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ABSTRACT 

The aim of this thesis was to develop and construct a flexible multi-body 

spacecraft simulator for use in testing optimal control-based slew and maneuver designs. 

The simulator is modified from an earlier prototype, which had a flexible arm and 

actuated robotic arm on an aluminum plate atop an air bearing. The new simulator 

features enhanced capabilities, with an improved passive flexible appendage, a 

commercial-off-the-shelf (COTS) robotic arm, a reaction wheel momentum control 

system, a wireless flight control system, and a battery-powered electrical distribution 

system. The COTS robotic arm was modified to function with either flexible or rigid 

joints, and was used as a basis for initial experimentation. The simulator’s purpose is to 

test agile cooperative maneuvers designed using optimal control theory. A specific 

maneuver was developed and tested for the robotic arm in its flexible joint configuration. 

It is shown experimentally that maneuver time could be reduced by 50% as compared to 

a baseline (standard) maneuver, and that the optimal control-based solution significantly 

reduced post-maneuver vibrations. 
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I. INTRODUCTION 

A. MOTIVATION 

As demand on spacecraft increase, moveable appendages such as robotic 

manipulators and articulated antennae will play an increasingly important role for future 

satellite missions. As a whole, the satellite bus and its appendages can be considered as a 

multi-body system [1]. Motion control of such dynamical systems is a challenging task. 

Part of the difficulty arises from the various coupled interactions that occur between the 

bodies. For example, the motion of one link in a multi-body system induces motion in the 

others. Rapidly moving some of the bodies, such as quickly slewing an antenna to a new 

orientation, exacerbates the coupling effects between the links. Consequently, it can be 

difficult to maintain precise control over the nominally stationary links if it is required to 

move the others quickly unless the disturbances can be properly attenuated [2]–[4]. 

Flexible effects make matters worse because higher-bandwidth control is needed to 

suppress the troublesome flexible modes. Such high gain controls are often undesirable as 

noise and other unwanted effects can be amplified. To manage the flexible motion control 

problem using lower gain control, a common approach is to limit the accelerations and 

rates of the links in order to bound the disturbance magnitude to an acceptable level [5]. 

Doing so makes it easier to design lower-bandwidth control systems that can properly 

reject the effects of the undesirable dynamics. However, this convenience comes at the 

expense of decreased system agility and sluggish response.  

An alternative approach is to apply optimal control theory to the multi-body 

system as a whole in order to design cooperative motion trajectories that account for the 

internal coupling of the system dynamics [5]–[9]. This approach allows the various 

dynamic interactions to be accommodated from a different point of view: instead of 

treating dynamic coupling effects as disturbances to be rejected amongst the various 

subsystems, optimal control can make use of dynamic coupling effects advantageously to 

compensate for the induced disturbances. The previous work [5]–[9], however, considers 

only rigid body motion of multi-body systems. 
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The goal of this thesis is to further develop the optimal control concept presented 

in [5] to handle systems with flexible effects so that proper control over the flexible 

motion can be realized even when moving links quickly. To this end, a test bed is 

developed which allows for flexible motion control experiments to be carried out in a 

laboratory environment. The multi-body system test bed comprises a two-link 

rigid/flexible manipulator, a two-link rigid manipulator, a passive flexible link and a 

reaction wheel momentum control system all mounted to a single degree-of-freedom air 

bearing, as well as all of the support electronics. This system can be modeled and 

controlled as a multi-body, flexible, dynamical system. 

B. OBJECTIVE AND SCOPE 

This thesis will examine the feasibility of performing rapid maneuvers of a 

flexible multi-body system. To achieve this, the thesis will follow the pathway of first 

constructing a mathematical model of an idealized system. Second, a spacecraft simulator 

testbed (initially constructed as part of a prior thesis [10]) will be modified and improved 

to allow for the necessary experimentation. The nominal mathematical model for the 

initial proof of concept experiment will then be modified to more accurately reflect the 

behavior of the physical system. Finally, the optimal control maneuver will be tested and 

analyzed experimentally. 

The ultimate goal of the greater research endeavor, of which this thesis is but one 

link in the chain, is to test optimal control maneuvers on real satellites involving actuated 

devices such as steerable antennae, other flexible antennae, and the satellite’s own 

momentum control system. This thesis, however, will be limited to determining the 

feasibility of a single optimal control maneuver of a robotic arm on a fixed base. This is 

because the optimal control concept has not been experimentally tested, even for a two-

link system. The results will serve as the basis for future experiments involving the entire 

system. To this end, required upgrades to an existing testbed will be made to allow this 

future work to be carried out. 
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C. THESIS OUTLINE 

To facilitate a clear understanding of the thesis goals and results, the thesis will be 

arranged to reflect the research progression. The motivation for performing this research 

is to make satellites more capable and responsive via advanced motion control concepts 

in order to enhance their overall utility and mission throughput. This motivation leads to 

the requirement to determine whether such a concept is theoretically possible, discussed 

in Chapter II. Upon determination that such a course of action is feasible, the testbed is 

developed to test the ideas in practice. The various components and design is discussed in 

Chapter III. Chapter IV is given to the robotic arm that is used, as this is an integral part 

of the experiment. The already-discussed optimal control maneuver is then adapted to the 

physical system and demonstrated in the lab setting, the results of which are discussed in 

Chapter V. Finally, Chapter VI discussed future work. This is important to illustrate the 

steps that have been taken so far, the current state of the project, and the road ahead to the 

ultimate conclusion of the goal of rapidly maneuvering satellites. 
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II. RAPID MOTION CONTROL OF FLEXIBLE MULTI-BODY 
SYSTEM: PROOF OF CONCEPT 

Before the broader thesis objectives of testing flexible multi-body systems can 

take place, it is important to verify theoretically that such a concept is even feasible. In 

order to enable the thesis research objectives, a mathematical model of the multi-body 

dynamical system needs to be created. This model will then be used to test the optimal 

control principles. This chapter will build the mathematical model of the system, and then 

do initial feasibility verification and validation to ensure that the rest of the thesis has a 

solid foundation on which to build. 

A. GENERAL EQUATIONS FOR MULTI-BODY DYNAMICS 

A generic three-body dynamic system with two gimbaled joints is shown in 

Figure 1.  

 

Figure 1.  A multi-body dynamic system with two gimbaled joints 
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Considering each body separately, the Newton-Euler equations may be written as [1] 

 

 
1 1 1 1

2 2 2 1 2

3 3 3 2

G

G G

G

m v F F
m v F F F
m v F F

= −
= + −
= +







   (1.1) 

  

 
1 1 1 1 11 1 1 1 1

2 2 2 1 2 21 1 22 2 2 2 2

3 3 3 2 32 2 3 3 3

( ) ( )
( ) ( ) ( )

( ) ( )

G G

G G G G

G G

I T T r F I
I T T T r F r F I
I T T r F I

ω ω ω
ω ω ω
ω ω ω

= − − × − ×
= + − + × − × − ×
= + + × − ×







,  (1.2) 

  

where the meanings of the symbols for each body are listed in Table 1.   

Casting the variables in appropriate frames and manipulating the equations to 

eliminate the joint constraint forces, allows the equations of motion to be written in the 

following state-space form: 

 1 1 1( ) ( )r

r

x A RU S T RU F
ω
α
β

− − −

 
 = = − − 
  







,  (1.3) 

   

where ω is the angular rate of the base link (body 1), αr is the angle rate of the first 

gimbal and βr is the angle rate of the second gimbal. 

Table 1.   Symbols used in Newton-Euler equations 

Symbol Description 
  Angular velocity 

  Velocity of the mass center 
  Central moments of inertia 

  Mass 
  Vector from mass center i to joint j 

  Resultant external force 
  Resultant external torque 
  Joint constraint force 
  Joint torque 
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B. DYNAMIC MODEL OF FLEXIBLE MANIPULATOR SUBSYSTEM 

The general model of a multi-body system given in (1.3) can be applied to a 

flexible manipulator. Previous thesis research has produced a two-link robotic arm, 

constructed of aluminum and powered by DC motors at each joint [10]. In this chapter a 

mathematical model will be derived using an idealized version of this system. Pending 

successful results of the analysis, a version of this mathematical model will be used for 

experimentation on the multi-body flexible spacecraft simulator (MBSS) testbed. A basic 

illustration of the system is shown in Figure 2.   

 

Figure 2.  Basic schematic of two-link manipulator with fixed base 

The dynamical equations that describe the motion can be derived through 

application of (1.1) to (1.3), the multi-body dynamics described in the previous section. 

The results are shown in the rigid body equations below, as adapted from [11]. 

 
2

11 1 12 2 1 2 2

2
21 1 22 2 1

2 0

0

m m r r

m m r

θ θ θ θ θ

θ θ θ

+ − − =

+ + =

    

  

    (1.4) 

 

As shown in [11], the system dynamics can be written in matrix form, to also 

include the flexibility associated with the rotors. The M, C, and K in equation (1.5) are 

matrices. M is the mass matrix, which accounts for mass and moment of inertia, C 

combines the Coriolis matrix with the damping force, and K contains the spring 

constants. 
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 1

2

( ) ( ) 0

( ) ( )

θ θ ϕ θ ϕ

θ θ ϕ θ ϕ τ

+ − + − =

− − − − =

M C K

M C K

 



 



    (1.5) 

 

The dynamical equations (1.4) are substituted into the matrix equations (1.5), 

giving a nonlinear equation of the form of equation (1.6). 

 

11 12 11 12 2

21 22 22 21

11 1

22 2

0 0 00 02 0
0 0 00 00

0 0 0 0 00 0
0 0 0 0 00 0

r

r

m m k kr c r c
m m k kr c c
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I k kc c

θθ θθ θ
θθ θθ
ϕ τϕ ϕ
ϕϕ ϕ

    −    − + − −  
        −−        + + =
        −−
        −−             

  

 

 

 

1

2τ

 
 
 
 
 
 

  (1.6) 

 

In the equations above, the elements of the mass matrix and the 

Coriolis/centripetal parameters are shown in equations (1.7)–(1.10): 

 
 2 2 2

11 1 2 1 1 2 1 2 1 2 2( 2 )m I I m l m d l d d cosθ= + + + + +    (1.7) 
 2

2 2 2 1 2 212 21 ( )m m I m l d cosl θ+= = +     (1.8) 
 2

222 2 2m I m l+=      (1.9) 
 2 1 2 2sinr m l l θ= ,    (1.10) 
 

where I is the mass moment of inertia of the link, mi is the mass of link i, l is the length, 

and d is the distance from the end to the center of mass (see Figure 2). An idealized 

system is used for this analysis, and the values of these parameters are shown in Table 2.   
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Table 2.   Idealized physical parameters of two-link flexible arm 

Symbol Description Value 

I1, I2 Link moment of inertia 10 kg∙m2 

Ir Rotor moment of inertia 1 kg∙m2 

l1, l2 Link length  1 m 

d1, d2 Link distance from axis of 

rotation to center of mass 

0.5 m 

m1, m2 Link mass 1 kg 

c Damping coefficient 1 Nms/rad 

k Spring constant 1 N/m 

 

Equation (1.6) could be used directly to construct an optimal control problem for 

maneuver planning, but the nonlinearities make this difficult, hence they are normally not 

considered. That is, in standard practice the equations are decoupled. To accommodate 

the nonlinearities, equation (1.4) is rewritten with the nonlinear elements collected on the 

right-hand side. Retaining the nonlinear terms ensures that the effects of these elements 

can be considered as part of the maneuver design. The right hand side can then be 

relabeled as a virtual torque inputs 𝜏̃𝜏, as shown in equations (1.11) and (1.12). This 

approach is modified from [10] and [12]. 

 
2

1 2 1 2 2 1 2 1 2 2 2 2 1 2 2 2 1 2 1 2 2 22 ( ) ) )( 2 ( ()m d d cos m d l cos m l l sin m l l sinτ θ θ θ θ θ θ θ θ θ= − − − +    

   (1.11) 
 2

2 1 2 2 2 12 1 12 2( )()m d l cos m l l sinτ θ θ θ θ= − − 

    (1.12) 
 

These new torques are used to rewrite the dynamics equation as: 
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,  (1.13) 

 

where [M], [C], and [K] are now all linear matrices with constant parameters. The 

precise values of  𝜏𝜏 ̃𝑖𝑖 can be determined by enforcing a set of differential algebraic 

constants. This will be discussed in detail later.  

Equation (1.13) can now be manipulated to isolate the second derivatives as 

shown in (1.14). 

 [ ] [ ] [ ]
1 11 1

1 2 22 2

1 11 1

2 22 2

τ θθ θ
τ θθ θ
τ ϕϕ ϕ
τ ϕϕ ϕ

−
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M C K

 



 



 

 

   (1.14) 

 

The second derivatives are expounded in equation (1.15). 
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  (1.15) 

 

Now that the second derivatives have been found, the state space model of the 

entire system can be written, as in equation  (1.16). This model will be used to formulate 

the optimal control problem for rapid maneuvering. 
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C. PROBLEM FORMULATION FOR RAPID MOTION CONTROL 

With all of the relevant system dynamics for the flexible two-link manipulator 

described mathematically, an optimal control problem formulation to illustrate the new 

approach for rapid motion control of the links can be developed. The scenario chosen for 

this example is shown in Figure 3 and Figure 4. The maneuver is a simple maneuver from 

a straight-arm configuration to an “L” configuration, where each link has slewed 90° 

relative to its antecedent. Since the problem is to move the two-link arm into an L 

configuration, the problem is named two-link L, or “TL-L.” The starting configuration 

simply has θ1= θ2=0°, and the final configuration has θ1=90° and θ2=90°. 
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Figure 3.  Two-link system in the start (initial) configuration 

 

Figure 4.  Two-link system in the end (final) “L” configuration 
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The formulation for the TL-L problem is defined as: 
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where  
2
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2
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cos( ) sin( )

h m d d m d l m l l m l l

h m d l m l l

θ θ θ θ θ θ θ θ θ τ

θ θ θ θ τ

= − − − + −

= − − −

    



 


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The problem formulation shows that the initial system state has the links at 0°, 

with no rotation on the rotors and no motion for either the links or the rotors. The final 

orientation will be the “L” configuration described above, with no angular displacement 

of the rotors and all other elements at rest. Hence, it is desired to perform the maneuver in 

such a way that there is no residual vibrational energy at the end of the maneuver. 
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This problem formulation is well defined and easily solved using DIDO, a 

software tool for solving optimal control problems [13]. However, before coding can take 

place a precise understanding of the actual problem to be solved must be achieved. 

Pontryagin’s Principle can guide the required analysis. 

The first step in applying Pontryagin’s Principle is writing the control 

Hamiltonian: 

 ( , , , ) ( , , ) ( , , )TH x u t F x u t f x u tλ λ= + .   (1.19) 

In (1.19), F is the running cost, which, since the problem is looking for the 

minimum time solution, does not appear in this problem, and f(x,u,t) are the dynamics 

shown in (1.16). The vector λ is covectors related to the states.  

Adding path constraints requires the use of the Lagrangian of the Hamiltonian: 

 ( , , , , ) ( , , , ) ( , , )TH x u t H x u t h x u tµ λ λ µ= + .   (1.20) 
 

The Lagrangian of the Hamiltonian for the rapid maneuver problem is: 
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where the μ vector is the covector associated with the path constraints. 

The Karush-Kuhn-Tucker (KKT) conditions are used to analyze the behavior of 

the path covectors. Specifically, the complementarity condition shown in (1.22) describes 

how the values of the μ covectors depend on the values of the path constraint equation. 

 
0

0 0
0

U
i i

L U
i i i

L
i i

if h h
if h h
if h h

µ
 ≥ =
 = ≤ ≤
 ≤ =

    (1.22) 
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An example is shown in (1.23) for the first path constraint, h1. 

 
1

1 1

1

0 0
0 0 0
0 0

if h
if h
if h

µ
≥ =

 = ≤ ≤
 ≤ =

    (1.23) 

 

Since in the rapid maneuver problem h1 is always constrained to be zero, which is 

both the upper and lower bound, μ1 is free to take on any value for all times. 

To aid in analysis, adjoint equations can be derived from the Lagrangian of the 

Hamiltonian according to (1.24). 

 H
x

δλ
δ

− =      (1.24) 

These adjoint equations can be useful for verifying whether a solution adheres to 

the necessary conditions for optimality. However, since in this problem each adjoint 

equation is a linear combination of several covectors, the expected behavior is difficult to 

interpret. One example of an adjoint equation is given in (1.25), but all eight are similar. 

 
2 2 1 2

89 4
495 45θ θ ϕθ ω ω ωλ λ λ λ= − −     (1.25) 

 

One further step in applying Pontryagin’s Principle is using the Terminal 

Transversality Condition to find boundary conditions for covectors. This step is used 

when there are missing boundary conditions on the states. All boundary values are known 

for the states, so there is no need to perform transversality analysis as no additional 

insight into the problem solution will be obtained. 

 Since the rapid maneuver problem is a minimum time problem, the 

Hamiltonian value condition shows that the value of the lower Hamiltonian at the final 

time should be -1 [13]. That is: 

 @ 1fH t  = −  .     (1.26) 

Further, the Hamiltonian evolution equation holds that the slope of the 

Hamiltonian should be zero, since the Hamiltonian is not dependent on time: 

 0H
t

δ
δ

= .     (1.27) 
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Combining the Hamiltonian value condition and the Hamiltonian evolution 

equation results in the necessary condition that the lower Hamiltonian be -1 for all time, 

for a minimum time problem. 

Since this problem seeks the minimum time solution, a bang-bang profile would 

normally be expected. The result is something different. At the beginning and end of the 

maneuver the joints experience the maximum torques, but most of the maneuver is 

accomplished well within the torque limits. This behavior is utilized to control the 

dynamic coupling between the joints. The maneuver duration was 8.0086 seconds. The 

control torques are shown in Figure 5.  

 

Figure 5.  Torque profile for two-link rapid maneuver 

Figure 6 shows that the links did in fact achieve the desired final orientation. Link 

1 goes to 90°, and link 2 goes to 180°.  
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Figure 6.  Link angles for two-link rapid maneuver 

As specified in the problem description, the links start and end with zero velocity, 

as shown in Figure 7.   

 

Figure 7.  Link angular velocity for two-link rapid maneuver 
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D. ANALYSIS OF PROOF-OF-CONCEPT RESULTS 

While Figure 6 and Figure 7 show the desired result, this must be confirmed 

through verification and validation. Several checks were performed to verify that the 

result was the optimal solution. The first test was verifying the feasibility of the result by 

interpolating the torque trajectories and propagating them through the dynamics. The 

results of this test are shown in Figure 8 and Figure 9, and were quite successful, as can 

be measured by how closely the propagated result data points lie over the results from 

DIDO. The curves are nearly identical. 

 

Figure 8.  Feasibility test of link angles for two-link rapid maneuver 
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Figure 9.  Feasibility test of link angular velocity for two-link rapid maneuver 

As discussed above, the Hamiltonian should have a constant value of -1. 

Figure 10 shows the Hamiltonian is not quite -1, but is nearly there. The mean value is -

1.0556 with a standard deviation of 0.1262. The closeness of this result to the expected 

value of  -1 increases confidence that a minimum time solution has been found.  

 

Figure 10.  Plot of the Hamiltonian for two-link rapid maneuver 
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The path constraints, which are the nonlinearities or the virtual torques, can be 

examined, but they are of limited utility for showing optimality. Since h1 and h2 are 

constrained to be zero at all times, this leaves the corresponding covectors free to take on 

any value. This is the observed behavior, as shown in Figure 11 and Figure 12.  

 

Figure 11.  Path constraint 1 on nonlinearities and related covector during two-
link rapid maneuver 
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Figure 12.  Path constraint 2 on nonlinearities and related covector during two-
link rapid maneuver 

E. CHAPTER SUMMARY 

This chapter began with deriving a dynamical model of a generic multi-body 

system. This model was then adapted to an idealized version of a robotic arm produced 

during a previous thesis effort. A sample maneuver was evaluated, and the proper 

mathematics was used to determine that a rapid maneuver of a flexible two-link system is 

feasible with the idealized parameters. Since the maneuver is feasible, the model 

developed in this chapter will be adapted to a real system, and the problem re-solved so 

that experimental results can be obtained. This process will be discussed in Chapter V. 

First, however, the experimental system will be described.  
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III. MULTI-BODY FLEXIBLE SPACECRAFT SIMULATOR 
TESTBED 

In order to experimentally test the concept described in Chapter II, a multi-body 

flexible spacecraft simulator (MBSS) testbed was developed and constructed.  This 

testbed was modified and enhanced from a previous iteration completed by Griggs [10], 

shown in Figure 13. Most components were manufactured at the Naval Postgraduate 

School, using the machine shop for all aluminum pieces and the Rapid Prototyping 

Center for all 3D printed components. All electronics were procured as commercial-off-

the-shelf parts. 

 

Figure 13.  Multi-body flexible spacecraft simulator first iteration. Source: [12]. 

A. UPDATED TESTBED OVERVIEW 

The upgraded testbed is composed of two aluminum disks, 0.6096m (24 inches) 

in diameter, mounted one over the other with a 0.3048m (12 inches) clearance. 

Aluminum stanchions are used to support the upper disk. The lower disk is mounted to a 

single degree of freedom air bearing, and contains most of the electronics. A battery and 

power distribution system are mounted towards the outside, while a National Instruments 

cRIO (compact Reconfigurable Input/Output) microcontroller is mounted in the center. 

The cRIO is Wi-Fi-enabled so that data can be acquired and commands can be sent to the 

testbed without any wires imparting external torques on the system. 
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The upper disk holds all of the moving parts, including a rigid/flexible two-link 

robotic arm, the passive flexible appendage, and the reaction wheel momentum control 

assembly. A rigid robotic arm composed of an aluminum base and two links, with 

Dynamixel Pro M42 actuators powering each link, was designed for the testbed. 

However, a second robotic arm with flexible joints was also procured for the testbed and 

this latter setup was used for most of this thesis. Both arms can be fitted to the testbed for 

experimentation. The flexible appendage is 3D printed ABS, with linear extension 

springs to provide a restoring force. The reaction wheel assembly makes use of Maxon 

EC flat brushless DC motors as reaction wheels. These are controlled by Maxon EPOS 

motor controllers. All components and sensors are connected with cables to the cRIO on 

the bottom deck. Figure 14 is a side view of the MBSS with all components identified in 

Table 3.   

Table 3.   Listing of the MBSS components 

Component Description 
1 Air bearing 
2 Aluminum base plate 
3 Aluminum stanchion 
4 Aluminum second deck 
5 Reaction wheel base 
6 Reaction wheel 
7 Reaction wheel controllers 
8 Rigid/flexible arm 
9 Passive appendage base 
10 Passive appendage link 
11 Extension spring 
12 24 V battery 
13 National Instruments cRIO controller 
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Components are identified in Table 1 

Figure 14.  Multi-body flexible spacecraft simulator 

B. TESTBED CONSTRUCTION 

The testbed was developed and built at NPS, taking advantage of the on-site 

machine shop for metal components and Rapid Prototyping Center for 3D printed parts. 

A detailed description of each of the testbed components follows. 

1. Passive Flexible Appendage 

The flexible appendage is a 3D-printed arm consisting of a base, a link, bearings, 

and springs. This arm is designed to mimic a flexible appendage like an antenna, such as 

would typically be mounted on a satellite, and the spring mounts allow for simulating 

varying stiffness effects. The base connects to the MBSS top plate using an aluminum 

adapter, which is simply an aluminum plate with two sets of four holes. One set of 

countersunk holes aligns with threaded holes in the flexible arm base and allows the 

adapter plate to be screwed to the base. The other set of holes allows the adapter plate to 

be fastened to the MBSS top plate.  
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The base and link are designed to be modular and expandable. The link features a 

male and female end, with the male end fitting into the base. This design allows 

additional passive links to be added, if desired. The top of the link has two parallel hole 

patterns extending along its length, which allows the springs to be positioned at regular 

intervals to adjust the flexible response, and also allows for springs to connect to an 

additional link if that is desired. The flexible appendage was designed using Siemens NX 

software and printed at the Rapid Prototyping Center at NPS. It is shown in Figure 15.  

 

Figure 15.  Passive flexible appendage designed and manufactured at NPS 
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2. Two-Link Rigid Robot Arm 

The two-link rigid robotic arm was designed at NPS, and consists of two 

aluminum links connected to an aluminum base. The base connects to the MBSS top 

plate in a similar manner as the flexible appendage. Each link is actuated with a 

Dynamixel Pro MX42 motor [14]. This design was developed by Griggs in his thesis [10] 

and was manufactured in aluminum for this thesis (see Figure 16). It was determined that 

a robotic arm with a flexible joint option would be a useful addition moving forward, to 

allow testing of optimal control theory in application to a flexible structure. To this end, a 

Quanser 2-degree-of-freedom serial flexible joint (2DOFSFJ) robot was procured. Due to 

the complexity of the 2DOFSFJ, Chapter IV is devoted to describing this subsystem, its 

integration, and checkout. 

 

Figure 16.  Two-link rigid robotic arm designed and manufactured at NPS 
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3. Reaction Wheel Momentum Control System 

Most large modern satellites are 3-axis stabilized using some sort of momentum 

control system (MCS). As a result, the MCS can be used to help manage the effects of 

appendage motion in a passive cooperative fashion. The most common MCS is a reaction 

wheel array. Reaction wheels operate on the principal that a change in angular 

momentum imparts a torque on the system. 

Although only three reaction wheels are needed to control motion about three 

axes, it is typical for satellites to have four reaction wheels for the sake of reliability. For 

the experiment, Maxon EC flat brushless DC motors are used as reaction wheels, as they 

are cost-effective commercial-off-the-shelf hardware. However, since the DC motors are 

not specifically designed for this task, they have a smaller momentum storage capacity 

than a typical reaction wheel [15]. Thus, the MBSS wheels are all arranged so that their 

torque axis is parallel to the air bearing axis of rotation, as shown in Figure 17. Pending 

successful trials in this configuration, they can be fit on a new mount to allow torque 

about all three axes. These four wheels can be arranged in several different 

configurations, although a pyramidal arrangement is the most popular [16]. The motors 

are controlled by individual Maxon EPOS controllers. 
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Figure 17.  Testbed reaction wheel assembly 

4. Flight Control System 

The various components of the testbed are in need of a system to both send 

commands and acquire data. To accomplish both of these tasks, a National Instruments 

cRIO (compact Reconfigurable Input/Output) embedded controller is used [17]. This unit 

features Wi-Fi to allow it to communicate with a ground station computer without any 

wires. Since the testbed floats on an air bearing, this is a key capability, as the wireless 

communication eliminates any torques which could be imparted to the testbed with a 

wired connection.  

The cRIO is the central command and control hub of the testbed. It communicates 

with a ground station computer, where the operator can develop maneuvers or analyze 

data. It also interfaces with the robotic arm and the reaction wheel array, passing 

commands and receiving data. There are eight total slots for data acquisition cards, which 

allow for communication to specific devices. Two of these slots are used for the two-link 

robotic arm. One slot is used for commanding the reaction wheel array, and one slot is 

available for data relating to the passive flexible appendage. This allows for expansion of 

the testbed using the remaining four slots. For instance, the NPS-designed robotic arm 
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could be added to the testbed for advanced simulations and an Inertial Reference Unit 

(IRU) can be added to establish attitude telemetry of the base motion. The cRIO is shown 

in Figure 18.  

 

Figure 18.  National Instruments Wi-Fi-enabled cRIO 

5. Power Distribution 

The electronic components of the testbed are battery-powered to create a stand-

alone system. A cordless drill battery is repurposed, providing 24 volts DC. This is 

sufficient to power the cRIO and the reaction wheel array. Additional power electronics 

are required for the Quanser 2DOFSFJ robotic arm. For all of the testing in this thesis, the 

2DOFSFJ was run with the provided 120 volts AC power system. This was sufficient for 

stationary testing, but the testbed’s power system will require modification to 

accommodate the 2DOFSFJ when the air bearing is activated and floating maneuvers are 

executed. The battery, connected to the cRIO and reaction wheel array, is shown in 

Figure 19.   
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Figure 19.  Battery connected to cRIO and reaction wheel array 

C. CHAPTER SUMMARY 

This chapter examined the current iteration of the Multi-Body Spacecraft 

Simulator, and all of its components. The MBSS has been built up to provide extensive 

laboratory capabilities. The ability to rapidly design and test parts using NPS resources 

has added to the overall state of readiness of the testbed. The redesigned flexible 

appendage and the reaction wheel array add versatility and capabilities to the system that 

were previously absent. The battery and Wi-Fi-enabled cRIO will allow the testbed to test 

more realistic spacecraft maneuvers without the complication of an umbilical.  
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IV. TWO-LINK FLEXIBLE JOINT ARM 

An additional two-link robotic arm was procured for the testbed to extend its 

capabilities and allow for more a wider range of experiments. The Quanser 2DOF serial 

flexible joint (2DOFSFJ) robotic arm was chosen because it has flexible joints that can be 

tuned depending on requirements [18]. The hardware also came with the Quanser Real-

time Control (QUARC) software, which allows the user to program maneuvers easily 

using MATLAB-Simulink software. QUARC is also compatible with the cRIO platform, 

making the migration of the results of this thesis to the embedded flight control computer 

straightforward.  

A. OVERVIEW OF 2DSFJ ROBOT CAPABILITIES 

The 2DOFSFJ comprises two links, each powered by a DC motor driving a 

harmonic gearbox with zero backlash. For angular displacement measurement, the motors 

and flexible joints are equipped with quadrature optical encoders [18]. Each joint has a 

range of ±90°.  

B. INSTALLATION AND INITIAL CHECKOUT 

Upon receipt of the equipment, all items were unpacked and inspected for 

damage. Once all items had been verified, the provided QUARC software was installed 

on a lab computer. The equipment consists of the arm itself, mounted on a baseplate, a 

multi-channel linear current amplifier, and a data acquisition unit. The amplifier is 

needed to power the arm and the data acquisition unit, and this latter part interfaces with 

the ground station computer via USB cable. The test setup of the 2DOFSFJ is shown in 

Figure 20. The QUARC had preprogrammed maneuvers, which were useful in learning 

how to control the arm. The flexible joints were much more flexible than expected, which 

is good for laboratory experimentation, due to the easily measurable oscillations, and 

visualization. The design of the flexible joint mechanism allowed for braces to be 

installed, which effectively made the flexible joint robot into a rigid joint robot. The 

joints, with 3D printed braces, are shown in Figure 21. The inset is a more detailed 

image, showing how the brace has two nubs which fit into alternate spring mount holes 
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on the flexible joint. After verifying that the equipment was in working order and that it 

was setup correctly, it was turned on and basic commands were sent using MATLAB to 

verify the signal pathway. 

 

Figure 20.  2DOFSFJ initial setup 

 

Figure 21.  2DOFSFJ with link braces and brace detail inset 
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C. VERIFICATION OF COMPONENTS 

Before detailed analysis could be completed on the 2DOFSFJ, the joint flexibility 

had to be determined. This step was important because the mathematical model, which 

the optimal control maneuver uses, should accurately model the physical properties of the 

arm. The springs on the flexible joints were not labeled, so the spring constant needed to 

be determined. This was accomplished via a simple experiment using Hooke’s law,  

 F kx= − .     (1.28) 
 

The springs were removed from the 2DOFSJ and the unstretched length 

measured. Then, the springs were hung from a vice and stretched with known masses. 

The stretched length was measured, and the results were used to determine the spring 

constant. The lab setup used to measure the springs is shown in Figure 22.  

 

Figure 22.  Measuring the 2DOFSFJ spring constants 
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Table 4 summarizes the data collected in the spring constant experiment. The 

springs were attached to brass connectors to facilitate their installation in the 2SOFSFJ 

joints. These connectors were very difficult to remove, so only one was removed and 

weighed, and the calculations take into account the mass of the connectors which were 

not removed. Since the experimental setup clamped one of the brass connectors in a vise, 

the mass of only one connector was added to the mass of the brass weight for determining 

the spring constant. A spring with its brass connectors is shown in Figure 23.  

Table 4.   Spring constant calculation 

 Left Elbow Right Elbow Left Shoulder Right Shoulder 
Length (m) 0.03175 0.028575 0.041275 0.0523875 
Extended 
length (m) 

0.053975 0.0508 0.05715 0.0682625 

Displacement 
(m) 

0.022225 0.022225 0.015875 0.015875 

Mass of brass 
connectors (kg) 

0.009 0.009 0.009 0.009 

Mass with brass 
connectors (kg) 

0.024 0.024 0.025 0.024 

Mass without 
brass 
connectors (kg) 

0.006 0.006 0.007 0.006 

Mass of brass 
weight (kg) 

0.492 0.492 0.984 0.984 

Adjusted mass 
of weight (kg) 

0.501 0.501 0.993 0.993 

Gravity (m/s2) 9.81 9.81 9.81 9.81 
Force (N) 4.91481 4.91481 9.74133 9.74133 
Spring constant 
(N/m) 

221.1388 221.138808 613.6270866 613.6270866 
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Figure 23.  Spring with brass connectors 

D. INITIAL CHECKOUT AND MODEL VALIDATION 

After verifying that the 2DOFSFJ was physically as expected and that it could 

execute maneuvers, the system dynamic response needed to be characterized. This was 

done by completing four maneuvers. The system was first operated in an open loop, 

where each link was given a current for a short time. This was completed with the 

flexible joints and again with the braces installed for a rigid link response. The second 

maneuver used a standard PD controller and the links were commanded to travel to a 

specific orientation. This was also done in the flexible and rigid configurations. 

Since the 2SOFSFJ has joint angle limits of -90° to +90°, the experimental 

maneuver was altered. The shoulder was commanded to +30° and the elbow was 

commanded to -30°. This allows enough motion to accurately assess the performance of 

the system. 

1. Open-Loop Tests 

The open-loop trials demonstrate that the system is responsive to current 

commands alone. 



 38 

a. Flexible joint 

The current response of the flexible joint configuration of the open-loop trials is 

shown in Figure 24 and Figure 25. These plots show an error between the commanded 

and actual currents. The deviation is meant to overcome or compensate for the friction in 

the joints and is therefore not of concern. 

 

Figure 24.  Open loop, flexible joint, shoulder actuator current 

 

Figure 25.  Open loop, flexible joint, elbow actuator current 
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As shown in Figure 26 and Figure 27, the vibrations induced by the open-loop 

current pulses last more than 15 seconds. These plots could be used to experimentally 

deduce the damping coefficients of the shoulder and elbow joints, which would be useful 

in developing a more accurate mathematical model of the system. However, the 

parameters supplied by Quanser were determined to be adequate for experiments. 

 

Figure 26.  Open loop, flexible joint, shoulder angle response 

 

Figure 27.  Open loop, flexible joint, elbow angle response 
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b. Rigid joint 

The system was modified for rigid joint motion and the same current profile as the 

flexible joint version was applied. Because the joint flexibility was removed, however, 

the response was very different. The response of the shoulder and elbow links, shown in 

Figure 28 and Figure 29, mimicked a simple double integrator response. The large 

difference in response between the flexible and rigid joint systems is the main reason why 

control of flexible systems requires careful attention. 

 

Figure 28.  Open loop, rigid joint, shoulder angle position 

 

Figure 29.  Open loop, rigid joint, elbow angle position 
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2. Closed-Loop Tests 

A maneuver was performed in a closed-loop configuration, where the shaft 

angular displacement and angular velocity errors were fed back for a partial state 

feedback loop. This means that the difference between the commanded and actual 

angular displacement and angular velocities of the shafts are used to adjust the command 

signal to the actuator. However, there are also encoders on the links in addition to the 

actuator shafts that can be used for a full-state feedback scheme. Only half of the total 

available states are used for this control scheme. 

a. Flexible joint 

The flexible joint response resulted in approximately 1° steady state error (due to 

friction) for both the shoulder and elbow links, with the induced vibrations ceasing after 

approximately six seconds, as shown in Figure 30 and Figure 31.  

 

Figure 30.  Closed loop, flexible joint, shoulder link angular displacement 
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Figure 31.  Closed loop, flexible joint, elbow link angular displacement 

Table 5 gives a summary of the performance of the closed-loop, flexible joint 

system. The steady state error is simply the difference between the steady state value 

achieved measured and the desired angle. The peak-to-peak magnitude of the oscillations 

measures peak of the first oscillation only. The 2% settling time is based on the actual 

steady state value, not the desired angle, because no attempt was made to compensate for 

friction. 

Table 5.   Closed loop, flexible joint system performance summary 

 Shoulder Elbow 
Steady state value 28.78º -28.95º 
Steady state error 1.22º 1.05º 
Peak-to-peak magnitude 3.32º 4.12º 
2% settling time 3.13 s 2.32 s 
 
 
 
 



 43 

b. Rigid joint 

The rigid joint maneuver exhibited no overshoot or residual vibrations. Instead, it 

was very well damped. A 1° steady state error for both the shoulder and elbow links was 

recorded, as shown in Figure 32 and Figure 33. The error was a result of friction in the 

joints, as before. 

 

Figure 32.  Closed loop, rigid joint, shoulder link angular displacement 
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Figure 33.  Closed loop, rigid joint, elbow link angular displacement 

Table 6 is a summary of the performance metrics for the closed loop, rigid joint 

experiment. 

Table 6.   Closed loop, rigid joint system performance summary 

 Shoulder Elbow 
Steady state value 28.88º -28.63º 
Steady state error 1.12º 1.37º 
Rise time 2.388 s 1.496 s 

 

E. CHAPTER SUMMARY 

This chapter described the two-link flexible joint robot arm and its initial 

checkout. The experiments show that residual vibrations are present for the flexible joint 

maneuvers. This is because the supplied 2SOFSFJ controller is not specifically designed 

to control motion-induced vibrations. The closed loop control results in an error in both 

the shoulder and elbow links for either rigid or flexible joints. This is due to friction, the 

compensation of which will not be addressed in this thesis. 
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V. EXPERIMENTAL VERIFICATION OF A RAPID MANEUVER 

Based on the results of Chapter II, it appears feasible to execute a minimum-time 

maneuver on a two link flexible joint system, such that there are no residual vibrations. 

This chapter details the effort to demonstrate such a maneuver experimentally. 

A. MODIFICATION OF MATHEMATICAL MODEL 

The mathematical model developed in Chapter II was based on an idealized arm, 

where the spring rates, damping coefficients, and rotor moment of inertia were the same 

for each joint. The 2DOFSFJ has different spring rates and damping coefficients for each 

joint, as well as different actuators to drive the joints. These physical differences require 

slight reworking the equations to include the new variables. These physical parameters 

are shown in Table 7.   

  



 46 

Table 7.   2DOFSFJ physical parameters 

Symbol Parameter Value 

m1 Link 1 mass 2.6425 kg 

m2 Link 2 mass 0.87326 kg 

d1 Link 1 distance to COM 0.159 m 

d2 Link 2 distance to COM 0.055 m 

I1 Link 1 MOI 0.0392 kg∙m2 

I2 Link 2 MOI 8.0828x10-3 kg∙m2 

l1 Link 1 length 0.343 m 

l2 Link 2 length 0.267 m 

c1 Link 1 damping 
coefficient 

0.0176 N∙m∙s/rad 

c2 Link 2 damping 
coefficient 

0.028211 N∙m∙s/rad 

k1 Shoulder spring constant 9.90 N/m 

k2 Elbow spring constant 4.20 N/m 

Jr1 Shoulder rotor MOI 0.0637 kg∙m2 

Jr2 Elbow rotor MOI 3.5059x10-3 kg∙m2 

dC1 Shoulder rotor damping 
coefficient 

4.050 N∙m∙s/rad 

dC2 Elbow rotor damping 
coefficient 

0.125 N∙m∙s/rad 

 

These new constants were integrated into equation (1.6) and resulted in  
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Other than adding in these constants, the problem formulation remained the same 

as in Chapter II, and the problem was fortuitously well-scaled. A new minimum-time 

maneuver was solved using DIDO and the resultant trajectories were then used as the 

commands for the physical implementation. 
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B. TESTING THE MANEUVER 

The 2DOFSFJ profiled in Chapter IV is a viable platform to perform this 

maneuver on, except that the allowable joint angles only extend from -90° to +90°. The 

previously examined maneuver calls for the joints to reach 90°, and any overshoot would 

exceed the allowable range. Due to this complication, a maneuver over a smaller range 

was used. The new maneuver, shown in Figure 34, will stay well within the joint limits. 

 

Figure 34.  Schematic of 30-degree maneuver for experiments 

C. EXPERIMENTAL IMPLEMENTATION 

1. Implementation 

The performance of the experimental system will be progressively evaluated 

using a by first implementing a baseline PD controller, then using an open loop with the 

optimal torque trajectory, then with a closed loop and partial state feedback, and finally 

with open loop and full-state feedback. These experiments will all make use of the PD 

controller that was supplied with the QUARC software, but the latter three experiments 

will feed in the optimal maneuver trajectories. Figure 35 is a representative schematic of 

the overall control system used for the experiments. The control signals are derived either 

with a sigmoid function generator, which was used to compute the trajectories for the 

baseline tests, or using DIDO outputs, which are the optimal maneuver trajectories. The 

outputs of the signal generator are control signals for the angles or angular rates for the 

shoulder and elbow links and shafts, as well as the control torques for the joint actuators. 

In the experiments that were conducted, certain signals were either used in the control 

system, or terminated, depending on the test. These possible control signals, as well as 

the measured states, are labeled in the red boxes. 
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Figure 35.  Representative block diagram of control system 

The current commands that actuate the joints are a combination of the feedback 

(fb) and feed forward (ff) currents, as shown in equation (1.30). 

 total fb ffi i i= +      (1.30) 

The feedback currents are the result of gains applied to the difference between the 

commanded and measured states, as shown in equation (1.31) 
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The starred variables are the commanded states, and the un-starred are the 

measured states. Variables θi refer to the link angles, and φi refer to the shaft angles. 

Equation (1.32) shows how full-state feedback is implemented, but it is easy to adjust 

these equations for partial state feedback, simply by setting Kpθ=Kdθ=0. The gain values 

are LQR gains, tuned to the 2DOFSFJ and set by Quanser in the provided QUARC 

software. 
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2. Baseline PD Controller 

The first trial that was performed used the control law that came supplied with the 

QUARC software. Based on the characterization in Chapter IV, this system appears fairly 

accurate. Since PD controllers are commonly used, this maneuver will be used as a 

baseline against which to compare the optimal control maneuver. The command signals 

are the result of a step input being converted to a sigmoid using a QUARC sigmoid 

generator. This generates trajectories for the shafts only. Since only the shaft angles and 

angular rates were commanded, the equations in (1.32) were modified to eliminate the 

link feedback. 

The PD controller does a fair job at reaching the commanded positions, as shown 

in Figure 36 and Figure 37. There is some vibration of the shoulder for more than 5 

seconds, but the system stabilizes to a steady state error of approximately 2°. The elbow 

reaches its desired position faster with only half of the error in position. 

 

Figure 36.  Baseline PD controller response: Shoulder link angular displacement 
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Figure 37.  Baseline PD controller response: Elbow link angular displacement 

Figure 38 and Figure 39 show the angular velocity of the shoulder and elbow 

links, respectively. The elbow reaches rest in approximately 2 seconds, while the 

shoulder continues to oscillate for more than 5 seconds. 

 

Figure 38.  Baseline PD controller response: Shoulder link angular velocity 
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Figure 39.  Baseline PD controller response: Elbow link angular velocity 

Figure 40 is a plot of the shoulder and elbow currents during the maneuver. 

 

Figure 40.  Baseline PD controller response: Shoulder and elbow currents 
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Table 8 summarizes the performance of the baseline PD controller. Just as in 

Chapter IV, the 2% settling time was based on the actual final value of each link angle, 

and not the desired final value. 

Table 8.   Baseline PD controller performance summary 

 Shoulder Elbow 
Steady state value 28.91° -28.86° 
Steady state error 1.09° 1.14° 
Peak-to-peak magnitude 3.21° 4.24° 
2% settling time 2.16 s 1.338 s 
 

3. Open-Loop Optimal Response 

Since the goal of the tests is to determine whether the optimal control trajectory 

can be implemented, the next step was to implement an open loop controller where the 

optimal current trajectories alone were used as the command signals for the joint 

actuators. This effectively eliminated the feedback current and modified equation (1.30) 

to read: 

 total ffi i= .     (1.32) 

Plots of the actual and commanded currents are shown in Figures 41 and 42.  
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Figure 41.  Response for open-loop optimal control: Shoulder actuator current 

 

Figure 42.  Response for open-loop optimal control: Elbow actuator current 

Figure 43 and Figure 44 show the link angle response to the supplied current 

commands. The shoulder gets close to the desired value but the elbow has significant 

error. 
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Figure 43.  Response for open-loop optimal control: Shoulder link angular 
displacement 

 

Figure 44.  Response for open-loop optimal control: Elbow link angular 
displacement 
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Table 9 is a summary of the performance of the open loop optimal maneuver. The 

settling times are based off of the actual final values, not the desired final values. 

Table 9.   Open loop optimal maneuver performance summary 

 Shoulder Elbow 
Steady state value 29.92° -69.34° 
Steady state error 0.08° 39.34° 
Peak-to-peak magnitude 4.28° 2.98° 
2% settling time 5.622 s 0.902 s 

 

Open loop control is only expected to be feasible if the system model and 

parameters are known to a high degree of accuracy. The current model of the 2DOFSFJ, 

specifically the model parameters, is not accurate enough to provide satisfactory results. 

One way to improve performance, even without better system knowledge, is to 

implement feedback based solution.  

4. Partial-State Feedback 

The simplest feedback control relies only on feedback of the rotor shafts. Thus, 

the next step was to test a closed loop controller where the joint shaft angles and angular 

rates were used for feedback, along with current feed forward. The angular displacement 

plots are shown in Figure 45 and Figure 46. The shoulder reaches a steady state error of 

approximately 2°, and the elbow error is under 1°. 
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Figure 45.  Response for partial-feedback optimal control: Shoulder link angular 
displacement 

 

Figure 46.  Response for partial-feedback optimal control: Elbow link angular 
displacement 
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Figure 47 and Figure 48 show the angular velocities of the shoulder and elbow 

links, respectively. The elbow reaches the steady state well before the shoulder does. 

 

Figure 47.  Response for partial-feedback optimal control: Shoulder link angular 
velocity 

 

Figure 48.  Response for partial-feedback optimal control: Elbow link angular 
velocity 
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Figure 49 is a plot of the shoulder and elbow currents during the maneuver. 

 

Figure 49.  Response for partial-feedback optimal control: Shoulder and elbow 
currents 

The performance of the optimal control maneuver implemented using partial state 

feedback is summarized in Table 10.   

Table 10.   Partial-state feedback optimal maneuver performance summary 

 Shoulder Elbow 
Steady state value 28.7° -29.05° 
Steady state error 1.3° 0.95° 
Peak-to-peak magnitude 3.74° 8.0° 
2% settling time 2.136 s 1.362 s 
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5. Full-State Feedback 

Next, a closed-loop controller where the trajectories for the shaft angle, shaft 

angular rate, link angle, and link angular rate were fed back for both the elbow and 

shoulder (i.e., full-state feedback), and the current was fed forward. This implementation 

used equation (1.32) without modification. The steady state error for the shoulder and 

elbow are similar to the other tests, but the trajectories that the links follow are nearly 

identical to the commanded optimal trajectories. Thus, it is possible to use the full-state 

feedback controller to correctly implement the optimal maneuver. The results of the 

experiment are shown in Figure 50 and Figure 51, where the commanded signals are blue 

dashes and the actual trajectories are in red. The discrepancy between the commanded 

and actual curves is a result of correcting for inaccurate knowledge of the system 

parameters via the feedback mechanism. 

 

Figure 50.  Response for full-state feedback optimal control: Shoulder link 
angular displacement 



 60 

 

Figure 51.  Response for full-state feedback optimal control: Elbow link angular 
displacement 

The plots of the actual link angular velocities in Figure 52 and Figure 53 show 

that the experimental results match up almost identically with the commanded velocities.  

 

Figure 52.  Response for full-state feedback optimal control: Shoulder link 
angular velocity 
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Figure 53.  Response for full-state feedback optimal control: Elbow link angular 
velocity 

Figure 54 is a plot of the shoulder and elbow currents during the maneuver. 

 

Figure 54.  Response for full-state feedback optimal control: Shoulder and elbow 
currents 
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The performance metrics of the optimal control maneuver using full-state 

feedback is summarized in Table 11.   

Table 11.   Full-state feedback optimal maneuver performance summary 

 Shoulder Elbow 
Steady state value 29.02° -29.06° 
Steady state error 0.98° 0.94° 
Peak-to-peak magnitude 0.59° 2.25° 
2% settling time 0.624 s 0.892 s 

 

D. COMPARISON OF OPTIMAL AND BASELINE MANEUVERS 

Since the optimal control maneuver with full-state feedback appeared to perform 

the best in the trials, it was used in a side-by-side analysis against the baseline PD 

controller. Ten separate experiments were run for each the optimal and PD controllers to 

test repeatability. The results are very repeatable, and it is only by enlarging the scale that 

the separate curves begin to appear, as in Figure 55.  

 

Figure 55.  Enlarged view of the elbow link angular velocities from 10 runs 
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To compare the baseline and optimal maneuver, Figures 56 through 63 show the 

optimal control commanded trajectory in magenta and the commanded PD trajectory in 

green, along with the actual optimal and PD results, in blue and red respectively. 

1. Actual versus Commanded Trajectories 

The side-by-side comparison of the PD and optimal controllers, along with the 

comparison between the actual and commanded trajectories, is quite revealing. The actual 

optimal trajectories are very close to the commanded trajectories, so the response is quite 

predictable. On the other hand, the PD trajectories lag the command. This makes sense 

because the PD control system was set up to track only the desired shaft and link angle 

profiles. Matters would be improved by using additional inputs to the PD system, but at 

the best the baseline system would produce the green trace, which is significantly slower 

than the optimal response, in red. 

 

Figure 56.  Comparison of baseline and optimal maneuvers: Shoulder link angular 
displacement 
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Figure 57.  Comparison of baseline and optimal maneuvers: Shoulder shaft 
angular displacement 

 

Figure 58.  Comparison of baseline and optimal maneuvers: Elbow link angular 
displacement 
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Figure 59.  Comparison of baseline and optimal maneuvers: Elbow shaft angular 
displacement 

 

Figure 60.  Comparison of baseline and optimal maneuvers: Shoulder link angular 
velocity 
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Figure 61.  Comparison of baseline and optimal maneuvers: Shoulder shaft 
angular velocity 

 

Figure 62.  Comparison of baseline and optimal maneuvers: Elbow link angular 
velocity 
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Figure 63.  Comparison of baseline and optimal maneuvers: Elbow shaft angular 
velocity 

2. Average Curves 

While the optimal controller appears visually to perform better than the PD 

controller, it is difficult to quantify the overall difference in performance with these plots. 

The average of the ten optimal and ten PD experiments can be taken, and the result 

plotted. Then the average will be evaluated for when the angles reach within ±2% of the 

final angle. These results can then be compiled for ease of comparison. Figures 64 

through 67 show the average curves, along with reference lines at ±2% from the final 

values. These reference lines are used to determine settling times. 
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Figure 64.  Schematic showing the shoulder link angular displacement settling 
time 

 

Figure 65.  Schematic showing the shoulder shaft angular displacement settling 
time 
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Figure 66.  Schematic showing the elbow link angular displacement settling time 

 

Figure 67.  Schematic showing the elbow shaft angular displacement settling time 

E. INTERPRETING THE RESULTS 

A summary of the results is shown in Table 12, Table 13, and Table 14. These 

results clearly show that the optimal controller using full-state feedback is superior to the 

PD controller. 
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Table 12.   Experimental steady state values 

 Steady state 

value PD 

Steady state 

value optimal 

Steady state 

error PD 

Steady state 

error optimal 

Shoulder shaft φ 29.79° 29.92° 0.21° 0.08° 

Shoulder link θ 28.99° 29.10° 1.01° 0.90° 

Elbow shaft φ -29.55° -29.84° 0.45° 0.16° 

Elbow link θ -28.86° -29.14° 1.14° 0.86° 

Table 13.   Experimental 2% settling times 

 PD settling time (s) Optimal settling time (s) Percent difference 
Shoulder shaft φ 1.63 0.72 56% 
Shoulder link θ 2.07 0.55 73% 
Elbow shaft φ 0.93 0.74 20% 
Elbow link θ 1.34 1.03 23% 
Total response 2.07 1.03 50% 

Table 14.   Experimental peak-to-peak magnitude 

 PD Optimal Percent difference 

Shoulder shaft φ 1.25° 0.55° 56% 

Shoulder link θ 3.21° 0.58° 82% 

Elbow shaft φ 1.29° 1.42° 9% 

Elbow link θ 4.24° 2.43° 43% 

Total response 4.24° 2.43° 43% 
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Table 12 shows that the optimal maneuver using full-state feedback produces less 

error than the PD controller in all four cases. Table 13 shows that the optimal maneuver 

was faster by 50%. Table 14 is an analysis of the peak-to-peak magnitude of the 

vibration. The optimal maneuver had smaller vibrations in three out of the four cases. 

Even with a significantly faster maneuver, the steady state errors produced with the 

optimal maneuver are all much smaller than the errors produced with the PD controller. 

This shows that the optimal controller can produce a faster maneuver with less error and 

less residual vibration. 

The optimal maneuver was calculated to take 0.7084 s, and as implemented took 

1.03 s, using the longest settling time for angular displacement. This is an increase of 

45%. The baseline maneuver theoretically should take 1.002 seconds, but as implemented 

took at 2.07 seconds, an increase of nearly 107%.  

In every measure, whether time to complete the maneuver, steady state error, 

remaining vibrations, or predicted vs actual time, the optimal maneuver outperformed the 

standard baseline solution. 

F. CHAPTER SUMMARY 

This chapter sought to experimentally verify that an optimal control maneuver 

could be successfully implemented on the 2DOFSFJ. In order to do this, the 

mathematical model was modified from the one designed in Chapter II. This model was 

analyzed and run through DIDO to generate the optimal control trajectories that would be 

needed for experimental validation. In order to have a baseline comparison, a standard 

PD controller was used to move the 2DOFSFJ links to the desired positions. Following 

that experiment, the optimal control maneuver current trajectories were implemented on 

the 2DOFSFJ in an open loop. A closed loop configuration was then  run, with feedback 

on the elbow and shoulder shafts, and current feed forward. A successful experiment with 

full-state feedback, and current feed forward, was completed, and analysis was done to 

evaluate which configuration was the most successful. The optimal control solution using 

the full-state feedback controller completed the maneuver in the fastest time, with the 

least error and with the least residual vibration. 
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VI. CONCLUSIONS AND FUTURE WORK 

While this thesis has made significant contributions to the overall research goal of 

optimal cooperative maneuvering of flexible multi-body spacecraft, there is still much 

work to be done.  

A. SUMMARY OF WORK 

This thesis started on the foundation provided by previous students [10], [12]. The 

experimental testbed was upgraded, with several important additions designed and 

constructed at NPS, and many components improved. The reaction wheel array will 

enable the ultimate research goal of cooperative maneuvers, while the wireless power and 

command and control systems will provide for more representative experiments. The 

2DOFSFJ was a major addition to the MBSS. It is an ideal system for testing the optimal 

control maneuvers. An example minimum time maneuver was tested in several different 

configurations. First, a standard PD controller was used to establish a baseline. Then the 

optimal control current commands were used in an open loop. A closed loop controller 

was demonstrated, using feedback from the joint actuator shafts. Finally, a closed loop 

controller was implemented that used feedback from the shafts and the link encoders, as 

well as current feed forward, to arrive at a very effective solution. The time-optimal 

maneuver could reduce the overall time by 50% with less error and residual vibration 

than a standard control law. 

B. FUTURE WORK 

1. Fully Integrate Hardware on MBSS 

At the completion of this thesis research the MBSS is a collection of highly 

capable subsystems mounted on a common frame, but lacking the software integration 

necessary to perform the desired cooperative maneuver testing. Specifically, the passive 

flexible appendage needs to be instrumented with sensors to measure its angular 

displacement and angular velocity. Its physical properties, such as mass and moment of 

inertia, should also be quantified in the laboratory setting.  
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The reaction wheel array needs to be brought to life. The individual Maxon DC 

motors function, as verified using an analog controller. However, they have not been 

tested with the EPOS digital motor controllers. The reaction wheels must be tested to see 

if they provide enough torque and momentum for the MBSS. Pending a successful test, 

the reaction wheel mount can then be redesigned for a standard pyramid configuration. 

The National Instruments cRIO has not been integrated with the other electronics. 

The National Instruments LabVIEW software will be used to develop the correct 

command and data acquisition system. While LabVIEW is advertised as being 

compatible with the other hardware on the MBSS, the integration will be no small feat.  

The power supply needs to be fully vetted. While the reaction wheels and their 

associated motor controllers, as well as the cRIO, can all function on battery power, the 

2DOFSFJ has not been tested with the battery. The 2DOFSFJ has much more stringent 

power requirements, and will require that additional power amplifiers are added to the 

MBSS before it can be truly wireless. 

2. Improve the Mathematical Model 

The non-linear dynamical mathematical model of the 2DOFSFJ is reasonable, but 

it can be improved. The physical properties of the 2DOFSFJ should be verified 

experimentally, much as the springs were. Specifically, the link and shaft moments of 

inertia and the damping ratios should be tested. This will allow for a better model fidelity 

that will be necessary when performing cooperative maneuvers. Conversely, the optimal 

control model could be altered to allow it to incorporate uncertainty. This would be very 

useful when integrating the 2DOFSFJ with the rest of the MBSS. Since the overall 

system will rapidly outpace the ability to accurately test the mass properties of each 

element, much less the MBSS as a whole, the mathematical model must be able to 

accommodate the changing characteristics that will results from adding sensors of 

altering cable routing. A multi-body dynamical model of the full MBSS should also be 

developed. 
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3. Incorporate Reaction Wheels into Maneuver 

The most important endeavor that needs to take place is incorporating the reaction 

wheels into a cooperative maneuver with the 2DOFSFJ. This effort is essential to the 

overall research goals, but can only take place once the other two objectives are met. This 

will be a demanding task, requiring a highly accurate mathematical model of the system 

and a fully functioning testbed infrastructure. Further, it will be important to derive the 

correct metrics on which to evaluate the maneuver. While minimum time maneuvers are 

valuable, it may be more important to deliver a minimum energy maneuver or to consider 

other cost functionals.  
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