
Reissued 27 Sep 2018 to reflect updated abstract on pages i and v.

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

A SECURITY STRATEGY FOR CYBER THREATS ON
NEIGHBOR DISCOVERY IN 6LOWPAN NETWORKS

by

Cheng Hai Ang

December 2017

Thesis Advisor: Preetha Thulasiraman
Second Reader: George Dinolt

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
A SECURITY STRATEGY FOR CYBER THREATS ON NEIGHBOR
DISCOVERY IN 6LOWPAN NETWORKS

5. FUNDING NUMBERS

6. AUTHOR(S) Cheng Hai Ang

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Wireless sensor networks employ various technologies to facilitate low-power communications. One
such technology is the Internet Protocol version 6 Low-Power Local Area Networks (6LoWPAN). One of
the key concerns regarding 6LoWPAN networks is the vulnerability of its neighbor discovery (ND)
protocol. In this thesis, we study the potential threat vectors against the ND protocol, focusing specifically
on replay attacks that can cause denial of service. We propose a combination of hard and soft security
approaches to mitigate cyber-attacks against the ND protocol. The hard security approach is based on a
Trust-ND option, which includes a Timestamp, Nonce, and SHA-1 hashing function. The soft security
approach leverages the social interactions between the nodes in the network to identify malicious nodes.
We also propose a time-synchronization mechanism to synchronize the local clock of the nodes in the
network. We demonstrate the effectiveness of the Nonce and Timestamp functions against replay attacks
using the Contiki Operating System and Cooja network simulator. Via simulations, we also demonstrate
the effectiveness of the time-synchronization mechanism. In addition, the data captured during the
simulations is further analyzed using Wireshark.

14. SUBJECT TERMS
IPv6 neighbor discovery, lightweight security mechanism, 6lowPAN

15. NUMBER OF
PAGES

121
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

A SECURITY STRATEGY FOR CYBER THREATS ON NEIGHBOR
DISCOVERY IN 6LOWPAN NETWORKS

Cheng Hai Ang
Civilian, Defence Science and Technology Agency (DSTA)

B.Eng., Nanyang Technological University of Singapore, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2017

Approved by: Preetha Thulasiraman, Ph.D.

Thesis Advisor

George Dinolt, Ph.D.
Second Reader

R. Clark Robertson, Ph.D.
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Wireless sensor networks employ various technologies to facilitate low-power

communications. One such technology is the Internet Protocol version 6 Low-Power

Local Area Networks (6LoWPAN). One of the key concerns regarding 6LoWPAN

networks is the vulnerability of its neighbor discovery (ND) protocol. In this thesis, we

study the potential threat vectors against the ND protocol, focusing specifically on replay

attacks that can cause denial of service. We propose a combination of hard and soft

security approaches to mitigate cyber-attacks against the ND protocol. The hard security

approach is based on a Trust-ND option, which includes a Timestamp, Nonce, and SHA-

1 hashing function. The soft security approach leverages the social interactions between

the nodes in the network to identify malicious nodes. We also propose a time-

synchronization mechanism to synchronize the local clock of the nodes in the network.

We demonstrate the effectiveness of the Nonce and Timestamp functions against replay

attacks using the Contiki Operating System and Cooja network simulator. Via

simulations, we also demonstrate the effectiveness of the time-synchronization

mechanism. In addition, the data captured during the simulations is further analyzed

using Wireshark

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. 6LoWPAN NETWORK ..1
B. SECURITY CONCERNS OVER 6LoWPAN NETWORKS3
C. RESEARCH MOTIVATION AND OBJECTIVES4
D. THESIS CONTRIBUTION ..5
E. THESIS ORGANIZATION ..5

II. BACKGROUND ON 6LoWPAN NEIGHBOR DISCOVERY7
A. IPV6 ND PROTOCOL ..7

1. Overview ...7
2. ND Protocol Messages ...7
3. ND Protocol Mechanism..9

B. ND THREATS AND VULNERABILITIES ..10
C. CHAPTER SUMMARY ..12

III. RELATED WORK ..13
A. EXISTING SOLUTIONS FOR SECURING THE ND

PROTOCOL ...13
1. IP Security ..13
2. Secure Neighbor Discovery (SEND) ...13
3. SEND Vulnerabilities...15
4. Further Improvements on SEND ...15

B. CHAPTER SUMMARY ..17

IV. PROPOSED SECURITY MECHANISM FOR ND PROTOCOL19
A. DESIGN CONSIDERATIONS ...19
B. PROPOSED SECURITY MECHANISM ...19

1. Hard Security Implementation ...21
2. Soft Security Implementation ...25

C. CHAPTER SUMMARY ..28

V. EXPERIMENTAL SETUP ...29
A. AIM OF EXPERIMENT ...29
B. NETWORK SIMULATION SETUP ...29

1. Contiki OS and Cooja Network Simulator29
2. Simulation Environment ...29

C. ATTACK SCENARIOS ..31

 viii

1. Nonce Option against Replay Attacks..31
2. Timestamp Option against Replay Attacks32

D. MODIFICATIONS TO EXISTING CONTIKI OS CODE32
E. CHAPTER SUMMARY ..33

VI. SIMULATION RESULTS AND ANALYSIS ...35
A. ATTACK SCENARIO WITHOUT TRUST-ND OPTION35
B. ATTACK SCENARIO WITH NONCE OPTION38
C. ATTACK SCENARIO WITH TIMESTAMP OPTION......................42
D. TIMESTAMP OPTION WITH DE-SYNCHRONIZED

CLOCKS ...44
E. TIMESTAMP OPTION WITH TIME-SYNCHRONIZATION

MECHANISM ..45
F. CHAPTER SUMMARY ..47

VII. CONCLUSION AND FUTURE WORK ...49
A. SUMMARY AND CONCLUSIONS ..49
B. FUTURE WORK ...49

1. Evaluation of the Entire Hard Security Mechanism50
2. Evaluation of the Soft Security Mechanism50
3. Scalability of the Security Mechanism50

APPENDIX. SOURCE CODE ...51

LIST OF REFERENCES ..99

INITIAL DISTRIBUTION LIST ...103

 ix

LIST OF FIGURES

Figure 1. Typical Network Architecture between a 6LoWPAN and IPv6
Network. Adapted from [4]. ...2

Figure 2. Comparison of the 6LoWPAN Protocol Stack and the TCP/IP
Protocol Stack ..3

Figure 3. ND Protocol Message Format. Adapted from [14].8

Figure 4. Router Discovery Mechanism..9

Figure 5. Structure of Trust-ND Option in an IPv6 Packet. Adapted from [17].21

Figure 6. Effects of Clock Time Desynchronization in a Network23

Figure 7. Replay Attack Mitigated through the Use of a Nonce24

Figure 8. Logic Flow for the Soft Security Mechanism ..27

Figure 9. Relative Position of the Nodes in the Simulated Network31

Figure 10. Captured Events in the Network without Trust-ND Option (Part
One)..36

Figure 11. Captured Events in the Network without Trust-ND Option (Part
Two) ...37

Figure 12. Correlation between Nodes’ Output and 6LoWPAN Network
Analyzer (without Nonce Option) ...38

Figure 13. Captured Events in the Network with Nonce Option (Part One)39

Figure 14. Captured Events in the Network with Nonce Option (Part Two)39

Figure 15. Correlation between Nodes’ Output and 6LoWPAN Network
Analyzer (with Nonce Option)...40

Figure 16. Trust-ND Option with Nonce Data Breakdown Using Wireshark41

Figure 17. Captured Events in the Network with Timestamp Option (Part One)43

Figure 18. Captured Events in the Network with Timestamp Option (Part Two)43

Figure 19. Timestamp Option with De-synchronized Clocks Simulation Data45

Figure 20. Timestamp Option with Synchronized Clocks Simulation Data46

Figure 21. Trust-ND Option with Timestamp Data Breakdown Using
Wireshark ...47

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Summary of Attack Scenarios on ND Message Types11

Table 2. Summary of Outputs Associated with Different Trust Values for the
Soft Security Mechanism ...27

Table 3. Simulation Parameters ...30

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

6LoWPAN Internet Protocol version 6 Low Power Personal Area Network

ADD Authorisation Delegation Discovery

AH Authentication Header

CGA Cryptographically Generated Address

DHCP Dynamic Host Configuration Protocol

DoS Denial of Service

ECC Elliptic Curve Cryptography

ESP Encapsulating Security Payload

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IPSec IP Security

MD5 Message Digest 5

MTU Maximum Transmission Unit

NA Neighbor Advertisement

ND Neighbor Discovery

NS Neighbor Solicitation

NUD Neighbor Unreachability Detection

RA Router Advertisement

RS Router Solicitation

RSA Rivest Shamir Adleman

SA Security Association

SEND Secure Neighbor Discovery

SHA-1 Secure Hash Algorithim-1

SLAAC Stateless Address Autoconfiguration

TCP Transport Control Protocol

UDP User Datagram Protocol

UTC Coordinated Universal Time

WSN Wireless Sensor Networks

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

First, I would like to thank my wife, Ivy, for her support and care during my year

of study at NPS. I would also like to thank my son, Yu Zi, for being a sensible boy and

offering his help in our daily matters. I would like to express my deep gratitude to my

thesis advisor, Professor Preetha Thulasiraman, for providing me the guidance and

knowledge needed to write this thesis. She also gave me the motivation and direction to

complete the work on time. Without her influence, I would not have been able to finish

the thesis in less than six months. I would like to thank Dr. George Dinolt for giving me

his guidance as well. Last but not least, I would like to thank the Defence Science and

Technology Agency (DSTA) for giving me this opportunity to pursue my postgraduate

studies.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The use of Wireless Sensor Networks (WSN) is growing rapidly in today’s

military operations, where information dominance is critical for commanders to have

better situational awareness. This allows them to make quicker and better decisions in

time-critical warfare. Large numbers of remote sensors can be deployed in an area of

operations to provide persistent surveillance. Information gathered by the senor node is

shared with the command and control center via a secure wireless network. Sensors are

usually small in size to avoid detection. They can be self-maintained and self-organized

with no need for human intervention or a pre-existing infrastructure. These sensors are

usually inexpensive, and thus, they have limited resources in memory, communication

range, computational power, and energy storage. Such constraints are the key drivers that

require WSNs to have effective communication and security mechanisms. The Institute

of Electrical and Electronics Engineers (IEEE) and the Internet Engineering Task Force

(IETF) have developed several communication standards to address the constraints in

WSNs. These standards are discussed in the following sections.

A. 6LoWPAN NETWORK

The protocols that we use for the Internet are not suitable for WSN applications,

as WSNs have varying traffic statistics, dynamic topologies, and limited payload sizes

[1]. Moreover, the devices in the WSN are low-powered, with limited computational

power and memory. This led to the introduction of the IEEE 802.15.4 standard [2] which

defines the operation of low rate wireless personal area networks at the physical and

medium access control (MAC) layers. To ensure that each device is Internet Protocol

version 6 (IPv6)-addressable, the IETF built upon the IEEE 802.15.4 standard by

introducing an IPv6 adaptation layer above the IEEE 802.15.4 MAC sublayer. This

adaptation layer is also known as the IPv6 Low Power Personal Area Network

(6LoWPAN) adaptation layer [3].

 2

The 6LoWPAN adaptation layer leverages the existing IPv6 infrastructure (i.e.,

the IPv6 address space and the IPv6 Neighbor Discovery (ND) protocol) while allowing a

resource constrained network protocol to communicate with the IPv6 Internet [3].

The 6LoWPAN adaptation layer provides three key functions which include

“packet fragmentation and reassembly, header compression, and data link layer

routing” [1]. A typical network architecture connecting the IPv6 Internet and a

6LoWPAN network is shown in Figure 1.

Figure 1. Typical Network Architecture between a 6LoWPAN and IPv6
Network. Adapted from [4].

The differences between the Transport Control Protocol (TCP)/IP protocol stack

and the 6LoWPAN protocol stack are shown in Figure 2. In a typical network model, IP

is the only protocol that is linked directly to the transport and data link layers. The

6LoWPAN network integrates both IPv6 and the 6LoWPAN adaptation layer to facilitate

the transition between a resource constrained network and the typical IPv6 Internet.

To achieve seamless data transition, one of the key functions of 6LoWPAN at the

border router is to adapt to the large difference in packet size of 6LoWPAN and IPv6

networks by exercising packet fragmentation at the IPv6 layer and, subsequently,

executing packet reassembly at the IEEE 802.15.4 MAC layer. An IPv6 packet has a

minimum size of 1280 bytes, while 6LoWPAN has only a size of 127 bytes [5]. For a

 3

6LoWPAN network, the transport layer usually does not use the TCP because TCP is

more complex and incurs more overhead as compared to the User Datagram Protocol

(UDP) transport protocol [6]. The Internet Control Message Protocol (ICMP) is common

in both a typical IP network and in 6LoWPAN networks. It is mainly used for sending

error and informational messages between nodes in the network such as ND

messages [7].

Figure 2. Comparison of the 6LoWPAN Protocol Stack and the
TCP/IP Protocol Stack

There are several 6LoWPAN standards offered by the IETF that serve as

important references for researchers studying WSNs, namely RFC 4944 (Transmission of

IPv6 Packets over IEEE 802.15.4 Networks) [3], RFC 6282 (Compression Format for

IPv6 Datagrams over IEEE 802.15.4-Based Networks) [5], and RFC 6775 (Neighbor

Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks) [8].

B. SECURITY CONCERNS OVER 6LoWPAN NETWORKS

The limitations in resources such as memory, computation power, and energy

storage impose security challenges on 6LoWPAN networks. The typical security

solutions tailored for the Internet are not suitable for 6LoWPAN networks mainly due to

 4

high complexity and high computational power. With limited support from existing

security services, the 6LoWPAN network is vulnerable to cyber-attacks at all layers of

the protocol stack. Moreover, these attacks can be executed by both internal and external

adversaries.

A robust and efficient security mechanism is desired to enable the 6LoWPAN

network to mitigate different cyber-attacks; however, a robust security mechanism is

difficult to achieve, as this usually requires highly complex software and computational

power which then leads to a system with higher latency and low efficiency.

Implementation of security protocols create a trade-off between robustness and

efficiency. The challenge is to find the right balance, which usually varies depending on

the relative importance of security and performance requirements of the network.

The authors of [4] studied the potential security threats and vulnerabilities of

6LoWPAN networks. They catalogued suitable security mechanisms to counter specific

security weaknesses in 6LoWPAN. According to [4], one of the key security concerns for

the 6LoWPAN network is the potential cyber-attack on the IPv6 ND Protocol. The ND

protocol is used by nodes to join a new network and to establish communication between

nodes and routers. Without an appropriate security mechanism to protect the ND

protocol, cyber-attackers can disguise themselves as legitimate hosts or routers and cause

denial of service (DoS) to the nodes in the network or redirect ND messages to the wrong

destinations.

C. RESEARCH MOTIVATION AND OBJECTIVES

The original IPv6 ND specification recommended the use of IP Security (IPSec)

to protect the ND messages; however, due to the impracticality of having to manually

configure security associations between all the sensor nodes, using IPSec is infeasible.

Threat models on IPv6 ND have been discussed in RFC 3756 [9]. This RFC defines the

requirements for a Secure Neighbor Discovery (SEND) protocol without using IPSec.

The SEND protocol was developed to counter potential cyber vulnerabilities in RFC

3971 [10]; however, we assessed the SEND protocol to be computational intensive due to

its use of a Cryptographically Generated Address (CGA) and digital signatures. This

 5

approach may not be suitable for a 6LoWPAN network as it has limited resources in

terms of memory, computational power, and energy storage.

In this thesis, we study the security mitigating measures for the ND protocol

based on existing literature and defines an appropriate security mechanism that is

efficient and effective in protecting the ND protocol against cyber-attack. Effectiveness

of the security measure is evaluated through simulation.

D. THESIS CONTRIBUTION

To meet the previously stated objectives, we study and compare several existing

security solutions for the ND protocol. We then define a set of design considerations for

the security mechanism of ND suitable for a 6LoWPAN network. We propose a

combination of hard and soft security mechanisms for the ND protocol to provide a

balance in terms of network performance and security protection. Hard security

mechanisms are functions that prevent attackers from entering the network, while soft

security can tolerate attackers entering the network but use social interactions with the

other nodes in the network to identify the malicious nodes and avoid communicating with

them. The hard security mechanism uses Secure Hash Algorithim-1 (SHA-1),

Timestamp, and the Nonce function, while the soft security mechanism uses a centralised

trust management scheme to identify the malicious nodes in the network. We evaluate the

effectiveness of the proposed security mechanism by simulating attack scenarios against

the key security functions using the Contiki operating system (OS) and Cooja network

simulator.

E. THESIS ORGANIZATION

The remainder of this thesis is organized as follows. In Chapter II, we cover the

relevant background information of the ND protocol of both IPv6 and 6LoWPAN and

their associated security issues. In Chapter III, we discuss the related work that has been

done to address the security concerns in the 6LoWPAN ND protocol. In Chapter IV, we

discuss the proposed neighbor discovery security algorithm for the 6LoWPAN network.

In Chapter V, we describe our simulation environment for the attack scenarios. In

 6

Chapter VI, we present and discuss the results of the simulations. In Chapter VII, we

conclude the thesis and discuss directions for future work. The code developed for the

network simulation is included in the Appendix.

 7

II. BACKGROUND ON 6LoWPAN NEIGHBOR DISCOVERY

The overview of the ND process in IPv6 and 6LoWPAN networks is described in

the following sections. We discuss the various ICMP messages exchanged between hosts

and routers during the ND process in addition to the actual ND mechanism. We also

highlight the vulnerabilities of the ND process.

A. IPV6 ND PROTOCOL

1. Overview

The IPv6 ND protocol is one of the main building blocks in IPv6 wireless

systems. Its critical functions include discovering neighbor nodes on the same link,

detecting if a neighbor node is reachable, detecting duplicate IP addresses, determining

the link-layer addresses, and finding routers [11]. Without the ND protocol, the network

is not able to function.

The ND protocol serves an important role in mobile IPv6 networks by removing

the need for third party devices such as a Dynamic Host Configuration Protocol (DHCP)

server. DHCP is not required as new nodes are able to self-configure their own IPv6

addresses [12]. Another protocol named ND proxy is only applicable for mobile nodes.

Mobile nodes may not be reachable from nodes on the home network. The ND proxy

protocol allows the home agent to act as a proxy to the off-link mobile node and perform

the ND operations on the node’s behalf. The ND proxy protocol has its own security

challenges [13] which are not covered in this thesis. In this thesis, we assume that the

deployment of the mobile nodes does not require proxies because the nodes are expected

to stay within the range of a single 6lowPAN network.

2. ND Protocol Messages

The ND protocol messages are formatted as ICMP messages. The message is

encapsulated by IPv6 and IEEE 802.15.4 headers. The ND protocol message format is

shown in Figure 3. Five key ICMP version 6 (ICMPv6) message types are used in the ND

protocol to facilitate ND operations: Router Solicitation (RS), Router Advertisement

 8

(RA), Neighbor Solicitation (NS), Neighbor Advertisement (NA), and Redirect

Message (RM).

Figure 3. ND Protocol Message Format. Adapted from [14].

The multicast RS message is generated by a new host to find routers on the

network it is physically connected to and to gain information about the network.

Information learned by a router includes the prefix and IP address of the host [11].

IPv6 Routers send periodic RA messages to advertise their presence on the link as

well as to communicate router parameters. The router parameters include link prefixes, a

link Maximum Transmission Unit (MTU), and a hop limit. An RA message is also used

as a response to an RS message [11].

A multi-cast NS message is sent by a host to obtain the link-layer addresses of the

neighbor nodes. It is also used to check if the neighbor node is still within reachable

range [11]. A multi-cast message is sent from a source to a group of hosts that subscribe

to the specific multicast address.

A unicast NA message is mainly used to respond to a NS message. A unicast

message is sent from a host to a specific destination. Unsolicited NA messages (can be

unicast or multicast) can also be sent if there are changes within the node, (i.e., if there is

a change in the link-layer address, the host sends an unsolicited NA message to inform

the network [11]).

The redirect message is used by a router to inform the neighbor node to improve

their route to reach a certain destination node [11].

 9

3. ND Protocol Mechanism

According to [11], there are several key IPv6 ND protocol mechanisms that allow

the interaction between nodes that are attached to the same link. These key mechanisms

are described in the following subsections.

a. Router Discovery

Based on [11], the Router discovery mechanism is required for the host to a)

locate neighboring routers, b) learn the IP prefix address ranges that reside on the same

link and c) discover the capabilities of the link and router. This function is executed by

the exchanges of RS and RA messages between the host and router. The host sends a

multicast RS message to find routers in the network. When the router receives the RS

message, it responds to the host with a multicast RA message containing a set of prefix

information that belongs to the on-link IP addresses. Also, link parameters such as hop

limit and link MTU are also sent in the RA message. The router discovery mechanism is

illustrated in Figure 4. In addition to solicited RA messages, the router also sends

periodic RA messages to neighbor hosts [11].

Figure 4. Router Discovery Mechanism

 10

b. Address Resolution Mechanism

The authors of [11] also introduce the address resolution mechanism. When a

node needs to send a unicast packet to its neighbor, it needs to have both its neighbor’s IP

and link-layer addresses. If the node has only its neighbor’s IP address, it needs to

perform address resolution to obtain the neighbor’s link-layer address. To achieve this,

the node sends an NS message to the neighbor to request its link-layer address. The

neighbor then responds with a unicast NA message which includes its link-layer

address [11].

c. Neighbor Unreachability Detection (NUD)

The neighbour unreachability detection (NUD) function is used to determine

whether a node’s neighbour is reachable [11]. The node sends a unicast NS message to its

neighbour, and if the neighbor receives the NS message, it responds with a unicast NA

message. This confirms that its neighbor is reachable. The reachability status of a

neighboring node is then updated in the neighbor cache [11]. The neighbor cache is a

table of information that consists of all the neighbors’ IP addresses with their associated

link-layer addresses and the status of the neighbor’s reachability state [14].

d. Redirect

The router sends a redirect message to inform originating hosts that there is a

better first-hop neighbor where packets can be forwarded to a specific destination. When

the originating host receives the Redirect message, it sends subsequent packets addressed

to the same destination via the better route determined by the router [11].

B. ND THREATS AND VULNERABILITIES

The authors of [9] surveyed various threats and vulnerabilities to the ND protocol

with the aim to develop a more secure ND operation. All the ND protocol mechanisms

described in Section A are subject to cyber-attacks, including DoS, redirect attacks, and

replay attacks. These attacks can be easily executed during the ND phase by forging any

of the ND messages including RS, RA, NS, NA and Redirect messages; thus, it is

important to implement a security mechanism that can protect the ND messages, detect

 11

cyber-attacks, and identify malicious nodes. A summary of the cyber-attacks against the

ND protocol is shown in Table 1.

Table 1. Summary of Attack Scenarios on ND Message Types

In [9], the potential threats to the router discovery mechanism are discussed. RA

messages are important for nodes to learn about the on-link prefix address and the

network configuration parameters including MTU, router lifetime, router link-layer

address, etc. Based on [7], there is a checksum in the ICMPv6 header to ensure the

integrity of the entire message; however, the attacker can simply alter the details of the

message to keep the same checksum code. An attacker can modify one or more fields in

the RA messages to cause a DoS attack to the hosts who received and processed the RA

messages. With the fake prefix address, the hosts will configure an incorrect source

address and end up being suspected as an attacker as it does not belong to the subnet.

With a fake link MTU that is larger than the actual link MTU, the victim hosts are unable

to send packets out to the link.

The attacker can set the router lifetime to zero, and the victim hosts will not

regard the legitimate router as a default router and would then need to find an alternative

router. The hosts may end up not being able to send packets out of its subnet as there are

 12

no other routers available. At this point the host has been deceived by the attacker into

believing that the actual router is disabled. This allows the attacker to masquerade as a

legitimate router which the host uses to send data. The attacker can then redirect the

host’s packets to other destinations [9].

It is also discussed in [9] that the router discovery mechanism is subject to replay

attacks. An attacker can duplicate the RA messages and replay them later to the host.

With no security mechanism to detect replay messages, the host accepts the replay

messages with outdated information which may cause confusion between the host and the

network. The attacker can also send multiple replay messages to overwhelm the victim,

and as a result, the victim is denied service. In this attack, the attacker does not need to

modify the messages [9]; therefore, securing the integrity of the ND messages is

insufficient. Additional security measures are needed to detect and prevent replay attacks.

C. CHAPTER SUMMARY

In this chapter, the basic messaging mechanism of the ND protocol in IPv6 and

6LoWPAN were discussed. The threats and vulnerabilities of ND were also covered.

Security mitigation techniques against the above threats and vulnerabilities are discussed

in the next chapter.

13

III. RELATED WORK

In literature, various solutions to secure the IPv6 ND protocol have been

proposed. In this chapter, we discuss existing security mechanisms for ND, focusing on

those approaches which our proposed solution is based.

A. EXISTING SOLUTIONS FOR SECURING THE ND PROTOCOL

1. IP Security

The IPSec protocol [15] was initially introduced to provide security protection for

the ND protocol via the IP layer. IPSec consists of a set of services and protocols that

offer data integrity, confidentiality, and protection against certain types of cyber security

attacks such as replay attacks.

There are two key security mechanisms in IPSec, namely the Authentication

Header (AH) and the Encapsulating Security Payload (ESP). The AH is used to provides

authentication for all or parts of the packet, while ESP provides encryption on the

messages. Both AH and ESP use common hash algorithms such as SHA-1 and Message

Digest 5 (MD5). Prior to the use of AH and ESP, the two devices need to manually set up

bidirectional Security Associations (SA) so that they can exchange information securely.

As a result, the effort to setup an SA configuration can become tedious and almost

impractical when a large network is being used. IPSec is not beneficial for ND operations

where nodes need to auto configure themselves to connect to the network [10]. In

addition, the authors of [16] assessed that IPSec consumes a large amount of resources

that leads to poor network performance and high network administration cost.

2. Secure Neighbor Discovery (SEND)

Due to the above-mentioned limitations in the IPSec protocol, the IETF developed

the SEND protocol [10] to secure the various functions in the ND protocol. The security

measures of SEND include: a) address ownership proof mechanism, b) message integrity

function, and c) discovery of trusted routers. These measures are either in the form of ND

message options or new ICMPv6 messages. Four ND options are introduced in SEND,

 14

namely Cryptographically Generated Address (CGA), RSA signature, Timestamp, and

Nonce. Two new ICMPv6 messages between hosts and router including Certification

Path Solicitation (CPS) and Certification Path Advertisement (CPA) are implemented.

The details of the security implementation are discussed in the following paragraphs..

In [10], it states that the CGA option is used to ensure that the sender of a ND

message is the legitimate owner of the source address stated in the message. All the

nodes’ registered IP addresses are combined with a public key to form a CGA IPv6

address. The public key and its associated parameters are in turn hashed (using SHA-1) in

the ND message option so that no one can modify it. The receiver can then re-calculate

the hash value to confirm that the sender is the actual owner of the claimed address. The

key benefit of CGAs is that they are independent and do not need additional

infrastructure or a third party to form IPv6 addresses. The drawback of CGA is its

complexity and high computational cost that may lead to CPU exhaustion attacks [17].

The Rivest Shamir Adleman (RSA) signature is another option to ensure that the

sender’s identity is genuine [10]. The sender uses its own private key to generate the

signature which in turns mitigates against stealing of CGA addresses. The generation and

verification of the RSA signature are also assessed to be computationally expensive [9].

A Nonce option can prevent replay attacks in the solicited messages such as

NS/NA and RS/RA messages [10]. The Nonce option generates a unique random number

in the sender’s solicitation message. The recipient responds with an advertisement

message with the same unique random number. As such, when a node receives the

advertisement message, it is able to detect if the message is a fresh response to its last

solicitation message.

In [10], the Timestamp option was proposed to mitigate unsolicited

advertisements against replay attacks. For the Timestamp option to be effective, all the

nodes must have synchronized clocks. According to [10], the “Timestamp is based on a

64-bit unsigned integer that represent the number of seconds since January 1, 1970, 00:00

UTC. The first 48 bits of the field indicate the number of seconds while the remaining 16

bits represent the number of 1/64K fractions of a seconds”.

 15

Router authorization is another security feature of [10]. When a new host wants to

join a network, it does not know who to trust. A rogue router can send fake RA messages

to the new host and make it believe that the rogue router is a legitimate router. To prevent

this, [10] suggest the deployment of an Authorisation Delegation Discovery (ADD) to

allow hosts to validate if the router is authorised by a trust anchor.

3. SEND Vulnerabilities

While SEND provides security protection on the threats highlighted in Chapter II,

Section B, the authors of [18] assessed that its RSA and CGA mechanisms consume

excessive computational resources and bandwidth. In addition, SEND also introduces

some new vulnerabilities that make the network susceptible to attacks.

a. CGA Vulnerability

In [18], it states that while the CGA mechanism can prevent address spoofing, it

cannot be certain that the node with the CGA address is a legitimate node. Attackers can

use their own public keys to create new CGA addresses.

b. DoS Attacks on Router Authorization

The router authorization mechanisms may be subject to a DoS attack by sending a

number of unnecessary CPA messages to the target host and forcing it to spend its

resources to process and verify the forged certification path [18].

4. Further Improvements on SEND

As mentioned previously, while the CGA option has improved security on the ND

protocol, it created a few loopholes for other potential threats to enter the network.

In [19], threats on CGA were highlighted, namely global time-memory trade-off attacks

and the lack of authentication in the CGA verification process. They have developed an

enhancement of CGA option, named CGA++, to mitigate these identified potential

threats; however, these enhancements add more complexity and make the CGA algorithm

less efficient. In the context of 6lowPAN devices, which have constrained power and

computation limits, these CGA enhancements or even CGA itself may not be suitable.

 16

Another solution was proposed in [20] to improve the security of the ND protocol

by designing a central detection mechanism to detect NS and NA spoofing. The

mechanism included a) setting up and monitoring of several data logging tables related to

the NS/NA messages and b) introducing probe requests in the form of an NS message

format. One of the key logging tables records all the authenticated IP-MAC binding

addresses based on previous interactions between the nodes and the detection mechanism.

While spoofing is detected, this mechanism has no means to know which message is

spoofed.

In [21], SEND was improved by replacing the CGA algorithm with a more

efficient solution to randomise the nodes’ IP address. The solution included the

integration of a randomly generated IP address with a signature to the ND messages. The

random generator used an Elliptic Curve Cryptography (ECC) algorithm which is able to

generate keys within a short time and to randomize the IP address using less steps as

compared to the CGA algorithm. Based on experimental results, it was shown that while

there is an improvement in the computation time by using the ECC algorithm as

compared to CGA algorithm, the improvement dropped significantly when the security

level parameter used in the algorithm is raised.

A distributed trust-based mechanism, Trust-ND, was developed to secure the ND

protocol in [17]. To reduce computational resources and complexity, the mechanism

removed both the CGA and RSA options proposed by SEND. A hybrid approach

consisting of hard and soft security measures was implemented. For hard security, three

techniques were included: a) unkeyed hash function using SHA-1, b) Timestamp, and c)

Nonce.

SHA-1 was used to ensure message integrity, while the Timestamp and the Nonce

were used to ensure timeliness and uniqueness of every ND message. For this

mechanism, a trust option was generated on top of the ND messages, and both the

Timestamp and Nonce information were stored in the option. This single option reduced

hundreds of bytes from the SEND options and, therefore, aided in reducing the

bandwidth consumption while still possessing the security protection provided by both

Timestamp and Nonce.

 17

For soft security, the concept is to accept that there will be malicious nodes in the

network regardless of how strong the hard security is, which may include encryption,

certification, and digital signatures. The aim of soft security is to identify which are the

malicious nodes in the network and prevent them from causing damage to the network by

sharing information with the nodes in the network. Trust-ND is based on a distributed

trust management scheme using a probabilistic trust model to identify and determine if

the nodes are trustworthy. The experiments in [17] showed that Trust-ND is more

efficient than SEND and, therefore, it is assessed that it could be used for a 6LoWPAN

network. Due to sleeping nodes in 6LoWPAN, we believe a centralised trust mechanism,

instead of distributed approach, may be more effective.

B. CHAPTER SUMMARY

In this chapter, various solutions from existing researchers to improve the security

for the ND process for 6LoWPAN networks were discussed. From the above solutions, it

is understood that one cannot develop a perfect solution that can keep the 6LoWPAN

network safe from all security attacks on ND. The solutions usually come with trade-offs

and there are always loopholes in the network which the attacker can exploit to disrupt

the network communications. More security measures may improve the situation but may

also lead to poorer network performance (e.g., higher power consumption, higher

bandwidth, higher computation complexity, higher latency, and lower throughput) or

create new gaps for an attacker to disrupt the network; thus, we need to find the right

balance between security protection and network performance.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

IV. PROPOSED SECURITY MECHANISM FOR ND PROTOCOL

As was discussed in Chapter III, there are many solutions that have been proposed

to secure the ND protocol. Each solution has its own advantages and disadvantages. In

this chapter, we discuss the components of our security mechanism for the ND protocol

using hard and soft security. First, we discuss our design considerations for the developed

ND security mechanism. Secondly, we adapt and modify existing solutions in the

literature to meet our design considerations.

A. DESIGN CONSIDERATIONS

Key design considerations identified for designing a suitable security mechanism

for the 6LoWPAN ND protocol are as follows:

• It should leverage the existing ND protocol and minimize changes to the

ND message format and operation.

• It should not require regular software upgrades or installation of software

in all systems in the network.

• It should require low power consumption, computational power, and

latency.

• It should not require an external infrastructure or a third party to support

the network.

• It should be able to secure the ND protocol against cyber-threats identified

in Chapter II. Specifically, in this thesis, we focus on replay attacks which

can cause DoS.

B. PROPOSED SECURITY MECHANISM

The proposed security mechanism for the ND protocol of 6LoWPAN networks is

adapted from [17] which adopts both hard and soft security measures. This security

approach is more efficient when compared to SEND as it removes the use of complex

 20

security algorithms such as CGA and RSA and relies only on a simpler SHA-1 algorithm

for data integrity. SHA-1 requires smaller key size, less computational power, and less

processing time as compared to RSA [22]. While SHA-1 provides weaker security

protection as compared to CGA and RSA, it provides a balance in terms of network

performance and security protection. The addition of further hard security protections

will only overload the network. The inclusion of a soft security mechanism (as proposed

by [17]) offers an alternative solution in securing the network. Instead of trying to protect

the network by preventing attackers from entering, the soft security mechanism can

tolerate attackers entering the network by using social interactions with the other nodes in

the network to identify the malicious nodes; thereby, the node avoids communicating

with malicious devices. As a result, the attackers are isolated and their influence in the

network is reduced.

This solution leverages the existing ICMPv6 ND messages by adding a Trust-ND

option on top of these messages [17], and no changes are made to either the ND process

or the ICMPv6 message format. This solution addresses the constraints faced by

6LoWPAN networks by keeping it simple with minimal resources yet efficient and

effective.

The hard security mechanism is built into the ICMPv6 messages as an option,

while the soft security mechanism lies in the interactions between nodes and data logging

in the neighbor cache at the existing central default router. As a result, external

infrastructure or additional parties to aid in the security mechanism are not needed.

We make two modifications to the soft security approach to better suit

6LoWPAN. These modifications are as follows: a) we replace the distributed trust-based

mechanism with a centralized trust-based mechanism and b) we adopt a simple trust

value calculation for soft security instead of using a probabilistic trust model based on

beta reputation function [23]. In the following sections, we will provide the details of the

proposed security mechanism.

 21

1. Hard Security Implementation

A new ICMPv6 option named Trust-ND option is added to all the ICMPv6 ND

messages. The ICMPv6 ND message with the Trust-ND option is referred to as the Trust-

ND message [17]. The structure of the Trust-ND message within an IPv6 packet is

illustrated in Figure 5.

Figure 5. Structure of Trust-ND Option in an IPv6 Packet. Adapted from [17].

Based on [17], the Trust-ND option follows the ICMPv6 option format and has a

total size of 32 bytes. The TYPE field consist of one-byte data to define the type of

ICMPv6 option that the ND message is carrying. A value of 253 is assigned to show that

the Trust-ND option is an experimental option to the ND message [24]. A value of four is

assigned to the one-byte length field as the total size of the Trust-ND option is 32 bytes.

There is a two-byte field that is reserved. There are three main security fields: Message

Generation Time, Nonce, and Message Authentication Data. Message Authentication

Data is 20 bytes, while the Message Generation Time and Nonce fields are four bytes

each [17]. The details of these three fields are described in the following subsections.

 22

a. Message Generation Time

Message Generation Time is a 4-byte Timestamp that registers the time that the

Trust-ND message was sent by the sender. An elapsed time window is set for the Trust-

ND message. Once the sender sends out the Trust-ND message, the elapsed time starts.

When the receiver receives the Trust-ND message, it checks if the elapsed time has

expired by comparing the Timestamp at the point the message is received with the

elapsed time. The message is processed if

 Tsend < Treceive < Tsend + elapsed time window (4.1)

where Tsend is the Timestamp at the point the Trust-ND message is sent and Treceive is the

Timestamp at the point the message is received. Otherwise, the receiver discards the

message. This concept is based on [17] and is a simple secure solution to mitigate replay

and DoS attacks by ensuring the timeliness and freshness of the Trust-ND messages.

Based on [17], the Timestamp function can only work effectively in a time-

synchronized environment. If the nodes in the network are using their own local times

that are not synchronized, the time differences between the clocks, if significant, may

lead to a DoS as the check on timeliness may not be valid anymore. The effect of nodes

experiencing de-synchronized clock time in the network is shown in Figure 6.

The authors of [17] proposed using Coordinated Universal Time (UTC) to replace

the local clocks as the reference time for the Timestamp function; however, due to the

limitation in our simulation platform, UTC time could not be implemented. As a result,

we propose an alternative time synchronization process (adapted from [25]) to

synchronize the local clock of each nodes. We assume that the router is connected to a

secure global time source. The router is the time master for its local network and sends its

time to the nodes in the network. The nodes then synchronize their own local clock with

the router’s clock time. Time synchronization is conducted at the initial phase of joining a

network.

 23

Figure 6. Effects of Clock Time Desynchronization in a Network

When a new host wants to join a network, it sends an RS message to find the

router in the network. The router receives the RS message, checks if it has a Trust-ND

option, and determines if the sender is a new node by examining its neighbor cache. If the

node’s local link address is not in the neighbor cache, it is regarded as a new node. If the

RS message does not contain a Trust-ND option, the router discards it. If the RS message

contains a Trust-ND option and the sender is a new node, it is possible that the

Timestamp of the RS message is not valid as the local time of the sender may not be

synchronized with the router’s clock time. As such, the router does not check the validity

of the Timestamp in the RS message. It updates the node’s local link address in the

neighbor cache and sends an RA message with the router’s Timestamp to the new node.

The new node receives it and synchronizes its local clock with the router’s clock time by

using the router’s Timestamp and the expected delay between the router and the new

node. Expected delay can be estimated from

 Expected delay =
1
2

(TOARA - TRA) (4.2)

where TOARA is the time-of-arrival of the RA message based on the local clock of the

new node and TRA is the Timestamp of the RS message.

 24

The advantage of this approach is that the time-synchronization of the new node

is only done once in the first exchange of RS and RA messages between the new hosts

and the router. We believe this approach to be more secure compared to getting time

synchronization from an external open source which may be subject to a time spoofing

attack; however, the limitation of this approach is that periodic time synchronization

cannot be implemented.

b. Nonce

The Nonce is a 4-byte field that contains a number randomly generated by the

sender of the Trust-ND message to make sure that every ND message is unique in order

to prevent replay attacks. The Nonce is only applied to solicited pair messages, i.e.,

NS/NA and RS/RA pairs. For every NS or RS message sent, a Nonce is inserted in the

message as part of the Trust-ND option. NA and RA messages that respond to the

associated NS and RS messages contain the same Nonce in their messages. The use of a

Nonce to mitigate a replay attack is illustrated in Figure 7. Unsolicited RA and NA

messages are not required to have a Nonce. Replay attacks on unsolicited RA and NA

messages are mitigated by the Timestamp mechanism. This concept is adapted from [17].

Figure 7. Replay Attack Mitigated through the Use of a Nonce

 25

c. Message Authentication Data

This concept is based on [17]. The sender’s ICMPv6 ND message is hashed by

the SHA-1 function, and the output value of the SHA function is stored in the 20-byte

field in the Trust-ND option on each ICMPv6 message. It is used to ensure data integrity.

The receiver inputs the ICMPv6 ND message via the same SHA-1 function and checks if

the hashed output value is the same as the one in the option. If it is the same, the message

is intact and the system continues to process the message; otherwise, the message is

discarded.

2. Soft Security Implementation

These soft security measures are modified from [17] and are in the form of a trust

management system controlled by a trusted default router in the network. The trust

management includes calculating the trust value of every node in the network and,

subsequently, recording and updating the neighbor cache with the trust value associated

with each node. The trust calculation is based on two factors, namely the message

verification result and the existing trust value of the sender stored in the neighbor cache.

The logic of the trust calculation is described in the following paragraphs.

When Node A receives an incoming Trust-ND message from Node B, it first

verifies the existence of the Trust-ND option that is attached to the ND message. If there

is no Trust-ND option, the receiver considers the message to be insecure and discards the

message; otherwise, it proceeds to the next verification. The second verification is to

check the value of each of the fields in the Trust-ND option, which includes message-

generation time (including time window), Nonce, and the SHA-1 hashed value. If any of

the data in these fields are not valid, the message is discarded.

After the verification, Node A performs a trust calculation for the message sender

based on two parts, namely the results of the second verification and the existing trust

status of the sender which is stored in the neighbor cache.

For part one, Node B (the sender) is allocated a value of one if its message is a

valid Trust-ND message. It is allocated a value of zero if the message is not valid.

 26

 For part two, Node A checks the neighbor cache to obtain the existing trust value

of Node B. Node B is allocated a value of zero if it is not registered in the neighbor cache

as it is regarded as a new node joining the network. If Node B is already registered in the

neighbor cache, there is an existing value that is associated to Node B based on past

interactions with other nodes. The existing value can be zero, one, or two. If Node B has

an existing trust value of zero, a value of zero is allocated to Node B. If Node B has an

existing trust value of one or two, a value of one is allocated to Node B. Node B’s new

trust value is equal to the summation of the values allocated to Node B in part one and

two of the verification process. The new trust value is then updated in the neighbor cache.

The neighbor cache is updated with the new trust value associated with each node

in the network after every interaction between the nodes in the network. The nodes in the

network can then leverage the trust value to determine which nodes they should interact

with. If Node B has a zero value, it means that it has failed its past interactions with the

nodes in the network and is likely to be a malicious node. If Node B has a value of one, it

means that it was either a new node in the network in the previous interaction with a valid

Trust-ND option or it was a trustworthy node but failed its message verification in the

previous interaction. This trust value is considered uncertain, and we need more

successful interactions with Node B before we consider the node to be trustworthy. If

Node B has a value of two, it means that Node B has successfully interacted with the

other nodes in the network and is regarded as trustworthy.

Nodes should refrain from sending messages to nodes with trust values of zero or

one as these nodes are either malicious or uncertain. The output associated with different

trust values using the soft security mechanism is shown in Table 2. The logic of the soft

security mechanism is shown in Figure 8.

27

Table 2. Summary of Outputs Associated with Different Trust Values for
the Soft Security Mechanism

Figure 8. Logic Flow for the Soft Security Mechanism

 28

C. CHAPTER SUMMARY

In this chapter, key considerations for the design of the security mechanism for

the 6LoWPAN ND protocol were presented followed by a discussion of the proposed

security mechanism that uses a combination of hard and soft security approaches. The

hard security approach includes having a Trust-ND option on the ICMPv6 ND messages

which includes Timestamp, Nonce, and SHA-1 hashing functions. A time-

synchronization mechanism is also introduced to address time de-synchronized networks.

The soft security approach leverages the social interactions between the nodes in the

network to identify malicious nodes using a trust management scheme.

 29

V. EXPERIMENTAL SETUP

In this chapter, we describe the simulation setup used to run various experiments

to test the effectiveness of the hard security mechanisms against replay attacks. The

simulation parameters and the attack scenarios that were simulated are also discussed.

A. AIM OF EXPERIMENT

The aim of the experiments was to evaluate the effectiveness of the proposed

security mechanism in a 6LoWPAN network against replay attacks. In this thesis, we

conducted three sets of experiments using the Contiki operating system (OS) version 3.0

and Cooja network simulator [26]. The first and second experiment tested the

effectiveness of the Nonce and Timestamp against replay attacks. The third experiment

examined the impact of de-synchronized time in the network and evaluated the time-

synchronization solution proposed in Chapter IV.

B. NETWORK SIMULATION SETUP

1. Contiki OS and Cooja Network Simulator

Contiki OS version 3.0 and its Cooja network simulator were selected as the

simulation platform for the experiments in this thesis. According to [26], Contiki is an

open source operating system that is designed for Internet of Things (IoT), which are

low-powered, wireless networks. It has built in 6lowPAN protocols which allow us to

modify existing code or add in new code to suit our system requirements. The Contiki

system includes a network simulator named Cooja. It is a powerful tool for Contiki

development as it allows developers to evaluate their software through network

simulation before implementing on the actual hardware. There are also other useful

websites that guide the use of Contiki OS and the Cooja network simulator [27]–[29].

2. Simulation Environment

Simulation parameters set in the Cooja network simulator are shown in Table 3.

The single 6LoWPAN network was set up with sky mote sensors (which is a type of

sensor available in Contiki) and a router. An attacker node was added to the network. Sky

 30

mote sensors are common sensors used in IoT, and their hardware is emulated in the

Cooja simulation. The nodes can be placed in any position within a two-dimensional

space. A node can be moved manually during the simulation. The communication range

of the sensors can be configured, and the antennas of the sensors are omni-directional.

The ND messages sent within the network are monitored and displayed in the Cooja

network simulator. The behaviour of the nodes in handling these messages were also

observed in our simulation. This data was captured during the simulation and was further

analyzed using the network protocol analyzer Wireshark.

Table 3. Simulation Parameters

An 80 m × 80 m ground plane was set up with three legitimate hosts, one attacker,

and one router. The respective positions of these nodes are shown in Figure 9. The green

node with ID: 1 is the attacker. The orange nodes with ID:2, 3, and 4 are the legitimate

hosts. The purple node with ID:5 is the router. The arrangement of the nodes is made

such that every node is within the communication range of one another. Once the

simulation starts, the nodes create their link local addresses and start interacting with each

other to discover their neighbors.

 31

Figure 9. Relative Position of the Nodes in the Simulated Network

C. ATTACK SCENARIOS

The attack scenarios focused mainly on the effectiveness of the Nonce and

Timestamp options against replay attacks during the router discovery phase. Attack

scenarios that included the Nonce and Timestamp options are described in the following

subsections.

1. Nonce Option against Replay Attacks

A Trust-ND option with four-byte Nonce field is implemented on the ICMPv6

RA and RS messages. The Nonce function generates a random unique number and stores

it in the Trust-ND option of every RS message created by the sender nodes. A four-byte

Nonce can generate a range of 232 numbers. In our simulation we set the range of

numbers to be between 0 to 10000 so that it is easier to monitor the Nonce numbers

generated by the nodes during the simulation. The attack scenario is based on Figure 7

(shown in Chapter IV) where the attacker sends replay RA messages to the host victims

during the router discovery phase. Host victims with the Nonce option in their RS and

 32

RA messages are expected to detect replay RA messages from the attacker and discard

them. A scenario without the Trust-ND option was also simulated. The nodes are

expected to accept the replay RA messages from the attacker as they have no means to

detect and identify replay messages.

2. Timestamp Option against Replay Attacks

A Trust-ND option with a four-byte Timestamp field is implemented in the

ICMPv6 RA and RS messages. The clock resolution is 128 ticks per second (7.8 ms per

tick) and is limited by the emulated hardware of sky mote sensors in the Contiki OS. We

set up the attack scenario similar to the previous scenario with the Nonce option where

the attacker replays RA messages to the host victims. Host victims with the Timestamp

option in their RS and RA messages are expected to detect replay RA messages sent from

attacker and then discard them.

On top of demonstrating the effectiveness of Timestamp against replay attacks,

the impact of de-synchronization of local clocks between the nodes in the network was

also simulated. The effectiveness of the proposed time synchronization mechanism was

demonstrated.

D. MODIFICATIONS TO EXISTING CONTIKI OS CODE

Modifications to the code of existing files in Contiki OS version 3.0 are needed to

implement the Trust-ND option which consists of the Nonce and Timestamp field.

Moreover, new code was added to simulate the attacks on the network. The key

modifications to the existing code are described in the following paragraphs. The code is

found in the Appendix.

Uip-nd6.c file is the ND protocol specified in [11]. It covers the processes of the

ND operation. Under this file, we have modified four functions. The first function named

uip_nd6_rs_output is responsible for generating RS messages in host nodes. A random

function was inserted to generate a Nonce and the generated Nonce was stored for future

checks under the function named expected_nonce. The Timestamp of the RS message

was also inserted under this function. The second function named rs_input is responsible

 33

for processing the RS messages that are sent to the router. A routine was inserted into this

function so that the router uses the same Nonce number from the received RS message on

the RA message that the router is going to send to the host node.

Another routine was added for the router to check if the local link address of the

sender of the RS message is in the neighbor table cache. If it is not in the neighbor cache,

the router synchronises the sender’s local clock with its own time using a RA message.

The third function named uip_nd6_ra_output is responsible for generating the RA

messages from the router. A RA message with a Trust-ND option was created in this

function so that the router can insert the same Nonce number as the received RS message

and send it back to the host node. In addition, we included the attack function of copying

the RA message when the attacker intercepted the RA message.

The fourth function named ra_input is responsible for processing the RA packets

received by the host node or attacker. The attacker mode of sending multiple replay RA

messages to the host node was included in this function. Two scenarios were

implemented in this function. One was without the Trust-ND option, while the other was

with the Trust-ND option. With the Trust-ND option, the host node is able to detect the

replay RA messages and discard them. Without the Trust-ND option, the host node

accepts the RA messages without realising that they are replay RA messages.

E. CHAPTER SUMMARY

In this chapter, we described the simulation environment used to evaluate the hard

security mechanisms proposed in Chapter IV. The experiments evaluated the

effectiveness of the Nonce and Timestamp against replay attacks and evaluated the time-

synchronization solution proposed in Chapter IV. The simulation was conducted using

Contiki OS version 3.0 and its Cooja network simulator. The simulation setup for the

attack scenarios and the modifications done on the existing code files were also

discussed.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

VI. SIMULATION RESULTS AND ANALYSIS

Five simulations were conducted: 1) an attack scenario without the Trust-ND

option, 2) an attack scenario with Nonce, 3) an attack scenario with the Timestamp

option, 4) a scenario in which the Timestamp option operates with de-synchronized

clocks, and 5) a scenario in which the Timestamp option operates with the proposed time

synchronization mechanism. Events with respect to time were captured in the simulation

and were analyzed to evaluate the effectiveness of the Nonce and Timestamp options and

the time-synchronization mechanism. Wireshark was also used to analyze the data

captured during the simulation. The details of the observations and analysis of the

simulation results are covered in the following sections.

A. ATTACK SCENARIO WITHOUT TRUST-ND OPTION

The scenarios discussed in this section follow the network topology shown in

Figure 9 (see Chapter V). After the sensor nodes received their local link addresses, they

proceeded to send multicast RS messages to find routers in the network. As shown in

Figure 10, at 00:15.526 s, ID:2 generated an RS message and sent the RS message to a

multicast address ff02::2. According to [30], ff02::2 is a registered IPv6 multicast address

that includes all the routers in the local network segment. At 00:15.538 s, the router

(ID:5) received the RS message sent from ID:2, and at 00:15.544 s, the router generated a

RA message and sent it to a multicast address ff02::1. According to [30], ff02::1 is a

registered IPv6 multicast address that includes all the nodes in the local network segment.

At 00:15.560 s, the attacker (ID:1) copied the RA message and subsequently sent

the replay message twice at 00:15.640 s and 00:15.656 s to the multicast address ff02::1.

 36

Figure 10. Captured Events in the Network without Trust-ND Option (Part One)

As shown in Figure 11, at 00:15.668, ID:2, 3, and 4 received the first replay RA

message from the attacker. They were unaware that it was a replay message; therefore,

they processed the information in the RA message at 00:15.672 s, 00:15.674 s, and

00:15.675 s. At 00:15.682 s, ID:2, 3, and 4 received the second replay RA message from

the attacker. Again, they processed the information in the RA message at 00:15.686 s and

00:15.688 s.

This simulation showed that the replay attack was successful, and this attack can

be applied to all the other hosts as long as the attacker is within the communication range.

We observe that the hosts were unaware of the presence of the attack. If the attacker is

able to replay multiple messages to the victim host, the host is expected to be denied

service as its resources will be exhausted by processing the outdated RA messages.

 37

Figure 11. Captured Events in the Network without Trust-ND Option (Part Two)

In Figure 12, the table on the left is the list of events captured directly from the

nodes’ output during the simulation while the table on the right is the list of RA and RS

messages recorded by the 6LoWPAN network analyzer. We compared the tables and

correlated the RS and RA messages recorded in the 6LoWPAN network analyzer to the

events captured in the table on the left. The correlations are highlighted in blue, as shown

in Figure 12. Within this time frame, two ICMPv6 RS messages and four ICMPv6 RA

messages were transmitted. We also observe that the size of the RS message was 45

bytes, while the size of the RA message was 61 bytes.

We observed that the 6LoWPAN network analyzer recorded the same event

slightly at a later time as compared to the table on the left. Under the 31st row of the table

on the right, we see that ID:2 sent a multicast RS message to all four nodes in the

network (it is displayed as [4 d] in the table) at 00:15.529 s while we see from the table

on the left that the same RS message was sent out at 00:15.526 s.

 38

Figure 12. Correlation between Nodes’ Output and 6LoWPAN Network
Analyzer (without Nonce Option)

B. ATTACK SCENARIO WITH NONCE OPTION

As shown in Figure 13, at 00:10.554 s, ID:2 generated a RS message with a

Nonce number of 6734. It then sent the RS message to a multicast address ff02::2 at

00:10.559 s. At 00:10.573 s, the router (ID:5) received the RS message send from ID:2,

and at 00:10.580 s, the router generated a RA message with the same Nonce number

3037 and sent it to a multicast address ff02::01.

At 00:10.595 s, all the nodes, ID:1, 2, 3, and 4 received the RA message from the

router. At 00:10.598 s, ID:3 and ID:4 detected that this RA message was not meant for

them as the Nonce number associated with the RA message was not the same as their last

RS message; thus, they discarded the RA messages. At 00:10.603 s, ID:2 received the RA

message from the router and verified that the Nonce number 6734 in the RA message was

the same number in its last RS message; thus, it accepted the RA message from the router

and processed the information found in the RA message at 00:10.605 s and 00:10.608 s.

At 00:10.637 s, the attacker (ID:1) copied the RA message with Nonce number 6734, and

at both 00:10:644 s and 00:10.653 s, the attacker sent an RA message each to the

multicast address ff02::1.

 39

Figure 13. Captured Events in the Network with Nonce Option (Part One)

In Figure 14, we see that ID:2, 3, and 4 received the first replay RA message at

00:10.667 s. At 00:10.671 s, ID 3 and 4 detected that the Nonce in the replay RA

message was different from the Nonce number of their last RS message and, thus,

discarded the RA messages. ID:2 detected that the Nonce number in the RA message was

already received previously from the router; thus, it discarded the replay message without

processing the information in the RA message. Likewise, for the second replay messages,

ID:2, 3, and 4 discarded the messages.

Figure 14. Captured Events in the Network with Nonce Option (Part Two)

 40

In Figure 15, we compare the output of both the nodes and the network analyzer

and correlated the RS and RA messages. The correlations are highlighted in blue as

shown in Figure 15. Within this time frame, two ICMPv6 RS messages and three

ICMPv6 RA messages were transmitted. We also observe that the size of the RS message

was 77 bytes, while the size of the RA message was 93 bytes.

Figure 15. Correlation between Nodes’ Output and 6LoWPAN Network
Analyzer (with Nonce Option)

The captured data in the simulation was also analyzed using Wireshark. The aim

of the analysis was to verify if the Trust-ND option was implemented correctly.

Wireshark displayed the breakdown of the data found in the ICMPv6 ND messages. As

shown in Figure 16, we analyzed one of the RA messages sent by the router to all the

nodes in the local network (under the 18th row of the table). The source address,

fe80::212:7405:5:505 belonged to the router, while ff02::1 is a multicast address that

includes all the nodes in the local network. The data that is highlighted in orange is the

32-byte Trust ND option implemented in this thesis. The data in yellow boxes represent

the type of ICMPv6 options we used in this experiment. Type 253 is used for the purpose

of experimentation and testing [30]. Type 253 in hexadecimal is FD; thus, FD is

captured in the first byte of the Trust-ND option. The Length of the Trust-ND option is

defined in octets. Since the Trust-ND option has a size of 32-bytes, the value of the

Length field is four. This value of 04 is shown in the green boxes in Figure 16.

 41

The Nonce number that is attached to this RA message was 6734 and was 1A 4E

in hexadecimal. We observe in Figure 16 that there was a value of 4E 1A in the Trust-ND

option highlighted in purple. The hexadecimal is reversed as the most significant bit is

transmitted first. The rest of the data in the Trust-ND option were zeros as the reserved

field, SHA-1 value, and Timestamp values were zeroed out.

Figure 16. Trust-ND Option with Nonce Data Breakdown Using Wireshark

The simulation analysis showed that the Nonce field in the Trust-ND option was

implemented successfully and is effective against replay attacks. The legitimate hosts

were able to detect replay messages and discard them without processing the messages;

moreover, when the router sent a solicited multicast RA message to every node, the nodes

were able to determine if this RA message was meant for them. They discarded the RA

message if the message was not responding to their own RS messages. As such, it

 42

prevented the hosts from using their resources unnecessarily to process redundant RA

messages.

C. ATTACK SCENARIO WITH TIMESTAMP OPTION

In this simulation, the local clocks of the nodes in the network were assumed to be

time-synchronized. The pre-defined time window for this simulation was set as 0 < time

window < 10 ticks for the RS message, while 0 < time window < 6 ticks was set for the

RA message. We assumed that the router was handling more traffic as compared to the

hosts and thus, more time is given for the router to process the RS messages. The

Timestamp window was capped so as to reduce the chances of replay attacks that can

possibly fall within the time window. The resolution of the Timestamp is about 7.8 ms

per clock tick.

The events of the simulation are captured and shown in Figure 17 and 18. In

Figure 17, at 00:10.016 s, ID:2 generated an RS message with a Timestamp of 1156 ticks

and then sent the RS message to a multicast address ff02::2 at 00:10.021 s. At 00:10.030

s, the router (ID:5) received the RS message sent from ID:2. It calculated the time

difference between its own local clock time and the Timestamp of the RS message and

compared it with the pre-defined time window. The time difference was three ticks and,

therefore, was within the pre-defined window; thus, the RS message was accepted. ID:5

generated a multicast RA message with a timestamp of 1160 ticks and sent the message

to all the nodes in the network at 00:10.042 s. ID:1, 2, 3, and 4 received the RA message

at 00:10.056 s. They accepted the RA message at 00:10.062 s as the time difference

between their own local clock time and the Timestamp of the RA message was within the

pre-defined window. ID:2, 3 and 4 processed the RA message at 00:10.064 s and

00:10.066 s.

 43

Figure 17. Captured Events in the Network with Timestamp Option (Part One)

In Figure 18, the attacker (ID:1) duplicated the RA message and sent the replay

RA message to all the hosts in the network at 00:10.654 s. ID:2, 3, and 4 received the RA

message and discarded the message at 00:10.673 s. The time difference between their

own local clock time and the Timestamp of the RA message was 80 ticks, which is

outside the pre-defined window.

Figure 18. Captured Events in the Network with Timestamp Option (Part Two)

 44

The simulation analysis showed that the Timestamp field in the Trust-ND option

was implemented successfully and that it is effective against replay attacks. The

legitimate hosts were able to detect replay messages and discard them by using the pre-

defined time window. We also observe that setting the right duration for the time window

is critical. If the duration is set too high, the replay attack may be able to succeed, but if

the duration is set too low, the legitimate messages may be discarded as well.

D. TIMESTAMP OPTION WITH DE-SYNCHRONIZED CLOCKS

In this simulation, the local clocks of the hosts and the router were set differently

to demonstrate the impact of having de-synchronized clocks between the nodes in the

network. The local clock of ID:2 was set at 58 ticks behind the router’s clock time, ID:3

was set at 25 ticks ahead of the router’s clock time, and ID:4 was set at 44 ticks behind

the router’s clock time. Once the simulation started, ID:2, 3, and 4 hosts sent multicast

RS messages to the ID:5 router at 00:05.497 s, 00:06.160 s, and 00:05.609 s, respectively,

as shown in Figure 19. When ID:5 received the RS messages from the hosts, it calculated

the time difference between its own local clock time and the Timestamp in each of the RS

messages and compared it with the pre-defined time window. The pre-defined time

window for this simulation was set as 0 < time window < 10 ticks. Since the calculated

time differences as shown at 00:05.514, 00:06.177, and 00:05.626 are outside the time

window, the router discarded the RS messages of ID:2, 3, and 4. As a result, the hosts

were unable to obtain the router and network parameters as the router did not respond to

their RS messages with the RA messages, as shown in Figure 19.

The simulation analysis showed that the nodes in the network are not able to

communicate effectively with each other if there is a de-synchronization of clock time

between the nodes. In this case, the router discarded the legitimate RS messages and

caused a DoS to the hosts; thus, it is important to have a time-synchronization mechanism

in the network.

 45

Figure 19. Timestamp Option with De-synchronized Clocks Simulation Data

E. TIMESTAMP OPTION WITH TIME-SYNCHRONIZATION
MECHANISM

In this simulation, the time-synchronization mechanism, described in Chapter IV,

was implemented to synchronize the local clock of the nodes in the network. The events

of the simulation were captured and shown in Figure 20. At 00:05.492 s, ID:2 generated a

RS message with a Timestamp of 640 ticks and sent the RS message to a multicast

address ff02::2 at 00:05.492 s. At 00:05.511 s, the router (ID:5) received the RS message

sent from ID:2 and detected that ID:2 was a new node by checking the absence of the

local link address of ID:2 in the neighbor cache. The router added ID:2 to its neighbor

cache and generated an RA message with a Timestamp based on its own local clock,

which was 581 ticks, and sent it to a multicast address ff02::01. There was a time

difference of approximately 59 ticks between the local clock of ID:2 and the router. At

00:05.539 s, all the nodes, ID:1, 2, 3, and 4 received the RA message from the router.

At 00:05.544 s, ID:3 and ID:4 detected that this RA message was not meant for

them and the Timestamp was out of the pre-defined window time; thus, they discarded

the RA messages. At 00:05.546 s, ID:2 received its first RA message from the router and

ID:2 used the Timestamp in the RA message to synchronize its own local clock. ID:2

synchronized with the router’s clock time at 00:05.551 s and accepted the RA message

from the router after verifying that the RA message is within the time window at

00:05.554 s. Subsequently, ID:2 processed the information found in the RA message at

00:05.556 s and 00:05.559 s. Once the time synchronization was completed in the first

 46

exchange of RS and RA messages between the new hosts and router, normal verification

of the Timestamp option was resumed.

The simulation analysis showed that the time-synchronization mechanism is able

to recover the time synchronization in the network in an efficient and effective way. The

hosts with de-synchronized clocks were forced to align with the router’s local time during

the early router discovery phase.

Figure 20. Timestamp Option with Synchronized Clocks Simulation Data

The captured data in the simulation was also analysed using Wireshark. The aim

of the analysis was to verify if the Trust-ND option was implemented correctly. As

shown in Figure 21, we analysed one of the RA messages sent by the ID:5 router to all

the nodes in the local network (under the 15th row of the table). The source address,

fe80::212:7405:5:505, belonged to the router, while ff02::1 is a multicast address that

includes all the nodes in the local network. The data that is highlighted in orange is the

32-byte Trust ND option implemented in this thesis. The data in yellow and green were

described in the earlier sub-section.

 47

The Timestamp that is attached to this RA message was 1160, 04 88 in

hexadecimal; thus, we observe in Figure 21 that there is a value of 88 04 in the Trust-ND

option highlighted in purple. The hexadecimal is reversed as the most significant bit is

transmitted first. The rest of the data in the Trust-ND option were zeros as the reserved

field, SHA-1 value, and Nonce values were zeroed out.

Figure 21. Trust-ND Option with Timestamp Data Breakdown Using Wireshark

F. CHAPTER SUMMARY

In this chapter, the results of five network simulations were shown and analyzed

to show the effectiveness of the Nonce and Timestamp against replay attacks and to

validate the proposed time-synchronization mechanism to synchronise the local clocks of

each node in the network. The experiments showed that hard security mechanisms

implemented in this thesis effectively mitigate against replay attacks. In addition, the

 48

results also showed that the proposed time-synchronization mechanism functions as

expected.

 49

VII. CONCLUSION AND FUTURE WORK

A. SUMMARY AND CONCLUSIONS

In a typical military WSN application, remote sensors are deployed in the area of

operations to have persistent surveillance. One of the important protocols in a WSN is the

ND protocol. It is used by new nodes to join a network and for nodes in the network to

establish communication between one another in the wireless environment. There are

security concerns in the ND protocol, including possible DoS and replay attacks. Due to

resource constraints, existing security mechanisms such as IPSec and SEND are not

suitable for WSNs. The motivation of this thesis was to research an alternative security

mechanism for the ND protocol based on existing literature.

In this thesis, we defined a set of key considerations for the design of the security

mechanism for the ND protocol which led to the proposed security mechanism that used

a combination of hard and soft security approaches. The hard security approach includes

having a Trust-ND option on the ICMPv6 ND messages which includes Timestamp,

Nonce, and SHA-1 functions. A simple time-synchronization mechanism was also

proposed to enable the Timestamp function to work effectively. The soft security

approach leverages the social interactions between the nodes in the network to identify

malicious nodes.

Using the Contiki OS version 3.0 and Cooja simulator, we performed network

simulations and showed the effectiveness of the Nonce and Timestamp against replay

attacks. We have also demonstrated the effectiveness of the time-synchronization

mechanism in the simulation.

B. FUTURE WORK

While we have defined a hybrid of hard and soft security mechanisms suitable for

WSNs and have showed the effectiveness of the Nonce and Timestamp function against

replay attacks, there are several areas that require further attention.

 50

1. Evaluation of the Entire Hard Security Mechanism

We can evaluate the network performance of the Trust-ND hard security

mechanism in terms of latency, bandwidth, and power consumption by simulating the full

suite of the security functions, including Nonce, Timestamp, and SHA-1 in different

attack scenarios. We can then compare the network performance with other existing

security mechanisms. In addition, we need to assess the security gaps in the time-

synchronization process as it is possible for a malicious node to alter the precision of the

time synchronization information.

2. Evaluation of the Soft Security Mechanism

While we have defined the concept of the soft security mechanism and assessed

that it met our design considerations, we need to further evaluate the effectiveness of the

soft security mechanism and network performance through network simulation.

3. Scalability of the Security Mechanism

The scalability of the security mechanism is also important if we want to operate

in a larger WSN. We need to evaluate if the security mechanism can handle large

networks that consists of more nodes and whether it can withstand more attackers in the

network. We also need to expand the single 6LoWPAN network to multiple networks

where nodes are mobile and they can move from one network to another network.

 51

APPENDIX. SOURCE CODE

Contiki OS Version 3.0 Uip-nd6.c file

#include "sys/rtimer.h"

#include <string.h>

#include "net/ipv6/uip-icmp6.h"

#include "net/ipv6/uip-nd6.h"

#include "net/ipv6/uip-ds6.h"

#include "net/ip/uip-nameserver.h"

#include "lib/random.h"

#include "lib/memb.h"

// #include <time.h>

#include "lib/memb.h"

// #include "net/rime/timesynch.h"

// #include "sys/node-id.h"

/*--*/

#define DEBUG 1

#include "net/ip/uip-debug.h"

#if UIP_LOGGING

#include <stdio.h>

void uip_log(char *msg);

#define UIP_LOG(m) uip_log(m)

#else

#define UIP_LOG(m)

#endif /* UIP_LOGGING == 1 */

 52

/*--*/

/** @{ */

/** \name Pointers to the header structures.

 * All pointers except UIP_IP_BUF depend on uip_ext_len, which at

 * packet reception, is the total length of the extension headers.

 *

 * The pointer to ND6 options header also depends on nd6_opt_offset,

 * which we set in each function.

 *

 * Care should be taken when manipulating these buffers about the

 * value of these length variables

 */

#define UIP_IP_BUF ((struct uip_ip_hdr *)&uip_buf[UIP_LLH_LEN]) /**< Pointer to IP header

*/

#define UIP_ICMP_BUF ((struct uip_icmp_hdr *)&uip_buf[uip_l2_l3_hdr_len]) /**< Pointer to

ICMP header*/

/**@{ Pointers to messages just after icmp header */

#define UIP_ND6_RS_BUF ((uip_nd6_rs *)&uip_buf[uip_l2_l3_icmp_hdr_len])

#define UIP_ND6_RA_BUF ((uip_nd6_ra *)&uip_buf[uip_l2_l3_icmp_hdr_len])

#define UIP_ND6_NS_BUF ((uip_nd6_ns *)&uip_buf[uip_l2_l3_icmp_hdr_len])

#define UIP_ND6_NA_BUF ((uip_nd6_na *)&uip_buf[uip_l2_l3_icmp_hdr_len])

/** @} */

/** Pointer to ND option */

#define UIP_ND6_OPT_HDR_BUF ((uip_nd6_opt_hdr *)&uip_buf[uip_l2_l3_icmp_hdr_len +

nd6_opt_offset])

#define UIP_ND6_OPT_PREFIX_BUF ((uip_nd6_opt_prefix_info *)&uip_buf[uip_l2_l3_icmp_hdr_len +

nd6_opt_offset])

#define UIP_ND6_OPT_MTU_BUF ((uip_nd6_opt_mtu *)&uip_buf[uip_l2_l3_icmp_hdr_len +

nd6_opt_offset])

 53

#define UIP_ND6_OPT_RDNSS_BUF ((uip_nd6_opt_dns *)&uip_buf[uip_l2_l3_icmp_hdr_len +

nd6_opt_offset])

#define UIP_ND6_OPT_TRUST_BUF ((uip_nd6_opt_trust *)&uip_buf[uip_l2_l3_icmp_hdr_len +

nd6_opt_offset])

/** @} */

#if UIP_ND6_SEND_NA || UIP_ND6_SEND_RA || !UIP_CONF_ROUTER

static uint8_t nd6_opt_offset; /** Offset from the end of the icmpv6 header to the option in

uip_buf*/

static uint8_t *nd6_opt_llao; /** Pointer to llao option in uip_buf */

static uip_ds6_nbr_t *nbr; /** Pointer to a nbr cache entry*/

static uip_ds6_defrt_t *defrt; /** Pointer to a router list entry */

static uip_ds6_addr_t *addr; /** Pointer to an interface address */

#endif /* UIP_ND6_SEND_NA || UIP_ND6_SEND_RA || !UIP_CONF_ROUTER */

#if !UIP_CONF_ROUTER // TBD see if we move it to ra_input

static uip_nd6_opt_prefix_info *nd6_opt_prefix_info; /** Pointer to prefix information option in uip_buf */

static uip_ipaddr_t ipaddr;

#endif

static uip_ds6_prefix_t *prefix; /** Pointer to a prefix list entry */

static volatile uint32_t copy_nonce = 0;

static volatile uint32_t copy_timestamp = 0;

struct stimer send_attck_timer;

/*--*/

/* create a llao */

static void

create_llao(uint8_t *llao, uint8_t type) {

 llao[UIP_ND6_OPT_TYPE_OFFSET] = type;

 llao[UIP_ND6_OPT_LEN_OFFSET] = UIP_ND6_OPT_LLAO_LEN >> 3;

 54

 memcpy(&llao[UIP_ND6_OPT_DATA_OFFSET], &uip_lladdr, UIP_LLADDR_LEN);

 /* padding on some */

 memset(&llao[UIP_ND6_OPT_DATA_OFFSET + UIP_LLADDR_LEN], 0,

 UIP_ND6_OPT_LLAO_LEN - 2 - UIP_LLADDR_LEN);

}

/*--*/

typedef struct security_neighbor {

 struct security_neighbor *next;

 // uint8_t no_id;

 // uint8_t isMatching_Ip_and_Nonce;

 uip_ip6addr_t ipv6_naddr;

} security_neighbor;

uint8_t is_sec_init = 0;

/*--*/

// static void *LIST_CONCAT(neighbor_RT_security_list,_list) = NULL;

// list_t neighbor_RT_security_list = (list_t)&LIST_CONCAT(neighbor_RT_security_list,_list);

LIST(neighbor_table);

MEMB(neighbor_mem, struct security_neighbor, 25);

struct security_neighbor * look_for_neigbour(uip_ip6addr_t *IP_ADR)

{

 struct security_neighbor *s = list_head(neighbor_table);

 while(s != NULL) {

 if(uip_ipaddr_cmp(&s->ipv6_naddr, &IP_ADR))

 return s ;

 s = s->next;

 }

 55

 return NULL;

}

#if UIP_ND6_SEND_NA

static void

ns_input(void)

{

 uint8_t flags;

 PRINTF("Received NS from ");

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 PRINTF(" to ");

 PRINT6ADDR(&UIP_IP_BUF->destipaddr);

 PRINTF(" with target address");

 PRINT6ADDR((uip_ipaddr_t *) (&UIP_ND6_NS_BUF->tgtipaddr));

 PRINTF("\n");

 UIP_STAT(++uip_stat.nd6.recv);

#if UIP_CONF_IPV6_CHECKS

 if((UIP_IP_BUF->ttl != UIP_ND6_HOP_LIMIT) ||

 (uip_is_addr_mcast(&UIP_ND6_NS_BUF->tgtipaddr)) ||

 (UIP_ICMP_BUF->icode != 0)) {

 PRINTF("NS received is bad\n");

 goto discard;

 }

#endif /* UIP_CONF_IPV6_CHECKS */

 /* Options processing */

 nd6_opt_llao = NULL;

 nd6_opt_offset = UIP_ND6_NS_LEN;

 while(uip_l3_icmp_hdr_len + nd6_opt_offset < uip_len) {

 56

#if UIP_CONF_IPV6_CHECKS

 if(UIP_ND6_OPT_HDR_BUF->len == 0) {

 PRINTF("NS received is bad\n");

 goto discard;

 }

#endif /* UIP_CONF_IPV6_CHECKS */

 switch (UIP_ND6_OPT_HDR_BUF->type) {

 case UIP_ND6_OPT_SLLAO:

 nd6_opt_llao = &uip_buf[uip_l2_l3_icmp_hdr_len + nd6_opt_offset];

#if UIP_CONF_IPV6_CHECKS

 /* There must be NO option in a DAD NS */

 if(uip_is_addr_unspecified(&UIP_IP_BUF->srcipaddr)) {

 PRINTF("NS received is bad\n");

 goto discard;

 } else {

#endif /*UIP_CONF_IPV6_CHECKS */

 nbr = uip_ds6_nbr_lookup(&UIP_IP_BUF->srcipaddr);

 if(nbr == NULL) {

 uip_ds6_nbr_add(&UIP_IP_BUF->srcipaddr,

 (uip_lladdr_t *)&nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET],

 0, NBR_STALE);

 } else {

 uip_lladdr_t *lladdr = (uip_lladdr_t *)uip_ds6_nbr_get_ll(nbr);

 if(memcmp(&nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET],

 lladdr, UIP_LLADDR_LEN) != 0) {

 memcpy(lladdr, &nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET],

 UIP_LLADDR_LEN);

 nbr->state = NBR_STALE;

 } else {

 57

 if(nbr->state == NBR_INCOMPLETE) {

 nbr->state = NBR_STALE;

 }

 }

 }

#if UIP_CONF_IPV6_CHECKS

 }

#endif /*UIP_CONF_IPV6_CHECKS */

 break;

 default:

 PRINTF("ND option not supported in NS");

 break;

 }

 nd6_opt_offset += (UIP_ND6_OPT_HDR_BUF->len << 3);

 }

 addr = uip_ds6_addr_lookup(&UIP_ND6_NS_BUF->tgtipaddr);

 if(addr != NULL) {

#if UIP_ND6_DEF_MAXDADNS > 0

 if(uip_is_addr_unspecified(&UIP_IP_BUF->srcipaddr)) {

 /* DAD CASE */

#if UIP_CONF_IPV6_CHECKS

 if(!uip_is_addr_solicited_node(&UIP_IP_BUF->destipaddr)) {

 PRINTF("NS received is bad\n");

 goto discard;

 }

#endif /* UIP_CONF_IPV6_CHECKS */

 if(addr->state != ADDR_TENTATIVE) {

 uip_create_linklocal_allnodes_mcast(&UIP_IP_BUF->destipaddr);

 58

 uip_ds6_select_src(&UIP_IP_BUF->srcipaddr, &UIP_IP_BUF->destipaddr);

 flags = UIP_ND6_NA_FLAG_OVERRIDE;

 goto create_na;

 } else {

 /** \todo if I sent a NS before him, I win */

 uip_ds6_dad_failed(addr);

 goto discard;

 }

#else /* UIP_ND6_DEF_MAXDADNS > 0 */

 if(uip_is_addr_unspecified(&UIP_IP_BUF->srcipaddr)) {

 /* DAD CASE */

 goto discard;

#endif /* UIP_ND6_DEF_MAXDADNS > 0 */

 }

#if UIP_CONF_IPV6_CHECKS

 if(uip_ds6_is_my_addr(&UIP_IP_BUF->srcipaddr)) {

 /**

 * \NOTE do we do something here? we both are using the same address.

 * If we are doing dad, we could cancel it, though we should receive a

 * NA in response of DAD NS we sent, hence DAD will fail anyway. If we

 * were not doing DAD, it means there is a duplicate in the network!

 */

 PRINTF("NS received is bad\n");

 goto discard;

 }

#endif /*UIP_CONF_IPV6_CHECKS */

 /* Address resolution case */

 if(uip_is_addr_solicited_node(&UIP_IP_BUF->destipaddr)) {

 59

 uip_ipaddr_copy(&UIP_IP_BUF->destipaddr, &UIP_IP_BUF->srcipaddr);

 uip_ipaddr_copy(&UIP_IP_BUF->srcipaddr, &UIP_ND6_NS_BUF->tgtipaddr);

 flags = UIP_ND6_NA_FLAG_SOLICITED | UIP_ND6_NA_FLAG_OVERRIDE;

 goto create_na;

 }

 /* NUD CASE */

 if(uip_ds6_addr_lookup(&UIP_IP_BUF->destipaddr) == addr) {

 uip_ipaddr_copy(&UIP_IP_BUF->destipaddr, &UIP_IP_BUF->srcipaddr);

 uip_ipaddr_copy(&UIP_IP_BUF->srcipaddr, &UIP_ND6_NS_BUF->tgtipaddr);

 flags = UIP_ND6_NA_FLAG_SOLICITED | UIP_ND6_NA_FLAG_OVERRIDE;

 goto create_na;

 } else {

#if UIP_CONF_IPV6_CHECKS

 PRINTF("NS received is bad\n");

 goto discard;

#endif /* UIP_CONF_IPV6_CHECKS */

 }

 } else {

 goto discard;

 }

create_na:

 /* If the node is a router it should set R flag in NAs */

#if UIP_CONF_ROUTER

 flags = flags | UIP_ND6_NA_FLAG_ROUTER;

#endif

 uip_ext_len = 0;

 60

 UIP_IP_BUF->vtc = 0x60;

 UIP_IP_BUF->tcflow = 0;

 UIP_IP_BUF->flow = 0;

 UIP_IP_BUF->len[0] = 0; /* length will not be more than 255 */

 UIP_IP_BUF->len[1] = UIP_ICMPH_LEN + UIP_ND6_NA_LEN + UIP_ND6_OPT_LLAO_LEN;

 UIP_IP_BUF->proto = UIP_PROTO_ICMP6;

 UIP_IP_BUF->ttl = UIP_ND6_HOP_LIMIT;

 UIP_ICMP_BUF->type = ICMP6_NA;

 UIP_ICMP_BUF->icode = 0;

 UIP_ND6_NA_BUF->flagsreserved = flags;

 memcpy(&UIP_ND6_NA_BUF->tgtipaddr, &addr->ipaddr, sizeof(uip_ipaddr_t));

 create_llao(&uip_buf[uip_l2_l3_icmp_hdr_len + UIP_ND6_NA_LEN],

 UIP_ND6_OPT_TLLAO);

 UIP_ICMP_BUF->icmpchksum = 0;

 UIP_ICMP_BUF->icmpchksum = ~uip_icmp6chksum();

 uip_len =

 UIP_IPH_LEN + UIP_ICMPH_LEN + UIP_ND6_NA_LEN + UIP_ND6_OPT_LLAO_LEN;

 UIP_STAT(++uip_stat.nd6.sent);

 PRINTF("Sending NA to ");

 PRINT6ADDR(&UIP_IP_BUF->destipaddr);

 PRINTF(" from ");

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 PRINTF(" with target address ");

 61

 PRINT6ADDR(&UIP_ND6_NA_BUF->tgtipaddr);

 PRINTF("\n");

 return;

discard:

 uip_len = 0;

 return;

}

#endif /* UIP_ND6_SEND_NA */

/*--*/

void

uip_nd6_ns_output(uip_ipaddr_t * src, uip_ipaddr_t * dest, uip_ipaddr_t * tgt)

{

 uip_ext_len = 0;

 UIP_IP_BUF->vtc = 0x60;

 UIP_IP_BUF->tcflow = 0;

 UIP_IP_BUF->flow = 0;

 UIP_IP_BUF->proto = UIP_PROTO_ICMP6;

 UIP_IP_BUF->ttl = UIP_ND6_HOP_LIMIT;

 if(dest == NULL) {

 uip_create_solicited_node(tgt, &UIP_IP_BUF->destipaddr);

 } else {

 uip_ipaddr_copy(&UIP_IP_BUF->destipaddr, dest);

 }

 UIP_ICMP_BUF->type = ICMP6_NS;

 UIP_ICMP_BUF->icode = 0;

 62

 UIP_ND6_NS_BUF->reserved = 0;

 uip_ipaddr_copy((uip_ipaddr_t *) &UIP_ND6_NS_BUF->tgtipaddr, tgt);

 UIP_IP_BUF->len[0] = 0; /* length will not be more than 255 */

 /*

 * check if we add a SLLAO option: for DAD, MUST NOT, for NUD, MAY

 * (here yes), for Address resolution , MUST

 */

 if(!(uip_ds6_is_my_addr(tgt))) {

 if(src != NULL) {

 uip_ipaddr_copy(&UIP_IP_BUF->srcipaddr, src);

 } else {

 uip_ds6_select_src(&UIP_IP_BUF->srcipaddr, &UIP_IP_BUF->destipaddr);

 }

 if (uip_is_addr_unspecified(&UIP_IP_BUF->srcipaddr)) {

 PRINTF("Dropping NS due to no suitable source address\n");

 uip_len = 0;

 return;

 }

 UIP_IP_BUF->len[1] =

 UIP_ICMPH_LEN + UIP_ND6_NS_LEN + UIP_ND6_OPT_LLAO_LEN;

 create_llao(&uip_buf[uip_l2_l3_icmp_hdr_len + UIP_ND6_NS_LEN],

 UIP_ND6_OPT_SLLAO);

 uip_len =

 UIP_IPH_LEN + UIP_ICMPH_LEN + UIP_ND6_NS_LEN + UIP_ND6_OPT_LLAO_LEN;

 } else {

 uip_create_unspecified(&UIP_IP_BUF->srcipaddr);

 UIP_IP_BUF->len[1] = UIP_ICMPH_LEN + UIP_ND6_NS_LEN;

 63

 uip_len = UIP_IPH_LEN + UIP_ICMPH_LEN + UIP_ND6_NS_LEN;

 }

 UIP_ICMP_BUF->icmpchksum = 0;

 UIP_ICMP_BUF->icmpchksum = ~uip_icmp6chksum();

 UIP_STAT(++uip_stat.nd6.sent);

 PRINTF("Sending NS to");

 PRINT6ADDR(&UIP_IP_BUF->destipaddr);

 PRINTF("from");

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 PRINTF("with target address");

 PRINT6ADDR(tgt);

 PRINTF("\n");

 return;

}

#if UIP_ND6_SEND_NA

/*--*/

/**

 * Neighbor Advertisement Processing

 *

 * we might have to send a pkt that had been buffered while address

 * resolution was performed (if we support buffering, see UIP_CONF_QUEUE_PKT)

 *

 * As per RFC 4861, on link layer that have addresses, TLLAO options MUST be

 * included when responding to multicast solicitations, SHOULD be included in

 * response to unicast (here we assume it is for now)

 *

 * NA can be received after sending NS for DAD, Address resolution or NUD. Can

 64

 * be unsolicited as well.

 * It can trigger update of the state of the neighbor in the neighbor cache,

 * router in the router list.

 * If the NS was for DAD, it means DAD failed

 *

 */

static void

na_input(void)

{

 uint8_t is_llchange;

 uint8_t is_router;

 uint8_t is_solicited;

 uint8_t is_override;

 PRINTF("Received NA from");

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 PRINTF("to");

 PRINT6ADDR(&UIP_IP_BUF->destipaddr);

 PRINTF("with target address");

 PRINT6ADDR((uip_ipaddr_t *) (&UIP_ND6_NA_BUF->tgtipaddr));

 PRINTF("\n");

 UIP_STAT(++uip_stat.nd6.recv);

 /*

 * booleans. the three last one are not 0 or 1 but 0 or 0x80, 0x40, 0x20

 * but it works. Be careful though, do not use tests such as is_router == 1

 */

 is_llchange = 0;

 is_router = ((UIP_ND6_NA_BUF->flagsreserved & UIP_ND6_NA_FLAG_ROUTER));

 65

 is_solicited =

 ((UIP_ND6_NA_BUF->flagsreserved & UIP_ND6_NA_FLAG_SOLICITED));

 is_override =

 ((UIP_ND6_NA_BUF->flagsreserved & UIP_ND6_NA_FLAG_OVERRIDE));

#if UIP_CONF_IPV6_CHECKS

 if((UIP_IP_BUF->ttl != UIP_ND6_HOP_LIMIT) ||

 (UIP_ICMP_BUF->icode != 0) ||

 (uip_is_addr_mcast(&UIP_ND6_NA_BUF->tgtipaddr)) ||

 (is_solicited && uip_is_addr_mcast(&UIP_IP_BUF->destipaddr))) {

 PRINTF("NA received is bad\n");

 goto discard;

 }

#endif /*UIP_CONF_IPV6_CHECKS */

 /* Options processing: we handle TLLAO, and must ignore others */

 nd6_opt_offset = UIP_ND6_NA_LEN;

 nd6_opt_llao = NULL;

 while(uip_l3_icmp_hdr_len + nd6_opt_offset < uip_len) {

#if UIP_CONF_IPV6_CHECKS

 if(UIP_ND6_OPT_HDR_BUF->len == 0) {

 PRINTF("NA received is bad\n");

 goto discard;

 }

#endif /*UIP_CONF_IPV6_CHECKS */

 switch (UIP_ND6_OPT_HDR_BUF->type) {

 case UIP_ND6_OPT_TLLAO:

 nd6_opt_llao = (uint8_t *)UIP_ND6_OPT_HDR_BUF;

 break;

 66

 default:

 PRINTF("ND option not supported in NA\n");

 break;

 }

 nd6_opt_offset += (UIP_ND6_OPT_HDR_BUF->len << 3);

 }

 addr = uip_ds6_addr_lookup(&UIP_ND6_NA_BUF->tgtipaddr);

 /* Message processing, including TLLAO if any */

 if(addr != NULL) {

#if UIP_ND6_DEF_MAXDADNS > 0

 if(addr->state == ADDR_TENTATIVE) {

 uip_ds6_dad_failed(addr);

 }

#endif /*UIP_ND6_DEF_MAXDADNS > 0 */

 PRINTF("NA received is bad\n");

 goto discard;

 } else {

 uip_lladdr_t *lladdr;

 nbr = uip_ds6_nbr_lookup(&UIP_ND6_NA_BUF->tgtipaddr);

 lladdr = (uip_lladdr_t *)uip_ds6_nbr_get_ll(nbr);

 if(nbr == NULL) {

 goto discard;

 }

 if(nd6_opt_llao != 0) {

 is_llchange =

 memcmp(&nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET], (void *)lladdr,

 UIP_LLADDR_LEN);

 }

 if(nbr->state == NBR_INCOMPLETE) {

 67

 if(nd6_opt_llao == NULL) {

 goto discard;

 }

 memcpy(lladdr, &nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET],

 UIP_LLADDR_LEN);

 if(is_solicited) {

 nbr->state = NBR_REACHABLE;

 nbr->nscount = 0;

 /* reachable time is stored in ms */

 stimer_set(&(nbr->reachable), uip_ds6_if.reachable_time / 1000);

 } else {

 nbr->state = NBR_STALE;

 }

 nbr->isrouter = is_router;

 } else {

 if(!is_override && is_llchange) {

 if(nbr->state == NBR_REACHABLE) {

 nbr->state = NBR_STALE;

 }

 goto discard;

 } else {

 if(is_override || (!is_override && nd6_opt_llao != 0 && !is_llchange)

 || nd6_opt_llao == 0) {

 if(nd6_opt_llao != 0) {

 memcpy(lladdr, &nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET],

 UIP_LLADDR_LEN);

 }

 68

 if(is_solicited) {

 nbr->state = NBR_REACHABLE;

 /* reachable time is stored in ms */

 stimer_set(&(nbr->reachable), uip_ds6_if.reachable_time / 1000);

 } else {

 if(nd6_opt_llao != 0 && is_llchange) {

 nbr->state = NBR_STALE;

 }

 }

 }

 }

 if(nbr->isrouter && !is_router) {

 defrt = uip_ds6_defrt_lookup(&UIP_IP_BUF->srcipaddr);

 if(defrt != NULL) {

 uip_ds6_defrt_rm(defrt);

 }

 }

 nbr->isrouter = is_router;

 }

 }

#if UIP_CONF_IPV6_QUEUE_PKT

 /* The nbr is now reachable, check if we had buffered a pkt for it */

 /*if(nbr->queue_buf_len != 0) {

 uip_len = nbr->queue_buf_len;

 memcpy(UIP_IP_BUF, nbr->queue_buf, uip_len);

 nbr->queue_buf_len = 0;

 return;

 }*/

 if(uip_packetqueue_buflen(&nbr->packethandle) != 0) {

 69

 uip_len = uip_packetqueue_buflen(&nbr->packethandle);

 memcpy(UIP_IP_BUF, uip_packetqueue_buf(&nbr->packethandle), uip_len);

 uip_packetqueue_free(&nbr->packethandle);

 return;

 }

#endif /*UIP_CONF_IPV6_QUEUE_PKT */

discard:

 uip_len = 0;

 return;

}

#endif /* UIP_ND6_SEND_NA */

static uint32_t recv_nonce;

#if UIP_CONF_ROUTER

#if UIP_ND6_SEND_RA

/*---*/

static void

rs_input(void)

{

 PRINTF("Received RS from ");

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 PRINTF(" to ");

 PRINT6ADDR(&UIP_IP_BUF->destipaddr);

 PRINTF("\n");

 UIP_STAT(++uip_stat.nd6.recv);

 if(is_sec_init == 0)

 70

 {

 is_sec_init = 1;

 memb_init(&neighbor_mem);

 list_init(neighbor_table);

 }

#if UIP_CONF_IPV6_CHECKS

 /*

 * Check hop limit / icmp code

 * target address must not be multicast

 * if the NA is solicited, dest must not be multicast

 */

 if((UIP_IP_BUF->ttl != UIP_ND6_HOP_LIMIT) || (UIP_ICMP_BUF->icode != 0)) {

 PRINTF("RS received is bad 1\n");

 goto discard;

 }

#endif /*UIP_CONF_IPV6_CHECKS */

 /* Only valid option is Source Link-Layer Address option any thing

 else is discarded */

 nd6_opt_offset = UIP_ND6_RS_LEN;

 nd6_opt_llao = NULL;

uint32_t recv_tmstamp;

uint32_t time_now ;

int32_t time_diff;

 while(uip_l3_icmp_hdr_len + nd6_opt_offset < uip_len) {

#if UIP_CONF_IPV6_CHECKS

 if(UIP_ND6_OPT_HDR_BUF->len == 0) {

 PRINTF("RS received is bad 2\n");

 71

 goto discard;

 }

#endif /*UIP_CONF_IPV6_CHECKS */

 switch (UIP_ND6_OPT_HDR_BUF->type) {

 case UIP_ND6_OPT_SLLAO:

 nd6_opt_llao = (uint8_t *)UIP_ND6_OPT_HDR_BUF;

 break;

 case UIP_ND6_OPT_TRUST:

 recv_tmstamp = UIP_ND6_OPT_TRUST_BUF->timestamp;

 time_now = (uint32_t)clock_time();

 // struct timeval tv;

 // gettimeofday(&tv,NULL);

 // time_t timestamp_sec;

 // time(×tamp_sec);

 // time_now = (uint32_t)tv.tv_sec;

 #if SCEN2

 struct security_neighbor *ne = NULL;

 #if SYN_UTC

 struct security_neighbor *snode = list_head(neighbor_table);

 while(snode != NULL) {

 if(uip_ipaddr_cmp(&snode->ipv6_naddr, &UIP_IP_BUF->srcipaddr))

 break;

 snode = snode->next;

 }

 if (snode == NULL)

 {

 ne = memb_alloc(&neighbor_mem);

 //memcpy(&ne->ipv6_addr , &UIP_IP_BUF->srcipaddr, sizeof(uip_ip6addr_t));

 72

 uip_ipaddr_copy(&ne->ipv6_naddr, &UIP_IP_BUF->srcipaddr);

 list_add(neighbor_table , ne);

 PRINTF("New node detected. Add to neighbor cache\n");

 }

 #endif

 time_diff = time_now - recv_tmstamp;

 if ((time_diff <= 0) || (time_diff >= 10))

 {

 if (ne == NULL){

 PRINTF("Discard!! Out of window time: %d ticks\n", time_diff);

 goto discard;

 }

 }

 else

 {

 PRINTF("Incoming message in window time. Accepted! %d ticks\n", time_diff);

 }

 #endif

 recv_nonce = UIP_ND6_OPT_TRUST_BUF->nonce;

 break;

 default:

 PRINTF("ND option not supported in RS\n");

 break;

 }

 nd6_opt_offset += (UIP_ND6_OPT_HDR_BUF->len << 3);

 }

 73

 /* Options processing: only SLLAO */

 if(nd6_opt_llao != NULL) {

#if UIP_CONF_IPV6_CHECKS

 if(uip_is_addr_unspecified(&UIP_IP_BUF->srcipaddr)) {

 PRINTF("RS received is bad\n");

 goto discard;

 } else {

#endif /*UIP_CONF_IPV6_CHECKS */

 if((nbr = uip_ds6_nbr_lookup(&UIP_IP_BUF->srcipaddr)) == NULL) {

 /* we need to add the neighbor */

 uip_ds6_nbr_add(&UIP_IP_BUF->srcipaddr,

 (uip_lladdr_t *)&nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET], 0, NBR_STALE);

 } else {

 /* If LL address changed, set neighbor state to stale */

 if(memcmp(&nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET],

 uip_ds6_nbr_get_ll(nbr), UIP_LLADDR_LEN) != 0) {

 uip_ds6_nbr_t nbr_data = *nbr;

 uip_ds6_nbr_rm(nbr);

 nbr = uip_ds6_nbr_add(&UIP_IP_BUF->srcipaddr,

 (uip_lladdr_t *)&nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET], 0, NBR_STALE);

 nbr->reachable = nbr_data.reachable;

 nbr->sendns = nbr_data.sendns;

 nbr->nscount = nbr_data.nscount;

 }

 nbr->isrouter = 0;

 }

#if UIP_CONF_IPV6_CHECKS

 }

#endif /*UIP_CONF_IPV6_CHECKS */

 74

 }

 /* Schedule a sollicited RA */

 uip_ds6_send_ra_sollicited();

discard:

 uip_len = 0;

 return;

}

#endif /* UIP_ND6_SEND_RA */

#endif /* UIP_CONF_ROUTER */

/*---*/

void

uip_nd6_ra_output(uip_ipaddr_t * dest)

{

 uip_ext_len = 0;

 UIP_IP_BUF->vtc = 0x60;

 UIP_IP_BUF->tcflow = 0;

 UIP_IP_BUF->flow = 0;

 UIP_IP_BUF->proto = UIP_PROTO_ICMP6;

 UIP_IP_BUF->ttl = UIP_ND6_HOP_LIMIT;

 if(dest == NULL) {

 uip_create_linklocal_allnodes_mcast(&UIP_IP_BUF->destipaddr);

 } else {

 /* For sollicited RA */

 uip_ipaddr_copy(&UIP_IP_BUF->destipaddr, dest);

 }

 uip_ds6_select_src(&UIP_IP_BUF->srcipaddr, &UIP_IP_BUF->destipaddr);

 75

 UIP_ICMP_BUF->type = ICMP6_RA;

 UIP_ICMP_BUF->icode = 0;

 UIP_ND6_RA_BUF->cur_ttl = uip_ds6_if.cur_hop_limit;

 UIP_ND6_RA_BUF->flags_reserved =

 (UIP_ND6_M_FLAG << 7) | (UIP_ND6_O_FLAG << 6);

 UIP_ND6_RA_BUF->router_lifetime = uip_htons(UIP_ND6_ROUTER_LIFETIME);

 //UIP_ND6_RA_BUF->reachable_time = uip_htonl(uip_ds6_if.reachable_time);

 //UIP_ND6_RA_BUF->retrans_timer = uip_htonl(uip_ds6_if.retrans_timer);

 UIP_ND6_RA_BUF->reachable_time = 0;

 UIP_ND6_RA_BUF->retrans_timer = 0;

 uip_len = UIP_IPH_LEN + UIP_ICMPH_LEN + UIP_ND6_RA_LEN;

 nd6_opt_offset = UIP_ND6_RA_LEN;

uint32_t time_conv;

#if TRUST_OPTION

 clock_time_t ct;

 ct = clock_time();

 time_conv = (uint32_t)ct;

 UIP_ND6_OPT_TRUST_BUF->type = UIP_ND6_OPT_TRUST;

 UIP_ND6_OPT_TRUST_BUF->len = UIP_ND6_OPT_TRUST_LEN/8;

 UIP_ND6_OPT_TRUST_BUF->reserved = 0;

 if (copy_timestamp == 0)

 {

 76

 UIP_ND6_OPT_TRUST_BUF->timestamp = time_conv;

 }

 else

 {

 UIP_ND6_OPT_TRUST_BUF->timestamp = copy_timestamp;

 }

 if (copy_nonce == 0){

 UIP_ND6_OPT_TRUST_BUF->nonce = recv_nonce;

 }

 else

 {

 UIP_ND6_OPT_TRUST_BUF->nonce = copy_nonce;

 }

 //UIP_ND6_OPT_TRUST_BUF->sha_1[20] = {0};

 memset(UIP_ND6_OPT_TRUST_BUF->sha_1, 0, 20);

 nd6_opt_offset += UIP_ND6_OPT_TRUST_LEN;

 uip_len += UIP_ND6_OPT_TRUST_LEN;

/*PRINTF("RA is sent reply by RS message \n");*/

#endif

#if UIP_CONF_ROUTER

 /* Prefix list */

 for(prefix = uip_ds6_prefix_list;

 prefix < uip_ds6_prefix_list + UIP_DS6_PREFIX_NB; prefix++) {

 if((prefix->isused) && (prefix->advertise)) {

 77

 UIP_ND6_OPT_PREFIX_BUF->type = UIP_ND6_OPT_PREFIX_INFO;

 UIP_ND6_OPT_PREFIX_BUF->len = UIP_ND6_OPT_PREFIX_INFO_LEN / 8;

 UIP_ND6_OPT_PREFIX_BUF->preflen = prefix->length;

 UIP_ND6_OPT_PREFIX_BUF->flagsreserved1 = prefix->l_a_reserved;

 UIP_ND6_OPT_PREFIX_BUF->validlt = uip_htonl(prefix->vlifetime);

 UIP_ND6_OPT_PREFIX_BUF->preferredlt = uip_htonl(prefix->plifetime);

 UIP_ND6_OPT_PREFIX_BUF->reserved2 = 0;

 uip_ipaddr_copy(&(UIP_ND6_OPT_PREFIX_BUF->prefix), &(prefix->ipaddr));

 nd6_opt_offset += UIP_ND6_OPT_PREFIX_INFO_LEN;

 uip_len += UIP_ND6_OPT_PREFIX_INFO_LEN;

 }

 }

#endif /* !UIP_CONF_ROUTER */

 /* Source link-layer option */

 create_llao((uint8_t *)UIP_ND6_OPT_HDR_BUF, UIP_ND6_OPT_SLLAO);

 uip_len += UIP_ND6_OPT_LLAO_LEN;

 nd6_opt_offset += UIP_ND6_OPT_LLAO_LEN;

 /* MTU */

 UIP_ND6_OPT_MTU_BUF->type = UIP_ND6_OPT_MTU;

 UIP_ND6_OPT_MTU_BUF->len = UIP_ND6_OPT_MTU_LEN >> 3;

 UIP_ND6_OPT_MTU_BUF->reserved = 0;

 //UIP_ND6_OPT_MTU_BUF->mtu = uip_htonl(uip_ds6_if.link_mtu);

 UIP_ND6_OPT_MTU_BUF->mtu = uip_htonl(1500);

 uip_len += UIP_ND6_OPT_MTU_LEN;

 nd6_opt_offset += UIP_ND6_OPT_MTU_LEN;

 78

#if UIP_ND6_RA_RDNSS

 if(uip_nameserver_count() > 0) {

 uint8_t i = 0;

 uip_ipaddr_t *ip = &UIP_ND6_OPT_RDNSS_BUF->ip;

 uip_ipaddr_t *dns = NULL;

 UIP_ND6_OPT_RDNSS_BUF->type = UIP_ND6_OPT_RDNSS;

 UIP_ND6_OPT_RDNSS_BUF->reserved = 0;

 UIP_ND6_OPT_RDNSS_BUF->lifetime = uip_nameserver_next_expiration();

 if(UIP_ND6_OPT_RDNSS_BUF->lifetime != UIP_NAMESERVER_INFINITE_LIFETIME) {

 UIP_ND6_OPT_RDNSS_BUF->lifetime -= clock_seconds();

 }

 while((dns = uip_nameserver_get(i)) != NULL) {

 uip_ipaddr_copy(ip++, dns);

 i++;

 }

 UIP_ND6_OPT_RDNSS_BUF->len = UIP_ND6_OPT_RDNSS_LEN + (i << 1);

 PRINTF("%d nameservers reported\n", i);

 uip_len += UIP_ND6_OPT_RDNSS_BUF->len << 3;

 nd6_opt_offset += UIP_ND6_OPT_RDNSS_BUF->len << 3;

 }

#endif /* UIP_ND6_RA_RDNSS */

 UIP_IP_BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8);

 UIP_IP_BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff);

 /*ICMP checksum */

 UIP_ICMP_BUF->icmpchksum = 0;

 UIP_ICMP_BUF->icmpchksum = ~uip_icmp6chksum();

 79

 UIP_STAT(++uip_stat.nd6.sent);

 PRINTF("Sending RA to");

 PRINT6ADDR(&UIP_IP_BUF->destipaddr);

 PRINTF("from");

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 #if TRUST_OPTION

 if (copy_timestamp == 0)

 {

 #if SCEN2

 if (time_conv > 100)

 {

 PRINTF(" with time stamp %u ticks", time_conv);

 }

 #endif

 }

 else

 {

 PRINTF(" copy timestamp %u ticks", copy_timestamp);

 }

 if (copy_nonce == 0)

 {

 #if SCEN1

 {

 PRINTF(" with nonce %u", recv_nonce);

 }

 #endif

 }

 80

 else

 {

 PRINTF(" with attack nonce %u", copy_nonce);

 }

 #endif

 PRINTF("\n");

 return;

}

static uint8_t is_frist = 0;

static int16_t pin_init_syn = 0;

#if !UIP_CONF_ROUTER

/*---*/

static uint32_t expected_nonce = 0;

void

uip_nd6_rs_output(void)

{

 uip_ext_len = 0;

 UIP_IP_BUF->vtc = 0x60;

 UIP_IP_BUF->tcflow = 0;

 UIP_IP_BUF->flow = 0;

 UIP_IP_BUF->proto = UIP_PROTO_ICMP6;

 UIP_IP_BUF->ttl = UIP_ND6_HOP_LIMIT;

 uip_create_linklocal_allrouters_mcast(&UIP_IP_BUF->destipaddr);

 uip_ds6_select_src(&UIP_IP_BUF->srcipaddr, &UIP_IP_BUF->destipaddr);

 UIP_ICMP_BUF->type = ICMP6_RS;

 UIP_ICMP_BUF->icode = 0;

 UIP_IP_BUF->len[0] = 0; /* length will not be more than 255 */

 81

 nd6_opt_offset = UIP_ND6_RS_LEN;

 if(uip_is_addr_unspecified(&UIP_IP_BUF->srcipaddr)) {

 UIP_IP_BUF->len[1] = UIP_ICMPH_LEN + UIP_ND6_RS_LEN;

 uip_len = uip_l3_icmp_hdr_len + UIP_ND6_RS_LEN;

 } else {

 uip_len = uip_l3_icmp_hdr_len + UIP_ND6_RS_LEN + UIP_ND6_OPT_LLAO_LEN;

 UIP_IP_BUF->len[1] =

 UIP_ICMPH_LEN + UIP_ND6_RS_LEN + UIP_ND6_OPT_LLAO_LEN;

 create_llao((uint8_t *)UIP_ND6_OPT_HDR_BUF, UIP_ND6_OPT_SLLAO);

 nd6_opt_offset += UIP_ND6_OPT_LLAO_LEN;

 }

#if TRUST_OPTION && !ATTACKER_MODE

 int gen_nonce = random_rand();

 if (gen_nonce < 0)

 gen_nonce = - gen_nonce;

 {

 clock_time_t ct = clock_time();

 // rtimer_clock_t time_pin = RTIMER_NOW();

 UIP_ND6_OPT_TRUST_BUF->type = UIP_ND6_OPT_TRUST;

 UIP_ND6_OPT_TRUST_BUF->len = UIP_ND6_OPT_TRUST_LEN / 8;

 UIP_ND6_OPT_TRUST_BUF->reserved = 0;

 UIP_ND6_OPT_TRUST_BUF->timestamp = (uint32_t)ct ;

 if (pin_init_syn == 0)

 pin_init_syn = (int16_t)UIP_ND6_OPT_TRUST_BUF->timestamp;

 #if SCEN2

 PRINTF("RS send at time stamp: %u ticks\n", UIP_ND6_OPT_TRUST_BUF->timestamp);

 #endif

 82

 UIP_ND6_OPT_TRUST_BUF->nonce = gen_nonce % 10000;

 expected_nonce = UIP_ND6_OPT_TRUST_BUF->nonce;

 #if SCEN1

 PRINTF("RS generate nonce_id %u\n",UIP_ND6_OPT_TRUST_BUF->nonce);

 #endif

 // UIP_ND6_OPT_TRUST_BUF->sha_1[20] = {0};

 memset(UIP_ND6_OPT_TRUST_BUF->sha_1, 0, 20);

 is_frist = 0;

 }

 nd6_opt_offset += UIP_ND6_OPT_TRUST_LEN;

 uip_len += UIP_ND6_OPT_TRUST_LEN;

 UIP_IP_BUF->len[1] += UIP_ND6_OPT_TRUST_LEN;

 #endif

 UIP_ICMP_BUF->icmpchksum = 0;

 UIP_ICMP_BUF->icmpchksum = ~uip_icmp6chksum();

 UIP_STAT(++uip_stat.nd6.sent);

 PRINTF("Sending RS to ");

 PRINT6ADDR(&UIP_IP_BUF->destipaddr);

 PRINTF("from");

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 PRINTF("\n");

 return;

}

/*---*/

/*

 83

 * Process a Router Advertisement

 *

 * - Possible actions when receiving a RA: add router to router list,

 * recalculate reachable time, update link hop limit, update retrans timer.

 * - If MTU option: update MTU.

 * - If SLLAO option: update entry in neighbor cache

 * - If prefix option: start autoconf, add prefix to prefix list

 */

void

ra_input(void)

{

 PRINTF("RECV RA from");

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 PRINTF("to");

 PRINT6ADDR(&UIP_IP_BUF->destipaddr);

 PRINTF("\n");

 UIP_STAT(++uip_stat.nd6.recv);

 copy_nonce = 0;

#if UIP_CONF_IPV6_CHECKS

 if((UIP_IP_BUF->ttl != UIP_ND6_HOP_LIMIT) ||

 (!uip_is_addr_link_local(&UIP_IP_BUF->srcipaddr)) ||

 (UIP_ICMP_BUF->icode != 0)) {

 PRINTF("RA received is bad");

 goto discard;

 }

#endif /*UIP_CONF_IPV6_CHECKS */

 if(UIP_ND6_RA_BUF->cur_ttl != 0) {

 uip_ds6_if.cur_hop_limit = UIP_ND6_RA_BUF->cur_ttl;

 84

 PRINTF("uip_ds6_if.cur_hop_limit %u\n", uip_ds6_if.cur_hop_limit);

 }

 if(UIP_ND6_RA_BUF->reachable_time != 0) {

 if(uip_ds6_if.base_reachable_time !=

 uip_ntohl(UIP_ND6_RA_BUF->reachable_time)) {

 uip_ds6_if.base_reachable_time = uip_ntohl(UIP_ND6_RA_BUF->reachable_time);

 uip_ds6_if.reachable_time = uip_ds6_compute_reachable_time();

 }

 }

 if(UIP_ND6_RA_BUF->retrans_timer != 0) {

 uip_ds6_if.retrans_timer = uip_ntohl(UIP_ND6_RA_BUF->retrans_timer);

 }

 #if ATTACKER_MODE && !TRUST_OPTION

 if (copy_nonce == 0){

 PRINTF("Attacking \n");

 copy_nonce = 1;

 stimer_set(&send_attck_timer, 1);

 while (!stimer_expired(&send_attck_timer))

 {

 ;

 }

 stimer_restart(&send_attck_timer);

 //flooding

 //rtimer_arch_init();

 int i;

 for (i = 0; i < NUMBER_ATTACK; i++)

 {

 85

 if(copy_nonce == 0)

 break;

 uip_ds6_send_ra_periodic();

 rtimer_clock_t time_pin1 = RTIMER_NOW();

 /*while ((RTIMER_NOW() - time_pin1) < (RTIMER_SECOND / 100))

 {

 ;

 }*/

 }

 }

 #endif

uint32_t recv_tmstamp;

uint32_t time_now ;

int32_t time_diff;

uint8_t low;

uint8_t high;

 /* Options processing */

 nd6_opt_offset = UIP_ND6_RA_LEN;

 while(uip_l3_icmp_hdr_len + nd6_opt_offset < uip_len) {

 if(UIP_ND6_OPT_HDR_BUF->len == 0) {

 PRINTF("RA received is bad");

 goto discard;

 }

 switch (UIP_ND6_OPT_HDR_BUF->type) {

 case UIP_ND6_OPT_TRUST:

 recv_tmstamp = UIP_ND6_OPT_TRUST_BUF->timestamp;

 // low = recv_tmstamp & 0XFF;

 // high = (recv_tmstamp >> 8) & 0xFF;

 86

 #if !ATTACKER_MODE && SCEN2

 #if SYN_UTC

 /*if ((high == 0) && (low == 101))

 {

 clock_set(10, 103);

 }*/

 if (pin_init_syn > 0)

 {

 PRINTF("Router clock time %u ticks\n", UIP_ND6_OPT_TRUST_BUF->timestamp);

 clock_time_t syn_time = (clock_time_t)recv_tmstamp;

 time_now = (uint32_t)clock_time();

 PRINTF("Clock before synchronize %u ticks\n", time_now);

 uint8_t delta_time;

 delta_time = time_now - pin_init_syn;

 syn_time = syn_time + delta_time/2;

 clock_set(syn_time, syn_time);

 pin_init_syn = -1; //already synching

 PRINTF("Node synchronize to router clock time \n");

 PRINTF("Clock after synchronize %u ticks \n", clock_time());

 }

 #endif

 time_now = (uint32_t)clock_time();

 time_diff = time_now - recv_tmstamp;

 if ((time_diff <= 0)|| (time_diff >= 6))

 {

 PRINTF("Discard!! Out of window time: %d ticks\n", time_diff);

 87

 goto discard;

 }

 else

 {

 PRINTF("Incoming message within window time. Accepted! %d ticks\n", time_diff);

 }

 #endif

 #if ATTACKER_MODE && SCEN2

 // if ((high == 0) && (low == 101))

 // {;}

 // else

 // {

 stimer_set(&send_attck_timer, 1);

 copy_timestamp = UIP_ND6_OPT_TRUST_BUF->timestamp;

 while (!stimer_expired(&send_attck_timer))

 {

 ;

 }

 stimer_restart(&send_attck_timer);

 PRINTF("Replay with time stamp %u ticks\n", copy_timestamp);

 int i = 0;

 for (i = 0; i < NUMBER_ATTACK; i++)

 {

 uip_ds6_send_ra_periodic();

 }

 88

 // }

 #endif

 #if ATTACKER_MODE && SCEN1

 if (copy_nonce == 0){

 stimer_set(&send_attck_timer, 1);

 copy_nonce = UIP_ND6_OPT_TRUST_BUF->nonce;

 //delay CPU for 1 second to slower than router

 while (!stimer_expired(&send_attck_timer))

 {

 ;

 }

 stimer_restart(&send_attck_timer);

 //flooding

 PRINTF("Attacking with nonce %u \n", copy_nonce);

 //rtimer_arch_init();

 int i = 0;

 for (i = 0; i < NUMBER_ATTACK; i++)

 {

 if(copy_nonce == 0)

 break;

 uip_ds6_send_ra_periodic();

 //rtimer_clock_t time_pin = RTIMER_NOW();

 /*while ((RTIMER_NOW() - time_pin) < (RTIMER_SECOND)) //500 ms

 {

 ;

 }*/

 89

 }

 }

 #endif

 #if !ATTACKER_MODE && SCEN1

 //PRINTF("TRUST option in RA\n");

 //nd6_opt_trust = (uip_nd6_opt_trust *) UIP_ND6_OPT_TRUST_BUF;

 if (expected_nonce != 0){

 static uip_ip6addr_t * router_ipaddr;

 if (UIP_ND6_OPT_TRUST_BUF->nonce != expected_nonce)

 {

 //goto discard;

 PRINTF("Different expected nonce\n");

 }

 else

 {

 if (is_frist == 0)

 {

 memcpy(&router_ipaddr, &UIP_IP_BUF->srcipaddr, sizeof(uip_ip6addr_t));

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 PRINTF(" is router sending as expected_nonce %u. Accept!\n",expected_nonce);

 is_frist = 1;

 }

 else

 {

 if(memcmp(&router_ipaddr , &UIP_IP_BUF->srcipaddr, sizeof(uip_ip6addr_t)) != 0)

 {

 90

 PRINT6ADDR(&UIP_IP_BUF->srcipaddr);

 PRINTF(" is attacker used the same nonce_id %u. Discard!!!\n",expected_nonce);

 goto discard;

 }

 }

 }

 }

 #endif

 break;

 case UIP_ND6_OPT_SLLAO:

 PRINTF("Processing SLLAO option in RA\n");

 nd6_opt_llao = (uint8_t *) UIP_ND6_OPT_HDR_BUF;

 nbr = uip_ds6_nbr_lookup(&UIP_IP_BUF->srcipaddr);

 if(nbr == NULL) {

 nbr = uip_ds6_nbr_add(&UIP_IP_BUF->srcipaddr,

 (uip_lladdr_t *)&nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET],

 1, NBR_STALE);

 } else {

 uip_lladdr_t *lladdr = (uip_lladdr_t *)uip_ds6_nbr_get_ll(nbr);

 if(nbr->state == NBR_INCOMPLETE) {

 nbr->state = NBR_STALE;

 }

 if(memcmp(&nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET],

 lladdr, UIP_LLADDR_LEN) != 0) {

 memcpy(lladdr, &nd6_opt_llao[UIP_ND6_OPT_DATA_OFFSET],

 UIP_LLADDR_LEN);

 nbr->state = NBR_STALE;

 }

 91

 nbr->isrouter = 1;

 }

 break;

 case UIP_ND6_OPT_MTU:

 PRINTF("Processing MTU option in RA\n");

 uip_ds6_if.link_mtu =

 uip_ntohl(((uip_nd6_opt_mtu *) UIP_ND6_OPT_HDR_BUF)->mtu);

 break;

 case UIP_ND6_OPT_PREFIX_INFO:

 PRINTF("Processing PREFIX option in RA\n");

 nd6_opt_prefix_info = (uip_nd6_opt_prefix_info *) UIP_ND6_OPT_HDR_BUF;

 if((uip_ntohl(nd6_opt_prefix_info->validlt) >=

 uip_ntohl(nd6_opt_prefix_info->preferredlt))

 && (!uip_is_addr_link_local(&nd6_opt_prefix_info->prefix))) {

 /* on-link flag related processing */

 if(nd6_opt_prefix_info->flagsreserved1 & UIP_ND6_RA_FLAG_ONLINK) {

 prefix =

 uip_ds6_prefix_lookup(&nd6_opt_prefix_info->prefix,

 nd6_opt_prefix_info->preflen);

 if(prefix == NULL) {

 if(nd6_opt_prefix_info->validlt != 0) {

 if(nd6_opt_prefix_info->validlt != UIP_ND6_INFINITE_LIFETIME) {

 prefix = uip_ds6_prefix_add(&nd6_opt_prefix_info->prefix,

 nd6_opt_prefix_info->preflen,

 uip_ntohl(nd6_opt_prefix_info->

 validlt));

 } else {

 prefix = uip_ds6_prefix_add(&nd6_opt_prefix_info->prefix,

 nd6_opt_prefix_info->preflen, 0);

 92

 }

 }

 } else {

 switch (nd6_opt_prefix_info->validlt) {

 case 0:

 uip_ds6_prefix_rm(prefix);

 break;

 case UIP_ND6_INFINITE_LIFETIME:

 prefix->isinfinite = 1;

 break;

 default:

 PRINTF("Updating timer of prefix");

 PRINT6ADDR(&prefix->ipaddr);

 PRINTF("new value %lu\n", uip_ntohl(nd6_opt_prefix_info->validlt));

 stimer_set(&prefix->vlifetime,

 uip_ntohl(nd6_opt_prefix_info->validlt));

 prefix->isinfinite = 0;

 break;

 }

 }

 }

 /* End of on-link flag related processing */

 /* autonomous flag related processing */

 if((nd6_opt_prefix_info->flagsreserved1 & UIP_ND6_RA_FLAG_AUTONOMOUS)

 && (nd6_opt_prefix_info->validlt != 0)

 && (nd6_opt_prefix_info->preflen == UIP_DEFAULT_PREFIX_LEN)) {

 uip_ipaddr_copy(&ipaddr, &nd6_opt_prefix_info->prefix);

 uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);

 93

 addr = uip_ds6_addr_lookup(&ipaddr);

 if((addr != NULL) && (addr->type == ADDR_AUTOCONF)) {

 if(nd6_opt_prefix_info->validlt != UIP_ND6_INFINITE_LIFETIME) {

 /* The processing below is defined in RFC4862 section 5.5.3 e */

 if((uip_ntohl(nd6_opt_prefix_info->validlt) > 2 * 60 * 60) ||

 (uip_ntohl(nd6_opt_prefix_info->validlt) >

 stimer_remaining(&addr->vlifetime))) {

 PRINTF("Updating timer of address");

 PRINT6ADDR(&addr->ipaddr);

 PRINTF("new value %lu\n",

 uip_ntohl(nd6_opt_prefix_info->validlt));

 stimer_set(&addr->vlifetime,

 uip_ntohl(nd6_opt_prefix_info->validlt));

 } else {

 stimer_set(&addr->vlifetime, 2 * 60 * 60);

 PRINTF("Updating timer of address ");

 PRINT6ADDR(&addr->ipaddr);

 PRINTF("new value %lu\n", (unsigned long)(2 * 60 * 60));

 }

 addr->isinfinite = 0;

 } else {

 addr->isinfinite = 1;

 }

 } else {

 if(uip_ntohl(nd6_opt_prefix_info->validlt) ==

 UIP_ND6_INFINITE_LIFETIME) {

 uip_ds6_addr_add(&ipaddr, 0, ADDR_AUTOCONF);

 } else {

 uip_ds6_addr_add(&ipaddr, uip_ntohl(nd6_opt_prefix_info->validlt),

 94

 ADDR_AUTOCONF);

 }

 }

 }

 /* End of autonomous flag related processing */

 }

 break;

#if UIP_ND6_RA_RDNSS

 case UIP_ND6_OPT_RDNSS:

 if(UIP_ND6_RA_BUF->flags_reserved & (UIP_ND6_O_FLAG << 6)) {

 PRINTF("Processing RDNSS option\n");

 uint8_t naddr = (UIP_ND6_OPT_RDNSS_BUF->len - 1) / 2;

 uip_ipaddr_t *ip = (uip_ipaddr_t *)(&UIP_ND6_OPT_RDNSS_BUF->ip);

 PRINTF("got %d nameservers\n", naddr);

 while(naddr-- > 0) {

 PRINTF(" nameserver: ");

 PRINT6ADDR(ip);

 PRINTF(" lifetime: %lx\n", uip_ntohl(UIP_ND6_OPT_RDNSS_BUF->lifetime));

 uip_nameserver_update(ip, uip_ntohl(UIP_ND6_OPT_RDNSS_BUF->lifetime));

 ip++;

 }

 }

 break;

#endif /* UIP_ND6_RA_RDNSS */

 default:

 PRINTF("ND option not supported in RA");

 break;

 }

 nd6_opt_offset += (UIP_ND6_OPT_HDR_BUF->len << 3);

 95

 }

 defrt = uip_ds6_defrt_lookup(&UIP_IP_BUF->srcipaddr);

 if(UIP_ND6_RA_BUF->router_lifetime != 0) {

 if(nbr != NULL) {

 nbr->isrouter = 1;

 }

 if(defrt == NULL) {

 uip_ds6_defrt_add(&UIP_IP_BUF->srcipaddr,

 (unsigned

 long)(uip_ntohs(UIP_ND6_RA_BUF->router_lifetime)));

 } else {

 stimer_set(&(defrt->lifetime),

 (unsigned long)(uip_ntohs(UIP_ND6_RA_BUF->router_lifetime)));

 }

 } else {

 if(defrt != NULL) {

 uip_ds6_defrt_rm(defrt);

 }

 }

#if UIP_CONF_IPV6_QUEUE_PKT

 /* If the nbr just became reachable (e.g. it was in NBR_INCOMPLETE state

 * and we got a SLLAO), check if we had buffered a pkt for it */

 /* if((nbr != NULL) && (nbr->queue_buf_len != 0)) {

 uip_len = nbr->queue_buf_len;

 memcpy(UIP_IP_BUF, nbr->queue_buf, uip_len);

 nbr->queue_buf_len = 0;

 return;

 96

 }*/

 if(nbr != NULL && uip_packetqueue_buflen(&nbr->packethandle) != 0) {

 uip_len = uip_packetqueue_buflen(&nbr->packethandle);

 memcpy(UIP_IP_BUF, uip_packetqueue_buf(&nbr->packethandle), uip_len);

 uip_packetqueue_free(&nbr->packethandle);

 return;

 }

#endif /*UIP_CONF_IPV6_QUEUE_PKT */

discard:

 uip_len = 0;

 return;

}

#endif /* !UIP_CONF_ROUTER */

/*--*/

/* ICMPv6 input handlers */

#if UIP_ND6_SEND_NA

UIP_ICMP6_HANDLER(ns_input_handler, ICMP6_NS, UIP_ICMP6_HANDLER_CODE_ANY,

 ns_input);

UIP_ICMP6_HANDLER(na_input_handler, ICMP6_NA, UIP_ICMP6_HANDLER_CODE_ANY,

 na_input);

#endif

#if UIP_CONF_ROUTER && UIP_ND6_SEND_RA

UIP_ICMP6_HANDLER(rs_input_handler, ICMP6_RS, UIP_ICMP6_HANDLER_CODE_ANY,

 rs_input);

#endif

 97

#if !UIP_CONF_ROUTER

UIP_ICMP6_HANDLER(ra_input_handler, ICMP6_RA, UIP_ICMP6_HANDLER_CODE_ANY,

 ra_input);

#endif

/*---*/

void

uip_nd6_init()

{

#if UIP_ND6_SEND_NA

 /* Only handle NSs if we are prepared to send out NAs */

 uip_icmp6_register_input_handler(&ns_input_handler);

 /*

 * Only handle NAs if we are prepared to send out NAs.

 * This is perhaps logically incorrect, but this condition was present in

 * uip_process and we keep it until proven wrong

 */

 uip_icmp6_register_input_handler(&na_input_handler);

#endif

#if UIP_CONF_ROUTER && UIP_ND6_SEND_RA

 /* Only accept RS if we are a router and happy to send out RAs */

 uip_icmp6_register_input_handler(&rs_input_handler);

#endif

#if !UIP_CONF_ROUTER

 /* Only process RAs if we are not a router */

 98

 uip_icmp6_register_input_handler(&ra_input_handler);

#endif

}

/*---*/

 /** @} */

 99

LIST OF REFERENCES

[1] I. Ishaq, D. Carels, G.K. Teklemariam, J. Hoebeke, F.V.D. Abeele, E.D. Poorter,
I. Moerman, and P. Demeester, “IETF standardization in the field of the Internet
of Things (IoT): A survey,” Journal of Sensor and Actuator Networks, vol. 2, no.
2, pp. 235–287, 2013.

[2] J.A. Gutierrez, M. Naeve, and E. Callaway, “IEEE 802.15. 4: A developing
standard for low-power low-cost wireless personal area networks,” IEEE Network
vol. 15, no. 5, pp. 12–19, 2001.

[3] Transmission of IPv6 packets over IEEE 802.4 Networks, RFC 4944, 2007.
[Online]. Available: https://tools.ietf.org/html/rfc4944

[4] C. Hennebert, and D.S. Jessye, “Security protocols and privacy issues into
6LoWPAN stack: A synthesis.,” IEEE Internet of Things Journal, vol. 1, no. 5,
pp. 384–398, 2014.

[5] Compression Format for IPv6 Datagrams over IEEE 802.15, RFC 6282, 2011.
[Online]. Available: https://tools.ietf.org/html/rfc6282

[6] The Constrained Application Protocol (CoAP), RFC7252, 2014. [Online].
Available: https://tools.ietf.org/html/rfc7252

[7] Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification, RFC 4443, 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4443

[8] Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs), RFC 6775, 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6775

[9] IPv6 Neighbor Discovery (ND) Trust Models and Threats, RFC 3756, 2004.
[Online]. Available: https://tools.ietf.org/html/rfc3756

[10] Secure Neighbor Discovery (SEND), RFC 3971, 2005. [Online]. Available:
https://tools.ietf.org/html/rfc3971

[11] Neighbor Discovery for IP version 6, RFC 4861, 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4861

[12] S. Praptodiyono, R.K. Murugesan, I.H. Hasbullah, C.Y. Wey, M.M. Kadhum, and
A. Osman, “Security mechanism for IPv6 stateless address autoconfiguration,” in
Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and
Information Technology, pp. 31–36, 2015.

 100

[13] Securing Neighbor Discovery Proxy: Problem Statement, RFC 5909, 2010.

[14] J. Davies, Understanding IPv6. Redmond, Washington, United States: Microsoft
Press, 2012. [Online]. Available: http://it-ebooks.info/book/1022/

[15] Security Architecture for the Internet Protocol, RFC-4301, 2005.

[16] O. Morrison, J. Wilkosz, A. Carrera, R. Mera, “IPSec: Protocol challenges and
performance analysis and enhancements,” Computing and Information Systems,
University of Melbourne, Australia, 2014.

[17] I.H. Hasbullah, M.M. Kadhum, Y.W. Chong, K. Alieyan, and A. Osman,
“Timestamp utilization in trust-ND mechanism for securing neighbor discovery
protocol,” in Annual Conference on Privacy, Security and Trust (PST), pp. 275-
281, 2016.

[18] A. AlSa'deh and C. Meinel, “Secure neighbor discovery: Review, challenges,
perspectives, and recommendations,” IEEE Security & Privacy, vol. 10, no. 4, pp.
26–34, 2012.

 [19] J.W. Bos, O. Özen, and J.P. Hubaux, “Analysis and optimization of
Cryptographically Generated Addresses,” in International Conference on
Information Security, pp. 17–32, 2009.

 [20] F.A. Barbhuiya, S. Biswas, and S. Nandi, “Detection of neighborsolicitation and
advertisement spoofing in IPv6 neighbor discovery protocol,” in Proceedings of
the 4th International Conference on Security of Information and Networks, pp.
110–118, 2011.

 [21] H. Rafiee, and C. Meinel, “SSAS: A simple secure addressing scheme for IPv6
autoconfiguration,” in Annual Conference on Privacy, Security and Trust (PST),
pp. 275–282, 2013.

 [22] K. Perumal and M. J. P. J. Priya, “Trust based security enhancement mechanism
for Neighbor Discovery Protocol in IPv6,” International Journal of Applied
Engineering, vol. 11, no. 7, pp. 4787–4796, 2016.

 [23] A. Josang and R. Ismail, “The beta reputation system,” in Proceedings of the 15th
Bled Electronic Commerce Conference, vol. 5, pp. 2502-2511, 2002.

 [24] Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP, and TCP Headers,
RFC 4727, 2006. [Online]. Available: https://tools.ietf.org/html/rfc4727

[25] Network time protocol (NTP), RFC 958, 1985. [Online]. Available:
https://tools.ietf.org/html/rfc958

 101

[26] “Contiki: The open source OS for the Internet of Things,” Contiki. Accessed
November 19, 2017. [Online]. Available: http://www.contiki-os.org/

[27] “Get started with Contiki.” Accessed November 19, 2017. [Online]. Available:
http://www.contiki-os.org/start.html

[28] “An introduction to Cooja,” Github. Accessed November 19, 2017. [Online].
Available: https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja

[29] “The Contiki Operating System,” Sourceforge. Accessed November 19, 2017.
[Online]. Available: https://sourceforge.net/projects/contiki/?source=navbar

[30] IP Version 6 Addressing Architecture, RFC 4291, 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4291

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	17Dec_Ang_Cheng
	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. 6LoWPAN NETWORK
	B. SECURITY CONCERNS OVER 6LoWPAN NETWORKs
	C. RESEARCH MOTIVATION AND OBJECTIVES
	D. THESIS CONTRIBUTION
	E. THESIS ORGANIZATION

	II. BACKGROUND on 6LoWPAN Neighbor Discovery
	A. IPV6 ND PROTOCOL
	1. Overview
	2. ND Protocol Messages
	3. ND Protocol Mechanism
	a. Router Discovery
	b. Address Resolution Mechanism
	c. Neighbor Unreachability Detection (NUD)
	d. Redirect

	B. ND threats and vulnerabilities
	C. CHAPTER SUMMARY

	III. RELATED WORK
	A. Existing solutions for securing the ND Protocol
	1. IP Security
	2. Secure Neighbor Discovery (SEND)
	3. SEND Vulnerabilities
	a. CGA Vulnerability
	b. DoS Attacks on Router Authorization

	4. Further Improvements on SEND

	B. CHAPTER SUMMARY

	IV. PROPOSED SECURITY MECHANISM FOR ND PROTOCOL
	A. DESIGN CONSIDERATIONS
	B. PROPOSED SECURITY MECHANISM
	1. Hard Security Implementation
	a. Message Generation Time
	b. Nonce
	c. Message Authentication Data

	2. Soft Security Implementation

	C. Chapter summary

	V. EXPERIMENTAL SETUP
	A. AIM of experiment
	B. NETWORK SIMULATION SETUP
	1. Contiki OS and Cooja Network Simulator
	2. Simulation Environment

	C. ATTACk scenarios
	1. Nonce Option against Replay Attacks
	2. Timestamp Option against Replay Attacks

	D. Modifications to EXISTING contiki os code
	E. CHapter summary

	VI. SIMUlation results and analysis
	A. Attack scenario without Trust-ND option
	B. Attack scenario with Nonce option
	C. Attack scenario with Timestamp option
	D. Timestamp option with de-synchronized clocks
	E. Timestamp option with time-synchronization mechanism
	F. Chapter summary

	VII. conclusion and future work
	A. summary and conclusions
	B. Future work
	1. Evaluation of the Entire Hard Security Mechanism
	2. Evaluation of the Soft Security Mechanism
	3. Scalability of the Security Mechanism

	appendix. SOURCE CODE
	List of References
	initial distribution list

	17Dec_Ang_Cheng
	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. 6LoWPAN NETWORK
	B. SECURITY CONCERNS OVER 6LoWPAN NETWORKs
	C. RESEARCH MOTIVATION AND OBJECTIVES
	D. THESIS CONTRIBUTION
	E. THESIS ORGANIZATION

	II. BACKGROUND on 6LoWPAN Neighbor Discovery
	A. IPV6 ND PROTOCOL
	1. Overview
	2. ND Protocol Messages
	3. ND Protocol Mechanism
	a. Router Discovery
	b. Address Resolution Mechanism
	c. Neighbor Unreachability Detection (NUD)
	d. Redirect

	B. ND threats and vulnerabilities
	C. CHAPTER SUMMARY

	III. RELATED WORK
	A. Existing solutions for securing the ND Protocol
	1. IP Security
	2. Secure Neighbor Discovery (SEND)
	3. SEND Vulnerabilities
	a. CGA Vulnerability
	b. DoS Attacks on Router Authorization

	4. Further Improvements on SEND

	B. CHAPTER SUMMARY

	IV. PROPOSED SECURITY MECHANISM FOR ND PROTOCOL
	A. DESIGN CONSIDERATIONS
	B. PROPOSED SECURITY MECHANISM
	1. Hard Security Implementation
	a. Message Generation Time
	b. Nonce
	c. Message Authentication Data

	2. Soft Security Implementation

	C. Chapter summary

	V. EXPERIMENTAL SETUP
	A. AIM of experiment
	B. NETWORK SIMULATION SETUP
	1. Contiki OS and Cooja Network Simulator
	2. Simulation Environment

	C. ATTACk scenarios
	1. Nonce Option against Replay Attacks
	2. Timestamp Option against Replay Attacks

	D. Modifications to EXISTING contiki os code
	E. CHapter summary

	VI. SIMUlation results and analysis
	A. Attack scenario without Trust-ND option
	B. Attack scenario with Nonce option
	C. Attack scenario with Timestamp option
	D. Timestamp option with de-synchronized clocks
	E. Timestamp option with time-synchronization mechanism
	F. Chapter summary

	VII. conclusion and future work
	A. summary and conclusions
	B. Future work
	1. Evaluation of the Entire Hard Security Mechanism
	2. Evaluation of the Soft Security Mechanism
	3. Scalability of the Security Mechanism

	appendix. SOURCE CODE
	List of References
	initial distribution list

