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ABSTRACT 

Over the past decade, a deluge of large and complex datasets (aka “big data”) has 

overwhelmed the scientific community. Traditional computing architectures were not 

capable of processing the data efficiently, or in some cases, could not process the data 

at all. Industry was forced to reexamine the existing data processing paradigm and 

develop innovative solutions to address the challenges. This thesis investigates how 

these modern computing architectures could be leveraged by industry and academia 

to improve the performance and capabilities of engineering tools. First, the 

effectiveness of MathWorks’ Parallel Computing Toolkit is assessed when performing 

somewhat basic computations in MATLAB. Next, a more computationally intensive 

series of tests using synthetic aperture radar datasets is demonstrated using the 

MATLAB/Simulink Toolbox and Apache Spark, a powerful distributed processing 

framework. Finally, hyperspectral sensor datasets are processed using the MATLAB 

Hyperspectral Toolbox and machine learning libraries in Apache Spark to 

demonstrate the additional capabilities that modern computing architectures 

enable.    
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I. INTRODUCTION 

A. MOTIVATION 

Over the past decade, there has been a 1600% increase in the high-definition 

imagery collected from drones, satellites and in-situ data sensors [1]. This is just one 

example of the impact that “big data” has had on the scientific community. “Big data” is 

a collection of data sets so large and complex that traditional approaches to capturing, 

indexing, storing, exploiting, visualizing and analyzing have become increasingly 

difficult.  

The big data paradigm requires new approaches to tasking, processing, 

exploitation and dissemination of the data. Traditional techniques using serial processing 

and dedicated hardware may not be sufficient to handle the four main characteristics 

“V”s of big data [1].  

Volume—the scale of the collection 

Variety—varying sources 

Veracity—the uncertainty of disparate feeds 

Velocity—speed of incoming streams 

This influx of data led to the rise in on-demand, virtualized resources (“cloud 

computing”), such as Amazon Web Services, and provided a whole new resource for 

developers to use. In order to address these new challenges and to take advantage of 

virtualized hardware, frameworks designed specifically for distributed cluster computing 

became increasingly popular.  

In a recent Q&A in Geospatial Intelligence Forum, National Reconnaissance 

Office (NRO) Director Ms. Betty Sapp discussed the agency’s newly created Intelligence 

Community Information Technology Enterprise (IC ITE) [2]. Introduced in 2011 by 

Director of National Intelligence (DNI) James Clapper, IC ITE is the intelligence 

community’s common IT platform. This infrastructure includes the capability for 

developers to request on-demand computing resources, therefore eliminating the need for 

an application to be hosted on dedicated hardware. 
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When asked how she saw the IC ITE changing the way the NRO conducts 

business, Ms. Sapp replied:  

The IC ITE is not only changing the way we run IT at NRO, but it is also 
changing how we utilize capabilities from other IC elements—that is, the 
IC ITE services. In short, IC ITE is going to be a huge enabler for NRO 
and allow us to expose much more of our data to analysts and users, much 
earlier and much more often than we had previously been able to do. It 
really is a game-changer for us. NRO is already putting metadata of 
collected imagery into the IC ITE cloud environment, making it more 
accessible to the IC. We have also started utilizing the hardware in the 
cloud architecture for development and test of some ground software 
systems. [3] 

When Ms. Sapp was asked how she saw the NRO’s ground infrastructure 

evolving in the years ahead, she responded: 

As the NRO space segment moves to increased persistence and diversity, 
the ground will use new innovative means to improve products, create new 
products, counter physical gaps in coverage and improve analytics, multi-
INT opportunities, activity-based intelligence, object-based production 
and predictive models. 

The move to the cloud-based IC ITE will enable the NRO ground to 
continue to provide current capabilities and products while striving to 
improve ground resiliency through flexible, sensor agnostic apps and 
services hosted anywhere in the world. The NRO ground architecture will 
include a new enterprise collection orchestration (ECO) function to 
maximize and optimize collection opportunities, fully exploiting 
integrated intelligence alerts, providing a more automated tipping and 
cueing capability to enable collections that are relevant and utilizing all 
available sensors. The goal is to allow the role of the analyst to evolve 
from sifting through large amounts of data to working the actionable, 
relative data that is provided to them. [3] 
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B. OBJECTIVE 

The objective of this thesis is to explore how common engineering tools used in 

academia and the aerospace industry can be adapted to take advantage of features 

provided by modern ground architectures. This will be accomplished by demonstrating 

various types of applications of different complexity and, in some cases, using on-

demand cluster computing.   

C. OVERVIEW 

This thesis will explore a variety of tools commercially available (and in some 

cases, free) to data scientists and data analysts to improve performance and enhance 

capabilities. Chapter II provides insight into modern computing architectures, including 

techniques for processing large data sets in parallel. It also describes the paradigm shift 

from dedicated computing resources to virtualized, on-demand resources hosted on a 

cloud platform. The chapter ends with a description of powerful open-source software 

applications that have been optimized for cluster-computing environments. Chapter III 

describes some of the more common principles and terminology in parallel computing. 

Chapter IV describes in detail the two computing applications (MATLAB and Apache 

Spark) used in this thesis to demonstrate these concepts. Chapter V puts to use the 

principles and tools described in prior chapters by demonstrating how a variety of 

computational operations, ranging from simple, linear calculations to complex machine 

learning routines can be improved by these new methods. 
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II. BACKGROUND

The complexity of big data has been a catalyst in the development of frameworks 

designed to take advantage of parallel processing and scalable computing resources. 

Some of these capabilities already exist in popular applications (such as Mathworks’ 

MATLAB) and only require minor code modifications for the user to take advantage of 

them. Others might require a bit more specific domain expertise and setup, but the 

additional capabilities (not to mention the potential savings in time) may be worth the 

additional effort. Virtual, on-demand computing resources could also be utilized to scale 

up computing power to meet processing or mission needs.  

A. PARALLEL COMPUTING 

Parallel Computing practices can be utilized by data scientists and analysts 

to address multiple types of computational situations. MathWorks, the company 

responsible for the powerful number-crunching application MATLAB, breaks these 

situations down into three different use cases and provides insight into how each use 

could be used to optimize performance [4]. 

1. Parallel “For” Loops

Generally speaking, engineering tools are designed to execute multiple command 

instructions in a repetitive manner. In order to perform these tasks in an efficient manner, 

most modern coding languages provide a “for” loop construct that executes desired 

commands over a pre-determined number of iterations. These iterations are performed in 

a serial manner and will not begin until the prior iteration has completed. There are 

certain cases where performance could be improved dramatically if these iterations are 

run in parallel on one computer or on a cluster of computers [4]. These cases include: 

Parameter Sweep Applications 

Many iterations—a task requires a larger number of iterations, negatively 
impacting system performance 

Long iterations—each iteration in performs a significant number of 
operations, taking a long time for the iteration to complete 
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Test Suites with Independent Segments 

Applications may run a series of unrelated tasks, as long as there is no 
dependency on any other iterations 

2. Executing Batch Jobs in Parallel 

Tasks can be offloaded to worker nodes to be run as a batch job. This allows a 

client session to continue with regular execution while the worker node completes the 

assigned task. In some cases, this worker node could be run on the same machine or on a 

remote cluster virtually connected to the client [4]. 

3. Partitioning Large Data Sets 

Data sets can be too large to fit into a single computer’s memory, causing the 

management of this data to become unwieldy for analysis tools that are attempting to 

operate on this data set. Using parallel processing techniques, this data set can be 

distributed across multiple computers and each subset can be operated on by its assigned 

worker [4].  

B. CLOUD COMPUTING  

Traditionally, computing systems required dedicated resources and custom 

applications. It wasn’t until recently that a whole paradigm of on-demand, virtual “cloud 

computing” resources was introduced to the public.  

Cloud computing typically refers to a computer architecture that enables on-

demand computing resources (networks, servers, storage, applications and services) [5]. 

This infrastructure should be rapidly provisioned (and subsequently released) with 

minimal effort or human interaction.  

According to the National Institute of Standards and Technology (NIST), there 

are five essential characteristics of a cloud computing models, three types of service 

models and four deployment models [5], shown in Table 1. 
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Table 1. Cloud Computing Models. Source: [5]. 

Characteristics 

On-demand self-

service 

A consumer can unilaterally provision computing capabilities, such 

as server time and network storage, as needed automatically 

without requiring human interaction with each service provider. 

Broad network 

access 

Capabilities are available over the network and accessed through 

standard mechanisms that promote use by heterogeneous thin or 

thick client platforms (e.g., mobile phones, tablets, laptops, and 

workstations). 

Resource pooling The provider’s computing resources are pooled to serve multiple 

consumers using a multi-tenant model, with different physical and 

virtual resources dynamically assigned and reassigned according to 

consumer demand. There is a sense of location independence in 

that the customer generally has no control or knowledge over the 

exact location of the provided resources but may be able to specify 

location at a higher level of abstraction (e.g., country, state, or 

datacenter). Examples of resources include storage, processing, 

memory, and network bandwidth. 

Rapid elasticity Capabilities can be elastically provisioned and released, in some 

cases automatically, to scale rapidly outward and inward 

commensurate with demand. To the consumer, the capabilities 

available for provisioning often appear to be unlimited and can be 

appropriated in any quantity at any time. 
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Measured service Cloud systems automatically control and optimize resource use by 

leveraging a metering capability1 at some level of abstraction 

appropriate to the type of service (e.g., storage, processing, 

bandwidth, and active user accounts). Resource usage can be 

monitored, controlled, and reported, providing transparency for 

both the provider and consumer of the utilized service. 

Service Models 

Software as a 

Service (SaaS) 

The capability provided to the consumer is to use the provider’s 

applications running on a cloud infrastructure. The applications are 

accessible from various client devices through either a thin client 

interface, such as a web browser (e.g., web-based email), or a 

program interface. The consumer does not manage or control the 

underlying cloud infrastructure including network, servers, 

operating systems, storage, or even individual application 

capabilities, with the possible exception of limited user specific 

application configuration settings. 

Platform as a 

Service (PaaS) 

The capability provided to the consumer is to deploy onto the cloud 

infrastructure consumer-created or acquired applications created 

using programming languages, libraries, services, and tools 

supported by the provider.3 The consumer does not manage or 

control the underlying cloud infrastructure including network, 

servers, operating systems, or storage, but has control over the 

deployed applications and possibly configuration settings for the 

application-hosting environment. 
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Service Models 

Infrastructure as a 

Service (IaaS) 

The capability provided to the consumer is to provision processing, 

storage, networks, and other fundamental computing resources 

where the consumer is able to deploy and run arbitrary software, 

which can include operating systems and applications. The 

consumer does not manage or control the underlying cloud 

infrastructure but has control over operating systems, storage, and 

deployed applications; and possibly limited control of select 

networking components (e.g., host firewalls). 

Deployment Models 

Private cloud The cloud infrastructure is provisioned for exclusive use by a single 

organization comprising multiple consumers (e.g., business units). 

It may be owned, managed, and operated by the organization, a 

third party, or some combination of them, and it may exist on or off 

premises. 

Community cloud The cloud infrastructure is provisioned for exclusive use by a 

specific community of consumers from organizations that have 

shared concerns (e.g., mission, security requirements, policy, and 

compliance considerations). It may be owned, managed, and 

operated by one or more of the organizations in the community, a 

third party, or some combination of them, and it may exist on or off 

premises 

Public cloud The cloud infrastructure is provisioned for open use by the general 

public. It may be owned, managed, and operated by a business, 

academic, or government organization, or some combination of 

them. It exists on the premises of the cloud provider 
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Deployment Models 

Hybrid cloud The cloud infrastructure is a composition of two or more distinct 

cloud infrastructures (private, community, or public) that remain 

unique entities, but are bound together by standardized or 

proprietary technology that enables data and application portability 

(e.g., cloud bursting for load balancing between clouds). 

 

Utilizing a cloud infrastructure offers the user an opportunity to efficiently 

manage IT investments.  If a user is developing a new program that requires high-

performance computing, a cloud infrastructure can be easily procured without having to 

acquire dedicated hardware, allowing more a more rapid deployment. Additionally, there 

are no operations and maintenance costs, as there would be with dedicated hardware. 

According the federal government’s Cloud Computing Strategy [6], the following 

benefits shown in Figure 1 can be realized with a cloud computing environment. 
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Figure 1. Summary of Cloud Computing Benefits. Source: [6]. 

C. DISTRIBUTED PROCESSING FRAMEWORKS 

The big data surge has also challenged commercial software developers to find 

creative ways to tap into the potential value of available data. Frameworks developed to 

scale horizontally as processing demands fluctuate and minimize the latency of the 

required processing began to surface to meet this need. Applications such as Hadoop 

MapReduce and Apache Spark provide the tools necessary to effectively navigate the 

seas of big data.   
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III. COMPUTING COMPLEXITY AND PARALLEL
PROCESSING THEORIES 

A. AMDAHL’S LAW 

The effort expended on achieving high parallel processing rates is wasted 
unless it is accompanied by achievements in sequential processing rates of 
very nearly the same magnitude. 

—Gene Amdahl [7] 

Amdahl was a chief architect at IBM in the 1960s and is considered a pioneer of 

mainframe computing. He formulated “Amdahl’s Law,” which states the fundamental 

limitation of parallel computing [8]. “Amdahl’s Law” asserts that the execution time (T1) 

of a program falls into two categories: time spent doing non-parallelizable serial work 

(WSER) and time spent doing parallelizable work (WPAR). The execution time required for 

a program is described in Equation 3.1 as: 

SER PART W W= + (3.1) 

where “T” is the total execution time, WSER is the time required to perform the serial 

work  and WPAR is the time required to perform the parallel work. 

With “p” number of workers to do the parallelizable work, the execution time can 

be expressed as shown in Equation 3.2:  

( / )p SER PART W W p= + . (3.2) 

Amdahl’s Law is the ratio of the serial execution time to the execution time with 

“p” workers performing on the parallelizable work. Using Equations 3.1 and 3.2, this 

speedup ratio (“SP”) is defined in Equation 3.3. 

( / )
SER PAR

p
SER PAR

W WS
W W p

+
=

+
(3.3) 

Figure 2 is a visualization of Equation 3.3. As the number of workers (“p”) 

increases, the time it takes to execute the parallelizable portion of the work decreases at 

the same rate.  
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Figure 2. Visualization of Amdahl’s Law. Source: [7]. 

Another way to express the serial portion of the work is by considering it as a 

fraction of the total work (“f”) 

 SERW fT=   (3.4) 

Conversely, the parallelized portion of the work can also be described as a function of 

“f”: 

 (1 )PARW f T= −   (3.5) 

When Equations 3.4 and 3.5 are substituted into Equation 3.3, the equation for speedup 

can be defined as:  

 1
( (1 ) / p)PS

f f
=

+ −
  (3.6) 

And as P goes toward infinity: 

 inf 1/S f=   (3.7) 

Therefore, speedup is limited by the fraction of work that is not parallelizable, 

even with an infinite number of worker nodes to distribute the parallelizable work 

load [7]. For example, if 10% of the work is serial, then the maximum speedup is 10x.  
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B. GUSTAFSON-BARSIS’ LAW 

Computer scientist John Gustafson had a different view on the scalable computing 

problem and, based on the performance of programs at Sandia National Laboratories, 

believed that Amdahl’s Law could be evaded [7].  

Speedup should be measured by scaling the problem to the number of 
processors, not by fixing the problem size. 

—John Gustafson [7] 

Amdahl’s law considers the problem as fixed and the computing resources as 

scalable. However, it does not take into account the continual improvements in 

computing technologies. As these technologies advance, the applications developed to 

exploit these new technologies mature in parallel. Gustafson believed that problem sizes 

grew as computers grew and the work required for the parallel portions of the problem 

grew at a much faster pace than the serial. The serial time remained the same, but would 

diminish as a fraction of the whole, as shown in Figure 3.  

Figure 3. Visualization of Gustafson-Barsis’ Law. Source: [7]. 

As Figure 3 shows, the serial portion becomes insignificant, the ability to take on 

new work without adding execution time grows at the same rate as the number of 

processors, achieving a linear speedup. 
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C. PARALLEL SCALABILITY 

“Scalability” refers to the ability to be scaled up to meet demand through 

replication and distribution of work across a pool of workers [9]. “Strong scaling” occurs 

when the problem size is fixed and resources are added to proportionally improve 

performance.  A program with strong scaling will typically see a linear speedup that is 

equal to the amount of processors available for the problem. Conversely, an application 

categorized as having weak scaling would not experience a change in speedup, regardless 

of how many resources are utilized. 

D. COMPLEXITY AND “BIG-O” NOTATION 

The complexity of a function is expressed using “Big-O” Notation and describes 

how fast a function grows or declines. This notation describes the worst-case scenario 

and can be used to size appropriate resources (e.g., memory or disk space) for a specific 

application. This notation is helpful in easily describing the general complexity of the 

computations involved in an application.   

Suppose “f(x)” and “g(x)” are two functions defined on some subset of real 

numbers. It can be written that:  

 ( ) ( ( ))f x O g x=   (3.8) 
 

if, and only if, there exists constants N and C such that | ( ) | | ( ) |f x C g x<=  for all x>N 

For example, when considering some algorithm, the number of steps required to 

complete a function of size “n” can be given as the function T(n) = 9n3 + 8n2 – 14n + 9. If 

the constants and the slower growing terms (e.g., quadratic and linear) are ignored, it can 

be said that “T(n) grows at the order of n3” or “T(n) = O(n3)” [10].   
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Table 2 is a list of common functions used when analyzing complexity: 

Table 2. Big-Notation and Functions. Adapted from [10]. 

Notation Name 
O(1) Constant 
O(log(n)) Logarithmic 
O(n) Linear 
O(n2) Quadratic 
O(nc) Polynomial 

This notation is useful when providing a quick “order of magnitude” estimation 

when designing the computing architecture to fit a specific problem.  



 18 

THIS PAGE INTENTIONALLY LEFT BLANK 



19 

IV. TOOLS

There are many commercial off-the-shelf products available to take advantage of 

modern computing architectures. Some of these products, such as MATLAB and its 

Parallel Computing Toolbox, require expensive software licenses that are not easily 

portable from system to system. These license requirements could make a system like 

MATLAB less desirable for developers working under budgetary constraints. The boom 

in large data processing in the commercial sector has led to the development of powerful 

applications to analyze large datasets, such as network log files, email content and 

GEOINT sensor collects. Some of these applications are free, open-source software 

(FOSS) that are viable alternatives to licensed software. These section will discuss 

solutions using both licensed software and FOSS. 

A. MATLAB FOR PARALLEL PROCESSING 

1. A Brief History of MATLAB Parallel Processing

MATLAB is arguably the most widely used complex computation software 

application suite used by the industry and academia. Started in 1984 by Cleve Molder, 

Jack Little and Steve Bangert, MathWorks was meant to address the need of technical 

computing brought on by the emerging personal computer [11]. MATLAB did not 

immediately embrace the concept of distributed processing since MATLAB’s memory 

model did not align with that of the parallel computing memory model and adaptation of 

the baseline code would require a significant effort. It was believed by the company in 

1995 that only a small portion of its execution time could be automatically parallelized 

and there wouldn’t be the market for these tools [12]. The data environment began to 

change, however, and the need to evolve was largely due to: a) The MATLAB software 

suite had evolved dramatically, b) Microprocessors with multiple computational cores 

were now common, c) Memory structures became more sophisticated and d) Users now 

had increased access to computing clusters. MathWorks finally recognized the benefits of 

parallel computing and the resultant services are shown in Table 3. 
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Table 3. MATLAB Parallel Processing Tools and Services. Adapted from [13]. 
Parallel 

Computing 
Toolbox 

MATLAB 
Parallel Cloud 

Computing Server for 
Amazon EC2 

Computing Server 
Private Cloud 

Maximum Workers No limitation 16 256 No limitation 
Hardware 
Resources 

Desktop 
computer 

MathWorks 
Cloud 

Amazon EC2 
Instances 

Private cloud, 
other cloud 
services, on 
premise and ad-
hoc clusters, and 
grids 

First-Time 
Configuration 
Effort 

None A few clicks 
in MATLAB 

Amazon EC2 sign up 
and set up followed by 
a few clicks in Cloud 
Center and MATLAB 

Software 
installation 
followed by 
scheduler 
configuration 

Time to Access 
Configured 
Solution 

Instant < 90 seconds < 15 minutes Solution 
dependent 

Customization 
Options 

None None Available through 
Cloud Center Options 
include cluster size, 
machine type, storage 
options 

Options include 
multiple cluster 
configurations, 
storage types and 
schedulers 

Licensing Model Toolbox license Self-serve On-
demand 
license 

On-demand, perpetual 
or term license 

On-demand, 
perpetual or term 
license 

Geographic 
Availability 

Worldwide United States 
and Canada 

United States, Canada, 
and other select 
countries 

Worldwide 

2. MATLAB Parallel Toolbox

In order to address the need for parallel computing tools, MathWorks released its 

first version of its “Distributed Computing Toolbox” in 2005. This somewhat basic set of 

tools provided the user with tools for managing multiple, independent MATLAB jobs 

[13]. Over the years, subsequent releases have built on the prior release and now provide 

tools to support key operations such as parallel loops, batch processing, and detailed job 

management [12]. 

3. MATLAB Parallel Cloud

With a few mouse clicks (and a valid credit card, of course), MATLAB users can 

run their applications on the MATLAB Parallel Cloud, which provides an on-demand 
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computing cluster of (up to) 16 virtual worker nodes. This provides the user with all the 

benefits of a larger cluster without the overhead costs of setting up and maintaining their 

own computing cluster. Key features of the MATLAB Parallel Cloud include; a) Ready-

to-use instances running MATLAB workers, b) 16-core machines with 60GB RAM 

optimized for MATLAB computations, and c)  “Pay as you go” pricing (~$4->$6 per 

hour, depending on user license) [13]: 

4. MATLAB Distributed Computing Server for Amazon EC2

 If the 16-core MATLAB Parallel Cloud does not provide the computing 

resources needed, MATLAB Distributed Computer Server for Amazon EC2 allows the 

user to run on a customizable cluster on Amazon’s cloud [14]. MATLAB’s Cloud Center 

provides a simple interface to configure a cluster for a specific need.  

5. MATLAB Distributed Computing Server (Private Cloud)

If the resources provided by the Amazon EC2 cluster are still not sufficient to 

address performance or operational needs (e.g., security), MATLAB provides the option 

to configure personally owned computing clusters for use as a MATLAB distributed 

computing cluster. This allows the user to scale the number of worker nodes to fit their 

needs and administer security protocols as required. This environment will not be 

covered in this thesis. 

6. MATLAB Data Processing Toolboxes

a. SAR Processing Toolbox

In addition to toolboxes for parallel computing, MATLAB also provides toolkits 

for efficiently processing specific types of datasets. One particular toolkit, the Synthetic 

Aperture RADAR (SAR) Processing Toolkit, is provided with the standard license [15]. 

These toolkits include algorithms designed to perform the complex transformations on 

SAR data in an efficient manner. They can also be paired with parallel processing 

constructs for batch processing of SAR data on a distributed cluster.    



 22 

b. Open Source Toolboxes 

The MATLAB user community is an alternative source for useful engineering 

toolkits. Developers can make their custom algorithms available to other MATLAB users 

for little to no cost. Developers are free to share their toolboxes through popular online 

repositories such as Github (www.github.com) and BitBucket (www.bitbucket.org).  

A popular example of a free, open-source toolbox is the MATLAB Hyperspectral 

Toolbox (MHT) [16]. This toolbox is a collection of algorithms that process and exploit 

hyperspectral sensor data using MATLAB. Included in this set are routines that perform 

the more complex unsupervised learning operations on the datasets, thus enabling more 

efficient processing in more tactical timelines. 

B. APACHE SPARK 

While MATLAB is a powerful application and the Parallel Computing Toolbox 

harnesses the power of cluster computing, it does come with some disadvantages. One, in 

particular, are the fees associated with the various licenses required to run MATLAB in a 

distributed manner. For a (relatively) basic computing cluster containing one master node 

and sixteen worker nodes, the licensing costs quickly escalate to values outside of a cost-

conscience developer’s budget.  

Table 4. MATLAB License Costs. Adapted from [17]. 

Basic Individual License $2150 

Parallel Computing Toolbox  $1000 

Sub-Total: $3150 

Distributed Cluster License 

(minimum 16 worker) 

16 x $341/worker = $5456 

Total: $8606 
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Fortunately for the budget-constrained developer, big data has driven a change in 

the paradigm from expensive customized solutions to FOSS-based solutions. 

Furthermore, in order to analyze data effectively, large datasets need to be processed 

interactively and cannot be constrained by long processing times. Apache Spark is a 

robust cluster computing platform designed to be both multi-purpose and fast [18]. Spark 

extends the popular MapReduce model, a programming model designed for processing 

large datasets in a distributed manner, by adding more capabilities such as streaming and 

interactive queries. The features of Apache Spark make it a popular framework for both 

data scientists and engineers. While both groups may have different use cases in mind, 

the general-purpose nature of Apache Spark makes it appealing to both types of users. 

The Apache Spark stack consists of five main capabilities.  

Spark Core contains the more basic capabilities of Spark, including most of the 

“behind-the-scenes” orchestration for distributing processing [19]. The Spark Core also 

contains the Application Programming Interface (API) that defines the main program 

abstraction of Apache Spark, the resilient distributed dataset (RDD). An RDD is a 

collection of data items that can be distributed across multiple computing nodes so that 

the data can be processed in parallel [18]. 

Figure 4. The Apache Spark Stack. Source: [18]. 
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1. Spark SQL 

Spark SQL is the component of Apache Spark that allows a developer to 

manipulate structured data [18]. It allows for use of a standard relational database system 

called Structured Query Language (SQL) and supports many of the more common data 

structures, including Hive tables, Parquet and JSON. Spark SQL provides the developer 

an ability to utilize all the data manipulations associated with RDDs using common, 

industry proven data structure constructs.  

2. Spark Streaming 

Apache Spark also provides the capability to process live streams of data through 

the Spark Streaming component [18]. This feature is useful for data streams that are 

continually generating content, such as web server log files, social media providers, or 

telemetry streams. Data streams can be manipulated using a similar API to the RDD API, 

allowing a developer to remain agnostic to whether the data is static or streaming, or 

resident in memory or on disk.  

3. MLlib 

Apache Spark also contains a machine learning library known as “MLlib.” This 

library provides several types of machine learning algorithms such as classification, 

regression, clustering and collaborative filtering [18]. The computationally heavy MLlib 

algorithms are designed to take advantage of parallelization by distributing the work 

across a cluster. 

4. GraphX 

GraphX is Apache Spark’s library for manipulating graphs and performing graph-

parallel computations [18]. Just like Spark Streaming and Spark SQL, GraphX extends 

the Spark RDD API, allowing a developer to graphically display data residing in RDDs.   
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5. Cluster Managers 

The power of Apache Spark is based on the ability to scale from a single node to 

as large of a cluster as you need (or have available) [18]. Spark can effectively operate 

over common cluster managers such as Hadoop YARN or Apache Mesos. The Apache 

Spark stack also includes its own cluster manager called the Standalone Scheduler. 

This thesis will focus on the improvements offered by the Spark Core and MLlib 

machine learning libraries. These two components offer the most upfront capability 

without requiring too much specialized knowledge. 
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V. DEMONSTRATIONS 

A. MATLAB DEMONSTRATIONS 

While it may not be revolutionary to assert that parallel processing can reduce 

execution times of looped software code, the resources available and their ease of use are 

not often known. This section describes some basic techniques for developers in 

academia and industry to take advantage of parallel processing in MATLAB. 

1. Basic “For” versus “Parfor” Loop (Linear Complexity) 

The following example demonstrates the difference in how the “for” loop and 

“parfor” is executed in MATLAB. The regular “for” loop example evaluates the desired 

code serially, beginning with “i = 1” and incrementing the value of “x” by 1 until x=360 

(one full circle).  In this example, the function will return the cosine value of x and save 

the result in the array “y.” This operation would be considered of linear complexity 

(O(n)), due to the single, fundamental operation being performed.  

Table 5. Regular “For” Loop Test Information 

Regular “For” Loop 
 

Code: for x= 0:360 
 y(x) = cos(x) 
end 

Average Execution Time (50 runs): 0.003 seconds 

 

Figure 5 demonstrates that the “for” loop construct executes the threads of a loop 

in a serial manner. The loop executes the called function for x = 0, then x = 1…until 

x=360 when the loop ends. This is an important characteristic of a “for” loop since, for 

some uses, the value of f(x) may be dependent on the value of f(x-1) and cannot be 

evaluated until execution of f(x-1). If this is the case, parallel processing may not be the 

best solution for a problem of linear complexity. 



 28 

 

Figure 5. Serial “For” Loop Thread Execution Order 

In order to evaluate the difference when using parallel processing, the “for” 

construct was replaced by the “parfor” construct and the same scenario can be evaluated 

using parallel processing techniques.  

Table 6. Regular “Parfor” Loop Test Information 

Parallel “parfor” Loop 
 

Code: parfor x= 1:360 
 y(x) = cos(x) 
end 

Average Execution Time: 0.0735 seconds 

 

The average execution time for the “parfor” loop (0.0735 seconds) was much 

higher than that of the “for” loop (0.003 seconds). The “for” loop could execute almost 

1000x as many times as the “parfor” loop and complete roughly in the same amount of 
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time. While this may seem counterintuitive to the notion that parallelism is supposed to 

reduce the execution time, the behavior is expected for such a simple calculation. The 

higher execution time is due to the fact that use of “parfor” construct is meant for more 

complex computations. In order to coordinate the distribution of the data and algorithms 

to the worker nodes, there is some overhead processing prior to the beginning of the 

“parfor” loop. When the functions are relatively simple, this overhead cost far outweighs 

benefit of parallelism. 

As part of the “pre-processing” done by the parallelism is the creation of a queue 

of tasks for each of the nodes. This will typically result in a non-serial order of execution 

(see Figure 6). In other words, iteration 25 of the parfor loop may complete before 

iteration 1 starts. Figure 6 shows the asynchronous order of execution of the prior run. 

 

Figure 6. Asynchronous “Parfor” Loop Thread Execution Order 
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In this case, the “parfor” construct executor created an initial batch that began 

with thread 240 and worked linearly to 122. The second batch began at 301 and worked 

down to 240. The third began at 239 and finished at index 0, and subsequent batches 

perform in a similar manner. The execution pattern is not consistent across multiple runs 

of the same parfor loop. This information reinforces the idea that data that is dependent 

on prior states is not a good candidate for a “parfor” loop (see II.A.1.b).  

2. Blackjack Benchmark (Distributed Processing) 

To further characterize the performance of the parfor construct, MATLAB 

provides a Blackjack simulator that utilizes the “parfor” construct and benchmarks 

performance against the standard “for” loop. The benchmark repeatedly plays a game of 

blackjack in parallel using the same number of players and hands. The benchmark test 

utilizes an optional argument in the “parfor” construct that allows the developer to 

designate the number for workers to perform the test. This allows data to be collected 

from 2 through the maximum available number of workers.  

For this section, the maximum number of available workers is 2, so only one data 

point will be collected and compared against the standard “for” loop performance. In later 

sections, the performance of larger clusters will be evaluated.  

Using the 2 local worker nodes, the benchmark test was run 100 times and the 

median speed improvement was 1.37, which corresponds to an “efficiency” of 0.67 

(Figure 7). Even with a minimal number of worker nodes, the benefits of parallelism are 

becoming more apparent than with a basic function call.  
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Figure 7. Blackjack Performance Using “Parfor” (Double Node) 

Next, the same benchmark tests were run using the MATLAB Parallel Cloud with 

16 worker nodes. Characterized by Gustafson-Barsis’ Law, the ~2x speed improvement 

determined in the prior section with just 2 worker nodes, it should be expected that a 

~16x improvement should be seen with 16 worker nodes.  

The Blackjack benchmark test was run on the MATLAB Parallel Cloud and there 

was a much wider distribution of speed up values, ranging from ~5x→~20x with the 

highest frequency in the ~15x range. This is aligned with the expected 16x improvement 

over the single node execution times (Figure 8).  
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Figure 8. Blackjack Performance Using “Parfor” (16 Nodes) 

3. Simulink Calls  

The “parfor” construct can also be used to improve the execution times when 

making multiple calls to Simulink models. For example, the ubiquitious Simulink 

Proportional + Velocity Feedback loop model in Figure 9 can be invoked within a 

“parfor” loop.  
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Figure 9. P+V Feedback Simulink Model 

To benchmark the performance of a basic Simulink model, a series of loops with 

increasing numbers of runs (2,4,6,8,…256) was performed using the “for” loop. The 

same test was run using the “parfor” construct and the results of the two are shown in 

Figure 10. 
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Figure 10. Execution Time of Simulink Runs (Single Node) 

With the exception of the first run, execution times improved dramatically using 

the “parfor” construct and only continued to improve with more runs. In the final run (# 

of Runs = 256), the execution time was almost cut in half. In Figure 10, the first run (# of 

Runs =2) had a significantly larger execution time using the “parfor” construct. This is 

due to the initial orchestration required by the “parfor” construct and should be accounted 

for when deciding whether or not to design tools using the construct.  

When run on the 16-node cluster, the Simulink model using a “for” loop averaged 

~0.08 seconds per model run. This is similar to the performance of the “for” loop on the 

local cluster, with an average of ~0.075 seconds. These results are aligned with 

Gustafson-Barsis’ Law of distributed processing. 
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Figure 11. Speed up for Simulink Models Using Local Cluster 

When using a larger cluster (>16 runs), the average runtime using the “parfor” 

construct is significantly lower than the runtimes of the regular “for” loop (Figure 12). 

When only performing a small number of iterations (<16 runs), however, the “for” loop is 

more efficient. This is, again, due to overhead orchestration associated with the “parfor” 

construct.  
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Figure 12. Average “for” versus “parfor” Loop Runtimes (16 Workers) 

When looking at this data together on one graph (Figure 13), the speedup 

associated with the larger nodes aligns with Amdahl’s Law (Equation 3.7), although it 

may not be entirely predictable based solely on the number of workers. This variation is, 

again, associated with the overhead orchestration associated with worker nodes.  
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Figure 13. Runtimes for Different Computing Cluster Sizes 

B. SAR MISSION DATA PROCESSING  

The proliferation of overhead remote sensing has driven a need for innovative 

architectures to process their data. Raster data files, such as the data generated from a 

Synthetic Aperture RADAR sensor, are good candidates for integration into a distributed 

processing environment, as the files can be large and require complex operations for 

exploitation. 

1. Brief History of SAR 

Radar was developed in World War II and was designed for tracking of ships and 

aircraft. There were two key radar breakthroughs that enabled the generation of two-

dimensional image of targets. First, in 1947, British engineer Dennis Gabor developed 

the principles of holography, which would be the early groundwork for waveform 

reconstruction theory [20]. Secondly, in 1951, Carl Wiley from Goodyear Aerospace 

combined the Doppler shift information from SAR returns and Gabor’s waveform 

reconstruction theory.  

In the 1970s, radar imaging came into commercial use after the military SAR 

technology was released to the public [21]. Since then, commercial space-borne SAR 
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platforms such as TerraSAR-X and RADARSAT have contributed to environmental 

planning, natural resource exploration, regional and urban development, catastrophe 

response and relief, and defense [22].  

2. SAR Basics 

Radar systems are an active remote sensing system in that it requires its own 

energy source to illuminate the target [23]. A radar system has three main functions:  

Transmit a microwave signal toward a scene 

Receive a portion of the transmitted signal as backscatter 

Observe the strength and time delay of the returned signal  

When the microwave signal hits the target, it is scattered in all directions with 

some of the signal returning back to the antenna. The amplitude of the returned signal 

depends on the irregularities in the target’s surface (Figure 14).  

 

Figure 14. Transmit/Receive of a Spaceborne SAR Platform. Source: [23]. 
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3. SAR Mission Data Processing 

SAR data is comprised of large, multi-dimensional arrays of phase and amplitude 

data that require a series of complex transformations (e.g., digital filtering, domain 

transformations). The 2-Dimensional Fast Fourier Transform (2D FFT) is the most 

computationally complex algorithm required for SAR data processing. The original 2D 

data is split into rows and an FFT is performed on each row. The new data is then 

shuffled into columns and another FFT is performed on each column. Another factor that 

makes SAR data processing difficult is the fact that the data must be viewed as a 

contiguous block (see II.A.1.c). Large data files (100s of GBs) may exceed the 

computing resource available to most people. Techniques exist to split large files into 

smaller, more manageable, files; however, there are several negative side effects that 

impact the integrity of the data. This issue can be resolved using modern computing 

architectures and frameworks such as Apache Spark.  

a. SAR Processing Using MATLAB/Simulink Toolbox 

MATLAB provides a simplified SAR processing chain based on Massachusetts 

Institute of Technology (MIT) Lincoln Laboratory’s High-Performance Embedded 

Computing (HPEC) Challenge benchmark. The model uses simulated (however, realistic) 

SAR data, representing a 6x8 grid of reflectors placed on the ground that have been 

imaged by an aircraft flying directly overhead. The unprocessed SAR data does not 

produce any patterns that allow the human eye to infer what is being viewed and requires 

several steps of processing to produce an image that provides recognizable context 

(Figure 15).  
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Figure 15. Raw SAR Data 

In order to process the data to a viewable product, a series of operations must be 

chained together and performed on the data. There are many products that can be derived 

from SAR data and each product has several variations of the necessary workflow. For 

this model, a simplified version of the processing workflow is used containing the follow 

steps: a) Digital filtering and spotlight SAR processing, b) Two-dimensional matched 

filtering, and c) Polar to rectangular interpolation (Figure 16). 

 

Figure 16. SAR Image Formation Simulink Model. Source: [15]. 

Spotlight SAR Returns
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(1) Step 1: Digital Filtering and Spotlight SAR Processing 

Three operations are performed in this step, two of which require the 2D FFT 

operation: 1) A Fast-Fourier Transformation (FFT) converts the return from each pulse, 

converts from the time domain into the frequency domain, and convolves with the 

expected return 2) A digital spotlighting step then focuses the return in the cross-range, 

and 3) the cross-range resolution is increased using a series of FFTs known as Bandwidth 

Expnsion  [15]. 

 

Figure 17. Digital Filtering and Spotlight SAR Processing. Source: [15]. 

(2) Step 2: Two-Dimensional Matched Filtering 

The second step takes the output from Step 1 and convolves it with the impulse 

response of an ideal return. Since the data is in the frequency domain, this operation is 

done by multiplying the two together (See Figure 18) [15].  
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Figure 18. Two-Dimensional Matched Filtering. Source: [15]. 

(3) Step 3: Polar-to-Rectangular Interpolation 

The third step performs a series of operations on the output of Step 2 to increase 

the range resolution of the data and transform the data back to the spatial domain. This 

includes a two-dimensional, inverse FFT to convert back to the spatial domain [15].  

 

Figure 19. SAR Image before/after Interpolation. Source: [15]. 
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b. SAR Sensor Data Processing in Apache Spark 

To address the challenges of processing large SAR data, a framework using 

Apache Spark on a scalable computing resource (such as Amazon Web Services) is a 

highly effective solution. Apache Spark is designed to process structured data such as 

computer log files and social media streams and distribute them into Resilient Distributed 

Datasets (RDDs) [24]. The algorithms to process SAR datasets require contextual 

information, awareness of surrounding elements of an array and the ability to efficiently 

reshape the 2D arrays of data. This can be done by dividing the arrays into a collection of 

RDDs, with each element containing a sub-block of the total array along with the context 

metadata to describe the array context. This metadata is based on the Department of 

Energy’s Distributed Array Protocol, which defines the overlap with neighboring data 

blocks [25].  

To demonstrate if Apache Spark could be used to efficiently process SAR data, 

the 2D FFT operation was first used to benchmark performance. A 2D FFT operation was 

performed against a variety of different sized 2D arrays representing structured SAR 

data. Resources of different computational capabilities were rented on Amazon Web 

Services (AWS) and the 2D FFT was performed on each of the instances [25]. Figure 20 

shows the execution times of these runs.  

 

Figure 20. 2D FFT Performance on AWS Compute Cloud. Source: [25]. 
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In Figure 20, each color-coded set of plotted data represents a data file of a given 

size (shown in legend). As expected, the processing time required for each dataset 

decreased as the number of vCPUs available increased. Consistent with Amdahl’s law, 

eventually, there is a point the graph becomes asymptotic and increasing the number of 

vCPUs does not reduce processing time, due to the serial work associated with the SAR 

processing. However, since the 2D FFT is highly leveraged in SAR processing, the work 

performed in parallel is reduced dramatically and could be optimized by applying enough 

vCPUs. 

Now that the 2D FFT operation has been proven to work in a distributed manner, 

the full set of image formation operations was run against the SAR data. A finished SAR 

product would help validate the feasibility of SAR processing using Apache Spark. Using 

the operations in Figure 21, a full SAR dataset from AFRL’s GOTCHA challenge [26] 

was processed from raw data to a finished product using Apache Spark on a multi-node 

cluster. 

 

Figure 21. SAR Image Formation Chain. Source: [25]. 

The finished SAR product is shown in Figure 22. The image shows the Air Force 

Research Laboratory facility in Dayton, OH and key features of the scene (roads, 

buildings, vegetation) can easily interpretable by an analyst.   
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Figure 22. Finished SAR Product Using AFRL’s GOTCHA Dataset 

C. HYPERSPECTRAL MISSION DATA PROCESSING  

Hyper-spectral datasets also consist of large spatial raster sensor data, but in this 

case, the dataset is three dimensional. Like SAR, hyper-spectral data has a two-

dimensional spatial component; however, the hyper-spectral sensor typically collects the 

spatial data across multiple wavelengths, adding a third dimension to the dataset. This 

additional dimension adds another level of complexity when processing the data. Certain 

operations, such as k-means algorithms are of polynomial complexity (“O(n3)”). To 

effectively process this data, use of modern computing architectures is not only an 

enhancement, it is a necessity if the finished products are needed in near-real time 

timelines.  
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1. Brief History of Hyperspectral Sensor Data  

Introduced in the mid-80s, hyperspectral remote sensing, also known as “Imaging 

Spectroscopy,” is a relatively new technology. This platform is primarily used for 

detection and identification of minerals, vegetation and man-made materials [27]. 

Hyperspectral sensors detection individual absorption features associated with specific 

chemical nods in a material. Commercial hyperspectral sensors are currently hosted on 

airborne platforms and have recently begun transitioning to space-based platforms.   

2. Hyperspectral Basics  

Imaging spectroscopy has been in use by scientists and chemists to identify 

materials based on their composition [27]. Spectroscopy detects individual absorption 

features due to the specific bonds in solids, liquids and gasses. Advancements in the 

technology in the last few decades have allowed geologists to use the technology for the 

mapping of minerals on Earth.  

Hyperspectral remote sensing combines imaging and spectroscopy into one 

platform [28]. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is an 

optical sensor that provides imagery in 224 contiguous spectral bands containing 

wavelengths between 400 to 2500 nanometers [28]. The sensor is flown on an airborne 

platform and has been used to image areas over North America, Europe and South 

America. The main objective of AVRIS is identification, measurement and monitoring of 

constituents in the Earth’s surface and atmosphere using molecular absorption and 

particle scattering signatures [28]. An example of the “image cube” for an AVIRIS 

collect over Moffett Field is shown in Figure 23. 
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Figure 23. AVIRIS Hyperspectral Datacube of Moffet Field, California. Source [27]. 

The image cube demonstrates the potential volume of data returned by the 

platform. The top of the cube is a false-color image that accentuates the water features in 

the image [28]. The sides of the cubes are slices that show the edges of the top in all of 

the spectral channels. The tops of the cubes lie in the visible spectrum (wavelengths of 

400 nanometers) and the bottoms reside in the infrared spectrum (~2500 nanometers). 

Hyperspectral is useful in that it can accentuate materials that may not be obvious to the 

naked eye. For example, in the top right corner of Figure 23, the return is a pink/red color 

due to the presence of red brine shrimp in the local evaporation ponds.   

3. Hyperspectral Mission Data Processing 

Due to the complexity of the dimensional nature of hyperspectral datasets, the 

techniques to process them are equally as computationally intense. In order to address 

this computing complexity, operations involving machine learning are required to process 

the datasets in a timely manner. Using unsupervised learning techniques such as “k-

means clustering” can be utilized to reduce the problems from an “O(n3)” complexity to a 

linear “O(n)”. 
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a. Hyperspectral Sensor Data Using MATLAB 

Using the open-source MATLAB Hyperspectral Toolbox (MHT), hyperspectral 

sensors can be processed relatively easily [16]. Another AVIRIS collection 

(“f970620t01p02_r03”) over the same region in 1997 is used to demonstrate capabilities 

provided in the MHT [28]. Figure 24 shows a grayscale representation of the region.  

 

Figure 24. Grayscale Image of Moffett Field Scene Using MHT 

Each band of the collection could be extracted and reviewed, if desired. Figure 25 

is the top-left section of Figure 24 that shows the return of an arbitrary band (132) in 

gray-scale.   

 

Figure 25. Band 132 of the 1997 Moffett Field Collect 

 

 

Band 132
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Another algorithm is used to compute the scene’s returns relative to the 

Normalized Difference Vegetation Index (NDVI) to determine where live green 

vegetation exists. A more positive value represents a presence of vegetation while a more 

negative number represents the absence.   

 

Figure 26. Normalized Difference Vegetation Index of 1997 Moffett Scene 

Finally, to characterize the different materials in the scene, unsupervised learning 

algorithms are used on each band of data to calculate the fractional abundance of 

vegetation. The algorithm uses a “nearest neighbor” interpolation technique to estimate 

the abundance levels. The interpolation method is a relatively efficient algorithm 

computationally but not as accurate as bilinear or bi-cubic interpolation [29].  

 

Figure 27. Abundance Map for Band 3 of 1997 Moffett Scene 

b. Hyperspectral Sensor Data Using Apache Spark  

The machine learning library (MLlib) that comes with Apache Spark provides 

developers with another method of the functions necessary to process the complex three-

dimensional (3D) data arrays associated with hyperspectral data. Clustering is an 

NDVI of Image
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unsupervised learning problem whereby subsets of entities are grouped with one another 

based on some form of similarity. The “k-means” algorithms is one of the more 

commonly used clustering algorithms used by machine learning workflows to associate 

data points into a predefined number of clusters  [30]. 

Using the MLib machine learning library in Apache Spark, large 3D hyperspectral 

data cubes can be ingested into a virtual contiguous memory as a resilient distributed 

dataset. This allows the k-means algorithm to be performed on each band of the data in 

parallel.  

As an example, a 300 row x 1300 column x 181 spectral band collect was taken 

over the Washington DC area. A k-means algorithm that was adapted to work with 

Apache Spark was applied to the data to bin their values. The resultant 2D color-coded 

map was generated, shown in Figure 28, along with a screen capture from Google Earth 

of the same scene, shown in  

 

Figure 28. Two-Dimensional Map Derived from Hyperspectral Data Using Apache Spark 

 

Figure 29. Google Earth Image of National Mall, Washington, DC. Adapted from [31].  
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The colors in Figure 28 represent different spectral returns. Each pixel in the 

image was analyzed and binned according to their characteristics.  For example, pixels 

characterized as water appear (coincidentally) as blue in Figure 28. Several other features 

are highlighted using this method, including distressed foliage around the National 

Monument and patinated rooftops along the National Mall.  

Apache Spark’s MLlib library proved to be a viable tool for processing the 

complex hyperspectral data. The features extracted through the k-means clustering 

algorithm increases the intelligence value of the hyperspectral sensor data.   
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VI. CONCLUSION 

The work performed in this thesis validated that modern computing architecture 

and frameworks provide a rich set of tools to help data scientists and analysts navigate 

the challenges brought on by big data. MATLAB, popular in both academia and industry, 

provides several toolboxes to assist in parallel processing and simplification of normally 

complex calculations using machine learning. Additionally, third-party developers can 

assemble libraries of their specialized code and make them available to others through 

public repositories, as is the case with the MATLAB Hyperspectral Toolbox. Free, 

commercial-off-the-shelf (COTS) products, such as Apache Spark, provide a highly 

viable alternative to their expensive, specialized counterparts. In some cases, COTS 

products that are developed with distributed processing principles in mind provide 

elegant solutions to complex computing problems. By providing a framework that 

handles the orchestration of the distributed processing, data scientists and analysts can 

focus on the domain-specific areas of expertise. When these tools are run on scalable, on-

demand computing resources, their performance can be improved dramatically by 

dividing the work among multiple worker nodes. From a cost perspective, savings can be 

realized through 1) on-demand rental of virtual computing resources, 2) horizontally 

scalable architectures all for efficient utilization of resources and 3) Free, open-source 

applications.  
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APPENDIX 

A. BASIC “FOR” VERSUS “PARFOR” LOOP 

function parforExamples(closePoolFlag) 
close all; clear; clc 
LoopNum = 50; 
time = [1:1:LoopNum]; 
for index2 = 1:LoopNum 
    clear y1; 
    tic 
    for x = 1:360 
        y1(x) = cosd(x); 
        %fprintf ('Executing thread: %d\n',x);  
    end 
    t1 = toc; 
    time1(index2) = t1; 
end 
fprintf ('Average run time for "for" loop: %0.4f\n',mean(time1)); 
fprintf ('Total time to run %d times: %0.5f seconds\n',LoopNum, 
LoopNum*mean(time1)); 
fprintf ('=======================================================\n') 
figure ('Name','"for" loop example') 
bar(y1) 
ylabel('f(x)= cosd(x)')                         % label y-axis 
xlabel('x (degs)')                              % label x-axis 
title('Basic "for" Loop Demonstration')         % figure title 
xlim([0 360])% xlimits 0->360 
  
 poolobj = gcp('nocreate'); % If no pool, do not create new one. 
if isempty(poolobj) 
    parpool; 
else 
    poolsize = poolobj.NumWorkers; 
end 
for index2 = 1:LoopNum; 
    clear y2; 
    tic 
    parfor x = 1:360 
        y2(x) = cosd(x); 
    end 
    t2 = toc; 
    time2(index2) = t2; 
end 
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fprintf ('Average run time for "parfor" loop: %0.4f\n',mean(time2)); 
fprintf ('Total time to run %d times: %0.5f seconds\n',LoopNum, 
LoopNum*mean(time2)); 
fprintf ('=======================================================\n') 
figure ('Name','"parfor" loop example') 
bar(y2) 
ylabel('f(x)= cosd(x)')           % label y-axis 
xlabel('x (degs)')                % label x-axis 
xlim([0 360]); 
title('Basic "parfor" Loop Demonstration') 
figure; hold on; 
title('Execution Times') 
[AX1,H1,H2] = plotyy(time,time2,time,time1,'bar','bar'); 
legend ('"parfor" loop','"for" loop'); 
xlim ([0.5,50.5]); 
H2.FaceColor = 'r'; 
set(AX1(1),'Xlim',[0 50]); 
set(AX1(2),'Xlim',[0 50]); 
xlabel('Time (sec)') 
ylabel(AX1(1),'"parfor" loop execution time (secs)') % left y-axis 
ylabel(AX1(2),'"for" loop execution time (secs)') % right y-axis 
  
hold off; 
% Print final stats 
fprintf ('"for" loop Time: %0.4f\n',mean(time1)); 
fprintf ('"parfor" loop time: %0.4f\n',mean(time2)); 
fprintf ('Time difference: %0.4f\n',mean(time1)-mean(time2)); 
fprintf ('Percent improvement: %0.0f%%\n',(mean(time1)-
mean(time2))*100/mean(time1)); 
fprintf ('=======================================================\n') 
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B. BLACKJACK SIMULATOR 

Source Code Available at:  
https://www.mathworks.com/help/distcomp/examples/simple-benchmarking-of-parfor-
using-blackjack.html 
 

C. HYPERSPECTRAL COMPUTING TOOLKIT 

Source Code available at:  
https://github.com/isaacgerg/matlabHyperspectralToolbox 
 
 

 

  

https://www.mathworks.com/help/distcomp/examples/simple-benchmarking-of-parfor-using-blackjack.html
https://www.mathworks.com/help/distcomp/examples/simple-benchmarking-of-parfor-using-blackjack.html
https://github.com/isaacgerg/matlabHyperspectralToolbox
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