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Abstract.  SOMA (Stochastic Opponent Modeling Agents) are a paradigm within which it is possible to 
make statements of the form "If condition C is true in the environment in which a group G operates, 
then group G will take action A with probability in the range [L,U]". SOME has been used to model the 
behaviors of various terrorist groups and make forecasts about future attacks by those groups. The 
PAGE project uses SOMA models of group behavior in order to generate policies that achieve a desired 
goal.  A policy is a way of changing the environment in which the group operates (subject to feasibility 
constraints).  We develop such techniques on sequential machines and then develop a parallel 
framework for it. We also developed policies and methods by which a group of defensive resources (e.g. 
checkpoints) could be situated in a given geography in order to minimize attacks by an adversary on 
both static and moving targets (e.g. convoys). In addition, the project looked at the problem of 
computing between centrality in hypergraphs – also called Group Between-Ness Centrality. GBC 
describes the probability that a node or a group of nodes lie on a randomly chosen shortest path 
between two randomly selected nodes.  We developed algorithms to scalably compute both BC and GBC 
in huge networks, outperforming (under certain conditions) all previous results.  We also proposed the 
concept of “covertness centrality” which identifies how a “bad guy” can try to hide from “good guys” in 
a social network without being easily identified – by understanding how such “bad guys” can hid in 
social networks, we have learned how to identify them.  
 

I. Scientific Progress and Accomplishments 

During this project, we made important contributions in the following 5 broad areas. 

Abductive Generation of Policies. Given a SOMA (Stochastic Opponent Modeling Agent) behavioral 

model consisting of rules of the form “When condition C is true in the environment of a terrorist group, 

then the group will carry out a terrorist attack of type A with probability in the range [L,U]”, how can we 

take appropriate counter-terrrorism actions (subject to cost and other constraints) that will reduce the 

probability of attack to a level below a given threshold T. In this work, we first developed a formal 

probabilistic logic based model, together with sequential algorithms to address this problem and then 

developed parallel algorithms for the same. 

mailto:vs@cs.umd.edu


Developing Patrolling Policies to Protect Static & Moving Assets against Attack.  Given a geographical 

region R containing a given set of static assets (e.g. police stations, military operational sites) and a set 

of dynamic assets (e.g. convoys), how best can we deploy a set of checkpoints in order to minimize the 

possibility of a successful attack by an adversary? We developed techniques in order to optimally 

protect such assets based on a limited set of resources. 

Geospatial Abduction. Geospatial abduction is the problem of taking a set of geolocated observations on 

the ground and predicting a set of partner locations that are causally linked to the observed locations. 

For instance, observed locations might be places where IED attacks took place, while partner locations 

might be places where weapons caches facilitating those attacks took place. We proposed the notion of 

geospatial abduction, developed complexity results for it, and proposed exact and heuristic algorithms 

to solve such problems. We developed a prototype system called SCARE to optimally predict locations of 

IED weapons caches. When applied to 21 months of data about IED attacks from Baghdad, we were able 

to predict locations on average to within 700 meters. 

Understand Betweenness Centrality in Hypergraphs. A hypergraph consists of a set of nodes (of the 

hypergraph) and a set of subsets of those nodes. For instance, the nodes might represent terrorists, and 

the subsets might represent small cells and/or large sub-organizations. Between centrality (BC) in such 

hypergraphs aims at finding sets of nodes that are central in controlling the flow of communication 

between nodes in the hypergraph. We develop algorithms that are orders of magnitude faster than past 

work for computing BC on large hypergraphs. The results also scale up BC computation on regular 

graphs. 

Covertness Centrality in Networks. In real world terrorist networks, the terrorist network is embedded 

within a much larger network composed largely of ordinary people. How do terrorists stay hidden in 

such networks, given that they need to communicate with one another while staying “below the radar”? 

We present the fundamentally new notion of covertness centrality that achieves this purpose. 

II. CONTRIBUTIONS 

II.A Abductive Generation of Policies 

In past work, we showed that a class of probabilistic logic programs called action probabilistic logic 

programs (ap-programs for short) could be derived automatically from a body of terrorism data in order 

to build models of the behaviors of over 40 terror groups from Morocco to Afghanistan.  In ap-logic 

programs, all predicate symbols are categorized either as action predicate symbols or environmental 

predicate symbols. ap-logic programs consist of a finite set of rules of the form “if condition C is true in 

the environment in which group G operates, then group G will take action A with a probability in the 

range [L,U]”. ap-logic programs are augmented with  a ``state'' (set of facts about the current 

environment in which the group operates). Only environmental predicate symbols can appear in the 

body of a rule, and only action predicate symbols can occur in the head of a rule. The state is a set of 

ground atoms whose associated predicate symbols are all environmental predicate symbols.   



 Suppose, rather than predicting what action(s) a group would take in a given situation or environment, 

we want to determine what we can do in order to induce a given behavior by the group. Furthermore, 

suppose there are some constraints limiting what we can do. Certain things might be do-able, while 

others might be impossible. Given a specification of various actions that we can actually take, and given 

a desired behavior G that we wish to elicit from the group, and given that we want the probability of 

behavior G to be in the probability interval [L,U], how can we change the state so that the group is 

predicted to exhibit behavior G with a probability in the interval [L,U]?  We call this the probabilistic 

logic abduction problem (PLAP). 

We first showed that the basic PLAP problem is EXPTIME-complete. This means that any “exact” solution 

to the Basic PLAP problem is likely to take an exponential amount of time.  For the sake of comparisons, 

we developed an algorithm that computed this exact solution, even though we knew it would take a lot 

of time to run. We then developed a more efficient algorithm that used the notion of a state-

reachability graph to reduce the search space. We then came up with a very efficient algorithm to solve 

the Basic PLAP problem in the case when either L=0 or U=1. In fact, these two cases are the ones most 

likely to be of practical interest because users are usually interested in finding a way to change the state 

so that the probability that the group engages in a desired behavior is greater than or equal to some 

threshold (corresponding to the U=1 case) or they are interested in finding a way to change the state so 

the probability that the group engages in an undesired behavior is below some threshold (corresponding 

to the case when L=0). We showed that as long as we make these assumptions, a much more efficient 

algorithm is possible and we went ahead and developed one. We showed this algorithm is correct under 

the stated assumptions. However, this only seems to reduce the problem from being EXPTIME-complete 

to NP-hard. We extended this to a host of complexity results for PLAP under varying assumptions.  

We developed a prototype implementation and experiments showing that our algorithm is feasible to 

use even when the ap-program contains hundreds of rules. 

Following this, we took the problem one step further by reasoning about how the entity being modeled 

reacts to our efforts. We are interested in identifying the best course of action on our part, given some 

additional inputs regarding the cost of exerting influence in the environment and how desirable certain 

outcomes are; this is called the cost-based abduction problem (CBA). We then investigate an approach 

to solving this problem exactly based on Markov Decision Processes, showing that this approach quickly 

becomes infeasible in practice. Afterwards, we describe a novel heuristic algorithm based on probability 

density estimation techniques that can be used to tackle CBA with much larger instances. We then 

develop the first parallel algorithms for abduction in probabilistic logics.  

Our prototype implementation and experimental results show that our parallel algorithm scales well in 

practice and achieves results that are useful in practice. 

II.B Developing Patrolling Policies 

In this work, we consider two problems related to the protection of assets in a road network. The first 

problem assumes that certain arbitrary vertices (denoting assets) in a graph (representing the road 

network) must be protected from adversaries who may be located at any subset of vertices. We call this 



the static asset protection problem (SAP) because the asset being protected is static. For example, the 

police in a US city may be protecting a hotel where a famous politician is staying for a few days. In 

contrast, the dynamic asset protection problem (DAP, for short) considers the case where the asset 

being protected is moving along pre-determined route. For instance, a politician may be traveling along 

a parade route and the police need to protect the entire route. In both cases, the police have limited 

resources to protect the assets in question. 

Both problems areintimately related to network interdiction [9, 17], where an enemy attempts to 

traverse a graph from a start vertex to an end vertex while an interdictor impedes his progress by 

“breaking” edges in the graph. Work in network interdiction has traditionally focused on stopping 

enemy movement along some path; however, our work is motivated by a need to protect a static asset’s 

position or dynamic asset’s path. 

In this work, we first formalize the static asset protection problem and define an “optimal” deployment 

of resources to protect the asset in question, taking adversarial behavior into account. We subsequently 

develop a formal theoretical model based on minimal edge cuts in graphs and show that randomization 

over what we call single minimal edge cuts yields the optimal asset protection. We subsequently 

propose an algorithm for SAP and analyze its running time showing that it works well.  

We then define the dynamic asset protection problem and show that this problem is NP-complete. We 

propose a greedy algorithm that tries to quickly compute a (sub-optimal) way of solving DAP.  

We developed a prototype implementation of tall of these algorithms and conducted extensive 

experiments using road networks drawn from real cities. These results show that our algorithm 

performs very well on real world data for both SAP and DAP. 

II.C Geospatial Abduction Problems 

In addition to our work on abduction in the context of ap-programs, we consider the following problem.  

Given a set OBS of events on the ground and given some related locations LOC that we want to infer 

from the observations, how best can we infer the latter from the former. For instance, OBS could consist 

of locations where IED attacks took place, while LOC could consist of locations of weapons caches 

supporting those attacks.  

In order to solve such problems, we formally defined a geospatial abduction problem as one consisting 

of the following inputs  

- A map M 

- A set OBS of (x,y)-coordinates denoting places where observations were made 

- Two numbers L and U such that 0 < L < U. 

- A feasibility predicate that takes each point on the map M and assigns it either “true” or “false” 

- An integer k > 0  



Intuitively, the feasibility predicate returns “yes” for a point (x,y) if and only if (x,y) satisfies some 

conditions for the location we want to identify. For instance, in the case of Shiite-backed IED attacks, we  

might set the feasibility predicate to return “true” on a location (x,y) iff:  

• (x,y) is not in a Sunni neighborhood and  

• (x,y) is not in a body of water (e.g. the Tigris river)  

The two numbers L and U can be learned from historical data. L denotes a lower bound on the distance 

between an IED cache location and an attack location, while U denotes an upper bound on the same 

distance.  

The Geospatial Abduction Problem is to find a set of at most k locations which best “explain” the 

observations being seen. For each observation, one of the k locations returned by the algorithm must be 

no less than L units of distance from the observation and no more than U units of distance. Moreover, 

each of the k locations returned must be feasible according to the feasibility predicate.  In our work, we 

learned L and U from a historical collection of data.  We showed that the Geospatial Abduction Problem 

is computationally intractable and is NP-complete. We also proved that several variants of the problem 

are also NP-hard. This makes it unlikely that this problem can be solved exactly.  

As a consequence, we developed algorithms to solve the problem approximately. To do so, we showed 

that geospatial abduction problems can be reduced to classical combinatorial optimization problems 

such as set cover and dominating set in polynomial time. As a consequence, we can leverage 

approximation methods for these problems in designing a solution to geospatial abduction problems.  

We defined several such approximation algorithms. We developed a prototype system called SCARE and 

showed that the best algorithm for our problem is very efficient and we showed – using 21 months of 

data about IED attacks in Baghdad – that it can accurately pinpoint weapons caches in Baghdad to within 

0.45 miles of its location. (The test data set was 14 months of data, while 7 months of data was used for 

training). A screenshot of SCARE is shown below.  

SCARE has since been transitioned to many DoD units including units in Baghdad. Entities to which 

SCARE was transitioned include ARL, FORSCOM,  NCTC, FBI/Interpol. 

 II.D Understanding Between-ness Centrality in Hypergraphs 

Consider a social network N = (V,E,w) consisting of a set V of vertices and a set E of edges.  w is a 

function that assigns weights to the edges in E. Thus, if w(u,v) is high, then this means that the strength 

of the relationship between u and v is high. 

For instance, V might be the set of all nodes in a known terror network, and w(u,v) might denote the 

number of phone calls we have intercepted from u to v.  In such an application, we are interested in 

finding sets of nodes which – if “subverted” – would significantly disrupt communications within the 

terror network. We would obviously like to a find a set G of nodes (or a “group” of nodes) whose 

subversion, in this example, would maximize the “disruption”. 



If we ignore our putative example scenario, in general, we would like to identify the “joint centrality” of 

a set G of vertices in the social network N = (V,E,w). 

Group between-ness centrality of G is, intuitively, a heuristic estimation for the percentage of messages 

flowing in the network that pass through at least one vertex in G. For instance, if a group G has high 

group between-ness centrality, then this means that ”subverting” all vertices in G will lead to significant 

communications reduction for the adversary. 

We can formally define group between-ness centrality (GBC) as follows.  Given two arbitrary vertices s,t 

in V, we first define a quantity called GBC(G,s,t) as follows. Let E(s,t) be the expected number of 

messages flowing from s to t. 

𝐺𝐵𝐶(𝐺, 𝑠, 𝑡) =
# 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡 𝑖𝑛 𝑁 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑔 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖𝑛 𝐺

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡 𝑖𝑛 𝑁
 

The group between-ness centrality of group G can now be defined as: 

𝐺𝐵𝐶(𝐺) =  ∑ 𝐺𝐵𝐶(𝐺, 𝑠, 𝑡)

𝑠≠𝑡

 

In other words, the group between-ness centrality of G aggregates the group-betweenness centrality 

across all pairs of distinct vertices in N. 

We first focused on scaling the computation of between-ness centrality (BC) for undirected graphs. 

Between-ness centrality is the special case of GBC when the size of G is 1. In order to scale BC 

computation, we built on top of the classical Brandes algorithm which has two phases – a forward phase 

in which we calculate the number of shortest paths going through a given node, and a backward phase 

where we aggregate these numbers to compute a between-ness centrality value. 

Many graphs naturally contain “cliques”. Simply put, a clique C of a graph G=(V,E) is a set of nodes such 

that for any pair of vertices, v1,v2 in C, there is an edge between v1 and v2 linking the two. The principal 

idea within the algorithm we developed is the following. We asked ourselves the question: Can we 

somehow merge all nodes in a clique into a single “supernode”.  By doing so, we replace graph G by a 

super-graph SG whose vertices are the cliques of G. When there are lots of large cliques in G, this 

naturally reduces the size of G significantly. 

Once we consider the super-graph SG, we can compute between-ness of the “super-nodes” in SG using 

a classical algorithm like Brandes’ algorithm or in fact any other classical BC algorithm. 

We then generalized these results to apply to hypergraphs. There are numerous real-world networks 

that can be viewed naturally as hypergraphs. Here are a few simple examples. 

• In FaceBook, LinkedIn and YouTube, all members of any of the groups one can join, can be viewed as a 

single hyperedge. 



• In LinkedIn, all people who studied at the same university (or work at the same company) can be 

viewed as a single hyperedge. 

• In an online citation network like CiteSeer or DBLP, all people who publish in the same conference may 

be viewed as a single hyperedge. 

• In Flickr all people who like beach pictures or gorilla pictures might form a hyperedge. 

• In a movie database like IMDB, we might consider everyone who acted in the same movie to 

constitute a hyperedge. 

Many of these examples correspond to bipartite graphs (e.g. person vertices and group vertices in 

FaceBook, LinkedIn and YouTube above; person vertices and university vertices in LinkedIn above, 

people vertices and conference vertices in CiteSeer and DBLP above). Such graphs are also called two-

mode graphs and they are known to have a one-mode projection corresponding exactly to a hypergraph 

as defined above. For instance, all members of the same LinkedIn group form a hyperedge as do all 

alumni of the same university in LinkedIn. 

Thus, we see that many online social networks, which are traditionally represented as undirected 

graphs, can also be viewed as hypergraphs, with membership in a common group or community as the 

property that determines the set of hyperedges.  

We study the following question: how can we significantly speed up the exact computation of BC on 

very large graphs? We show that the one mode representation of a bipartite graph can enable us to 

significantly speed up computation in such graphs, even when the graphs are huge and have millions of 

vertices. The basic idea of our work is that betweenness centrality computation for the simple graph 

representation of hypergraphs can be faster due to the nature of that representation. The simple graph 

representation results in a graph with many cliques, and many of the nodes in such cliques can be 

“aggregated” in BC computation as their influence on the number of shortest paths between pairs can 

be easily computed. We build upon these past results in order to develop methods to exactly compute 

betweenness centrality of vertices in very large hypergraphs (using the one mode representation). 

Specifically, we make the following contributions: 

 We first develop a naive adaptation (NaiveHBC) of the traditional BC algorithm due to Brandes 

and show that it can also be used to compute HBC. 

 We then develop a HyperBFS algorithm that improves the “forward phase” of the BC 

algorithmfor hypergraphs. Thus, our algorithm may be viewed as an extension of Brandes’ 

classical BC algorithm to the case of hypergraphs with some novel new improvements both to 

the forward search and backpropagation parts, as well as new notions to reduce graph size.  

 In order to reduce graph size without any loss of accuracy, we develop the concept of “bridging” 

and “non-bridging” vertices in a hypergraph and use these concepts to associate a compound 

hypergraph with any hypergraph. We show that the betweenness centrality of nodes in the 

original hypergaph can be easily computed from the compound hypergraph.  



 Next, we developed a new HyperBC algorithm for computing HBC in hypergraphs by using 

HyperBFS and by a more sophisticated backward pairwise accumulation step. Note that HyperBC 

is an exact and sequential BC computational algorithm for hypergraphs, not an approximation 

algorithm or a parallel algorithm.  

 We report on the results of detailed experiments on 5 real-world data sets — two of these are 

based on DBLP (but with different definitions of what the hypergraphs are), and one each on 

IMDB, FlickR and TheMarker. In addition, we report results on synthetic data sets. Our 

experiments show that our algorithms can improve performance of NaiveHBC by 1 to 3 orders 

of magnitude. The speedups improve as the size of hyperedges increase. We further show that 

most of the speedups are due to the HyperBFS algorithm and the concept of bridging/non-

bridging vertices, and not because of the backpropagation phase of the algorithm. We test our 

algorithms on several real and synthetic data sets including the IMDB − Full dataset that 

contains 2.89M vertices and show that our algorithms provide reasonable performance in all of 

these cases — in comparison, the NaiveHBC algorithm does not work in such large cases. We 

also compared our algorithm with recent algorithms and show that except in the case of small 

networks, our algorithm outperforms those algorithms are well. 

II.E Covertness Centrality 

Social networking research has focused extensively on the problem of identifying important vertices in a 

network, taking into account the structural properties of the network. As a consequence, important 

concepts such as degree centrality, between-ness centrality, closeness centrality, and eigenvector 

centrality have been proposed (as well as many others that we do not list here). Work in this arena 

dates back to the beginning of the last century. 

More recently, it has been asserted that such structural centrality measures can be used to identify 

important players in a network, e.g. leaders of a drug ring or key players in a terrorist network. In this 

work, we asked ourselves the question: what happens if a drug kingpin or a terrorist leader needs to 

communicate with a set I of individuals in a network (e.g. I could consist of people known to law 

enforcement or intelligent authorities who are not aware that they have been uncovered) and if he is 

smart enough to know that measures such as classical centrality measures are used against him? In this 

case, we he would take measures to ensure that he does not have high centrality in any of the set C of 

measures that he thinks might be used to identify him. Nevertheless, he must be able to communicate 

with the individuals in I. 

In order to identify “intelligent” adversaries who wish to remain covert in the presence of an agent 

seeking to uncover them using a set C of classical centrality measures, we developed the concept of 

covertness centrality that consists of two key parts: 

 Common-ness: Informally speaking, the common-ness of a vertex is the percentage of vertices in 

the network that have a similar centrality according to the measures in C. Though we can 

measure common-ness in many different ways, in this work we chose not to do so – rather we 



first identified a set of axioms that we believed any reasonable common-ness measure should 

satisfy and then we identified two specific common-ness measures, each with some advantages. 

 Communication Ability. The communication ability of a vertex was defined in terms of the 

connectivity of that vertex to each of the vertices in I that the vertex being considered needs to 

communicate with. 

Based on these two concepts, we defined covertness centrality.  We developed two classes of sampling 

based algorithms to compute covertness centrality of vertices on 3 real-world datasets – one consisting 

of emails (small), a 40K node YouTube data set, and a 60K node YouTube data set. Our algorithms scaled 

well, giving good performance as shown in the table below. 

 

 

 

Moreover, even though we used sampling based approaches, we computed the Kendall Rank 

Correlation Coefficient to test whether the top k covert nodes identified by our algorithm agreed with 

the top k identified without sampling. As the table below shows, the results were very strongly 

correlated with a Kendall’s tau-coefficient over 0.9 
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