2012

09/16/2012

09/16/2012

09/17/2012

09/17/2012

09/17/2012

Received Paper

Christian Espinoza-Santos, Tseng-Sing Wei, Bumrae Cho, Waltraud Kriven. A Forming Technique to 
Produce Spherical Ceramic Beads Using Sodium Alginate as a Precursor Binder Phase,
J American Ceramic Society (06 2012)

Yuli Starosvetsky, M. Arif Hasan, Alexander F. Vakakis. Nonlinear Pulse Equi-partition in Weakly Coupled 
Ordered Granular Chains with no Pre-Compression,
ASME Journal of Computational and Nonlinear Dynamics (06 2012)

R. Potekin, K.R. Jayaprakash, D.M. McFarland, K. Remick, L.A. Bergman, A.F. Vakakis. Experimental 
Study of Strongly Nonlinear Resonances and Anti-Resonances in Granular Dimer Chains,
Experimental Mechanics ( )

A. Leonard, C. Daraio, A. Awasthi, P. Geubelle. Effects of weak disorder on stress wave anisotropy in 
centered square nonlinear granular crystals,
Phys Review E (01 2012)

Amnaya P. Awasthi, Kyle J. Smith, Philippe H. Geubelle, John Lambros. Propagation of solitary waves in 
2D granular media: A numerical study,
Mechanics of Materials (01 2012)

Erheng Wang, Philippe Geubelle, John Lambros. An Experimental Study of the Dynamic Elasto-Plastic 
Contact Behavior of Metallic Granules,
Journal of Applied Mechanics (01 2012)

K. R. Jayaprakash, Alexander F. Vakakis, Yuli Starosvetsky. Solitary waves in a general class of granular 
dimer chains,
Journal of Applied Physics (02 2012)

K. R. Jayaprakash, Alexander F. Vakakis, Yuli Starosvetsky. Strongly Nonlinear Traveling Waves in 
Granular Dimer Chains,
Journal of Mechanical Systems and Signal Processing (01 2012)

K.R. Jayaprakash, Yuli Starosvetsky, Alexander F. Vakakis, Oleg V. Gendelman. Nonlinear Resonances 
Leading to Strong Shock Attenuation in Granular Dimer Chains,
Journal of Nonlinear Science (01 2012)

M.A. Hasan, L. Pichler, Y. Starosvetsky, D.M. McFarland, A.F. Vakakis. Effects of Uncertainties on Pulse 
Attenuation in Dimer Granular Chains with and without Pre-compression,
Journal of Vibration and Acoustics (01 2012)

K.R. Jayaprakash, Yuli Starosvetsky, Alexander F. Vakakis, Maxime Peeters, Gaetan Kerschen. 
Nonlinear normal modes and band zones in granular chains with no pre-compression,
Nonlinear Dynamics (03 2010)

M.A. Hasan, Y. Starosvetsky, A.F. Vakakis, L.I. Manevitch. onlinear Targeted Energy Transfer and 
Macroscopic Analogue of the Quantum Landau-Zener Effect in Coupled Granular Chains,
Physica D (01 2012)

K. R. Jayaprakash, Yuli Starosvetsky, Alexander F. Vakakis. New family of solitary waves in granular 
dimer chains with no precompression,
Physical Review E (10 2012)



Books

Number of Manuscripts:

25.00

26.00

27.00

28.00

29.00

30.00

09/17/2012

09/17/2012

09/17/2012

09/17/2012

09/17/2012

09/17/2012

Yuli Starosvetsky, K. R. Jayaprakash, Alexander F. Vakakis, Gaetan Kerschen, Leonid I. Manevitch. 
Effective particles and classification of the dynamics of homogeneous granular chains with no 
precompression,
Physical Review E (09 2011)

P. B. Nakshatrala, D. A. Tortorelli, K. B. Nakshatrala. Nonlinear structural design using multiscale 
topology optimization. Part I: Static formulation,
Computer Methods in Applied Mechanics and Engineering (06 2012)

YULI STAROSVETSKY, M. ARIF HASAN, ALEXANDER F. VAKAKIS, LEONID I. MANEVITCH. 
STRONGLY NONLINEAR BEAT PHENOMENA AND ENERGY EXCHANGES IN WEAKLY COUPLED 
GRANULAR CHAINS ON ELASTIC FOUNDATIONS,
SIAM J. APPL. MATH (01 2012)

Erheng Wang, Tommy On, John Lambros. An Experimental Study of the Dynamic Elasto-Plastic Contact 
Behavior of Dimer Metallic Granules,
Experimental Mechanics (01 2012)

Tommy On, Peter A. LaVigne, John Lambros. Development of plastic nonlinear waves in one-dimensional 
ductile granular chains under impact loading,
Mechanics of Materials (06 2012)

Yuli Starosvetsky, Alexander F. Vakakis. Primary wave transmission in systems of elastic rods with 
granular interfaces,
Wave Motion (04 2011)

TOTAL: 19

Received Book

TOTAL:

Received Book Chapter

TOTAL:



Patents Submitted

Patents Awarded

Awards

Graduate Students

Names of Post Doctorates

Names of Faculty Supported

John Lambros, 2015, Fellow, American Academy of Mechanics

John Lambros, 2015, UIUC Campus Award for Excellence in Graduate and Professional Teaching

John Lambros, 2015, Frocht Award for Excellence in Mechanics Teaching, Society for Experimental Mechanics

John Lambros, 2010–2015, One of the most cited papers in International Journal of Plasticity (Vol. 26, pp. 93–106)

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Robert Waymel 1.00
We-Hsun Lin 1.00
Ramathasan Thevamaran 0.50
M.A. Salazar de Troya 1.00
Stephanie Ott-Monsivais 0.50
Raj Pal Kumar 1.00
Harshit Agrawal 0.25
Joseph Gonzalez 0.25
Qi Dang 0.25
Ahmad Raesi Najafi 0.25

6.00

10

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Andrea Leonard 0.50
0.50

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
John Lambros 0.08
Philippe H. Geubelle 0.08
Chiara Daraio 0.08
Alexander Vakakis 0.08
Daniel Tortorelli 0.08
Waltraud Kriven 0.08

0.48

6



Names of Under Graduate students supported

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Names of other research staff

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for 

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work 

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive 

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in 
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue 
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Shi En Kim 0.25 Aeronautics

0.25

1

NAME

Total Number:

NAME

Total Number:

Raj Pal Kumar
Mohith Manjunath

2

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Petros Arakelian 0.10
0.10

1

......

......



Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress

See Attachment

Technology Transfer

Nothing to report

Experimental and numerical study of solitary wave propagation in 1D and 2D ordered elastic granular media.

Experimental and numerical study of solitary wave propagation in 1D and 2D ordered elastic granular media.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Caltech

00000

2009-03197-01 (A2895)

9/17/09  12:00AM

9/15/15  12:00AM

Caltech

00000

2009-03197-01 (A2895)

9/17/09  12:00AM

9/15/15  12:00AM

1 a.

1 a.



 1 

Title: Design of adaptive load mitigating materials using nonlinear stress wave tailoring 
Contract/Grant number: W911NF-09-1-0436 
Principal Investigator: John Lambros 
Performing Organization Name(s) and Address(es):  University of Illinois 

1901 S First Street, Suite A 
Champaign, IL 61820-7406 

ARO proposal number: 56150-MS-MUR 
 
 
 

ABSTRACT 
 
This six-year effort focused on (i) a fundamental understanding of wave propagation of solitary 
and solitary-like pulses in one- two- and three-dimensional (1D, 2D and 3D) ordered granular 
media, and (ii) material design, based on these findings, of novel materials with unprecedented 
impact response properties. Modeling and experimental efforts on wave propagation in 1D, 2D 
and 3D granular structures were conducted. These were focused on analyzing the dynamic 
response of granular materials over a range of loading conditions, evaluating scaling laws for 
force attenuation and energy dissipation, and design using a robust simulation framework 
optimized granular structures for specific wave management tasks. Novel physical phenomena 
such as new nonlinear normal modes in dimers, pass bands, stop bands, and breathers in coupled 
quasi-1D granular chains embedded in an elastic matrix, lateral energy partition in weakly 
coupled chains, wave motion control through confinement, etc. were discovered. The material 
design efforts mainly focused on 1D and 2D geometries involving either granular distributions 
with spatially optimized granule positions for specific wave mitigation or wave deflection 
applications, and on rank laminate materials forming a “continuum” specifically designed for 
wave tailoring. This report provides a summary of both novel physical phenomena and material 
design performed. 
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INTRODUCTION 
 

This report describes the six-year efforts of this MURI project between the periods of 
September 2009 and 2015 (3 year base funding, 2 year option funding and 1 year no-cost 
extension). The overarching goal of the effort was to design novel heterogeneous materials that 
possess revolutionary stress wave mitigating characteristics. The fundamental premise of the 
design sought to exploit unique wave propagation properties that are present in granular media. 
Early studies of wave propagation in granular media, primarily in one-dimensional (1D) chains 
of elastic spherical beads in contact, had shown the development of different nonlinear wave 
phenomena than those present in an “equivalent” elastic continuum. For example a nonlinear 
solitary wave has been know to develop in 1D elastic granular chains (Nesterenko, 1984). Such a 
nonlinear elastic wave exhibits distinct behavior from continuum elastic stress waves in that it 
has a fixed compact support (i.e., has a fixed pulse duration/wavelength regardless of loading 
pulse shape), does not have a fixed speed (it speed is proportional to the sixth power of the 
amplitude) and consequently has decreasing speed with decreasing amplitude (sonic vacuum) 
(Nesterenko, 2001). These novel physical effects are a direct result of the way in which force 
“propagates” or transfers in an elastic granular medium and this is namely by material elements 
(the spherical granules) which interact through nonlinear contact (Hertzian contact in the elastic 
case). Stemming from the discovery of such solitary waves in 1D elastic granular media, a 
number of additional studies showed that unique responses were possible such as filtering 
(frequency ranges where strong wave energy dissipation occurs), tunability (changing wave 
speed depending on energy level and pre-compression) and energy trapping (energy confinement 
in preferential locations) (Spadoni and Daraio, 2010 ; Boechler et al., 2011).  
 To achieve our goal of design novel heterogeneous materials for wave mitigation 
purposes we needed to both develop a fundamental understanding of a number of unanswered 
questions in the wave mechanics of granular media, and also develop a framework of material 
design involving computational material design, material fabrication, and design validation. Thus 
two distinct types of efforts were studies in this research work: A. Fundamental studies for the 
understanding of wave propagation of solitary and solitary-like pulses in one- two- and three 
dimensional (1D, 2D and 3D) ordered granular media, and B. material system design and 
validation efforts for achieving systems with novel wave propagation and mitigation 
characteristics. Each type of work is described briefly in the two sections below. By necessity of 
keeping this final report as concise as possible only the most fundamental outcomes of each of 
these concentrations will be discussed here in the final report. The details of each of these 
aspects have been presented in the annual reports already submitted in the past. 
 The research team that tackled this task consisted of a diverse pool of talent of graduate 
and undergraduate students, postdoctoral researchers and faculty. A listing of the faculty 
participants over the duration of the project and their areas of expertise is given below. A more 
detailed listing of all personnel involved is given in the last section which deals with possible 
metrics of assessment of the outcomes of this MURI effort. 
 • Prof. Chiara Daraio (initially at Aeronautics at Caltech and then at ETH Zurich in 
Switzerland) worked on performing experiments analysis and simulations of model granular 
media. 
 • Prof. Philippe Geubelle (UIUC, Aerospace) is an expert on computational simulations 
and dealt with the simulation and modeling of 1D, 2D and 3D granular media primarily based on 
a molecular dynamics framework (by modifying LAMMPS for granular material use). 
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 • Prof. Trudy Kriven (UIUC, Materials Science) is an expert in ceramic and geopolymer 
fabrication. 
 • Prof. John Lambros (UIUC, Aerospace) is an expert in experimental mechanics of 
dynamically loaded materials and structures and primarily performed dynamic experimentation 
on 1D and 2D granular systems. 
 • Prof. Dan Tortorelli (UIUC, Mechanical) is an expert on numerical optimization and 
primarily studied material design optimization to obtain desired material response under dynamic 
loading.. 
 • Prof. Alex Vakakis (UIUC, Mechanical) is an expert on theoretical non-linear dynamics 
and performed mainly theoretical solutions of a number of fundamental problems in 1D and 
1.5D granular material dynamics. 
 
 

ORGANIZATION OF FINAL REPORT 
 
This report is presented in two parts. In Part A a discussion of the main results of our 
fundamental studies is presented. As mentioned above, in the interest of brevity only major 
results are presented. Both details of the techniques used and also intermediate milestone results 
are not presented here as most have been covered in prior interim year reports. Part B presents in 
a similar fashion our main efforts and results in terms of designing material systems based on our 
understanding of the granular media. 
 
The list of topics below presents the major topics studied and the page number where they are 
described in order to facilitate searching the document: 
 
Topic Page # 
 

PART A – DISCOVERY: FUNDAMENTAL STUDIES 
 
A1. 1D-elastic: Pass bands and stop bands in 1D granular chains ............................................5 
 
A2. 1D-elastic: Resonances and antiresonances in uncompressed dimer chains – impulsive 
and harmonic loading ....................................................................................................................6 
 
A3. 1D-elastic: Travelling breathers in granular chains embedded in matrix ........................9 
 
A4. 1D-elastic: Highly nonlinear solitary waves in chains of ellipsoidal or cylindrical beads  
........................................................................................................................................................13 
 
A5. 1D-elastic: Interaction of highly nonlinear solitary waves with linear elastic media .....14 
 
A6. 1D-elastic: Study of highly nonlinear solitary waves in chains of thin coated spheres ..15 
 
A7. 1D-elastic: highly nonlinear solitary waves in chains of hollow spheres .........................16 
 
A8. 1D-elastic: Granular system with magnetic interaction ....................................................17 
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Topic (continued) Page # 
 
A9. 1D-elastic: Nonlinear, locally resonant granular crystals .................................................19 
 
A10. 1D-elastic: One-dimensional micro-granular lattice .......................................................20 
 
A11. 2D/3D-elastic: Effect of randomness on wave propagation in 1D and 2D granular 
media .............................................................................................................................................23 
 
A12. 2D/3D-elastic: Plane wave propagation in ordered granular media ..............................25 
 
A13. 1D-plastic: “Solitary-like” plastic waves in 1D granular chain ......................................29 
 

PART B – DEMONSTRATION: MATERIAL DESIGN 
 
B1. 2D/3D-elastic: Wave tailoring in 2D dimer crystals ...........................................................31 
 
B2. 1D-plastic: Characterization and mitigation of plasticity at inter-particle contacts ......32 
 
B3. 1.5D-elastic: Design of confined granular systems for wave tailoring (Acoustic Switch)36 
 
B4. 2D-plastic: Elasto-plastic wave propagation in 2D granular packing with 
preconditioned beads ...................................................................................................................39 
 
B5. 2D-plastic: Wave propagation in a 2D granular packing with intruders at optimized 
locations ........................................................................................................................................43 
 
B6. 2D-elastic and plastic: Continuum Microstructure Design ...............................................46 
 
B7. Other efforts on material fabrication ..................................................................................52 
 
 
  



 5 

PART A – DISCOVERY: FUNDAMENTAL STUDIES 
 
A1. 1D-elastic: Pass bands and stop bands in 1D granular chains 
 

We studied pass and stop bands in uncompressed, homogeneous one-dimensional 
granular media, and showed that they are tunable with energy. In pass bands these media exhibit 
strongly nonlinear and discontinuous acoustics. In stop bands the granular media are in states of 
strong effective compression so their acoustics are linearized. The effects of these energy-tuned 
acoustic bands on the dynamics of granular media are profound as shown in the plots below. In 
Figure A1.1a a homogeneous granular chain of 50 beads is harmonically forced with a frequency 
and amplitude corresponding to a state inside a pass band, so the forced response is spatially 
extended. In Figure A1.1b, the frequency and amplitude of the harmonic force amount to a 
response inside a stop band so the forced response is spatially localized. These results can be 
used for designing ordered granular media as vibration and shock mitigators. 
 

 
(a) 

 
(b) 

Figure A1.1: Forced responses of selected beads of a homogeneous granular chain forced by a 
harmonic displacement excitation of bead 0: Response (a) in the pass band, and (b) in the stop 

band. 
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A2. 1D-elastic: Resonances and antiresonances in uncompressed dimer chains – impulsive 
and harmonic loading 
 

We studied the dynamics of uncompressed dimer chains and proved the existence of 
countable infinities of resonances (R) and antiresonances (AR) in these systems, depending on 
the mass ratio between the “heavy” and “light” beads of these chains. Resonances correspond to 
maximum dispersion of propagating pulses in the dimer and occur when the light bead is set into 
resonance and vibrates quickly between the two heavy beads, whereas anti-resonances 
correspond to solitary way propagation, i.e., to unhindered energy transmission through the 
dimer, in which the light bead and the adjacent heavy beads all move in phase. In Figure A2.1 
we present the normalized transmitted force at the right boundary of a dimer (composed of 
“heavy” beads with normalized mass unity, and “light” beads with normalized mass ε) subject to 
an impulse of intensity F applied on the left boundary; the normalization of the transmitted force 
is with respect to the force that would be transmitted in the corresponding homogeneous chain 
composed only of “heavy” beads. The normalized transmitted force is plotted against the mass 
ratio ε. We see that we can design the dimer chain so that the transmitted pulse is reduced by as 
much as 75% compared to the pulse transmitted in the corresponding homogeneous chain. 
 

 

 
Figure A2.1: Resonances (R) and antiresonances (AR) in the impulsively forced dimer chain. 

 
These theoretical results were also experimentally validated. We used the experimental fixture of 
Figure A2.2a, and the results are depicted in Figure A2.2b. In this set-up a series of “hanging” 
beads in a dimer chain was impacted by a striking pendulum bead. In these plots θ represents the 
angle of the forcing pendulum used to apply the impulse excitation at the left boundary. For the 
different combinations of values of ε a very good agreement between the experimental 
measurements and the model is seen. 
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(a) 

 

 
(b) 

Figure A2.2: Experimental verification of resonances and antiresonances in the dimer chain. 
 
In addition to the decrease of amplitude in the impulsively generated wave shown above, we also 
studied forced resonances of finite homogeneous and dimer chains but now with harmonic 
displacement excitations at their left boundaries (see Figure A2.3a). For a chain composed of 
21 beads the maximum transmitted steady state force is presented in Figure A2.3b for varying 
frequency but constant amplitude of excitation. At the peaks (forced resonances) the response of 
the granular chain is wave-like, whereas at the valleys (forced antiresonaces) is standing wave-
like. These results contribute to the use of granular media not only as impact protectors but 
also as vibration isolators. 
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(a) 

 
(b) 

Figure A2.3: Forced resonances and antiresonances in a harmonically forced finite granular 
chain. 
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A3. 1D-elastic: Travelling breathers in granular chains embedded in matrix 
 

We proved the existence of traveling breathers and strong energy exchanges in two-
dimensional coupled chains of granular media. In Figure A3.1a we depict a weakly coupled 
system composed of two homogeneous granular chains, with an impulse excitation applied to the 
lower chain (designated as “excited” chain), and the upper chain designated as “absorbing” chain. 
Each chain was supported by a uniform linear elastic foundation. In Figure A3.1b we show the 
spatiotemporal evolution of the kinetic energy of the beads of this network, where the breather 
formation is clearly deduced as intense and recurrent energy exchanges between the two 
networks. Based on these results we were able to design the network for passive wave 
redirection. This was achieved by linear stratification of the elastic foundation of the excited 
chain (the same result can be achieved by stratifying the linear coupling between chains) as 
shown in Figure A3.2a, and inducing the macroscopic analogue of the Landau-Zener quantum 
tunneling effect in space. This is shown in Figure A3.2b where we see that a pulse initially 
generated in the excited chain is passively and irreversibly redirected to the absorbing chain, so 
no recurrent energy exchanges occur in this case. This raises the exciting prospect of designing 
acoustic metamaterials based on granular media with inherent properties for pulse and energy 
redirection. 

 
(a) 

 
(b) 

Figure A3.1: Breather formation in the weakly coupled network of homogeneous granular 
chains under shock excitation. 
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(a) 

 
(b) 

Figure A3.2: Design for passive pulse and energy redirection in the weakly coupled granular 
network: (a) Required spatial stratification of the elastic foundation of the excited chain, (b) 
spatiotemporal kinetic energy evolution showing the passive pulse redirection from the 
impulsively forced excited chain to the absorbing chain. 
 

A validation of these phenomena was performed based on designed and fabricated 
granular networks embedded in viscoelastic matrix. These were either single embedded chains 
(see Figure A3.3a) or coupled embedded chains (see Figure A3.3b). These chains were tested 
under impulsive and harmonic excitations. In Figure A3.4 we depict the experimental apparatus 
constructed for testing under impulsive (Figure A3.4a) and harmonic excitations (Figure A3.4b). 

Primary	  
pulse 
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A variety of interesting dynamical phenomena have been discovered/validated from these 
experimental arrangements, including: 
 
• Energy partition: Energy equipartition between coupled chains; that is, energy initially 
imparted in one of the chains ends up being equipartitioned between the chains of the network; 
• Breathers: Forced breathers in single and coupled chains, and intense energy exchanges in 
coupled chains; 
• Filtering: Acoustic filtering properties that are tunable with energy, including low-frequency 
pass bands and high-frequency pass bands. 

       
              (a)          (b) 

Figure A3.3: Embedded granular chains in viscoelastic matrix: (a) Single chain, (b) Coupled 
chains. 

 

 
(a) 

 
(b) 

Figure A3.4: Experimental fixtures for studying the responses of (a) impulsively forced granular 
media, and (b) harmonically excited granular media. 
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As an indicative example of the experimental results, in Figure A3.5 we depict 
experimental traveling breathers in the excited chain of a coupled granular network under 
harmonic excitation, for three types of viscoelastic matrix. We note that the material properties 
of the matrix affect the topology of the propagating breather and its frequency and wavenumber 
content. 

 

 
Figure A3.5: Experimental breathers in harmonically forced granular media with three different 

types of embedding material matrices. 
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A4. 1D-elastic: Highly nonlinear solitary waves in chains of ellipsoidal or cylindrical beads 
 

We performed experimental tests on chains composed of uniform ellipsoidal particles or 
cylindrical particles, to study the effect of particle geometry on the stress wave propagation. The 
experimental setups for chains of ellipsoidal beads or cylindrical beads are presented in Figure 
A4.1, together with the typical experimental data that we obtained. The experiments showed that 
the systems of ellipsoidal or cylindrical beads also support the formation and propagation of the 
highly nonlinear solitary waves. The solitary wave speed – force amplitude scaling obtained 
experimentally agrees very well with the results obtained from theory and discrete simulations 
based on Hertzian elliptical contact law, as shown in Figure A4.2. The theory and discrete 
simulations also predict that the dynamic behavior of the solitary wave (amplitude, speed) 
depends strongly on the orientation angles between particles in the chain and more detailed 
researches on this issue are under conducting. This interesting dependence on orientation angle 
between beads provides another free parameter to employ in tuning the dynamics of the solitary 
waves propagating in 1-D chain of ellipsoidal or cylindrical beads which cannot be achieved in 
the chain of spherical beads. 

 

 
Figure A4.1: (a) Experimental setup of a vertical stacked chain of 20 stainless steel ellipsoidal 
beads, the orientation angle between two adjacent beads is α=0°. Piezoeletric sensors were 
embedded in particles 7 and 12, as well as at the wall. (b) Schematic diagram representing the 
assembly of the piezo-gauges embedded in the ellipsoidal particles. (c) Formation of solitary 
waves excited by impact in a chain of 20 stainless steel ellipsoidal beads. Sensors were at 
position 7, 12, and at the wall. Impact was generated with 3.787 g striker traveling at 0.75 m/s; 
the average wave speed was calculated at 525 m/s. 
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Figure A4.2: Dependence of the wave speed on the maximum contact dynamic force (a) in the 
chain of ellipsoidal particles, (b) in the chain of cylindrical particles. Experimental values are 
shown by solid squares. The solid line represents the theoretical prediction based on Hertzian 
elliptical contact law. The dash line represents the numerical values obtained from discrete 
simulations. 
 
A5. 1D-elastic: Interaction of highly nonlinear solitary waves with linear elastic media 
 

We studied the interaction of a highly nonlinear solitary wave with an adjacent linear 
elastic medium (Figure A5.1). The effects of interface dynamics on the temporary localization of 
incident waves and their decomposition into primary and secondary reflected waves were 
investigated. Experimental tests were performed to correlate the linear medium geometry, 
material, and mass with the formation and propagation of the reflected waves. Studying 
variations of the reflected waves velocity and amplitude, we report on how the propagation of 
primary and secondary solitary waves responds sensitively to the states of the adjacent linear 
media. This preliminary study suggests the use of reflected solitary waves in non-destructive 
evaluation of elastic materials and as a mean to assess mechanical properties of bounding media. 

 
Figure A5.1: Schematic diagram showing the 1D chain of spherical elements in contact with (a) 
a uniform linear medium and (b) a composite linear medium. The bottom of the linear media is 
under fixed boundary conditions. All force interactions are restricted under 1D consideration  
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A6. 1D-elastic: Study of highly nonlinear solitary waves in chains of thin coated spheres 
 

We studied the dynamic response of a chain composed of spherical steel particles coated 
with a soft polymeric material and showed that these systems support the formation and 
propagation of highly nonlinear solitary waves. We showed that the dynamic response of chains 
of coated spheres is governed by a quadratic power law between the contact force, F, and the 
displacement, δ, instead of the Hertzian, non-integer power of 3/2. This new nonlinear contact 
interaction changes dramatically the dynamics of the solitary wave propagating in the systems 
compare to its counterpart in chains of solid spheres, the spatial width of the wave becomes 
shorter (3.14 particles size instead of 5) and the wave speed (Vs) is relatively slow and its 
dependence on force amplitude (Fm) is also different (Vs ~ Fm 1/4 instead of Vs ~ Fm 1/6). DP 
simulations predicted that the dynamic behavior of the solitary wave (amplitude, speed) depends 
on the thickness of the coating layer Figure A6.1b. This interesting dependence on coating 
thickness provides another free parameter to employ in tuning the dynamics of the highly 
nonlinear solitary waves propagating in 1-D chains of coated spheres. 

 
 

 
 
Figure A6.1: (a) Relation of wave speed to force amplitude of solitary wave in the chains of 
thin-coated spheres.  Experimental values are represented by blue dots, theoretical predictions 
and DP simulations based on thin coating contact law are represented by black and green lines 
respectively (b) Dependence of wave speed- force amplitude relation on the coating thickness 
obtained from DP simulations. 
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A7. 1D-elastic: highly nonlinear solitary waves in chains of hollow spheres 
 

We performed experiments on chains composed of uniform aluminum hollow spheres. 
The experimental setup is presented in Figure A7.1ab, together with the typical experimental 
data (Figure A7.1c) that we obtained. We observed the existence of highly nonlinear solitary 
wave travelling in the system, but the wave properties are different from the highly solitary 
wave’s properties in the chains of solid spheres. The spatial width of the solitary wave in chain 
of hollow sphere was approximately 8 particles size (larger than 5 beads size), and the wave 
speed was proportional to force amplitude to power 1/11. FEM studies showed that the contact 
interaction between thin hollow spheres could be approximated by a power-law type relation 
(F=kδn), in which the exponent n is smaller than the value 3/2 as in the classical Hertzian 
interaction between solid spheres. The contact stiffness k and the exponent n were also found to 
be dependent on the shell’s thickness of the hollow spheres. The theoretical predictions and DP 
simulations based on this contact law and FE simulations showed good agreements with the 
experimental results as shown in Figure A7.1d. The effect of shell thickness on the dynamic 
response of the system also is presented in Figure A7.1d. 

 

 
 
Figure A7.1: (a) Experimental setup of a horizontal chain of 29 hollow aluminum beads. (b) 
Piezoeletric sensors were embedded in particles 12 and 19. (c) Formation of solitary waves in the 
chain excited by impact of an identical striker traveling at 0.4 m/s; the average wave speed was 
calculated at 686 m/s. (d) Relation of wave speed to force amplitude in the chain of hollow 
spheres for different values of thickness of the hollow spheres. Experimental values are shown 
by solid (blue) diamonds. The solid (black) lines represent the theoretical predictions. The dash 
(green) lines represent the numerical values obtained from DP simulations. The red open circles 
are the results from FE simulations.  
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A8. 1D-elastic: Granular system with magnetic interaction 
 
 We built a one-dimensional granular system with magnetic interactions where the 
granular elements do not come into direct contact but interact with each other through nonlinear 
magnetic forces (Figure A8.1). We developed procedures for calibrating the magnetic force and 
performed digital image correlation (DIC) measurement to determine locations of particles to 
study the dynamic response of the system. 
 

 
 
Figure A8.1: Schematics of the magnetic particles experimental setup. The chain is formed by 
26 ring magnets placed around a plastic rod. To excite the system, we give an initial 
displacement to magnet 1. A high-speed camera records the motion of magnets 13 to 17 and DIC 
is used to extract the displacement and velocity of the particles. The lower picture shows a 
snapshot of the system at rest. 
 

We investigated the propagation of solitary waves in such a 1D nonlinear lattice of 
repelling magnets. This system showed an interesting nonlinear dynamic behavior, which 
support the formation and propagation of solitary waves and it is sensitive to the amplitude of the 
initial stress excitation. In the low energy regime, the profile of the solitary wave is given by a 
KdV soliton with a sech2 shape. In the high-energy regime, the wavelength progressively shrunk, 
with the limiting case reducing into a hat function, with width equal to a single lattice period 
(atomic scale localization). Such systems could find potential applications in energy mitigation 
and localization, or in the design of acoustic lenses capable of omitting very narrow pulses. In 
addition, they can be used to study the fundamental response of nonlinear dynamical systems.  
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Figure A8.2: Numerical results showing the formation and propagation of a solitary wave in a 
chain of repelling magnetic particles. The curves show the particle velocity for the particles at 
different time steps. 
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A9. 1D-elastic: Nonlinear, locally resonant granular crystals 
 

We studied the acoustic properties of a statically compressed chain of eleven MinM 
(mass-in-mass) units (Figure A9.1), observing the characteristic band-gap structure due to the 
presence of local resonators. We observed a nonlinear behavior deriving from the nonlinear 
contact between the spheres. This nonlinearity resulted in the ability to tune the transmission 
spectrum and band gap edges of the dispersion relation, by varying the applied static 
precompression. We also showed that the band gaps can be tuned by variation of the driving 
excitation amplitudes. Finally, we developed a finite element model of the particles to 
characterize the vibrational modes of the particles' cavity. The presence of additional modes in 
the cavity suggested the possibility to design units with multiple resonators. 

 
Figure A9.1: Schematic diagram and digital image of the resonant granular particles. 

 
Our study of granular chains with local resonances (Fig. 24) revealed that it is possible to 

achieve very high vibration mitigation at selected frequencies by attaching each of the beads of a 
granular chain to a local resonator. We explored theoretically the effect that practical limitations, 
including damping and limits on the mass and stiffness of the system have on the vibration 
mitigation performance of the device. We found that, even when physical limitations where in 
effect, granular chains with local resonances present a significant attenuation of waves 
propagating at or near the local resonance frequency. We modeled the interaction between the 
beads using the Hertzian contact law, and the local resonators as mass-spring systems. 

 
Figure A9.2: (a) 3D model of the local resonator. (b) 3D model of a granular chain where each 
of the beads contains an embedded local resonator. (c) Vibration profile of the local resonator 
simulated using a FEM package. (d) Top view of the experimental setup consisting of a chain of 
ten beads with embedded local resonators.  
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A10. 1D-elastic: One-dimensional micro-granular lattice 
 
 We experimentally studied the wave propagation within 1D micro-granular chains. The 
micro-granular chains were made of two different stainless steel particles (grade 316 and 440c) 
with diameters of 300 µm. We introduced non-contact excitation and measurement methods to 
avoid influencing the response of the system with intrusive driving and detection systems. We 
ensured high-packing repeatability by assembling the micro-particles with a computer-controlled 
robotic micro-manipulator. To construct one-dimensional chains with micro-particles, we 
fabricated a one-dimensional supporting micro-structure on silicon wafers to confine the position 
and motion of the particles. The micro-structures were grooves with a v-shaped cross-section and 
constrained the particles from moving out of the axis of the groove. We deposited the micro-
particles randomly into the v-shaped groove to form a loose chain of particles and then compressed 
the particles with the computer-controlled micro-manipulator. The position of the micro-particles 
in the close-packed granular chain was determined using a microscopy imaging system at a 2 µm 
accuracy. 
 The mechanical excitation of the micro-particles was achieved by focusing a pulsed laser 
beam on the surface of selected particles. When we illuminated the particles with laser pulse with 
sufficient intensity, the induced temperature rise resulted in the vaporization and removal of the 
particles’ surface materials. This phenomenon is known as pulsed laser ablation (PLA) (Fogarassy 
and Geohegan, 2012) and its efficiency is determined by the material properties as well as the 
duration and energy of the laser pulses. When ablation was induced on the surface of a micro-
particle, the particle obtained momentum through the reaction force from the ablated material. The 
resulted dynamic response of the micro-particles on the sample stage was measured by two laser 
vibrometers (Polytec OFV-534). 

 
 
Figure A10.1: Schematic diagram of the experimental setup. (a) Two laser vibrometers were 
pointed on the assembled micro-granular chain. The granular chain consisted of 15 particles and 
the vibrometers were pointed at the 2nd and 13th particles. (b) A chain of micro-granular particles 
was assembled on the sample holder. Particles were placed within a v-shaped micro-structure 
fabricated on a silicon wafer and compressed with a computer-controlled micro-manipulator. 
 
 In experiments, we excited the chain of micro-particles by delivering controlled momentum 
impulse to its end (the striker). We varied the initial velocity of the striker from 0 to 0.07m/s and 
measured the responding mechanical motion of the 2nd and the 13th particles in the chain. We also 
performed numerical study of the system in comparison with the experimental data. The micro-
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granular system is modeled with Hertzian interaction between neighboring particles, and the 
dissipation terms including the Coulomb and air friction which were characterized in our previous 
work funded by MURI. 
 A typical measurement obtained by the two vibrometers is shown in Figure A10.2a. The 
measured vibration is a filtered pulse response function (which is not representative of the real 
pulse shape because of the bandwidth limits). From the data we extract the maximum amplitudes, 
𝑣!"#,! and 𝑣!"#,!, of the two velocities output by the 2nd and 13th particles and time delays 
between the maximum amplitudes Δ𝑡. In Figure A10.2b, we plot the measured 𝑣!"#,!, 𝑣!"#,! at 
different striker velocities; the 𝑣!"#,!, 𝑣!"#,! shown are normalized to 𝑣!"#$%&#. We have averaged 
the values of 𝑣!"#,! = (0.57± 0.09)𝑣!"#$%&# and 𝑣!"#,! = (0.46± 0.07)𝑣!"#$%&#. The predicted 
values obtained in numerical simulations are 𝑣!"#,!(!"#$%&'"()) = 0.89𝑣!"#$%&#(!"#$%&'"())  and 
𝑣!"#,!(!"#$%&'"()) = 0.64𝑣!"#$%&#(!"#$%&'"()). It seems that the measured values are about 40% 
smaller than the simulation, which might be a result of extra-loss on the striker due to 
imperfections in the construction of the chain. Finally, we plot the measured group velocity 
𝑣! = 13− 2 2𝑅/Δ𝑡 at varying striker velocities in Figure A10.2c for both 316 and 440c stainless 
steel particles. The propagating wave group velocity varies as a function of the striker velocity for 
both particles tested. This is a clear indication of the nonlinear interaction between the particles. 
We also plot the simulated results of group velocities in a close packed granular chain with free 
boundary condition. We note a significant deviation of the group velocities from their predicted 
values to much lower values. To explain the large deviation of the measured group velocity, we 
include the presence of gaps between the micro-particles in our simulation. We perform numerical 
simulations of the wave propagation in a granular chain with randomly distributed gaps between 
neighboring particles. As seen in Figure A10.2d, when an average gap of 20 nm is included 
between each contact, the maximum particle velocity along the chain begins to oscillate, and the 
oscillation amplitude has a variation of about 20%. 
 We calculate the value of the average group velocity as a function of the striker velocity in 
the presence of the gaps. The randomly sampled group velocities, at different values of ∆ (i.e., 
mean gaps between particles), are shown as the pink bands in Figure A10.2c. We use a simple 
equation to estimate the measured group velocity: 
 !!!∆

!! !"#$%&"!"'(,!"#!  !"#$ =
!!

!! !"#$%&'"(),!"  !"#$ +
∆

!!"#$%&#
, (A10.1) 

This formula assumes that the total time of flight is equal to the sum of the time required for a 
wave to travel through the particles and the time required for the free-moving particles to travel the 
distance of a gap to reach the neighboring particles. The estimated curves obtained from Equation 
(A10.1) for different gap sizes are plotted by the blue dashed lines in Figure A10.2c and agree well 
with the corresponding simulation results of the randomly sampled chains. 
 Our results indicate the very critical role of the inter-particle gaps in the propagation of 
mechanical wave within a granular chain. As the system size scaling down, construction and 
assembling of perfect granular system would become increasingly challenging, and our work has 
demonstrated a functioning non-contact technique to examine and study the mechanical properties 
in micro-granular system, which can be used for the miniaturization of granular materials. 
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Figure	  A10.2:	  Measured	  particle	  velocities	  in	  a	  micro-‐granular	  chain	  of	  15	  stainless	  steel	  
440c	  particles	  (a)	  Measured	  particle	  velocities	  for	  the	  2nd	  and	  13th	  particles	  in	  the	  chain.	  
From	  these	  data	  we	  obtain	  the	  maximum	  particle	  velocities,	  𝒗𝒎𝒂𝒙,𝟏	  and	  𝒗𝒎𝒂𝒙,𝟐,	  and	  the	  time	  
delay	  ∆𝒕 .	   (b)	   Measured	   maximum	   velocities	   (normalized	   to	   the	   striker	   velocity).	   An	  
averaging	   gives   𝒗𝒎𝒂𝒙,𝟏/𝒗𝒔𝒕𝒓𝒊𝒌𝒆𝒓 = 𝟎.𝟓𝟕± 𝟎.𝟎𝟗 	  and	   𝒗𝒎𝒂𝒙,𝟐/𝒗𝒔𝒕𝒓𝒊𝒌𝒆𝒓 = 𝟎.𝟒𝟔± 𝟎.𝟎𝟕 	  (95%	  
confidence	  interval).	  (c)	  Group	  velocity	  as	  a	  function	  of	  the	  striker	  velocity,	  at	  various	  gap	  
sizes.	  Purple	  line:	  simulation	  of	  an	  ideal	  chain	  (gap=0).	  Pink	  bands:	  simulation	  results	  with	  
randomly	  generated	  gap	  distributions,	  at	  a	  fixed	  average	  gap	  size	  ranging	  from	  10	  to	  190	  
nm.	   Dashed	   lines:	   theoretical	   predictions	   obtained	   with	   Eq.	   (26),	   based	   on	   the	   group	  
velocity	  of	  a	  close-‐packed	  chain.	  The	  measured	  group	  velocity	  is	  fitted	  with	  the	  simulation	  
results	  (dashed	  lines)	  of	  systems	  with	  averaged	  gap	  =	  190	  and	  47	  nm	  for	  stainless	  steel	  316	  
and	  440c,	  respectively.	  The	  difference	   in	  the	  averaged	  gap	   is	  explained	  with	  the	  different	  
surface	  roughness	  of	  the	  stainless	  steel	  particles	  we	  use	  in	  experiments.	  (3	  µm	  for	  SS316,	  
0.1	  µm	   for	  SS440c)	   (d)	  Numerical	   simulations	   for	  waves	  propagating	   in	  a	  granular	   chain	  
with	  gaps.	  The	  initial	  velocity	  is	  0.1	  m/s	  and	  the	  average	  gap	  size	  is	  20	  nm	  	  
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A11. 2D/3D-elastic: Effect of randomness on wave propagation in 1D and 2D granular 
media 
 
 To assess the impact of geometrical and material randomness on the propagation of 
solitary waves in granular media, the dynamic response of 1D chains of granular media was first 
investigated. A solitary wave, generated in a semi-infinite perfect granular chain, was propagated 
through a granular chain with random stiffness and/or mass, and the subsequent evolution and 
distribution of compressive forces and energy were investigated. Randomness in the granular 
chain was studied independently by randomizing the distribution in stiffness as 0 (1 )iE E rε= +  
and that in mass as 0 (1 )im m rε= +  where 0E  and 0m  respectively correspond to the stiffness 
and mass of granules in the perfect chain, 1 1r− ≤ ≤  is a uniformly distributed random number, 
and 0 1ε< <  quantifies the degree of randomness. Several idealizations of random chains were 
averaged to achieve statistical convergence of the numerical results. Figure A11.1 shows typical 
snapshots of the propagation of the incident solitary wave through the random granular chain 
with random mass (with 𝜀 = 0.3). As apparent there, the solitary wave undergoes a rapid decay 
due to scattering. Figure (a)-(c) represent the growth of the scattered wave train and progressive 
decay of the primary wave, which diminishes after forming a silent region. 

Analysis of transmitted total compressive force on each bead shows that there are two 
regimes of wave propagation in the random chain, one characterized by an exponential decay of 
the primary pulse ( ( )01( ) / exp ( )m FF z F zα ε= − ) and the other described by a power-law decay 
driven primarily by the scattered wave train ( 02( ) / F

mF z F z β−= ). The exponential decay in force 
( Fα ) was found to depend on the degree of randomness ε , but interestingly the power-law 
decay ( Fβ ) appears to be universal, where the same trend was observed for all degrees of 
randomness. The two regimes also characterize the transmission of kinetic energy. Utilizing a 
classical scaling law, the exponential decay coefficient for the kinetic energy is related to its 
force counterpart through ( ) 5 / 3 ( )k Fα ε α ε= . This expression was found to be in very good 
agreement with the numerical results. This work was summarized in (Manjunath et al., 2012). 

This 1D work was then extended to 2D dimer crystals made of a square lattice of larger 
spheres with smaller interstitial masses. In that study, the source of randomness associated with 
the mass of the components. As observed in the 1D case, two randomness-induced regimes of 
decay are observed, in addition to the decay associated with the multi-dimensional nature of the 
wave propagation (Figure A11.2).  

A detailed study of the directional nature of the spatial decay of the waves showed a 
marked transition between the anisotropic decay observed for the non-random system and the 
increasingly isotropic decay obtained for higher level of randomness. The 2D work on the effect 
of randomness was summarized in (Manjunath et al., 2014a) and (Leonard et al., 2012). 
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Figure A11.1: Evolution of an incident solitary 
wave through a random granular chain. The primary 
pulse progressively decays due to the scattering 
associated with the property mismatch between 
adjacent spheres. For a while, a silent region is 
generated behind the primary pulse, which is 
eventually overtaken by the scattered wave train. 

 
Figure A11.2: Effect of randomness on the propagation of a 
impact-induced wave in a 2D granular medium: spatial evolution of 
the maximum amplitude of the wave (after extraction of the effect 
associated with the dimensionality) for various values of the 
random parameter ε.  ε=0 denotes the non-random solution. 



 25 

A12. 2D/3D-elastic: Plane wave propagation in ordered granular media 
 

This aspect of the research project has shed important light on a wide variety of 
fundamental wave propagation phenomena in 2D granular crystals, with emphasis on plane wave 
problems. In the first set of studies presented in (Manjunath et al., 2014b), we derived a universal 
law for the relation between the velocity of a planar solitary wave and the amplitude of the 
maximum force amplitude of the wave. As shown in Figure A12.1, this relation is valid for 1D, 
2D and 3D ordered granular systems made of spherical particles interacting elastically. This 
relation is an explicit function of the material properties (Young’s modulus and Poisson’s ratio) 
and geometry (radius) of the beads, and the packing geometry (distance between adjacent layers 
and number of contacting beads). 

 
A second set of studies then focused on the incline 
plane loading of mono-disperse granular crystals 
(Figure A12.2). This work showed for the first time 
how the shear component of the plane wave rapidly 
decays as the wave penetrates into the granular 
medium, while the normal component of the wave 
propagates as a solitary wave, i.e., without decay over 
long distances. This behavior, which is reminiscent of 
the exponentially decaying Rayleigh surface waves in 
linearly elastic solids, was investigated numerically 
and analytically. Some of the results are illustrated in 

 
Figure A12.1: Universal relation between wave speed and force 
amplitude for a solitary plane wave propagating through 1D, 2D 
or 3D granular media. The symbols correspond to numerical 
results, while the solid curve corresponds to the analytical 
expression. 

 
Figure A12.2: Inclined plane 
loading of a hexagonal close pack 
of spheres. 
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Figure A12.3: the left figure presents the evolution of the contact force between two adjacent 
beads located in various layers (with Layer 1 representing the surface layer), showing how the 
forces even out after about 10 layers. The right figure presents the rapid decay of the horizontal 
velocity component for an inclined loading (with angle = 60°), showing the existence of different 
regimes of decay, starting from purely exponential (R1) to an inverse decay (R2 to R4). 

An analytical expression of the force-velocity relation for the solitary wave component of the 
inclined planar loading was also derived and compared with numerical simulations, showing 
excellent agreement (Figure A12.4) for all impact angles considered. 
 
This work on the inclined plane loading of mono-disperse granular media is also summarized in 
(Manjaunath et al., 2014b). 

 

 
 
 

 
Figure A12.3: Inclined planar impact of hexagonal granular crystal, showing how the peak 
contact forces acting on adjacent spheres even out after about ten layers (left) and the decay 
regimes of the horizontal component of the velocity. 

 
Figure A12.4: Force vs. velocity relation for 
solitary waves generated through a planar 
impact on a granular crystal, with the impact 
direction inclined by an angle θ. Symbols: 
numerical, Curve: analytical. 

 
Figure A12.5: Planar impact of 
dimer granular crystal made of elastic 
spheres. 
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In the last study related to plane wave propagation in ordered granular media, we tackled 
the problem of normal impact loading of dimer square-packed systems (Figure A12.5), 
characterized by two contact stiffness values (denotes by K1 and K2 in the figure). We first 
demonstrated the existence of a non-local 1D model with the same wave propagation 
characteristics as the 2D granular crystal, but with a scaled value of the contact stiffness K2 
characterizing the contact between larger and smaller spheres. Using this simplified nonlocal 
model, we showed the existence of a new family of solitary waves expressed in terms of the two 
non-dimensional parameters that define the mass ratio (ε) and stiffness ratio (α) present in the 
problem. 
 The existence of this new family of solitary waves was first demonstrated numerically by 
simulating wave propagation in a non-local 1D granular chain. The outcome of this study is 
shown in Figure A12.6, which presents the set of dimer systems that sustain solitary waves (solid 
curves) together with a set of material combinations (symbols). 

 

 
Figure A12.6: Solitary waves in a granular dimer crystal defined by the mass ratio ε and the 
stiffness ratio α. The solid curves denote the (α,ε) values giving rise to solitary waves. The 
symbols correspond to actual material pairs, with the first digit denoting the larger particles 
and the second the smaller ones. 1=stainless steel, 2=delrin, 3=polycarbonate, 4=aluminum, 
5=alumina, 6=PTFE, and 7=brass. 
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 This new family of solitary waves was then studied with the aid of an asymptotic analysis 
valid for small values of the mass ratio ε. Typical results from this analysis are presented in 
Figure A12.7. The left figure shows a comparison of the velocity profile of the solitary wave 

obtained numerically (dashed curve) and analytically (solid curve) for the case ε=0.0274 and 
α=0.644. The right figure compares numerical (circles) and asymptotic (solid curves) estimates 
of the locus of three families of solitary waves in the (α,ε) plane. This work is summarized in 
(Manjunath et al., 2014c). 
 
  

  
Figure A12.7: Left: Asymptotic and numerical estimates of the evolution of the small particle 
velocity associated with the passage of a solitary wave for ε=0.0274 and α=0.644. Right: 
Comparison between numerical (circles) and asymptotic (solid curves) estimates of the locus of 
three groups of solitary waves, showing excellent agreement especially for small values of the 
mass ratio ε on which the asymptotic analysis is based. 
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A13. 1D-plastic: “Solitary-like” plastic waves in 1D granular chain 
 

Experiments were conducted to investigate the propagation of disturbances in 1D 
granular media when the applied force was increased to such levels that material nonlinearity, in 
the form of plasticity, would become important. These granular media were loaded by a modified 
split Hopkinson pressure bar (SHPB) with a momentum trap. The trap ensures the granular chain 
is loaded only once, allowing more accurate post-mortem measurements to be made. Chains of 
brass beads of increasing length were studied, and their transmitted force for similar input 
loading is compared in Figure A13.1a. As the number of beads in the chain increases, the 
duration of the transmitted pulse increases. Even though the input load has the same 80 ms 
duration in all cases, although not necessarily exactly the same amplitude, the resulting 
transmitted pulse duration is variable. Note that the transmitted pulse duration for chains with 
two or three beads, is shorter than that of a single bead, and of the loading pulse duration. This 
result was seen consistently for repeated tests of two and three beads, and the reason for it is not 
clear. However, this “transition” occurs at the same time as the amplitude of the first and second 
peaks reverses in magnitude. As chain length increases, the two peaks, which correspond to the 
yielding of individual contact points, also begin to converge into a single peak. This becomes 
apparent in the four, and especially the five, bead case. As the number of beads increases, the 
transmitted pulse also begins to attain a trailing pulse of lower amplitude.   

 
                                        (a)                   (b) 

Figure A13.1: Transmitted signals for brass bead chains of length (a) 1-5, (b) 5-12. 
 

This trailing wave is more apparent in Figure A131.b, which shows the transmitted pulse 
for longer chain of beads, from 5 to 12 brass beads in length. The duration of the transmitted 
stress wave increases as the granular chain length increases. The increasing duration of the 
transmitted signal in the granular case is produced by a combination of the nonlinear contact 
between beads and the effect of plasticity, and may be useful in stress wave management and 
mitigation applications. It can be seen that the magnitude of the transmitted force decays with 
chain length. This can be attributed to the additional plasticity involved with the additional beads, 
which will lower the final force that reaches the transmitted bar. Based on the results of Figure 
A13.1, it can be concluded that the number of particles necessary to set up a plastic solitary-
like wave is about 5, as is also the case for the elastic granular chain. 

Nesterenko (1984) described solitary waves forming under a chain of identical elastic 
beads with the velocity also scaling with Fmax

1/6 when no initial pre-compression exists. This 
relation is compared to the experimental results of brass chains loaded dynamically. The 
measured wave speeds for chains of more than 5 beads are plotted against the maximum 
transmitted force in Figure A13.2. Power laws fitted to the experimental data are compared. The 
experimental velocity does not appear to scale with Fmax

1/6, but rather approaches Fmax
1/9 instead. 
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This is an effect of plasticity which can have additional damping effects on the solitary wave 
generation. However, it is clear that the speed does depend on the output force, denoting that a 
nonlinear wave is propagating after chain lengths of 5 beads. 

 
Figure A13.2: Wave speed vs. maximum transmitted force for various brass bead chains. 

 
 By analyzing the propagated wave for different chain lengths, and comparing these 
signals as the chain length increases, a transition in wave behavior was identified. Similar to the 
elastic case, the critical length for this transition resides between four and five beads. After this 
critical length, for similar input amplitude and duration, the transmitted wave decayed in 
amplitude as the chain length increased. Also, the duration of the transmitted wave increased 
with chain length.  
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Figure B1.1: Left: Modes of wave propagation observed for different combinations of mass 
and stiffness ratios. Right: Modes of wave propagation mapped over the mass/spring constant 
ratio space. The blue contour shows the theoretical prediction of the bounds of the solitary 
wave regime, denoted by dark triangles in the numerically extracted map. 

PART B – DEMONSTRATION: MATERIAL DESIGN 
 
B1. 2D/3D-elastic: Wave tailoring in 2D dimer crystals 
 

In this study summarized in (Awasthi et al., 2012), we investigated how to tailor wave 
propagation in a dimer granular crystal by modifying the mass and stiffness ratios between the 
larger and smaller spheres. The analysis was performed numerically using the molecular 
dynamics solver LAMMPS specially adapted for the simulation of granular media, with the 
inter-particle interactions described by the nonlinear Hertzian contact relation. The analysis 
characterized the propagation behavior of point-impact-induced waves in a granular material as 
illustrated in Figure B1.1. The left figures illustrate four wave propagation profiles ranging from 
a clearly defined solitary wave propagating quasi-isotropically (top left) to a very directional 
wave propagation regime (bottom right). The right figure shows a summary of the propagation 
regimes on the mass ratio vs. stiffness ratio space. The symbols correspond to the cases 
investigated numerically, and the dashed curve denotes the analytical prediction of the limits of 
the solitary wave regime.  

The impact of the directionality of the wave propagation in granular media was also investigated 
in the case of force transmission across a granular layer in (Awasthi et al., 2015). 
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B2. 1D-plastic: Characterization and mitigation of plasticity at inter-particle contacts 
 

Due to the presence of stress concentration at the contact between spherical particles, 
inelastic effects are often unavoidable for impact load exceeding a few hundred Newtons. In this 
part of the project, we performed a detailed investigation of the impact of plasticity in the 
propagation of waves in granular chains and crystals made of elastic-perfectly-plastic spheres. 
 The first part of this work was the derivation of an accurate contact model that included 
plastic dissipation. This derivation was performed using a detailed finite element analysis with 
Abaqus (Figure B2.1) for a range of material properties (e.g., yield stress) and particle size ratios.  

 
The numerical studies involved a set of loading and unloading steps of increasing amplitudes to 
capture the complete history of contact during the passage of an impact wave.  
 

 
Figure B2.1: Extraction of an elasto-plastic contact law for spherical particles. Left: Finite 
element analysis performed with Abaqus, with the red contour denoting . Right: Comparison 
between numerical and analytical force-displacement curves obtained for four values of the 
particle radius ratio, showing good agreement up to relatively large values of the relative 
displacement α between the particles. Fy denotes the critical force value associated with the 
onset of plasticity.  
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The resulting elasto-plastic contact law was then implemented into LAMMPS, thereby allowing 
for the simulation of larger granular systems. In particular, it allowed for a comparative study of 
the energy dissipation associated with an impact event in a granular medium and in a continuum 
medium made of the same elasto-plastic material. As part of that study, scaling laws were 

derived from first principles to capture the effects of key quantities such as Young’s modulus, 
yield stress, and particle/impactor diameter. An example of scaling law is shown in Figure B2.2, 
which presents the master curve of relative energy dissipation vs. the input energy for granular 
elasto-plastic media corresponding to various values of the density, Young’s modulus, yield 
stress and particle diameter. The right figure provides a direct comparison between the ability of 
elasto-plastic continuum and granular media to dissipate energy. As indicated there, the granular 
medium dissipates the impact energy at energy input levels that are substantially less than those 
associated with a continuum medium made of the same material. This difference is associated 
with the presence of stress concentrations at the particle-to-particle contacts. 

This line of work on the effect of plasticity on wave propagation in granular media, 
including the effect of introducing an elasto-plastic intruder in an otherwise linearly elastic 
granular chain, has been summarized in (Pal et al., 2014a), (Pal and Geubelle, 2014a), (Pal et al., 
2014b). 

To experimentally validate the elasto-plastic contact law we performed a series of 
specially designed experiments to investigate the dependence of plastic contact law on bead 
material, size, and combination, and to establish the importance of material rate sensitivity in the 
dynamic contact law. The SHPB apparatus was used to generate a dynamic loading at different 
levels. A lead pulse shaper was used to smooth the incident pulse and the momentum trap 
technique was again applied to prevent multiple loadings on the specimen. In order to obtain the 
dynamic elasto-plastic contact law between spherical particles, a two-hemispherical-bead 

  
Figure B2.2: Left: Energy dissipation ratio vs. normalized input energy for a point impact on an 
elasto-plastic granular medium. The scaling law derived for the input energy (�̃�!"~ !

!!

!!!!!
! 𝑒!") 

allows for all the curves to collapse on a single master curve.  Right: Energy dissipation vs. 
energy input: comparison between continuum and granular systems, showing the ability of the 
elasto-plastic granular media to dissipate impact energy at load levels substantially lower than 
those for a continuum medium. 
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specimen setup is proposed, as shown in Figure B2.3, which allows loading a single point 
contact. From the SHPB data, the dynamic force and the displacement between the two centers 
of the hemispherical beads can be measured. 
 

 
Figure B2.3: The SHPB apparatus modified for studying the dynamic load-displacement contact 
law of a single contact. 
 

The experimental quasi-static and dynamic contact load-displacement curves for a point 
contact between identical beads with a diameter 9.525 mm are shown in Figures B2.4 and B2.5. 
For strain rate insensitive materials such as aluminum or brass (Figure B2.4), the quasi-static and 
dynamic contact load-displacement curves are also rate insensitive. This indicates that the point 
contact behavior of the beads is not affected by loading rate. 
 

 
       (a) Aluminum alloy 2017                                 (b) Brass alloy 260 

Figure B2.4: Contact load-displacement curves for strain rate insensitive materials 
 
For strain rate sensitive materials (Figures B2.5), the slope of the plastic part has an obvious 
increase as the loading rate increases. It shows clearly that the loading rate does affect the 
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dynamic single-point contact behavior. Another parameter that affects the contact law is the 
sphere size. 
 

 
                          (a) Stainless steel 302                                      (b) Stainless steel 440c 

Figure B2.5: Contact load-displacement curves for strain rate sensitive materials 
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B3. 1.5D-elastic: Design of confined granular systems for wave tailoring (Acoustic Switch) 
 
 A variety of confined granular systems have been 
investigated as practical implementations of wave 
tailoring systems. An example of such system investigated 
in (Pal and Geubelle, 2014b), shown in Figure B3.1, 
consists of a chain of larger spheres in contact surrounded 
by 6 to 9 ‘circumferential spheres’ also in contact and 
confined by a rigid cylinder. By controlling the 
confinement level (defined by the relative radial 
displacement a=δ0/D), an impact-induced wave traveling 
down the primary chain of larger beads can be tailored 
from quasi-solitary wave (i.e., without dissipation) to 
rapidly decaying. This result is illustrated in Figure B3.2, 

which shows the spatial evolution of the maximum 
amplitude of the wave as it travels down the granular 
chain. 
 
 A practical implementation of these phenomena was done in what we term a gravity 
assisted acoustic switch which introduces a framework for wave tailoring based on changing the 
relative positions of granules, i.e., the lattice network, between two configurations. Here the 
lattice is arranged in a plane and wave propagation is considered in the axial direction only, i.e., 
what we call quasi-1D or 1.5D. Schematics of the two configurations are illustrated in Figure 
B3.3 for both side and top views. The lattice consists of both a 1D primary chain of spheres – 

 

 
Figure B3.1: Wave tailoring 
medium composed of a chain of 
larger spheres confined by sets of 
six smaller spheres and a rigid 
cylinder. By adjusting the 
confinement δ0, a wave traveling 
down the center chain can be 
maintained or attenuated. 

 
Figure B3.2: Wave tailoring achieved with the confined 
granular system shown in Figure B3.1 with eight 
circumferential spheres. As the level of confinement 
(defined by the non-dimensional parameter a=δ0/D) is 
increased, the contact force goes from rapidly decaying 
(red curve) to quasi-solitary (black curve). 
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“axial spheres” that are aligned with the impact source (red in the figure), and “side spheres” 
which are symmetrically placed on opposite sides of select axial spheres (blue in the figure). The 
side spheres are confined between two rigid parallel plates. The lattice attains two states based on 
its inclination relative to the impact direction. In the downstream configuration shown in Figure 
B3.3a, the lattice is inclined such that a pair of side spheres are in contact with the adjacent axial 
sphere downstream (defined as the direction of primary pulse propagation) and a gap exists 
between the pair of side spheres and the axial sphere upstream. In the upstream configuration 
shown in Figure B3.3b, the lattice is inclined such that a gap exists between a pair of side spheres 
and its adjacent axial sphere in the downstream direction. Switching between the two 
configurations can easily be achieved by slightly tilting the lattice in one of two way in a 
gravitational field, as illustrated in the lower part of Figure B3.3. 

When the downstream configuration (Figure B3.3a) is impacted along the axial direction, 
there is a solitary wave propagating through the chain. The axial spheres moving forward do not 
contact the side spheres ahead as the wave propagates and the side spheres play no role in the 
dynamics of the lattice. In contrast, when the upstream configuration (Figure B3.3b) is subjected 
to an impact, a wave with progressively decaying amplitude traverses through the lattice as the 
wave interacts both with the spheres along the axis and the side spheres. After impact, the side 
spheres are in free flight and they eventually collide with the spheres and there are local 
oscillations. The energy lost due to these local oscillations is similar to the oscillations observed 
in wave propagation through dimer lattices (studied elsewhere in this project) at the tail of the 
propagating wave where the smaller mass of a dimer unit cell may oscillate between two larger 
masses. 

 
Figure B3.3: Schematic with top and front views illustrating the concept of altering the lattice 
network topology by gravity. (a) Side spheres (red) contact axial spheres (red) in the axis in 
impact direction, and (b) side sheres contact the spheres in the axis downstream, resulting in 
distinct axial wave propagation 

Note that the difference between the two configurations is in the location of the side 
spheres along the chain. The key aspect in our design is a change in lattice network topology, 
causing a change in the wave propagation behavior from a solitary wave to a rapidly decaying 
wave down the primary chain. Thus, our configuration is analogous to atoms shifting positions, 
for instance a phase transformation in a shape memory alloy, resulting in a change in effective 
material properties. We further remark here on the generality of our proposed framework. Indeed, 
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other configurations may also be designed to change the lattice network and have the desired 
effect. For instance, moving the walls inward to achieve a gap between the central spheres so that 
there is a rapidly decaying wave along the chain. On the other hand, moving the plates outward, 
so that the side spheres are no longer in contact with the axial spheres would allow a solitary 
wave to propagate through the chain. 

Figure B3.4a illustrates both the numerical and experimental results for the velocity of 
the final sphere in an impacted chain, normalized with the velocity of the impacting sphere, for 
the upstream configuration. The experimental data for each set of pairs of side spheres are in 
good agreement, demonstrating the repeatability of our experiment. The leading wave loses 
energy at each side sphere contact, resulting in progressive decay of the wave amplitude with 
number of pairs of side spheres. The energy loss is due to the transfer of energy from the axial to 
the side spheres at each contact location. The velocities obtained from the corresponding 
numerical simulations are a bit higher than the experimental measurements, but the trends are 
very similar. We note there assumptions in our model here which may lead to higher velocities: 
The contacts are assumed to be frictionless and the walls are assumed to be perfectly rigid, i.e., 
no energy is radiated outward to the walls. Also friction between the side spheres and the wall 
can reduce the output velocity by a small amount, however, the trends are qualitatively similar. 

Figure B3.4b illustrates the peak forces at the same sphere for different numbers of side 
sphere pairs when the chain is in the downstream configuration. The forces are normalized by the 
force acting on the first sphere, which is calculated based on the impact velocity. A solitary wave 
propagates down the chain independent of the number of pairs of side spheres. The axial spheres 
do not interact with the side spheres as their displacement toward the impact direction is about 13 
µm, which is much less than the gap between them and the side spheres. Again, the forces due to 
numerical simulations are observed to be higher than that observed experimentally, due to the 
aforementioned reasons. Figures B3.4a,b demonstrate that the behavior is significantly different 
between the upstream and downstream configurations, thus validating our proposed design for an 
acoustic switch that can go between passing acoustic waves and attenuating them simply by a 
small change of its tilt in a gravitational field. 

   
Figure B3.4: (a) Upstream configuration – experimental (points) and numerical (solid lines) 
values show that the output velocity decreases rapidly with increasing side pairs. (b) 
Downstream configuration – experimental (points) and numerical (solid line) values of peak 
forces show that the force experienced at the 18th bead is constant regardless of the number of 
side pairs. 
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B4. 2D-plastic: Elasto-plastic wave propagation in 2D granular packing with 
preconditioned beads 
 

Another important contribution to this work has been the introduction of the concept of 
preconditioning, which has been proposed to alleviate the effect of plastic dissipation by pre-
conditioning pairs of particles to a pre-defined level of static loading. The concept, which is 
illustrated in Figure B4.1, allows for elastic contact at much higher load levels, at least two 
orders of magnitude higher than those attainable by non-preconditioned beads. This concept, 
which has been presented both analytically and experimentally in (Wang et al., 2014), also offers 
the potential for force filters, as loads exceeding the pre-conditioning force (denoted by point B 
in Figure B4.1) will be damped out, while those lower than this can propagate through the 
granular chain. In addition to demonstrating the concept of preconditioning in Wang et al., 
(2014) a further objectives of this part of the effort was to study the propagation of elasto-plastic 
wave in 2D granular packing with preconditioned beads, and compare the results to that in non-
preconditioned bead packings. All preconditioned beads were generated manually – a time 
intensive process that would have to be improved in any future applications. The bead to be 
preconditioned, made of brass alloy 260, was first sandwiched between two parallel flat loading 
heads as shown in Figure B4.1 and then quasi-statically loaded beyond yield to given 
preconditioned load levels. In the current study, the preconditioning level was set at 9 kN. The 
bead was subsequently unloaded, producing two preconditioned areas at opposite sides of the 
bead. 

After preconditioning, the beads were 
assembled with the preconditioning direction parallel 
to the horizontal in a 2D hexagonal packing consisting 
of 11 layers alternating between rows of 9 and 10 
beads (the first and last rows all contain 10 beads) as 
shown in Figure B4.2. Note that in this configuration 
the contacts along the 60 degree direction are still with 
original, i.e., non-preconditioned, contact radius. 
Therefore, the horizontal direction of this 2D packing 
can elastically sustain any load less than 9 kN, while 
all of the 60 degree angle contacts would yield at a 
very low force level (around 125 N based on the modified Thornton model for this material). A 
split Hopkinson pressure bar apparatus was then used to impact the specimen to generate an 
elasto-plastic wave. A in-house designed 1018 low carbon steel frame was built to hold the 2D 
granular packing and enable fixed boundary conditions all around. Several piezoelectric sensors 
were embedded in specific beads to obtain the force profiles of waves travelling through the 
array. The beads were carefully inspected for the yield locations after each experiment. 

The force profiles were measured from a total of six different locations in the 2D 
preconditioned bead packing. Typical force profiles from three locations are shown in Figure 
B4.3. For comparison, the force profiles measured at the same locations in a non-preconditioned 
bead packing are also shown in Figure B4.3. The signals have been aligned based on the impact 
time at the impact location. It can be seen that the sensor 1 signal, which is the signal at the 
horizontal direction, in the preconditioned bead packing has a much higher primary peak than 
that in the non-preconditioned case. The arrival time in the preconditioned bead packing is also 
earlier than in the non-preconditioned one. This indicates that the preconditioning treatment in 

 
Figure B4.1: Preconditioning process 
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the horizontal direction increases the load carrying ability of the contact point and consequently 
transfers higher amplitude and higher speed solitary waves in this direction. In contrast, the 
sensor 3 signal, which is the signal in the vertical direction opposite impact, is comparable or 
even lower in the preconditioned case than that in the non-preconditioned packing. This indicates 
that the preconditioning treatment in the horizontal direction does not help to transfer less energy 
in vertical direction although it does transfer higher forces in the horizontal. The primary peak 
force and the arrival time of the force profiles from all six sensors used are summarized in Figure 
B4.4. Though the data show significant scatter due to the randomness inherent in these 2D 
experiments, the signals at sensor 1 location still clearly show higher primary peak and earlier 
arrival times. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Bead yield maps of the preconditioned bead packing at two different input loading levels 

are shown in Figure B4.5. For comparison, the yield map of the non-preconditioned bead 
packing case at the lower input loading level is also shown in Figure B4.5. It can be seen that the 
yielded contacts for the preconditioned bead packing are limited between the two 60 degree rows 
connecting those beads to the impact point. This is very different from the yielded contacts for a 
non-preconditioned bead packing, which is shows no preferred direction for occurrence of 
plasticity. Therefore, the 2D preconditioned bead packing can essentially be used to perform 
directional plasticity control. 
 
 

 
 

Figure B4.2: Schematic (left) and picture (right) of 2D granular packing with 
preconditioned beads. Preconditioning direction is horizontal. 
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Figure B4.3: Wave profiles at three locations in a 2D horizontally preconditioned packing. 
 

 
(a) Sensor locations 

  
(b) Primary peak magnitude (c) Arrival time 

Figure B4.4: Comparison of the primary peak pulse force magnitude and arrival time at six 
bead locations for preconditioned and non-preconditioned packings. 
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Figure B4.5: Yield maps of preconditioned and non-preconditioned packing at different input 
loading level. Yellow: non-yielded bead; Blue: yielded beads; Red: yield location. 

 
  

(a) Preconditioned, 
low input (~6 kN) 

(b) Preconditioned, 
high input (~17 kN) 

(c) Non-Preconditioned, 
low input (~10 kN) 
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B5. 2D-plastic: Wave propagation in a 2D granular packing with intruders at optimized 
locations 
 

In this part of out effort the research objectives were to (i) design and implement a self-
standing 2D granular packing with intruders at optimized locations for certain force or energy 
metrics, (ii) experimentally obtain data for validation of numerical optimization scheme. The 
split Hopkinson pressure bar apparatus was used to impact the specimen to generate an elasto-
plastic wave, as shown in Figure B5.1. A square packing with 11 (perpendicular to the impact 
direction) by 10 (parallel to the impact direction) rows of beads was used. The beads were made 
of brass alloy 260 (Young’s modulus: 115 GPa; Yield strength: 550 MPa; Density: 8500 kg/m3) 
with a diameter of 9.53 mm. The intruders occupying interstitial positions of the square lattice 
were cylinders made of stainless steel 302 and with a 3.95 mm diameter and 9.53 mm height, 
which can be fitted exactly into each space between four main beads, as shown in Figure B5.1. 

Three optimized intruder layouts for 
maximizing maximum transmitted force over 
the region denote by a black line in Figure 
B5.2, but each with a restriction on the 
number of intruders used, have been 
numerically predicted. The corresponding 
experimental layouts are also shown in 
Figure B5.2. Here, the first layout from left 
is restricted to having 10 intruders, the 
second 30 intruders, and the third one 50 

intruders. In addition, a square packing with intruders everywhere (total of 99 intruders) was also 
studied and this layout is shown in the fourth column in Figure B5.2. Three piezoelectric bead 
sensors were placed over the black line region on the right of each array to measure the normal 
contact forces between the sensor beads and the wall. 

 
Figure B5.2: (Above) Optimized layouts for maximum side force with different intruder 
quantity restriction and (below) their corresponding experimental layouts. 

 
Figure B5.1: Experimental setup 
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The measured wave profiles at different sensors for different layouts are shown in Figure 
B5.3. The numerically predicted wave profiles are also shown here for comparison. It can be 
seen that the wave profiles for different layouts clearly show different arrival time and different 
peak value (primary peak) of the pulses. The trend of the arrival time and primary peak value 
from the experimental data roughly matches that from the numerical prediction for a perfect 
system. It clearly indicates that the numerical optimization algorithm in this study is robust for 
predicting the optimized layout. 

 
(a) Sensor locations 

 
                              Experimental                                                         Numerical 

(b) Wave profiles at different locations 
 

Figure B5.3: Sensor location and measured wave profiles 
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Randomness cannot be avoided in these experiments and highly affects the results. It 
comes from many factors such as bead diameter tolerances, bead shape and misalignment of the 
beads in the packing. As a result, experimental and numerical studies on the effect of 
randomness were carried out in our study. Three methods were used to introduce experimental 
randomness: 1) use a new bead set; 2) use the old bead set but reassemble the entire packing; 3) 
use the old bead set and only reassemble the disturbed region. The experiment for each layout 
has been repeated at least five times. These experimental results have been summarized in 
Figures B5.4 and B5.5 for primary peak force value and arrival time as hollow circular points, 
respectively. The numerical results for a perfect system are also shown in these figures as the 
solid square points. It can clearly be seen that from the experimental results, randomness highly 
affects the primary peak force but less so the wave arrival time. The numerical prediction can 
capture the trend of the experimental results very well, while the absolute values from the 
numerical and experimental data are a bit off. 
 

  
Figure B5.4: Primary peak force comparison Figure B5.5: Wave arrival time comparison 
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B6. 2D-elastic and plastic: Continuum Microstructure Design 
 
(a) Linear Elastic Response 
 

The goal of the continuum material design is to optimize the microstructure of armor 
plates in a “functionally graded” way to control the flow of energy through the plate. This can be 
viewed as an ill-posed topology optimization problem wherein the goal is to optimally place 
different material constituents at each point in the body. To make this problem well-posed we 
use relaxation to expand the design space. In this way, rather than requiring each material point 
to consisting of one of the given material constituents, we allow each material point to be 
assigned a composite material that is fabricated from the given constituents. The elasticity tensor 
for the composite is obtained via homogenization. 

Our study is limited to plane stress linear elastodynamic response of a two phase 
composite. The linear elastic and isotropic phases are combined to form a ranked laminate 
microstructure consisting of a stiff–heavy black phase and compliant–light gray phase, see 
Figure B6.1. At each material point in the body we optimize the relative density of the stiff phase 
ρi and laminate orientation φi. The rank 1 laminate is used as the matrix for the rank 2 laminate 
and so on. We limit ourselves to rank 3 laminates since they are able to represent any elasticity 
tensor (within the bounds of the two phases). We use analytical homogenization expressions to 
map the densities ρi and orientations φi to the elasticity tensor. 

 

 
Figure B6.1: Ranked laminate.	  

 
As an example, we first consider the design of a plane stress linear elastic cantilever 

beam, see Figure B6.2. The beam is supported on the left boundary and subjected to the 
transverse tip load on its right boundary. The goal is to minimize the compliance, i.e., tip 
deflection, subject to a constraint on the mass. As expected, the beam’s outer extents are 
comprised of the stiff-heavy phase, whereas the region near the neutral axis contains a mixture of 
the predominantly light-compliant phase. 

The optimization problem is nonlinear even though the response of the beam is linear.  
To solve the optimization problem we use iterative nonlinear programming algorithms. The 
algorithm starts from an initial design, and at each iteration we compute the compliance and 
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mass as well as their gradients with respect to the relative density ρi and orientation φi fields.  
The gradients are evaluated analytically using the adjoint method. 

 
Figure B6.2: Cantilever beam optimization microstructure in which black and white represent 

the stiff–heavy and compliant–weak materials, respectively. 
We use the finite element method to parameterize the density ρi and orientation φi fields 

as piecewise uniform over each finite element in the mesh. Using these ρi and φi element values 
we compute the element elasticity tensor and then perform a finite element analysis to compute 
the beam’s compliance. The adjoint sensitivity analysis follows to compute the gradients of the 
compliance with respect to each of the ρi and φi element parameters. The gradient computation 
only requires a small percentage of the CPU versus the primal analysis itself. The optimization 
problem is large due to the large number of design parameters, i.e., 6 for each finite element in 
the mesh. Nonetheless, the problem is solved efficiently due to the use of gradient based 
optimization algorithms and highly efficient sensitivity analyses. 

In our other applications we consider the dynamic response of a plane-stress plate that is 
subjected to an impact load. The goal in these optimizations is to direct the total energy, i.e., the 
kinetic plus strain energy, either towards or away from given locations in the plate. For example, 
as depicted in Figure B6.3 we impact the top of the plate and focus energy towards the bottom 
center of the plate by optimally designing the microstructure throughout the plate. 

 
Figure B6.3: Optimized plate for energy focusing.  Optimized microstructure in which red and 
blue represent the stiff–heavy and compliant–weak materials, respectively (top) and energy after 
48.8 µs (bottom) where blue to red represents little to much energy. 

? 

at 48.8µs 



 48 

The parameterization for this example by the finite element method is repeated as 
described above, here however the analyses are dynamic. The transient nature of the simulation 
complicates our adjoint sensitivity analysis.  Specifically, the primal problem must be completed 
and trajectory saved before the sensitivity analysis begins. This presents implementation issues 
which we resolve using a distributed parallel computing environment. To our knowledge, this is 
the first use of topology optimizations for dynamic response. 
 
(b) Nonlinear Elastic Response 
 

The above linear elastic designs are promising as they demonstrated the feasibility of 
solving topology optimization problems for dynamic response. However, we expect armor plates 
to operate in nonlinear regimes. Hence we extend our scope to the realm of finite deformation 
hyperelasticity. This extension comes with two primary challenges, 1) the analytical 
homogenization expressions are not available and 2) the primal analysis is nonlinear. 

Because the analytical homogenization expressions are not available we resort to 
numerical methods. Previously, at each material point the composite material was described by a 
unit cell consisting of a ranked laminate. Now each composite material point is described by a 
unit cell that contains an arbitrary distribution of stiff–heavy and compliant–weak material 
phases, see Figure B6.4. To evaluate the composite unit cell’s homogenized properties we use 
finite element analysis.  Each unit cell is meshed and each cell element is assigned a single phase, 
i.e., stiff–heavy or compliant–weak. Given a macroscopic strain, the homogenization equations 
are solved over the unit cell via finite element simulation to evaluate its homogenized stress and 
incremental elasticity tensors. The equations are nonlinear and solved via Newton-Raphson 
iteration. 

 
Figure B6.4: Optimized nonlinear elastic cantilever beam in which red and blue represent the 

stiff–heavy and compliant–weak materials, respectively. 
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Now that we can evaluate the homogenized stress and incremental elasticity tensors we 
can go about solving the governing equation throughout the structure. We first consider the static 
case and thus the governing equation is that of equilibrium. This equilibrium equation is 
nonlinear and solved as above by combining the finite element method with the Newton-
Raphson iterative solver. At each iteration we evaluate the strain field and use that strain to 
evaluate the homogenized stress and incremental elasticity tensors. This multiscale analysis is 
efficiently solved by computing the algorithmic consistent tangent matrix. 

In the linear case the optimization control is the density ρi and orientation φi fields. Here 
the control is the indicator field over the unit cell. At each point in the unit cell the indicator 
value tells us which material is present, i.e., the stiff–heavy or compliant–weak. This ensuing 
design problem of optimizing the indicator field over the unit cell for each material point in our 
structure has two issues 1) it is ill-posed and 2) it is nonconvex which precludes the use of 
efficient nonlinear programming algorithms. To make the problem well-posed we use restriction 
whereby we no longer allow for an arbitrary distribution of the material phases within the unit 
cell. Rather we restrict the minimum length scale to disallow chattering designs wherein an 
infinite number of infinitesimally small regions of distinct material phases appear in the unit cell. 
To make the problem convex we replace the indicator field with a volume fraction field which 
specifies the percentage of the stiff–heavy versus compliant–weak phase at each point in the unit 
cell. This means mixtures of materials are present which is not physically possible. However, we 
penalize mixtures in our optimization and thereby our designs only have small interphase regions 
where mixtures exist. 

As seen in Figure B6.4, the volume fraction field is parameterized to be piecewise 
uniform over each of the finite elements in each of the unit cells. Thusly we have literally 
thousands of design parameters, i.e., one for each finite element in the unit cell times the number 
of finite elements in the macroscopic, i.e. structural, mesh. This large–scale optimization 
problem is again efficiently solved by combining nonlinear programming algorithms with 
efficient adjoint sensitivity analysis. Indeed, although the sensitivity requires the solution to an 
adjoint problem, the adjoint problem is linear and can be efficiently solved by using the 
decomposed tangent matrix from the primal analysis. In this way, the sensitivity analysis is 
virtually cost free when compared to the cost of the primal analysis. 

We now consider the nonlinear elastic counterparts to the previously discussed elastic 
design problems. Here the nonlinear Neo-Hookean isotropic constituents consist of a stiff–heavy 
(red) phase and a compliant–light (blue) phase. Figure B6.4 illustrates the optimized beam 
design wherein we again see predominantly stiff–heavy phase along the beam’s outer extents and 
compliant–light phase along its neutral axis. Figure B6.5 illustrates the dynamic counterpart to 
the design that appears in Figure B6.3. There is a noticeable difference between the linear and 
nonlinear designs. 
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Figure B6.5: Optimized nonlinear elastic plate for energy focusing. Optimized microstructure in 
which red and blue represent the stiff—heavy and compliant—weak materials, respectively (top) 
and energy after 40 µs (bottom) where blue to red represents little to much energy. 
 
 
(c) Nonlinear Elasto-plastic Response 
 

In the elastic studies the macrostructure is a composite body wherein each material point 
is described by a unit cell that contains a distribution of the two material phases. Unfortunately, 
the procedure for manufacturing such functionally graded bodies is not straight forward since it 
would require us to adjoin neighboring unit cells. For example, it may require us to join stiff-
heavy phases to compliant–light phases which would obviously affect the material response in 
the local unit cell ensemble. To remedy this problem, we take a different approach wherein we 
specify the material phase that is present at each material point in the macro structure. In so 
doing, we are no longer designing a composite body, rather we are designing a heterogeneous 
body where each material point is one of the two phases. This problem is akin to the unit cell 
design problem we discussed in the guise of nonlinear elasticity. As such, we use restriction to 
enforce a minimum length scale and we replace the material indicator field with a volume 
fraction field to convexify the design space. However, unlike the nonlinear case, no penalization 
is required to achieve designs in which the material distribution is solely one phase or the other, 
with the exception of the small interphase regions where mixtures exist. 

To make our research more relevant we incorporated elasto-plastic behavior into our 
designs.  So now the stiff–heavy and compliant–weak phases that were previously described by 
Neo-Hookean isotropic material models are replaced by strong–stiff–heavy and weak–
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compliant–light phases that are described by small strain von Mises material models. This 
material model complicates the simulation and sensitivity analysis since we now have to solve 
the material evolution equation which governs the associated state-variable. Further 
enhancements were made by considering three-dimensional response. Figure B6.6 illustrates our 
design problem in which the plate is subjected to an impulse load over the concentrated center 
region. The goal of the optimization is to minimize the energy in the four rectangular target 
regions along the plates outer boundary. As expected, the strong–stiff–heavy material is located 
under in the load application and target regions, however aside from that, the material 
distribution is not intuitive. 
 

 
 
Figure B6.6: Three dimensional plate with striker location and target areas (top), .  Optimized 
design  in which red and blue represent the strong–stiff–heavy and weak–compliant–light 
materials, respectively (bottom left) and associated translucent view (bottom right). 
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B7. Other efforts on material fabrication 
 
Objectives 

(a) Design and fabrication of model systems for the experimental support and verification of 
theoretical models developed by other members of the MURI group.  

(b) Synthesis of ceramic beads of any composition and size for use in experimental 
validation  

(c) Determination of static, as well as dynamic properties of ceramics and ceramic 
composites under ballistic conditions 

(d) Investigation of what conditions are necessary for the nucleation of phase transformations 
in ceramics under ballistic impact 

(e) Design and synthesis of laminated ceramic composites exhibiting stress wave mitigating 
effects 

(f)  Design of real ceramic composite materials employing the concepts developed thus far 
Approach 

The Kriven Group approach was to fabricate ceramic beads of any chemistry by one of 
two processes. The first is a sol gel droplet method for beads that are less than 5 mm in diameter.  
The second is a vibratory approach for beads that are greater than 5 mm. The first method has 
been developed in collaboration with Prof. Bumrae Cho who was a visiting professor from 
Keimyung University, South Korea. A manuscript describing this method published in the 
Journal of the American Ceramic Society. The second method has also successfully been 
developed within our laboratories, and a second manuscript describing this process was 
published in the Journal of the European Ceramic Society. This work was carried out by the 
Ph.D. student, Christian Espinoza. 

Once the beads have been fabricated they needed to be tested under dynamic conditions.  
This is done in collaboration with the Vakakis Group for beads suspended from a vertical thread, 
and beads in a row for the Split Hopkinson Bar test. The beads are tested in a hollow tube and 
when dispersed in a carbon fiber reinforced geopolymer matrix. To this end, the static properties 
(compressive and bend strength, as well as toughness) geopolymer matrix itself need to be 
measured and calibrated. The geopolymer matrix offers a quick method for fabricating bead 
arrays in various geometrical configurations in a ceramic matrix. To date, we have determined 
the optimum synthesis conditions and that the effect of the matrix on the linear bead array can be 
made identical to whether the matrix is present or absent. A collaboration on more advanced and 
systematic mechanical evaluation such as Poisson’s ratio and Weibull modulus was completed 
with Prof. Eldon Case at the University of Michigan in Ann Arbor. This work was carried out by 
Shinho Cho. 

Tape cast laminates of dense alumina (Al2O3) or mullite (3Al2O3•2SiO2) ceramics 
separated by weak, porous ceramics are being fabricated, using porous alumina or porous 
aluminum phosphate (AlPO4). Not only are the laminates stacked in parallel 0° orientation, they 
are also being stacked in oblique orientations (e.g. ± 45° and 90° orientations). Other angular 
orientations are being made as a result of collaboration with the Tortorelli Group. Evaluation of 
the dynamic properties of such laminated composites as a function of laminate inclination are 
being carried out in the Brazilian disc mode, in collaboration with the Lambros Group. Discs of 
laminated composites were cut and placed at various inclinations between vertical and horizontal, 
in a Split Hopkinson Bar apparatus and their mechanical performance was analyzed. This work 
was done by Dr. Pathikumar Sellapan and Christian Espinoza.  
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