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ABSTRACT 

The Intelligence, Surveillance, and Reconnaissance (ISR) community is interested 

in developing a model that can assist in characterizing patterns of ship navigation. We 

examine techniques used to highlight those patterns using historical Automatic 

Identification System (AIS) data in the Baltic Sea from January to April 2014. A regression 

model is used to determine which factors influence the amount of time a cargo ship spends 

in a port in the Saint Petersburg, Russia, area. We find that the best model is able to explain 

about 29 percent of the variance of the length of time that a vessel is in the Saint Petersburg 

area. We use three random forest models, that differ in their use of past information, to 

predict a vessel’s next port of visit. The random forest models we use in this analysis 

demonstrate that predicting a vessel’s next port of call is not a Markov model but a higher-

order network where past information is used to more accurately predict the future state. 

The transitional probabilities change when predictor variables are added that reach deeper 

into the past. Our findings suggest that successful prediction of the movement of a vessel 

depends on having accurate information on its recent history.  
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EXECUTIVE SUMMARY 

Countries that have coastal borders in areas with high levels of maritime activity 

require an accurate maritime picture for their national security. Maritime Domain 

Awareness (MDA) for those particular countries can be enhanced by using historical 

Automated Identification System (AIS) data to identify ship navigation patterns in the 

maritime area. The primary purpose of AIS is collision avoidance through its autonomous 

ability to identify other vessels that are fitted with an AIS transponder. Although the 

International Maritime Organization (IMO) mandates that vessels of a certain size are 

equipped with an AIS transponder, there is no law enforcement in any part of the world 

that enforces that regulation. Thus, the data received from AIS transmissions is not always 

complete and is subject to error. 

AIS data is big data that is publicly available for research to be conducted on topics 

such as analyzing maritime traffic patterns, predicting vessel movements, and other topics 

related to enhancing MDA. The purpose of this thesis is to characterize ship navigation 

patterns using AIS data in the Baltic Sea to better allocate surveillance assets for specific 

ships. The data we use in this thesis is limited to a bounding box with latitude between 53 

and 60.5 degrees north and longitude between 13.4, and 29.4 degrees east. Our dataset 

contains over 25 million observations that were obtained during a four-month time period 

beginning in January 2014. We limit the scope of our analysis to vessels that are self-

identified as cargo ships. Maritime transportation occurs with high density in the Baltic 

Sea due to its many ports, which often are in close proximity to other ports. To reduce 

complexity, we create port clusters by combining ports within fifty miles of each other and 

which belong to the same country to reduce the number of port stops. By doing this, we 

reduce 78 unique ports within the bounding box to 34 port clusters. For the purpose of 

analysis, we focus on a cluster of three ports in the Saint Petersburg, Russia area and the 

cargo ships that stop there. We choose this cluster because it has the highest inflow and 

outflow of cargo ship traffic compared to the other Baltic port clusters. 

Before we begin our analysis, we clean the data by scanning for outliers that may 

affect our analysis. Obtaining stop points is important to understanding the movement 
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patterns of a vessel. With the cleaned data, we determine stop points using defined 

thresholds and process the information to describe segments for each unique vessel. The 

segments are separated by a vessel’s Maritime Mobile Service Identity (MMSI) number, 

which is a nine-digit number that correspond to a vessel’s transponder. One vessel typically 

has multiple segments which when linked define its route through the Baltic Sea. We 

consider only the MMSIs that stop in the Saint Petersburg area at least once and examine 

the behavior of the vessels within this group. 

Our first objective is to analyze the effects of different factors on the length of port 

stays in the Baltic region, focusing on the Saint Petersburg area. We use regression to 

identify factors that influence the amount of time that a cargo ship spends in port. The 

explanatory variables that we consider are:  

• Prior port that the vessel visited before Saint Petersburg area  

• Next port that the vessel transits to after Saint Petersburg area 

• Departure day of the week 

• Arrival day of the week 

• Arrival day in the year (1 = January 1, 2 = January 2, …, 130 = April 30) 

• MID (a three-digit code for the country a vessel is registered to)  

We use a logarithmic transformation on the response variable, which is the length of the 

port stay, to improve the fit of the model. The variable Maritime Identification Digits 

(MID) is able to explain about 25 percent of the variance of the response variable and is 

determined to be the best explanatory variable in the regression analysis. This emphasizes 

the importance of maritime law enforcement ensuring that a vessel’s MMSI is updated 

when first installed and that the MID matches the country flag that is being flown by the 

vessel. The second strongest explanatory variable is prior port, which highlights the 

importance of having past knowledge of the ports that a vessel visits during its voyage. 

Overall, the regression analysis explains about 29 percent of the variance of the response 

variable. The final model that we use considers Bayes Information Criterion (BIC) to 

penalize the addition of extra variables in the regression and avoid overfitting. The original 
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model has 121 variables that we reduce to 23 variables using BIC. This analysis is 

beneficial because it allows organizations that conduct surveillance to better understand 

the factors that influence how long a vessel of interest is in port. Knowing the duration of 

a port stay for a vessel of interest gives the organization time to allocate resources to the 

vessel of interest’s current port or next port of visit. 

Our second objective is to predict with greater accuracy whether a vessel will depart 

the Baltic Sea or visit another port within the Baltic Sea. We construct three random forest 

models, that differ in their use of past information, to predict the next port of visit. We use 

a binomial response variable that accounts for whether a vessel leaves or remains in the 

Baltic Sea after departing a port in the Saint Petersburg, Russia area. Our predictor 

variables include MID, arrival day of the week, arrival day in the year, the length of time 

a vessel stays in port, and previous ports visited. The overall misclassification rate when 

considering zero previous ports is 31.5 percent. It decreases by about three percent with 

the addition of one previous port as a predictor variable, resulting in an overall 

misclassification rate of 28.2 percent. The third model has the lowest misclassification rate, 

in comparison to the first two models, with 27.2 percent. This analysis shows that there is 

potential to more accurately predict the next port of visit for a vessel given its previous 

destinations. 

Our third objective is to predict, with greater accuracy, a vessel’s next port of visit 

by considering its previous ports visited. We separate the data into a training set and a test 

set. However, to ensure that all 23 next ports of visit are included in both sets, we group 

the next ports into four categories. Those categories are: “SW ATLANTIC,” “KOTKA FI 

AREA,” “OTHER FI SE,” and “ALL OTHERS.” We use 20 percent of the dataset (160 

observations), randomly selected without replacement, as our test set and the remaining 80 

percent (640 observations) as our training set. We fit three random forest models, set up 

similarly as the models used in the previous objective, to predict the transitional 

probabilities of a vessel’s next port of visit. The overall misclassification rates for each of 

the models decreases, similarly to the second objective. Model 0 has a misclassification 

rate of 38.5 percent using the training data and about 44 percent with the test set. Model 1 

has a lower overall misclassification error with 36.3 percent using the training data and 
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about 37 percent with the test set. Model 2 has the lowest overall misclassification error in 

comparison to the first two models. With the training data, the overall misclassification 

error is 31.7 percent and with the test set it is about 30 percent. This analysis emphasizes 

the point that past information matters and is needed to more accurately predict a vessel’s 

next port of visit. Although all possible next ports of visit were not included in this analysis, 

we consider them all in the next objective by estimating the transitional probabilities for 

all 23 ports. 

The fourth objective is to estimate the transitional probabilities for a vessel’s next 

port of visit to examine whether a vessel’s next port of call is a Markov model or a higher-

order network, where past states matter for accurate prediction of the future state. We 

construct three random forest models, setup similarly to the models used in the previous 

two objectives, to estimate the next port of visit. Even though MID is the best explanatory 

variable in the random forest analysis, the previous port variable increases with importance 

the further into the past we explore. The transitional probabilities change when explanatory 

variables are added that go deeper into the past, indicating that prediction of a vessel’s next 

port of call is not a Markov model but a higher-order network where past information is 

needed to more accurately predict the future state. 

The methodology used in this thesis is useful because it allows the user to more 

accurately predict a vessel of interest’s next port of visit by considering its previous ports 

visited. Misclassification rates decreased with the addition of past information in the 

prediction models. By estimating the probabilities for all 23 possible next ports, there is a 

difference in the models and the transitional probabilities. This indicates that past 

information matters and is useful to consider in the allocation of surveillance assets. 

Incorporating past port visits into the model increases the probability of being in the right 

place to fully take advantage of the vessel of interest’s full port stay. 
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I. INTRODUCTION 

Maritime Domain Awareness (MDA) is important for countries that have coastal 

borders in areas with high levels of maritime traffic. This concept involves the safety and 

security of a countries mainland, economic prosperity, and the environment of a nation 

(Tetreault 2005). It deals specifically with the detection, identification, and observation of 

all vessels in an area of interest (AOI). Although tracking a vessel’s movement is not 

difficult, it is challenging to determine intent. Without knowing a vessel’s maneuvering 

intentions, it is hard to know if the vessel of interest (VOI) is behaving in a questionable 

way or if it is following a predictable pattern. Therefore, it is important to be able to 

characterize patterns of navigation, so that anomalous behavior being exhibited by a vessel 

can be examined more closely. This is especially important in waters near populous coastal 

regions, which are exposed to possible maritime threats. Given the current port of a vessel, 

knowing where it came from and where it is going to next is not enough to determine if its 

behavior is common for a vessel of its type. A vessel’s route, consisting of sequential ports 

visited, can provide more insight into the vessel’s behavior and choice of ports.   

A key tool that has been used to enhance MDA globally is the Automated 

Identification System (AIS), which provides information on the movement of vessels at 

sea. The primary purpose of AIS is collision avoidance through its autonomous ability to 

identify other vessels that are fitted with an AIS transponder. A vessel that is AIS capable 

can receive information from other vessels in the area, such as the vessel’s name, location 

and current status. That information could be used in the event of a possible collision, to 

take early action in accordance with International Regulations for Preventing Collisions at 

Sea (COLREGS). AIS provided information on the speed, course, destination, and position 

of a vessel. Other uses of AIS data include tracking ships in a certain area, or worldwide, 

and monitoring traffic through straits or channels. These instances require that the current 

position of a vessel be known. International Maritime Organization (IMO) requires that an 

AIS transponder be placed on all ships with gross tonnage (GT) greater than 300 that travel 

internationally, and all ships greater than 500 GT that travel domestically near their country 

of origin (International Maritime Organization 2002). It is also required for all passenger 
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ships, regardless of size. AIS transmissions can be useful in real time to track and monitor 

vessels or historically to determine various behaviors of vessels. 

The data received from AIS transmissions is not perfect: it is not always complete 

and it is subject to error. Under the Safety of Life at Sea (SOLAS) Convention, there is a 

regulation that allows the master of a ship to make decisions that are necessary for safe 

navigation, such as turning off AIS equipment when it is working improperly or if the 

master believes the safety of his vessel is being compromised by providing the vessel’s 

location to potential pirates (Tetreault 2005). These are the only times that the AIS 

transceiver can be turned off for vessels to be in accordance with IMO regulations. 

However, there are gaps in AIS data that cannot be accounted for by those reasons alone. 

Spoofing is a concern because ships can intentionally mask their intentions by providing 

information that tells a different story from what they are actually doing. This is why AIS 

data should not be the only means for vessel tracking. However, AIS data can provide 

valuable insights given that the pre-processing of the data eliminates potential outliers, 

which are observations that are not physically sensible. These outliers include observations 

that jump in location and would require speeds that are not possible for certain vessels. 

McAbee (2013) explains in detail how the receiving stations complete the timestamp that 

is transmitted from a vessel in the area. The timestamp in the transmission is in seconds 

and the receiver must use a local time reference to complete the timestamp with the 

appropriate hours and minutes. Errors often arise in the timestamps, but AIS data would 

not be particularly useful without it as a reference. Researchers are attempting to fill those 

gaps to gain useful insights in a specific area, or worldwide, that would increase the 

awareness of vessels operating near the shore of coastal regions. 

For this thesis, the AIS data are narrowed down to a specific AOI. We focus on the 

Baltic Sea due to its containment of vessels, with the Danish Straits and the Kiel Canal 

being the only points of entry or exit. These passageways into the Atlantic Ocean aided in 

the construction of routes because once in the Baltic Sea, vessels are either transiting to a 

port or on their way out toward the Atlantic after departing from a port of call. The Baltic 

Sea is considered a difficult area for shipping because of the narrow Danish straits, shallow 

waters throughout, and seventeen major islands dispersed within the sea. These hazards in 
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such a small body of water do not leave much room for safe navigation. Thus, it would 

seem that there would be a need for the vessels to follow a predictable path in order to 

ensure the safety of maritime traffic. The AIS dataset is limited to an area bounded by 

latitude between 53 and 60.5 degrees north and longitude between 13.4 and 29.4 degrees 

east. The coordinates reference a box that covers the entire Baltic Sea with cut off points 

to the Southwest going out of the Baltic Sea through the Danish Straits or the Kiel Canal, 

to the north going into the Gulf of Bothnia, and Northeast in the Gulf of Finland before 

Saint Petersburg. A visual representation of this box can be seen in Figure 1. We account 

for the ports cutoff by the bounding box by labeling the vessels that go outside the bounds 

as visiting “SW ATLANTIC,” “GULF OF BOTHINA,” or “SAINT PETERSBURG RU 

AREA.” 

 

Figure 1.  Bounding Box for the Area of Interest in the Baltic Sea 

It has been estimated that up to 15 percent of the world’s cargo traffic passes 

through the Baltic Sea, making it one of the busiest maritime areas in the world (Baltic 

LINes 2016). We determine that 40 percent of the ships in the 2014 AIS data used in this 

thesis were self-labeled as general cargo ships. The volume of maritime traffic in the Baltic 

Sea is likely to increase due to anticipated climate warming and the potential decrease in 

ice conditions that are expected during the winter seasons when the Baltic is usually 
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restrictive for large vessels. With the expected increase in shipping in the Baltic Sea, safety 

of navigation becomes more of a concern. The dataset that we examine in this thesis 

contains more than 25 million observations from a four-month period, beginning in January 

2014. In that year, the Baltic Sea was not heavily covered in ice due to a mild winter and 

the northern Bay of Bothnia received most of the ice coverage (Vainio and Eriksson 2018). 

This means that the winter season should not have had much of an effect on the 

observations. 

A. RESEARCH OBJECTIVES 

The research presented in this thesis is focused on four main objectives that attempt 

to characterize patterns of navigation within the Baltic Sea. Our first objective is to examine 

the length of stay at a particular port for cargo vessels. The port visit can be as important 

as the past, present, and future location of the vessel for predicting its movement. Using 

regression, we explore different factors to determine their effects on a vessel’s length of 

stay at port. Some of the specific factors that we will be exploring are arrival and departure 

day of the week, arrival day in the year, what country the vessel is registered to, and the 

past and future port visited. The insights provided by the port stay analysis would be 

beneficial to the ISR community to better understand the factors that influence how long a 

vessel of interest remains in port.  

The second objective is to predict with greater accuracy whether a vessel will depart 

the Baltic Sea or visit another port within the Baltic Sea. We use random forest models to 

predict whether a vessel departs or remains in the Baltic Sea after visiting a port in the Saint 

Petersburg, Russia area. These models derive probabilities based on the addition of 

information pertaining to vessels that stop in Saint Petersburg area and the previous ports 

that were visited by those vessels. The insights provided by this binomial prediction 

analysis would highlight the worth of including knowledge of past information in the 

prediction of a vessel’s next state after transitioning from a port. 

The third objective is to predict, with greater accuracy, a vessel’s next port of visit 

by considering its past navigation pattern. This objective builds off the second objective by 

now looking at how accurately we can predict ports rather than simply in or out of the 
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Baltic Sea. We separate the data into a training and test set to determine how well our 

random forest models predict the next port of visit for vessels that stop in the Saint 

Petersburg area. The predictor variables prior ports visited and the next ports of visit are 

grouped into four levels: SW ATLANTIC, KOTKA FI AREA, OTHER FI SE, and ALL 

OTHERS. We group these categorical variables to ensure that all ports are included in the 

training set and the test set. The three random forest models differ in the number of previous 

ports included in the models, ranging from no prior port to two prior ports. The insights 

provided by this multinomial prediction analysis would enhance MDA for countries near 

coastal waters and give maritime law enforcement additional statistical intelligence in 

regards to suspicious vessel’s behavior.    

The fourth objective is to estimate the probabilities for a vessel’s next port of visit 

to determine if the probabilities follow a Markov model or a higher-order network. We 

estimate a probability distribution for all 23 possible next ports by using random forest 

models on four chosen scenarios. We use the random forest models to determine how 

knowledge of previous port visits influences the model predictions for the next port of visit 

for a vessel. There has been research conducted on this topic using AIS data, but not in a 

confined area such as the Baltic Sea. The Baltic is unique because there is a single point of 

entry and departure from the sea out toward the Atlantic Ocean. The insights provided by 

this analysis would be beneficial to the decisions that are being made in regards to the 

allocation of surveillance assets for specific ships.  

B. THESIS STRUCTURE 

This thesis is organized as follows. In Chapter II, we review the literature that is 

relevant to analyzing AIS data for maritime traffic routes to gain maritime domain 

awareness. The approaches vary in literature as analysts try to find the methodology that is 

the quickest and most accurate so that it may be applied to real-time AIS data. In Chapter 

III, we discuss the AIS data collection and preparation process that occurred in order to 

ensure that the outliers in the data were accounted for and that the data made sense when 

pictured visually. In Chapter IV, we present the methodology for the analysis of the 
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research objectives and discuss why the results are rational. Finally, in Chapter V, we 

summarize and discuss the conclusions and topics for future work.  
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II. LITERATURE REVIEW 

The following literature review shows the growing importance of historical AIS 

data and how it can be used to enhance MDA.  

A. VESSEL BEHAVIOR 

Vessel behavior is used to recognize vessel activity that is considered suspicious, 

such as paralleling or following other vessels in the area. Research conducted in this area 

can be used as a basis for automated threat detection to improve MDA. 

In an NPS thesis, Tester (2013) focuses on vessel behavior in the maritime domain 

in order to enhance MDA. His objective is to develop a method that would autonomously 

determine whether a VOI had any co-occurances with other vessels in the area during a 

period of time. To achieve this, spatiotemporal clustering is used to cluster groups of 

vessels based on proximity, course, and speed at each unique time-step. The behaviors that 

are focused on were paralleling or following the VOIs course and speed. As a result, the 

algorithm is able to track the clusters of vessels until continuity fell below the threshold. 

Gutierrez Torre (2017) treats AIS data as a time series when using Conditional 

Restricted Boltzmann Machines (CRBMs) and k-means clustering to extract patterns of 

navigation in maritime traffic. The dataset from Spanish Port Authority records is 

processed in CRBM while maintaining the time factor and reducing dimensionality. The 

reduced output is then clustered to identify patterns which could be used to correct missing 

or erroneous data, trace ship behaviors, and recognize their activity. The patterns that were 

discovered were used to model air quality in coastal urban zones. 

In an NPS thesis, Hintze (2017) demonstrates an approach to predict the 

membership of clusters for AIS observations, as a basis for an automated threat detection 

system in the Gulf of Mexico. The AOI is separated into zones of equal size for better 

results. He uses a technique called Ordering Points to Identify the Cluster Structures 

(OPTICS) to cluster by zone by combining geospatial coordinates with vessel attributes. 

Classification trees are used to predict cluster membership for new observations. 
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B. ANOMALY DETECTION AND MOTION PREDICTION 

Vessel behavior is also used to identify anomalous behavior by defining motion 

patterns to compare to a live-feed of AIS data. These motion patterns are also used to 

predict the motion of vessels or probable destinations.  

In an NPS thesis, McAbee (2013) uses the Hough transformation to extract linear 

patterns of density from the high density traffic areas that were identified. Once the routes 

or “highways” are established, they can be used to collectively create an atlas from AIS 

data to define what normal maritime behavior looks like for both open-ocean and coastal 

areas. With normality for vessels operating in a particular area defined, McAbee (2013) 

states that “anomaly detection is performed by comparing incoming ship position reports 

to the generated atlas.” Her use of an image processing technique, the Hough 

transformation, to extract patterns of navigation is the first of its kind to provide insight 

into abnormal behavior. Those insights can then be analyzed to determine intentions of 

those abnormal behaviors from specific vessels. 

Ristic, La Scala, Morelande, and Gordon (2008) present a basic solution to motion 

prediction using historical AIS data. They extract motion patterns from the data and use 

adaptive kernel density estimation to construct anomaly detectors, which are then applied 

on a live-feed of AIS data. Motion patterns that are extracted are assumed to operate in a 

normal manner. The authors use the extracted motion patterns and a Gaussian sum tracking 

filter to predict the  motion of vessel.   

Pallotta, Vespe, and Bryan (2013) propose an unsupervised methodology called 

Traffic Route Extraction and Anomaly Detection (TREAD) to gain an understanding of 

maritime traffic. They eliminate the problem of using turn points for a “vectorial” model 

in unregulated traffic areas by utilizing a Density Based Spatial Clustering of Applications 

with Noise (DBSCAN) algorithm to distinguish waypoints and the routes between them 

when a pattern is consistently observed. The main routes that show a minimum number of 

transits is then decomposed and organized into an atlas for future reference. Associated 

with these routes are spatial, temporal, and attribute information that allows for the 
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detection of anomolous behavior and the prediction of future positions or probable 

destinations for a vessel given real-time positional information. 

In an NPS thesis, Bay (2017) examines the effect of clustering vessels in the Port 

Fourchon, LA area to identify patterns of movement in the Northern Gulf of Mexico 

maritime area. Due to the oil and natural gas platforms near Port Fourchon, clustering is 

not an effective technique to classify vessel movements in and out of the port. Using the 

Bureau of Ocean Energy Management dataset and buoy data from the National Data Buoy 

Center of U.S. Department of Commerce in conjunction with the historical AIS data, 

regression analysis is conducted to determine how closely vessels adhere to a great-circle 

route when taking weather and sea-state into consideration. Bay concludes that weather 

and sea-state should be included in prediction models of vessels at sea.  

In an NPS thesis, Young (2017) presents two models that are used to predict the 

future location of a vessel along a clustered route using historical AIS data. Young finds 

that random forest produced prediction intervals that are close to the coverage to the 

nominal target probability for the true future position. Young finds that a neural networks 

approach produces less accurate prediction intervals than random forest. Additionally, 

random forests are easier to implement and computationally less demanding than neural 

networks. 

C. THESIS FOCUS 

The literature reviewed here shows the importance of extracting patterns of motion 

to gain an understanding of ship movement. With that knowledge, the patterns are 

compared to real-time AIS data to further the research being conducted on improving 

MDA. This thesis uses the patterns that were extracted to determine trends found in the 

Baltic Sea among cargo ships. We are particularly interested in destination prediction using 

past knowledge of where a vessel has been to more accurately predict where it will go next. 

Fernandez Arguedas, Pallotta, and Vespe (2017) develop a geographical network 

based on vessel behavioral changes such as a change in speed or direction. The purpose of 

the network is to enhance maritime situational awareness applications such as track 

reconstruction, destination prediction, and anomaly detection. Their approach is based on 
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the underlying idea that vessels follow consistent routes due to regulated traffic or fuel 

efficiency considerations. To automatically represent maritime traffic in a graph-based 

topology, they propose the Maritime Traffic Representation System which is an 

unsupervised maritime network generator that uses historical AIS data to detect changes in 

a vessel’s behavior. The detected changes, such as a change in course, are used to create 

segments in the routes and associated to create maritime lanes. The proposed method is 

used on the Baltic Sea’s high traffic density area, which resulted in reducing over a million 

observations to about two thousand arcs. 

Gambs, Killijian, and Del Prado (2012) develop a Mobility Markov Chain (MMC) 

model that they extend to predict the next location of an individual based on his movement 

over a period of time and the locations that were visited. Their data consists of mobility 

traces from GPS-enabled devices in the Shanghai area. K-means clustering is used to 

identify  points of interest within the dataset. The memoryless property of the Markov 

models is proven to negatively impact the accuracy of predicting the next place that a vessel 

visits. The data is split into a training and a test set to evaluate the accuracy of the predictor. 

The authors show that accuracy improves as the past is included but it stabilizes as soon as 

the number of places remembered equals two. Accuracy and predictability of the model 

are improved with inclusion of the past but the accuracy ranged from 70 percent to 95 

percent.   

Xu, Wickramarathne, and Chawla (2016) focus on developing a network based on 

a set of interactions that are produced from the movement of the components or vessels. 

Historical AIS data is used to demonstrate that higher order networks (HON) are a more 

accurate representation of vessel movement from port to port, unlike simple Markov 

models. HON is also shown to be more scalable because first-order networks are 

maintained unless higher-order nodes are needed to increase accuracy. A higher-order node 

can represent multiple ports in arbitrary order rather than a single port. The authors claim 

that “HON can help random walkers simulate movements more accurately,” leading to 

more accurate predictions of where the vessel will transit to next (Xu et al. 2016). The 

research revealed that a ships movement had up to a fifth order dependency, which means 

that the next port a ship visits can depend upon its five previous ports that it visited.  
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The literature mentioned in this section propose methods to use in order to 

determine a vessel’s future location. We create segments in the routes to understand all of 

the ports visited previously to a vessel stopping in the Saint Petersburg area. Gambs et al. 

(2012) discuss how a Markov model negatively impacts the accuracy of predicting the next 

place of visit for a person. This statement holds true for vessels because there are maritime 

patterns of navigation that are followed, especially in an enclosed such as the Baltic Sea. 

Xu et al. introduce a HON and discuss how a single node can represent multiple ports in 

arbitrary order to better predict a vessel’s next port of visit. We use the idea behind a HON 

to emphasize that past knowledge of several of a vessel’s port of calls increases the 

accuracy of predicting a cargo ship’s next port of visit.   
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III. METHODOLOGY 

The AIS data used in this thesis is a subset that contains only transmissions received 

in the Baltic Sea during the time period of January through April 2014. This chapter 

describes the process we use to set up the data for analysis and the methodology we use to 

gain insights for the research objectives mentioned in chapter I. 

A. DATA DESCRIPTION 

The AIS observations in the dataset have both dynamic and static information. 

Dynamic data includes information such as Maritime Mobile Service Identity (MMSI) 

number, speed, position, course over ground, heading, and timestamp. The updates to this 

information are automatic since the transponder is connected to ship equipment such as 

GPS. It is transmitted in near real time, according to Raymond (2016), “every two to ten 

seconds depending on the vessel’s speed while it is underway, and every three minutes 

while the vessel is at anchor and stationary.” Our data is subsampled to give one dynamic 

AIS measurement approximately every ten minutes. On average, there are roughly three 

million transmissions, worldwide, recorded for dynamic data in one day. Static data 

includes information such as MMSI number, IMO number, call sign, ship name, ship type, 

and destination. It is manually entered into the AIS transponder upon installation and only 

needs to be changed if there is a major conversion of the vessel, or if the name or call sign 

changes, or when entering the updated next port of destination (Harati-Mokhtari et al. 

2007). Due to the fact that the static information does not change as often as the dynamic 

information, it is transmitted every six minutes (Raymond 2016). 

The MMSI is a unique nine-digit number that is used to identify an AIS transponder 

onboard a ship. It can be compared to a cell phone number in that other vessels that receive 

a transmission are able to use that number to identify and contact a vessel in emergency 

situations. The position entry consists of the latitude and longitude of a particular vessel at 

the time of the transmission. The timestamp contains the date, hours, minutes, and seconds 

in Coordinated Universal Time (UTC) and is dependent on the station that is collecting and 

storing the transmissions. The IMO number is a unique seven-digit number that is specific 
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to a ship and assigned to merchant ships under SOLAS. The call sign and ship name are 

used in communications to contact other vessels in the area. The next port of destination 

for a vessel is included to give more situational awareness in regard to the direction in 

which it is heading.  

Harati-Mokhtari, Wall, Brooks, and Wang (2007) estimate that one in every 

fourteen AIS transmissions has at least one erroneous data field. For the static data in 

particular, the trustworthiness of the static data is heavily dependent on human interaction 

with the system. For example, the MMSI number that identifies a transponder requires that 

the master of a vessel ensures that the number is accurately entered at the time of 

installation of the AIS unit on the bridge (Harati-Mokhtari et al. 2007). Otherwise, the 

transponder retains the default MMSI number that the AIS unit had from the manufacturer 

and causes confusion when looking at historical AIS data because a MMSI can then be in 

multiple locations at the same time since there are multiple ships using the MMSI number. 

The fields that we use include MMSI, ship type, position, and timestamp. We assume that 

the data accurately describes vessels present in the Baltic Sea. 

B. DATA PROCESSING 

Bay (2017) describes a method used to begin processing the data from its original 

AIVDM/AIVDO format to a file that is then decoded and converted into a spatial-points 

data frame using the statistical programming language R (R Core Team 2017). Daily 

dynamic and static reports, from January to April 2014, are sorted in chronological order 

and duplicate observations are removed. The dynamic data is combined with the static data 

by using the MMSI and timestamp entry as a reference to match the information correctly. 

Using the ship type entries to narrow down the data, we explore the vessels that are self-

labeled as cargo ships. This group of vessels contains 4,170 unique MMSIs and is the 

largest vessel group in the Baltic Sea. According to Harati-Mokhtari et al. (2007), 

approximately 74 percent of the entries in the ship type field are vague or misleading. We 

assume that the self-identification of a ship as a cargo vessel is accurate for the purpose of 

this analysis.  
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The next step is to clean the data by scanning for outliers that may affect our 

analysis. We define a maximum velocity threshold of 1200 meters per minute, which is 

equivalent to about 45 miles per hour (MPH). This threshold is reasonable because most 

cargo ships operate normally at speeds ranging from 23 to 29 MPH (Rodrigue 2017). The 

data is then organized by MMSI in sequential order, according to its timestamp, to then 

calculate the incremental distances between observations using the latitude, longitude, and 

time entries. Velocities are then estimated by dividing distance by time. If there are only a 

few incremental velocities that are found to be at or above the threshold, they are removed 

from the data for that vessel. However, if over 10 percent of the data is found to exceed the 

threshold, then that MMSI is not processed. Koyak (2017) describes the algorithm used to 

detect infeasible speeds and to remove outliers in the data.  

C. CREATING ROUTE SEGMENTS 

During the period of time that a vessel is in the Baltic Sea, it makes multiple stops 

at various locations that we define as stop points. To decide if a vessel is stopped, we define 

a time and distance threshold. A vessel is designated as stopped if it has moved less than 

5,000 meters over a time period of at least 120 minutes. This means that if the vessel has 

not traveled a little over three miles in two hours, then it is considered to be stopped at its 

current location. These time and distance thresholds are realistic because in order for a 

vessel to be at or below the threshold it would have to moving at a speed of about one knot. 

For a large ship to maintain bare steerageway, it would have to sustain a minimum speed 

of at least three knots. Once we have calculated the stop points using our defined 

thresholds, we can process the information to describe segments for each of the unique 

MMSIs. Obtaining stop points is important to understanding the movement patterns of a 

vessel.  

The dataset of segments contains a vessel’s MMSI, the start type, start latitude and 

longitude, start time, end type, end latitude and longitude, end time, and total distance 

traveled in the segment. The start type is constructed to determine where the segment is 

starting from. If a vessel is starting from a defined stop point, then it is assigned a value of 

minus one; a non-stop point within the Baltic Sea is assigned a value of zero; entry from 



 16 

the west boundary (Denmark-Sweden Strait) is assigned a value of one; entry from the east 

boundary is assigned a value of two; entry from the south boundary is assigned a value of 

three; and entry from the north boundary (Gulf of Bothnia) is assigned a value of four. The 

end type is defined in a similar manner. A defined stop point is a recognized port in the 

Baltic Sea region. A vessel is considered to be stopped and in port if it is inside a 5000-

meter radius of the port, using coordinates for the port listed in the World Port Index 

(National Geo-Spatial Intelligence Agency 2017). The total distance traveled is the sum of 

incremental distances of AIS-reported positions throughout the segment. One MMSI can 

have multiple segments that should be sequential and when put together constitute its route 

throughout the Baltic Sea. 

D. ASSIGNING ROUTE SEGMENT LABELS 

We label the segments according to where the vessel is transiting to and from. 

Harati-Mokhtari et al. (2007) approximates that “49 percent of the destination entries are 

erroneous or misleading” in referring to the static AIS reports. Therefore, we use the start 

and end points of the route segments that we determine from the AIS positional messages 

to identify which ports, if any, the vessel visits. We convert the World Port Index into an 

R dataset that contains the ports name, country, latitude, longitude, harbor size, and harbor 

type. We then merge the segment dataset with the port locations. The port with the 

minimum distance is then assigned to the route label for the segment.  

There are 78 identified ports within our bounding box in the Baltic Sea and many 

occur in close proximity to other ports, which makes it difficult to distinguish the exact 

port that the vessel is visiting. To minimize error, we create port clusters by combining 

ports that are within fifty miles of each other and belong to the same country into one entity 

to reduce the number of potential port stops. By doing this, we reduce 78 unique port names 

to 34 port clusters. In Figure 2, there are 25 port clusters that have more than one port, 

leaving nine ports with their original port name. Port clusters are used to simplify the 

analysis. We add three other ports to account for the ports cutoff by the bounding box. 

Those ports are named: “SW ATLANTIC,” “GULF OF BOTHINA,” and “SAINT 

PETERSBURG RU AREA.”   
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Circled ports are combined into a port cluster. 

Figure 2.  Baltic Ports within Bounding Box  

For the purpose of analysis, we focus on a cluster of ports in the Saint Petersburg, 

Russia area. This cluster consists of three different ports, as listed in Table 1, and has the 

highest inflow and outflow of cargo vessel traffic compared to the other Baltic ports. The 

port stays that were less than one hour were removed from the data to exclude potential 

erroneous data. Cargo ships would need more than an hour to moor and offload its cargo. 
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Table 1.   Ports by Name within Port Clusters 

CLUSTER NAMES PORT NAME CLUSTER NAME PORT NAME 

WOLGAST DE AREA WOLGAST KALINGRAD RU AREA KALINGRAD 
  SASSNITZ   BALTIYSK 
E. BORNHOLM DK AREA CHRISTIANSO HARBOR ST. PETERSBURG RU AREA ST. PETERSBURG 
  NEKSO   LOMONOSOV 
W. BORNHOLM DK AREA RONNE   KRONSHTADT 
  HASLE HALLSTAVIK SE AREA HALLSTAVIK 
TALLINN EE AREA TALLINN   GRISSLEHAMN 
  MUUGA-PORT OF TALLINN   HARGSHAMN 
PALDISKI EE AREA PALDISKI STOCKHOLM SE AREA STOCKHOLM 
  OSMUSSAAR   SODERTALJE 
TURKU FI AREA TURKU   NYNASHAMN 
  PARGAS   GUSTAVSBERG 
  NAANTALI   SANDHAMN 
MARIEHAMN FI AREA MARIEHAMN   VASTERAS 
  SIGNILSKAR NYKOPING SE AREA NYKOPING 
HANKO FI AREA HANKO   NORRKOPING 
  EKENAS   OXELOSUND 
  JUSSARO VASTERVIK SE AREA VASTERVIK 
  INKOO   VERKEBACK 
HELSINKI FI AREA HELSINKI OSKARSHAMN SE AREA OSKARSHAMN 
  PORKKALA   STORA JATTERSON 
  TOLKKINEN   FIGHOLM 
  PORVOO KALMAR SE AREA KALMAR 
KOTKA FI AREA KOTKA   BERGKVARA 
  LOVIISA   DEGERHAMN 
KLAIPEDA LT AREA KLAIPEDA KARLSKRONA SE AREA KARLSKRONA 
  BUTINGE OIL TERMINAL   RONNEBY 
RIGA LV AREA RIGA   KARLSHAMN 
  LIELUPE   SOLVESBORG 
GDANSK PL AREA GDANSK   AHUS 
  PORT POLNOCHNY YSTAD SE AREA YSTAD 
  NOWY PORT   SIMRISHAMN 
  GDYNIA E. GOTLAND SE AREA SLITE 
USTKA PL AREA USTKA   FAROSUND 
  DARLOWO   STORUGNS 

  
W. GOTLAND SE AREA VISBY 
  KLINTEHAMN 

 



 19 

E. REGRESSION ANALYSIS 

Our first research objective is to analyze the effects of different factors on the 

duration of port stays in the Baltic region, focusing on the Saint Petersburg, Russia area. 

This port cluster is of strategic interest and has the most data with 997 observations. With 

the new subset of data, we use regression to explain, per Faraway (2015), how a response 

variable Y  (Time in Port) can be analyzed by the explanatory variables 1 1, , pX X −K , where 

1p −  is the number of factors used in the regression. This analysis is used to examine the 

relationship between the response variable and the predictor variables to determine which 

factors are the best to explain the variation in the length of port stays.   

The explanatory variables that we consider are the country that the vessel is 

registered to, the day of the week that the vessel arrives and departs from port, the day in 

the year that the vessel arrives in port (1 = January 1, 2 = January 2, …, 130 = April 30), 

and the previous and next port of destination. We calculate length of stay in port by taking 

the start time of the next route segment and subtracting the time between then and when 

the vessel arrived in port. The country that the vessel is registered to can be obtained from 

the first three digits in the MMSI number, which are also known as the maritime 

identification digits (MID). For example, the MIDs for the United States are 338, 366, 367, 

368, and 369. This means that vessels registered in the United States will have MMSIs that 

begin with one of those five MIDs. The days of the week that a vessel arrives and departs 

from port are obtained from the start and end time in the route segments. The “weekdays” 

function in R takes the start or end times as input and outputs the day of the week that it 

occurred. The previous and next port of destination are based on the route segments for 

each particular MMSI and the port that it came from and where it went to next after its 

current port. If there is no data concerning where the vessel came from or went to next, it 

is left blank.  

In Chapter IV, we analyze and evaluate the explanatory variables from the 

regression model to determine if they are useful in explaining the response variable, which 

is the number of hours that a vessel stays in port in the Saint Petersburg area.  
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F. INTRODUCTION TO HIGHER-ORDER NETWORKS 

A higher-order network (HON) discovers variable orders of dependencies that can 

be missed in conventional network representations due to the limiting Markov model 

properties (Xu et al. 2016). According to Lin (2017, p. 34), “if someone wants to find the 

probability of some future event related to a Markov chain, then he only needs to know the 

present state of the Markov chain.” This is equivalent to stating that Markov models are 

first-order dependent, which means that they depend only on the current state when 

determining a future state. This assumption may lead to inaccuracies if the past does matter 

and important information is lost (Xu et al. 2016). Therefore, for shipping data, a HON 

may provide better estimation for movement patterns with the flow of maritime traffic 

being an aggregation of port stops.  

 

Figure 3.  Example of a HON for a vessel departing Singapore and transiting to 
either Los Angeles or Seattle. Source: Xu et al. (2016). 
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Citing the example of vessels currently in port in Singapore, Xu et al. (2016) 

examine the dependency of a vessel’s past port visited prior to Singapore on whether the 

next port of visit will be Los Angeles or Seattle. Under a first-order model the probabilities 

that a vessel in Singapore next visits Los Angeles or Seattle is proportional to the number 

of trips between Singapore and each of these ports. Xu et al. (2016) demonstrate, however, 

that if a vessel had previously visited Tokyo, then its next port of visit was more likely to 

be Seattle than Los Angeles than what a first-order model would predict. Similarly, if the 

vessel’s previous port of visit was Shanghai, it had a higher probability of its next port of 

visit being Los Angeles. Variable order of dependencies in HON illustrates that knowledge 

of a vessels past, regardless of sequential order, can influence its future location.  

To explore the interconnectedness of the cargo ships on their routes within the 

Baltic Sea, we use port clusters as our set of states that the vessels transition to. We estimate 

transitional probabilities for vessels moving from state to state by determining the number 

of transitions from one state to all of the other states and dividing each frequency by the 

total number of transitions from that particular state. We use random forests to estimate the 

probability of a vessel’s next port of visit using factors such as the arrival day of the week 

in the Saint Petersburg area, the day in year, length of port stay in hours, MID, and previous 

ports visited.  

G. RANDOM FOREST ANALYSIS 

Our second research objective is to predict with greater accuracy whether a vessel 

would depart or remain in the Baltic Sea to visit another port after stopping in the Saint 

Petersburg area. Young (2017) describes the concept of partition trees and how they can 

be used in regression or classification. Random forests partition the feature space by 

creating uncorrelated trees that bootstrap different versions of the data (Young 2017). It 

draws a sample with replacement and fits a regression tree to the bootstrapped data. The 

set of cases that are not selected in a bootstrap sample is used to compute the classification 

errors of prediction by comparing the predicted values to the observed values. This 

comparison provides a measure of prediction performance that avoids overfitting by not 

using data that is used in the construction of the tree (Faraway 2016). 
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We construct three random forest models that predict the next state for a vessel, 

differing in their use of past information. The first model uses the predictor variables 

ArrivalDayOfWeek to represent the weekday of arrival for a vessel in Saint Petersburg 

area, ArrivalDayInYear (1 = January 1, 2 = January 2, …, 130 = April 30), PortStay is 

the number of hours that a vessel is in port in the Saint Petersburg area, and MID for the 

maritime identification digits representing the country of registration. The second model 

adds PrevPort1, the most recent port visited by a vessel prior to Saint Petersburg. The third 

model adds PrevPort2, a port previous to the prior port visited, on to the second model.  

Table 2.   Predictor Variables in Chosen Scenarios for Classification of the 
Next Port Visited Using Random Forests 

 Arrival 
DayOfWeek 

Arrival 
DayInYear PortStay MID PrevPort1 PrevPort2 

Scenario 
1 Tuesday 84 21 209 

SW 
Atlantic 

St. 
Petersburg 

RU 
Scenario 

2 Sunday 12 19 209 
SW 

Atlantic 
Reka Luga 

RU 

Scenario 
3 Thursday 100 29 636 

Reka Luga 
RU 

SW 
Atlantic 

Scenario 
4 Sunday 103 109 377 

SW 
Atlantic 

St. 
Petersburg 

RU 

 

Our third objective is to predict with greater accuracy a vessel’s next port of visit. 

This objective is similar to the second except that we take a closer look at specific ports, 

rather than a binomial response variable that indicates whether a vessel stays or leaves the 

Baltic Sea. We examine random forest models that are set up similarly to the three models 

mentioned, but which predict transitional probabilities for which port will be visited next. 

For this analysis, the next ports of visit are defined by four categories: “SW ATLANTIC,” 

“KOTKA FI AREA,” “OTHER FI SE,” and “ALL OTHERS.” 
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Our fourth objective is to estimate the transitional probabilities for all 23 possible 

next ports of visit to examine how past information affects the probabilities. We expand on 

the third objective and consider all port clusters instead of grouping the port clusters into 

four categories. We utilize three random forest models set up similarly to the previous 

objectives and examine the different models to highlight the effects of including past 

information about a vessel when predicting its next port of visit.  

In Chapter IV, we present the analysis for the HON using cargo ship data in the 

Baltic Sea to determine where a given vessel may be transiting to next, given prior 

knowledge of the vessel’s past ports.  
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IV. ANALYSIS AND EVALUATION 

Our analysis consists of four parts in order to answer our four research objectives. 

First, we present the findings from the regression analysis to examine the effects of certain 

factors on the response variable, which is time in port. The explanatory variables we use in 

the regression model include the MID for the country that the vessel is registered to, a 

vessel’s prior and next port of visit, the day in the year (1 = January 1, 2 = January 2, …, 

130 = April 30), and the arrival and departure day of the week. As explained in Chapter III 

we consider only the cargo vessels that visited the Saint Petersburg, Russia area between 

January and April of 2014. Second, we present the results from the predictive model that 

we obtain using random forests. The response variable for this regression is a binomial 

variable that indicates if a vessel is departing or remaining in the Baltic Sea. This prediction 

is based on different factors and past knowledge of what ports the vessel has been to prior 

to stopping in the Saint Petersburg area. Third, we expand our analysis and predict a 

vessel’s next port of visit by using groupings of the possible next ports. This analysis also 

uses random forest with the same factors considered. Fourth, we consider all 23 possible 

next ports of visit and estimate transitional probabilities. This analysis compares the 

different random forest models to examine the usefulness of including past information 

about a vessel.  

A. REGRESSION RESULTS 

For the analysis of port-stay durations, we identify the cargo ships that stopped at a 

port in the St. Petersburg area. As mentioned in Chapter III, when we refer to Saint 

Petersburg area, we are referring to the Saint Petersburg cluster which consists of three 

different ports. We obtain the following variables:  

• Prior port that vessel visited before Saint Petersburg area 

• Next port that the vessel transits to after Saint Petersburg area 

• Departure day of the week 

• Arrival day of the week 
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• Arrival day in the year 

• MID that represents the code of the country that a vessel is registered to 

Our objective is to examine the effects that the variables listed above have on the 

length of time that a vessel spends in port. Figure 4 shows the distribution for the hours a 

cargo ships spends in a port in the Saint Petersburg area. The length of time ranges from a 

little over an hour to about 413 hours. We remove one observation from the dataset with a 

time in port of over one thousand hours due to its potential as a possible outlier. 

 

Figure 4.  Distribution of Hours a Cargo Ships Stays in a Port in the Saint 
Petersburg, Russia Area 

Length of port stay and the day in the year are both numeric, while all of the other 

explanatory variables are categorical. Because several of the explanatory variables are 

categorical with many levels, there are 121 parameters in the regression, including the 

constant term, with sample size of 1019 observations. We examine the use of 

transformations on the response variable, which is the amount of hours that a vessel spends 

in port, to determine how to best address the heteroscedasticity and non-normality shown 

in Figure 5. Heteroscedasticity is non-constant variance, which can be analyzed in a plot 
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of residuals versus fitted values (Faraway 2015). For there to be homoscedasticity, there 

should be equal variance in the residuals across the explanatory variables. According to 

Faraway (2015, p. 64), “residuals can be assessed for normality using a Q-Q plot.” The 

residuals appear to have a long right-tailed error distribution.  

 

Figure 5.  Plot of Regression Analysis Residuals 

We explore the use of Box-Cox transformations on the time in port regression to 

improve the fit of the model. Figure 6 shows a log-likelihood plot, where the confidence 

interval for λ is about 0.13 to about 0.21. The Box-Cox analysis of the regression model 

recommends a λ of 0.18 for the value of the exponent that maximizes the likelihood. 

Although the confidence interval does not contain the value zero for λ, where zero implies 

a logarithmic transformation, it is close enough to be considered as the preferred choice. 

Per Faraway (2015, p. 118), “If explaining the model is important, you should round λ to 

the nearest interpretable value.” Thus, for this thesis, we use a logarithmic transformation 

for the response variable.  

Figure 7 shows plots of residuals for the regression analysis after the logarithmic 

transformation on the response variable. The plot of residuals versus fitted values shows 

more of an equal variance in the residuals across the explanatory variables, addressing the 
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problem of heteroscedasticity. The Q-Q plot appears to have a shorter right-tailed error 

distribution than in Figure 5. 

 

Figure 6.  Log-likelihood Plot for Box-Cox Transformation of the 
Time in Port Regression 

 

Figure 7.  Plot of Regression Analysis Residuals with Log Transformation 

Figure 8 is a plot of the MIDs with the highest frequency of stops at ports in the 

Saint Petersburg cluster. The horizontal axis is converted from the MIDs to the names of 
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the country that the vessels are registered to and the y-axis is the amount of time that the 

vessels spent in one of the ports in the Saint Petersburg area before departing to their next 

port of visit. There are some countries that have more than one box plot which is due to the 

fact that countries can have multiple MIDs assigned to them. This is usually for countries 

with widespread maritime activity. We note in this plot that Antigua and Antigua2 have 

nearly the same variance with a slightly different median. The same can be said for Cyprus 

and Cyprus2, which means that the MID provides useful information in regards to the 

amount of time that the vessels spend in port. However, Cyprus3 differs in its variance and 

median. This observation is interesting and can depend on whether these vessels are 

different from those in the other two groups of country codes. If the ships are larger, they 

carry more cargo and can take longer to unload in port. 

 

Figure 8.  MIDs by Country with Highest Frequency of Port Stops in the Saint 
Petersburg Area 

The R-squared value for our regression model after we apply a logarithmic 

transformation to the response variable, which is the number of hours that a cargo ship 

spends in a port in the Saint Petersburg area, is 0.3929 and the adjusted R-squared value 

is 0.3117. R-squared is a measure of how well the regression model fits the response 

variable using the same data that was used to estimate the regression parameters; as a 
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result, it is optimistically biased. R-squared never decreases when another explanatory 

variable is added to the regression model, regardless of how useful it is in predicting the 

response variable. Adjusted R-squared modifies R-squared so that the addition of 

explanatory variables to the regression model exacts a penalty. The addition of a weak 

explanatory variable that increases R-squared only marginally may result in adjusted R-

squared being decreased. The large discrepancy between these two values in the present 

analysis is an indication of overfitting, and points to the need to simplify the regression 

model. Additionally, we are unable to compare goodness-of-fit measures such as R-

squared to the original model because of the logarithmic scale that we apply to the 

response variable. The strongest explanatory variable is a vessel’s MID, which has an R-

squared of 0.2565 if used to predict logarithm of time in port without any other 

explanatory variables. Prior ports visited are also strong explanatory variable in this 

model. However, with 121 coefficients, this model is overfit and does not explain how 

well it could predict new instances.  

We use the root mean squared error (RMSE) as a measure of performance to 

examine how well the explanatory variables in the model explain the variance in the 

response varaible. RMSE is the metric that we use and it is defined by the equation: 

2
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where n is the number of observations in the dataset (1019) and ˆiy  is the prediction for 

the logarithm of time in port for observation i  that is exponentiated to reverse the 

logarithmic transformation. RMSE for our model is 38.1 hours. 

B. GROUPING CATEGORICAL VARIABLES 

We find the explanatory variables that were successful in creating a better model 

when grouped are the arrival and departure day of the week. In the groups for arrival day 

of the week, we consider end of the week to include Friday, Saturday, Sunday, and 

Monday. The middle of the week includes Tuesday, Wednesday, and Thursday. We 

consider the end of the week for the departure days to be Thursday, Friday, Saturday, and 
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Sunday. The beginning of the week for the departure days includes Monday, Tuesday, and 

Wednesday. We find that these groupings of arrival and departure day of the week strike a 

reasonable balance between explanatory power and model simplicity. The model with 

grouped arrival days of the week resulted with an R-squared value of 0.3913 and an 

adjusted R-squared value of 0.3138. The model with the grouped departure days of the 

week resulted with an R-squared value of 0.391 and adjusted R-squared value of 0.3134, 

which is practically unchanged. The relative mean squared error for these models are 38 

hours for arrival and 38.1 hours for departure. 

Next we examine the effects of collapsing both the arrival and departure days of 

the week. The final model with groupings of the arrival and departure days is the overall 

best model to explain the variance in the time that a cargo ship spends in a port in the Saint 

Petersburg area. MID remained the best explanatory variable with prior ports still being a 

strong explanatory variable. The R-squared value for the final model is 0.3893 and the 

adjusted R-squared value is 0.3154. Although the final model has a slightly higher adjusted 

R-squared value, the grouping of categorical variables did not significantly change the root 

mean squared error, which practically unchanged at 38 hours. The final model is not much 

better than the original model in terms of R-square and root mean squared error. This model 

has 111 variables, which is still too many to reduce the problem of overfitting the model.   

C. STEPWISE MODEL SELECTION USING BAYES’ INFORMATION 
CRITERION 

We conduct model selection using Bayes Information Criterion (BIC), which 

penalizes additional variables in the model to prevent overfitting. BIC is defined as follows: 

BIC log( / ) log( )n RSS n p n= + , 

where RSS is the residual sum of squares, p is the number of coefficients in the regression 

model (number of explanatory variables plus one), and n is the number of observations 

(Faraway 2015). The closely-related Akaike Information Criterion (AIC) has the same 

form as BIC but with log(n) replaced by a smaller value which penalizes the addition of 

variables to the regression less severely. The use of BIC as a model-selection criterion in 

stepwise regression results in models that have fewer variables than with AIC, and many 



 32 

fewer than with adjusted R-squared. We use BIC as an alternative to extracting a training 

and test set from the data due to the use of several categorical variables with large numbers 

of levels as possible explanatory variables.  

Applying BIC to the original regression model results in reducing the variables 

from 121 to 23 variables. Figure 9 shows the variables that were selected, all of which are 

statistically significant. The explanatory variables that are shown to be strong predictors 

are MID, prior port, and next port. The R-squared value from this model is 0.2857 and the 

adjusted R-squared is 0.2692. These R-squared values are lower than our best model but 

the problem of overfitting has been addressed and the significant variables have been 

identified for predicting the number of hours that a cargo vessel spends in a port in the 

Saint Petersburg area. The root mean squared error for this model is 41.7 hours.  

The regression analysis provides insights about cargo ships that stop in a port in the 

Saint Petersburg area. Figure 9 highlights the MIDs that are considered statistically 

significant, with a majority of them belonging to countries in Europe. These MIDs can be 

identified by the first digit which is a “2” for Europe. Russia, Germany, and Finland are 

the only countries within the Baltic that are included in the significant MIDs. The other 

European countries are either from just outside the Denmark straits or the Mediterranean 

Sea. The longest port stays of the significant European MIDs, are indicated by the larger 

coefficients of the Prefixes. Three of the MIDs (Prefix248, Prefix249, Prefix256) are 

registered to Malta, who has the longest port stay of all of the European countries. This 

makes sense since the cargo ships from this country have a long transit to the Saint 

Petersburg area, but Hong Kong (Prefix 477) has a longer transit and stays in port about 

half the time as cargo ships from Malta. The country with the longest port stay, of all of 

the MIDs represented in Figure 9, is Belize (Prefix312) with a coefficient of 1.697 

indicating that on average there is an increase of 1.697 of log(Time) if the cargo ship has 

an MID of 312. The two MIDs with the shortest port stay belong to Germany (Prefix211) 

and Finland (Prefix230), which are two of the three MIDs that were registered to countries 

within the Baltic Sea. On the contrary, Russia (Prefix273) has a positive coefficient which 

means that log(Time) increases if the cargo ship is registered to Russia. This is not unusual 

since the ports in the Saint Petersburg area are Russian ports.  
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Figure 9.  Regression Analysis Coefficients After BIC Model Selection 

Although the MID is the best explanatory variable, there are other insights to be 

gained from the other explanatory variables in Figure 9. The prior port of the cargo ships 

stopping in Saint Petersburg is another strong explanatory variable. The shortest port stay 

occurred when the cargo ship had previously stopped in Oskarshamn, Sweden. The longest 

port stay occurred when the cargo ship had previously stopped in the Kotka, Finland area. 

There is no obvious correlation between the distance of travel within the Baltic Sea to Saint 

Petersburg and the duration of a cargo ship’s stay in port. Next port visited by cargo ships 

in the Saint Petersburg area is another strong explanatory variable. Kotka, Finland and 

Reka Luga, Russia are both significant variables for the prior port and next port explanatory 

variables. This could indicate that there are substantial transitions between those two ports 

and Saint Petersburg.  
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D. RANDOM FOREST BINOMIAL RESPONSE VARIABLE RESULTS 

Our second research objective is to more accurately predict whether a vessel that 

departs Saint Petersburg, Russia area will depart the Baltic Sea toward the Atlantic Ocean 

or visit another port within the Baltic. In total, there are 425 cases where the vessel exits 

out the Southwest Atlantic and 375 cases where the vessel visits another port within the 

Baltic Sea. We use three random forest models to predict our binomial response variable, 

which is basically “yes” if the vessel departed the Baltic Sea toward the Atlantic Ocean or 

a “no” if it visited another port within the Baltic. In the first model, the only predictor 

variables that we use are the day of the week that the vessel arrives in port, the day in the 

year that the vessel arrives in port, length of port stay, and the MID that represents the 

country of registration for the vessel. In the second model we add the previous port that the 

vessels visited as a predictor variable. In the third model we add the port previous to the 

prior port of visit as a predictor variable. This thesis utilizes the R package “randomForest” 

(Liaw and Wiener 2002) for both parts of the analysis. In Random Forest, classification 

errors are calculated using out of bag values that are not included in the tree used to predict.  

Model 0 does not consider any previous ports visited by the vessel. As shown in 

Table 3, the misclassification rate for the prediction of whether a vessel is leaving the Baltic 

is about 30 percent and 35 percent for whether it remains in the Baltic and visits another 

port. The overall misclassification rate is 31.5 percent. 

Table 3.   Confusion Matrix and Misclassification Rate for 
Model with No Prior Ports 

 Model 0 Confusion Matrix  

 Pred. No Pred. Yes Class. Error Overall Error 
Actual No 244 131 0.349 

31.5% 
Actual Yes 128 297 0.301 
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The addition of one previous port to Model 1, changes the misclassification rate for 

the prediction of whether a vessel leaves the Baltic Sea. Table 4 shows about a seven 

percent decrease, resulting in a classification error of almost 23 percent. The classification 

error for the vessel remaining in the Baltic is practically unchanged at 34 percent. The 

overall misclassification rate decreases by about three percent to 28.2 percent by including 

one prior port into the prediction model.  

Table 4.   Confusion Matrix and Misclassification Rate for 
Model with One Prior Port 

 Model 1 Confusion Matrix  

 Pred. No Pred. Yes Class. Error Overall Error 
Actual No 247 128 0.341 

28.2 % 
Actual Yes 97 328 0.228 

 

In the third model, two previous ports are added and there is a change in both of the 

misclassification rates. Table 5 shows the classification errors, with about a three percent 

decrease in the both the prediction of whether the vessel departed the Baltic or visited 

another port within the Baltic Sea. This model has the lowest misclassification rate with 

27.2 percent, which emphasizes the importance of past information.  

Table 5.   Confusion Matrix and Misclassification Rate for Model 
with Two Prior Ports 

 Model 2 Confusion Matrix  

 Pred. No Pred. Yes Class. Error Overall Error 
Actual No 259 116 0.309 

27.2% 
Actual Yes 86 339 0.202 

 

This approach highlights the value of including past information in the prediction 

models to predict the next port of visit. The overall misclassification rate decreased with 

the addition of prior ports, which indicates dependence on past information in order to more 

accurately predict where a vessel transitions to next. Figure 10 shows the number of vessels 
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that depart or remain in the Baltic Sea in general from the dataset and the predictions of 

those numbers from the three random forest models. Both values are increasing in accuracy 

as the model adds more predictor variables about where the vessel has been.   

 

Figure 10.  Comparison of Correct Predictions for SW Atlantic or Not SW Atlantic 
between Models and the Actual Dataset (In General) 

E. RANDOM FOREST MULTINOMIAL RESPONSE VARIABLE RESULTS 

Our third research objective is to predict with greater accuracy the next port of visit 

for a vessel that is currently in Saint Petersburg area. Our response variable changes from 

binomial to multinomial since we are now predicting transitional probabilities for the next 

port of visit. In order to separate the data into a training and test set, we group the 23 

possible next ports of visit into four categories. These categories are named: “SW 

ATLANTIC,” “KOTKA FI AREA,” “OTHER FI SE,” and “ALL OTHERS.” The 

Southwest Atlantic and Kotak, Finland had the most observations and remained as they 

were. The rest of Finland and Sweden were grouped together, while the rest of the ports 

formed the last category of “ALL OTHERS.”  
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For the test set, we randomly select 20 percent of the data without replacement. 

This results in a test set of 160 observations, while the training set has 240 observations. 

We fit three random forest models to the training set in order to predict the transitional 

probabilities of a vessel’s next port of visit. These random forest models are set up similarly 

to the models used in the prediction of the binomial response variable. Our predictor 

variables include the arrival day of the week, arrival day in the year, duration of port stay, 

and the vessel’s MID. One prior port is added to the second model as a predictor variable 

and two ports are added to the third model.  

Table 6 shows the predicted next ports of visit versus the actual next ports of visit. 

The overall misclassification error is about 38.5 percent for a model that only considers 

information about the vessel and no prior port information. The lowest classification error 

is for the SW ATLANTIC with about 20 percent and the highest is ALL OTHERS with 

about 66 percent. This is reasonable considering that the SW ATLANTIC has the most 

observations and ALL OTHERS is comprised of many different next ports of visit. The 

test set has an overall misclassification error of about 44 percent. Although it is higher than 

the training set, the test set only consists of 160 observations. 

Table 6.   Confusion Matrix and Misclassification Rate for Training Data in Model 0 
with No Prior Ports 

 
Model 0 

(Training Set) 

Actual   

 
SW 

ATLANTIC 
KOTKA FI 

AREA 
OTHER 

FI SE 
ALL 

OTHERS 
Class. 
Error 

Overall 
Error 

Pr
ed

ic
te

d 

SW ATLANTIC 271 16 26 26 0.201 

38.5% 
KOTKA FI 
AREA 34 48 8 5 0.495 
OTHER FI SE 54 14 46 4 0.610 
ALL OTHERS 46 7 5 30 0.659 
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Table 7 shows the results for the training set in model 1, where one prior port is 

included as a predictor variable. The overall misclassification error for this model is about 

36.3 percent. The lowest classification error is again the SW ATLANTIC, with an even 

lower percentage at about 16 percent. The highest classification error is again ALL 

OTHERS with an increase resulting in about 68 percent. The test set has an overall 

misclassification error of about 37 percent, which is close to the training set and better than 

in Model 1. 

Table 7.   Confusion Matrix and Misclassification Rate for Training Data in Model 1 
with One Prior Port 

 Model 1 
(Training 

Set) 

Actual   

 
SW 

ATLANTIC 
KOTKA FI 

AREA 
OTHER 

FI SE 
ALL 

OTHERS 
Class. 
Error 

Overall 
Error 

Pr
ed

ic
te

d 

SW 
ATLANTIC 285 15 18 21 0.159 

36.3% KOTKA FI 
AREA 34 49 8 4 0.484 
OTHER FI SE 55 11 47 5 0.602 
ALL OTHERS 48 8 4 28 0.682 

 

Table 8 shows the results for the training set in Model 2, where two ports are 

included as predictor variables. The overall misclassification error of about 31.7 percent. 

This the lowest of all three models, highlighting the importance of including past 

information in the prediction of the next port of visit for a vessel. The test set has an overall 

misclassification error of about 30 percent, which is the lowest of all models and lower 

than the training set. The lowest classification error is still the SW ATLANTIC with about 

13 percent and the highest is still ALL OTHERS with about 64 percent.   
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Table 8.   Confusion Matrix and Misclassification Rate for Training Data in Model 2 
with Two Prior Ports 

 
Model 2 

(Training Set) 

Actual   

 
SW 

ATLANTIC 
KOTKA FI 

AREA 
OTHER 

FI SE 
ALL 

OTHERS 
Class. 
Error 

Overall 
Error 

Pr
ed

ic
te

d 

SW ATLANTIC 296 7 17 19 0.127 

31.7% 
KOTKA FI 
AREA 30 55 9 1 0.421 
OTHER FI SE 49 10 55 4 0.534 
ALL OTHERS 51 2 3 32 0.636 

 

This approach agrees with the prediction of the binomial response variable by 

emphasizing the value of including past information in the prediction models. Figure 11 

shows performance improvement with the addition of previous ports in the models. The 

largest decrease in the classification error is between model 1 and model 2, indicating that 

there is more to be gained by going deeper into the past of a vessel when predicting its next 

port of visit.  

 

Figure 11.  Comparison of Training and Test Set Misclassification Rates 
Between Models 
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F. RANDOM FOREST ESTIMATION RESULTS 

Our fourth research objective is to estimate the transitional probabilities of a 

vessel’s next port of visit based on information about the vessel and its voyage. We select 

four scenarios from the dataset for evaluation of the random forest models in estimating a 

vessel’s next port of visit. We develop three random forest models, set up similarly as the 

last two objectives, to obtain estimated probabilities for the next port visited. We include 

all 23 possible next ports of visit that a cargo ship can transition to after visiting the Saint 

Petersburg area in our analysis. These ports are the only ports in the data visited after 

stopping in Saint Petersburg, Russia.  

1. FIRST SCENARIO 

For the first scenario, we set the vessel and port arrival attributes as follows: 

• Arrival Day of Week: Tuesday 

• Arrival Day in Year: 84 

• Length of Port Stay: 21 hours 

• MID (Country code of vessel): 209 

• First Prior Port: SW Atlantic 

• Second Prior Port: Saint Petersburg RU Area 
Using this information, we apply our three random forest models to estimate the 

transitional probabilities for the vessel’s next port of visit. We examine how the 

probabilities change as more information, in regards to previous ports, is added to the 

models. For the first scenario, Table 9 shows the probabilities of the ports listed being the 

next port of visit after the Saint Petersburg area. The model number represents how much 

information is known about the prior ports of a vessel’s stopping in the Saint Petersburg 

area, ranging from no prior ports known to two prior ports known.  
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Table 9.   Estimated Transitional Probabilities and Standard Errors for Each Random 
Forest Model with Different Number of Known Prior Ports for Scenario 1 

NEXT PORT 
RF Model 

0 
Std. 

Error 
RF Model 

1 Std. Error 
RF Model 

2 
Std. 

Error 
E.GOTLAND SE AREA < 0.001 0.001 < 0.001 0.001 0.002 0.002 
GDANSK PL AREA 0.098 0.008 0.122 0.009 0.128 0.009 
GULF OF BOTHNIA 0.042 0.022 0.032 0.022 0.056 0.031 
HAMINA FI 0.002 0.001 < 0.001 0.001 < 0.001 0.004 
HANKO FI AREA 0.010 0.005 0.004 0.004 0.008 0.007 
HELSINKI FI AREA 0.060 0.023 0.068 0.024 0.052 0.030 
KALININGRAD RU AREA < 0.001 < 0.001 < 0.001 0.002 0.002 0.001 
KALMAR SE AREA 0.006 0.006 0.002 0.004 0.004 0.003 
KLAIPEDA LT AREA 0.038 0.027 0.032 0.014 0.040 0.016 
KOTKA FI AREA 0.244 0.035 0.272 0.044 0.184 0.028 
KUNDA EE < 0.001 0.002 < 0.001 0.002 0.002 0.004 
NYKOPING SE AREA 0.002 0.007 0.002 0.009 0.012 0.012 
PALDISKI EE AREA 0.010 0.002 0.030 0.008 0.030 0.011 
PARNU EE < 0.001 0.001 < 0.001 0.001 < 0.001 0.001 
PRIMORSK RU 0.008 0.002 < 0.001 0.002 0.002 0.003 
REKA LUGA RU 0.060 0.010 0.050 0.014 0.052 0.008 
RIGA LV AREA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.002 
STOCKHOLM SE AREA < 0.001 0.001 < 0.001 0.001 < 0.001 0.001 
SW ATLANTIC 0.418 0.044 0.384 0.051 0.418 0.041 
TALLINN EE AREA < 0.001 0.004 0.002 0.007 0.006 0.009 
VYBORG RU < 0.001 0.002 < 0.001 0.001 < 0.001 0.002 
W.GOTLAND SE AREA 0.002 0.011 < 0.001 0.004 < 0.001 0.004 
WOLGAST DE AREA < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.001 

  

In Table 10, the probabilities of the 23 possible next ports are influenced by the 

addition of predictor variables that go deeper into the past. The most likely next ports of 

visit, given two prior ports visited, are the SW ATLANTIC (0.42), KOTKA FI AREA 

(0.18), and GDANSK PL AREA (0.13). We calculate estimated standard errors by 

bootstrapping each random forest model 30 times. The same sample is used to fit all three 

random forest models each time. The resulting standard errors for the probability estimates 

are shown in Table 10. The resulting standard errors for the probability estimates shown in 

Table 10 are calculated in a similar way to the individual models, but take into account the 

difference between two models that are compared. A rough 95 percent confidence interval 
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for the true difference in probabilities is calculated by taking plus or minus two times the 

standard errors of the predicted probabilities. 

Table 10.   Standard Errors for the Differences in Probability Estimates between 
Random Forest Models in Scenario 1.  

NEXT PORT 
Model 0 - 
Model 1 

Std. 
Error 

Model 0 - 
Model 2 Std. Error 

Model 1 - 
Model 2 

Std. 
Error 

E.GOTLAND SE AREA 0.000 0.001 -0.002 0.002 -0.002 0.002 
GDANSK PL AREA -0.024 0.009 -0.030 0.009 -0.006 0.011 
GULF OF BOTHNIA 0.010 0.019 -0.014 0.024 -0.024 0.027 
HAMINA FI 0.002 0.001 0.002 0.004 0.000 0.004 
HANKO FI AREA 0.006 0.005 0.002 0.006 -0.004 0.007 
HELSINKI FI AREA -0.008 0.019 0.008 0.031 0.016 0.029 
KALININGRAD RU AREA 0.000 0.002 -0.002 0.001 -0.002 0.002 
KALMAR SE AREA 0.004 0.006 0.002 0.005 -0.002 0.004 
KLAIPEDA LT AREA 0.006 0.024 -0.002 0.024 -0.008 0.016 
KOTKA FI AREA -0.028 0.032 0.060 0.029 0.088 0.036 
KUNDA EE 0.000 0.002 -0.002 0.003 -0.002 0.004 
NYKOPING SE AREA 0.000 0.007 -0.010 0.010 -0.010 0.009 
PALDISKI EE AREA -0.020 0.007 -0.020 0.011 0.000 0.009 
PARNU EE 0.000 0.001 0.000 0.001 0.000 0.001 
PRIMORSK RU 0.008 0.002 0.006 0.003 -0.002 0.003 
REKA LUGA RU 0.010 0.014 0.008 0.012 -0.002 0.014 
RIGA LV AREA 0.000 < 0.001 0.000 0.002 0.000 0.002 
STOCKHOLM SE AREA 0.000 0.001 0.000 0.001 0.000 0.001 
SW ATLANTIC 0.034 0.041 0.000 0.037 -0.034 0.046 
TALLINN EE AREA -0.002 0.006 -0.006 0.008 -0.004 0.009 
VYBORG RU 0.000 0.002 0.000 0.003 0.000 0.002 
W.GOTLAND SE AREA 0.002 0.009 0.002 0.009 0.000 0.003 
WOLGAST DE AREA 0.000 < 0.001 -0.002 < 0.001 -0.002 < 0.001 
 

Differences highlighted in Green are more than two standard errors in magnitude. 

Table 10 presents the SEs for the differences between the three random forest 

models. We compare differences of predicted probabilities between models because a zero 

difference means that including prior ports does not change the probability of going to a 

particular port next. The numbers that are highlighted in green in Table 10 indicate 

differences that are greater in magnitude than two standard errors, which implies that the 
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probabilities in each model are statistically different. These differences indicate that past 

information does change the probability of a vessel’s next port of visit. With four 

occurrences, the largest difference is between model 0 and model 2. Model 0 has no prior 

ports included in the random forest model and model 2 has two prior ports included. 

2. SECOND SCENARIO 

The second scenario that we select has the following information for the specific 

vessel: 

• Arrival Day of Week: Sunday 

• Arrival Day in Year: 12 

• Length of Port Stay: 19 hours 

• MID (Country code of vessel): 209 

• First Prior Port: SW Atlantic 

• Second Prior Port: Reka Luga RU 

This scenario differs from the first because now we are exploring the 12th day of the year 

which is in January, vice late March. It is also a weekend day compared to a Tuesday in 

the first scenario.   

In Table 11, the 23 possible next ports are given estimated  transitional probabilities 

based on the information for this scenario and the three random forest models. The most 

likely ports to be visited next are SW ATLANTIC (0.31), KOTKA FI AREA (0.22), and 

HELSINKI FI AREA (0.16). The only port, of the three most likely, to have an increased 

probability after the addition of prior ports as predictor variables is Helsinki, Finland area. 

We calculate standard errors by bootstrapping each random forest model 30 times and use 

the same sample to fit all three random forest models each time. The standard errors for 

each model in scenario 2 are shown in Table 11.  
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Table 11.   Estimated Transitional Probabilities and Standard Errors for Each Random 
Forest Model in Scenario 2 

NEXT PORT 
RF Model 

0 
Std. 

Error 
RF Model 

1 Std. Error 
RF Model 

2 
Std. 

Error 
E.GOTLAND SE AREA < 0.001 0.003 < 0.001 0.003 < 0.001 0.005 
GDANSK PL AREA 0.008 0.018 0.024 0.019 0.020 0.014 
GULF OF BOTHNIA 0.052 0.052 0.022 0.015 0.086 0.015 
HAMINA FI < 0.001 0.013 < 0.001 0.016 0.002 0.016 
HANKO FI AREA 0.004 0.004 0.002 0.004 0.010 0.005 
HELSINKI FI AREA 0.136 0.015 0.182 0.017 0.160 0.013 
KALININGRAD RU AREA < 0.001 0.002 < 0.001 0.003 < 0.001 0.003 
KALMAR SE AREA 0.014 0.002 0.006 0.002 0.018 0.003 
KLAIPEDA LT AREA 0.040 0.033 0.028 0.038 0.024 0.038 
KOTKA FI AREA 0.246 0.040 0.310 0.038 0.216 0.029 
KUNDA EE 0.012 0.004 0.006 0.001 0.004 0.004 
NYKOPING SE AREA 0.002 0.018 0.004 0.014 0.006 0.012 
PALDISKI EE AREA 0.004 < 0.001 0.012 0.001 0.044 0.003 
PARNU EE < 0.001 0.002 < 0.001 0.001 < 0.001 0.003 
PRIMORSK RU 0.008 0.007 0.004 0.009 0.004 0.012 
REKA LUGA RU 0.080 0.016 0.074 0.016 0.084 0.013 
RIGA LV AREA < 0.001 < 0.001 < 0.001 < 0.001 0.002 0.001 
STOCKHOLM SE AREA < 0.001 0.001 < 0.001 0.001 < 0.001 0.004 
SW ATLANTIC 0.390 0.070 0.320 0.077 0.308 0.060 
TALLINN EE AREA < 0.001 0.009 0.006 0.010 0.010 0.008 
VYBORG RU 0.002 0.008 < 0.001 0.005 < 0.001 0.007 
W.GOTLAND SE AREA 0.002 < 0.001 < 0.001 < 0.001 < 0.001 0.001 
WOLGAST DE AREA < 0.001 0.001 < 0.001 0.001 0.002 0.002 

 

Table 12 contains the standard errors for the differences between the three random 

forest models. The numbers that are highlighted in green in Table 12 indicate differences 

that are greater in magnitude than two standard errors, which means that the probabilities 

in each model are statistically different. With five occurrences, the largest difference is 

between model 0 and model 1. This is different than the first scenario where model 0 and 

model 2 had the largest differences. The difference between model 1 and model 2 has four 

differences, which indicates significance in the addition of a second prior port to the 

random forest model. 
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Table 12.   Standard Errors for the Differences in Probability Estimates Between 
Random Forest Models in Scenario 2.  

NEXT PORT 
Model 0 - 
Model 1 

Std. 
Error 

Model 0 - 
Model 2 Std. Error 

Model 1 - 
Model 2 

Std. 
Error 

E.GOTLAND SE AREA 0.000 0.002 0.000 0.004 0.000 0.004 
GDANSK PL AREA -0.016 0.015 -0.012 0.015 0.004 0.012 
GULF OF BOTHNIA 0.030 0.047 -0.034 0.044 -0.064 0.017 
HAMINA FI 0.000 0.007 -0.002 0.012 -0.002 0.011 
HANKO FI AREA 0.002 0.004 -0.006 0.005 -0.008 0.005 
HELSINKI FI AREA -0.046 0.010 -0.024 0.014 0.022 0.016 
KALININGRAD RU AREA 0.000 0.003 0.000 0.004 0.000 0.004 
KALMAR SE AREA 0.008 0.002 -0.004 0.003 -0.012 0.003 
KLAIPEDA LT AREA 0.012 0.018 0.016 0.020 0.004 0.017 
KOTKA FI AREA -0.064 0.027 0.030 0.039 0.094 0.026 
KUNDA EE 0.006 0.004 0.008 0.003 0.002 0.003 
NYKOPING SE AREA -0.002 0.011 -0.004 0.016 -0.002 0.009 
PALDISKI EE AREA -0.008 0.001 -0.040 0.003 -0.032 0.003 
PARNU EE 0.000 0.002 0.000 0.003 0.000 0.003 
PRIMORSK RU 0.004 0.006 0.004 0.009 0.000 0.008 
REKA LUGA RU 0.006 0.016 -0.004 0.016 -0.010 0.016 
RIGA LV AREA 0.000 < 0.001 -0.002 0.001 -0.002 0.001 
STOCKHOLM SE AREA 0.000 0.002 0.000 0.004 0.000 0.004 
SW ATLANTIC 0.070 0.044 0.082 0.051 0.012 0.045 
TALLINN EE AREA -0.006 0.008 -0.010 0.008 -0.004 0.009 
VYBORG RU 0.002 0.006 0.002 0.007 0.000 0.006 
W.GOTLAND SE AREA 0.002 < 0.001 0.002 0.001 0.000 0.001 
WOLGAST DE AREA 0.000 0.001 -0.002 0.002 -0.002 0.001 
 

Differences highlighted in Green are more than two standard errors in magnitude. 

3. THIRD SCENARIO 

For the third scenario, we examine a vessel with the following information: 

• Arrival Day of Week: Thursday 

• Arrival Day in Year: 100 

• Length of Port Stay: 29 hours 

• MID (Country code of vessel): 636 

• First Prior Port: Reka Luga RU 

• Second Prior Port: SW Atlantic 
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This scenario examines a day later in the week as well as seasonally by using a Thursday 

in April. The MID of the vessel is completely different because we are now using a vessel 

that is from Africa, Liberia to be exact, rather than a vessel from Europe as we did in the 

first two scenarios. The first prior port is also different than the first two scenarios since 

we are using an actual port instead of the southwest Atlantic. Table 13 shows the 23 

potential next ports of visit, with the most likely ports being SW ATLANTIC (0.35), 

KOTKA FI AREA (0.25), and GULF OF BOTHNIA (0.11). 

Table 13.   Transitional Probabilities and Standard Errors for Each Random Forest 
Model in Scenario 3 

NEXT PORT RF Model 0 
Std. 

Error RF Model 1 
Std. 

Error RF Model 2 Std. Error 
E.GOTLAND SE AREA 0.004 0.001 0.008 0.001 0.002 0.001 
GDANSK PL AREA 0.040 0.011 0.082 0.011 0.064 0.010 
GULF OF BOTHNIA 0.054 0.023 0.100 0.035 0.108 0.027 
HAMINA FI < 0.001 < 0.001 < 0.001 < 0.001 0.002 0.002 
HANKO FI AREA 0.012 0.007 0.010 0.005 0.012 0.007 
HELSINKI FI AREA 0.110 0.022 0.060 0.017 0.060 0.021 
KALININGRAD RU AREA < 0.001 0.001 < 0.001 0.001 < 0.001 0.001 
KALMAR SE AREA 0.012 0.005 0.014 0.008 0.008 0.008 
KLAIPEDA LT AREA 0.020 0.033 0.038 0.019 0.030 0.018 
KOTKA FI AREA 0.182 0.042 0.232 0.031 0.252 0.031 
KUNDA EE 0.008 < 0.001 0.004 0.009 0.004 0.009 
NYKOPING SE AREA 0.024 0.005 0.016 0.003 0.008 0.007 
PALDISKI EE AREA 0.018 0.006 0.026 0.007 0.020 0.007 
PARNU EE < 0.001 < 0.001 0.002 0.002 < 0.001 0.002 
PRIMORSK RU 0.002 0.032 0.002 0.019 0.002 0.012 
REKA LUGA RU 0.032 0.009 0.064 0.010 0.064 0.007 
RIGA LV AREA < 0.001 < 0.001 < 0.001 0.001 < 0.001 0.002 
STOCKHOLM SE AREA 0.012 0.002 0.002 0.002 0.004 0.002 
SW ATLANTIC 0.452 0.052 0.330 0.076 0.354 0.054 
TALLINN EE AREA 0.012 0.009 0.006 0.038 0.006 0.022 
VYBORG RU < 0.001 0.001 < 0.001 0.001 < 0.001 0.002 
W.GOTLAND SE AREA 0.002 0.001 < 0.001 0.002 < 0.001 0.002 
WOLGAST DE AREA 0.004 < 0.001 0.004 < 0.001 < 0.001 < 0.001 

 

We calculate standard errors by bootstrapping all three random forest models 30 

times and using the same sample to fit each model. The standard errors for each model in 
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scenario 3 are shown in Table 14. Table 14 contains the standard errors for the differences 

between the three random forest models. The rows highlighted in green in Table 14 indicate 

differences that are greater in magnitude than two standard errors, which means that the 

probabilities in each model are statistically different. With eight occurrences, the largest 

difference is between model 0 and model 2. These results are similar to the first scenario 

and different than the second scenario. This scenario results in some significance by adding 

one prior port and more significance by adding two prior ports, which indicates dependence 

on past information in order to more accurately predict a vessel’s next port of visit. 

Table 14.   Standard Errors for the Differences in Probability Estimates between 
Random Forest Models in Scenario 3 

NEXT PORT 
Model 0 - 
Model 1 

Std. 
Error 

Model 0 - 
Model 2 

Std. 
Error 

Model 1 - 
Model 2 Std. Error 

E.GOTLAND SE AREA -0.004 0.001 0.002 0.001 0.006 0.001 
GDANSK PL AREA -0.042 0.012 -0.024 0.009 0.018 0.010 
GULF OF BOTHNIA -0.046 0.031 -0.054 0.027 -0.008 0.028 
HAMINA FI 0.000 0.000 -0.002 0.002 -0.002 0.002 
HANKO FI AREA 0.002 0.006 0.000 0.007 -0.002 0.006 
HELSINKI FI AREA 0.050 0.025 0.050 0.024 0.000 0.020 
KALININGRAD RU AREA 0.000 0.001 0.000 0.001 0.000 0.001 
KALMAR SE AREA -0.002 0.009 0.004 0.009 0.006 0.006 
KLAIPEDA LT AREA -0.018 0.021 -0.010 0.028 0.008 0.018 
KOTKA FI AREA -0.050 0.035 -0.070 0.035 -0.020 0.019 
KUNDA EE 0.004 0.009 0.004 0.009 0.000 0.003 
NYKOPING SE AREA 0.008 0.004 0.016 0.007 0.008 0.006 
PALDISKI EE AREA -0.008 0.006 -0.002 0.007 0.006 0.007 
PARNU EE -0.002 0.002 0.000 0.002 0.002 0.002 
PRIMORSK RU 0.000 0.017 0.000 0.023 0.000 0.011 
REKA LUGA RU -0.032 0.010 -0.032 0.010 0.000 0.010 
RIGA LV AREA 0.000 0.001 0.000 0.002 0.000 0.002 
STOCKHOLM SE AREA 0.010 0.002 0.008 0.003 -0.002 0.003 
SW ATLANTIC 0.122 0.062 0.098 0.054 -0.024 0.040 
TALLINN EE AREA 0.006 0.034 0.006 0.018 0.000 0.023 
VYBORG RU 0.000 0.002 0.000 0.002 0.000 0.002 
W.GOTLAND SE AREA 0.002 0.002 0.002 0.002 0.000 0.002 
WOLGAST DE AREA 0.000 0.000 0.004 0.000 0.004 0.000 

 

Differences highlighted in Green are more than two standard errors in magnitude. 
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4. FOURTH SCENARIO 

The fourth scenario that we select is a vessel with the following information: 

• Arrival Day of Week: Sunday 

• Arrival Day in Year: 103 

• Length of Port Stay: 109 hours 

• MID (Country code of vessel): 377 

• First Prior Port: SW Atlantic 

• Second Prior Port: Saint Petersburg RU Area 

This scenario considers a day in March where a vessel spent over one hundred hours in a 

port in the Saint Petersburg area. This amount of time is larger than the ones used in the 

previous three scenarios. The vessel also differs because it is registered to a country in the 

Caribbean, which means that it had to make a long journey to get to the Baltic Sea. The 

second prior port is the same location that the vessel is currently.  

Table 15 shows the 23 potential next ports and their respective transitional 

probabilities given zero prior ports, one prior port, and two prior ports. The next ports of 

visit with the highest transitional probabilities are SW ATLANTIC (0.52), PRIMORSK 

RU (0.13), and KOTKA FI AREA (0.09). We calculate the standard errors in Table 15 by 

bootstrapping each random forest model 30 times. The same sample is used to fit all three 

random forest models each time.  
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Table 15.   Transitional Probabilities and Standard Errors for Each 
Random Forest Model in Scenario 4 

NEXT PORT 
RF Model 

0 
Std. 

Error RF Model 1 
Std. 

Error RF Model 2 Std. Error 
E.GOTLAND SE AREA 0.006 0.002 0.010 0.001 0.016 0.002 
GDANSK PL AREA 0.032 0.058 0.016 0.065 0.036 0.062 
GULF OF BOTHNIA 0.048 0.025 0.018 0.028 0.050 0.021 
HAMINA FI 0.004 < 0.001 0.002 0.001 0.016 0.004 
HANKO FI AREA 0.002 0.014 < 0.001 0.022 0.006 0.013 
HELSINKI FI AREA 0.006 0.025 0.004 0.023 0.024 0.020 
KALININGRAD RU AREA 0.044 < 0.001 0.056 0.001 0.030 0.002 
KALMAR SE AREA < 0.001 0.007 < 0.001 0.003 0.000 0.004 
KLAIPEDA LT AREA 0.030 0.023 0.034 0.024 0.024 0.025 
KOTKA FI AREA 0.050 0.044 0.070 0.040 0.088 0.025 
KUNDA EE 0.004 0.002 0.004 0.001 0.004 0.002 
NYKOPING SE AREA 0.004 0.006 0.012 0.007 0.012 0.006 
PALDISKI EE AREA < 0.001 0.007 0.002 0.012 < 0.001 0.011 
PARNU EE 0.004 < 0.001 < 0.001 < 0.001 0.002 0.001 
PRIMORSK RU 0.138 0.016 0.166 0.007 0.134 0.008 
REKA LUGA RU 0.008 0.021 0.008 0.017 0.012 0.013 
RIGA LV AREA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 
STOCKHOLM SE AREA 0.010 0.003 < 0.001 0.003 0.002 0.003 
SW ATLANTIC 0.582 0.043 0.550 0.044 0.518 0.059 
TALLINN EE AREA < 0.001 0.008 < 0.001 0.005 0.002 0.006 
VYBORG RU < 0.001 0.001 < 0.001 0.001 0.002 0.002 
W.GOTLAND SE AREA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
WOLGAST DE AREA 0.028 0.001 0.048 0.001 0.022 0.004 

 

Table 16 presents the standard errors for the differences between the three random 

forest models. The numbers that are highlighted in green in Table 16 indicate differences 

that are greater in magnitude than two standard errors, which means that these differences 

indicate that past information does change the probability of a vessel’s next port of visit. 

With seven occurrences, the largest difference is between model 0 and model 1. These 

results are similar to the second scenario and different than the first and third scenarios, 

which were similar to each other.  
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Table 16.   Standard Errors for the Differences in Probability Estimates between Random 
Forest Models in Scenario 4.  

NEXT PORT 
Model 0 - 
Model 1 

Std. 
Error 

Model 0 - 
Model 2 Std. Error 

Model 1 - 
Model 2 

Std. 
Error 

E.GOTLAND SE AREA -0.004 0.002 -0.010 0.002 -0.006 0.003 
GDANSK PL AREA 0.016 0.021 -0.004 0.022 -0.020 0.020 
GULF OF BOTHNIA 0.030 0.015 -0.002 0.020 -0.032 0.024 
HAMINA FI 0.002 0.001 -0.012 0.004 -0.014 0.004 
HANKO FI AREA 0.002 0.011 -0.004 0.008 -0.006 0.012 
HELSINKI FI AREA 0.002 0.021 -0.018 0.025 -0.020 0.021 
KALININGRAD RU AREA -0.012 0.001 0.014 0.001 0.026 0.002 
KALMAR SE AREA 0.000 0.006 0.000 0.006 0.000 0.004 
KLAIPEDA LT AREA -0.004 0.021 0.006 0.021 0.010 0.013 
KOTKA FI AREA -0.020 0.030 -0.038 0.035 -0.018 0.031 
KUNDA EE 0.000 0.002 0.000 0.002 0.000 0.002 
NYKOPING SE AREA -0.008 0.006 -0.008 0.005 0.000 0.006 
PALDISKI EE AREA -0.002 0.009 0.000 0.009 0.002 0.009 
PARNU EE 0.004 0.000 0.002 0.001 -0.002 0.001 
PRIMORSK RU -0.028 0.011 0.004 0.012 0.032 0.007 
REKA LUGA RU 0.000 0.017 -0.004 0.018 -0.004 0.015 
RIGA LV AREA 0.000 0.000 0.000 0.001 0.000 0.001 
STOCKHOLM SE AREA 0.010 0.003 0.008 0.004 -0.002 0.004 
SW ATLANTIC 0.032 0.041 0.064 0.052 0.032 0.037 
TALLINN EE AREA 0.000 0.006 -0.002 0.006 -0.002 0.006 
VYBORG RU 0.000 0.001 -0.002 0.002 -0.002 0.002 
W.GOTLAND SE AREA 0.000 0.000 0.000 0.000 0.000 0.000 
WOLGAST DE AREA -0.020 0.001 0.006 0.004 0.026 0.004 
 

Differences highlighted in Green are more than two standard errors in magnitude. 

 

G. DISCUSSION OF SCENARIOS 

Across all four scenarios, there is not one port that is always statistically different 

among the three models. Scenario 2 and 4 deemed model 0 and model 1 to have the most 

differences between the potential next ports of visit. Of those differences, none of the ports 

between the two scenarios were the same. The two scenarios also agree that the next largest 

difference is between model 1 and model 2. This indicates that the knowledge of one prior 

port can significantly change the transitional probabilities for the next port of visit. 
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Scenario 1 and 3 considered model 0 and 2 to have the largest difference between 

the models. Gdansk, Kotka, and Wolgast are the three next ports of visit that the two 

scenarios have in common. The two scenarios concur with the next largest difference is 

between model 0 and model 1. While scenarios 2 and 4 both agreed that one prior port can 

make a difference in the transitional probabilities, these scenarios show that the knowledge 

of two prior ports will benefit the accuracy of probabilities the most. They also indicate 

that the although the addition of one prior port is beneficial, it is more beneficial in 

comparison to a model that does not have any prior ports included than to a model that 

already has one prior port. 

Figure 12 is a summary of the changes in estimated probabilities for a vessel’s next 

port of visit. The 23 possible next ports of visit are grouped to show the changes in 

probabilities. The groupings are consistent with the groupings used in the third objective 

to predict a vessel’s next port of visit. The two categories, OTHER FI SE and ALL 

OTHERS, are cumulative probabilities of the ports that are in those two groups. In all 

scenarios there are changes in probabilities which indicates that the knowledge of prior 

ports visited is useful in predicting the next port of a vessel. In Scenario 1 there is an 

increase in transitional probabilities of the group ALL OTHERS. In Scenario 2 there is a 

decrease in the probability of SW ATLANTIC being the next port of visit after leaving the 

Saint Petersburg, Russia area. Scenario 3 shows an increase in probability for KOTKA FI 

AREA and a decrease in probability for OTHER FI SE. Scenario 4 also has an increase in 

transitional probability KOTKA FI but a decrease in SW ATLANTIC.  
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The addition of prior ports in the models changes the estimated probabilities. 

Figure 12.  Effects of Models in Estimating the Probability of 
a Vessel’s Next Port of Visit  
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V. SUMMARY AND RECOMMENDATIONS 

This thesis examines historical AIS data that focuses on the Baltic Sea during the 

time period of January to April 2014. Specifically, we use the three ports located in the 

Saint Petersburg cluster, as listed in Chapter III, as the port of interest and consider only 

the cargo ships that had a port stop there in our analysis. We process the data to gather 

attributes of vessels to determine if there is any effect on the vessel’s pattern of navigation 

as it transits through the Baltic Sea. The goal of this research is to characterize these 

patterns of ship navigation to better allocate surveillance assets for specific ships. Although 

we focus this analysis on cargo ships, it can be implemented for all types of vessels. In the 

following two sections, we discuss the practicality and usefulness of the two methods that 

were explored in response to the four research objectives laid out in Chapter I. The last 

section discusses recommendations to improve upon the analysis presented in this thesis. 

A. EFFECTIVENESS OF REGRESSION ANALYSIS 

The first research objective is to explore the factors that influence the amount of 

time that a vessel spends in port. We predict the length of time based on the variables: MID 

(country code of vessel), prior port visited, next port of visit, arrival day of the week, 

departure day of the week, and the arrival day in the year. To correct for heteroscedasticity 

and non-normality, we use a logarithmic transformation to the response variable, which is 

the length of time in hours that a vessel spends in a port in the Saint Petersburg area. MID 

is determined to be the best explanatory variable in the regression analysis. It is able to 

explain about 25 percent of the variance in the response variable. This emphasizes the 

importance of maritime law enforcement ensuring that a vessel’s MMSI is updated when 

first installed and that the MID matches the country flag that is being flown by the vessel. 

The second best explanatory variable is prior port, which highlights the importance of 

having past knowledge of the ports that a vessel visits during its voyage. Overall, the 

regression analysis is able to explain about 29 percent of the variance in the response 

variable after using BIC to penalize the addition of extra variables in the regression to avoid 

overfitting. The original model has 121 variables that we reduce to 23 variables using BIC. 
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Overall, the final regression model predictions are on average 41.7 hours off from the 

actual number of hours a cargo ship spent in port. We recommend using a vessel’s MID, 

previous port visited, and next port of visit to predict the number of hours a vessel will 

spend in port. To improve on the final model, previous ports that go further into the past 

are supported. This analysis is beneficial to organizations that are following a specific 

vessel in its route because knowing how long a vessel is in port for allows for the setup of 

surveillance assets. Knowing the duration of a port stay for a VOI gives the organizations 

time to allocate resources to the VOI’s current port or next port of visit.  

B. EFFECTIVENESS OF RANDOM FOREST ANALYSIS 

The second research objective is to predict with greater accuracy whether a vessel 

will depart or remain in the Baltic Sea after stopping in the Saint Petersburg, Russia area. 

We approach this objective by using a binomial response variable in three random forest 

models, which vary in the amount of past information that is included in the model. This 

approach illustrates the importance of incorporating prior ports in a vessel’s voyage by 

showing a decrease in classification error as the models included prior ports. The first 

model with no prior ports included has misclassification errors of about 35 percent for 

vessels that remained in the Baltic Sea and about 30 percent for vessels that actually left 

the Baltic Sea. There is an eight percent improvement in the classification error for the 

second model in predicting that the vessel would depart the Baltic and no improvement for 

the prediction of the vessel visiting another port. The third model showed a three percent 

decrease in classification errors for the prediction of leaving and staying in the Baltic Sea. 

Figure 13 shows the misclassification rates for the three random forest models. The 

classification errors decrease as more past information is included in the prediction model. 

This analysis shows that there is potential to more accurately predict the next port of visit 

for a vessel given its previous destinations.  
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The three models vary in number of prior ports included in model. 

Figure 13.  Misclassification Rates for Departing or Remaining in the Baltic Sea. 

The third research objective is to more accurately predict a vessel’s next port of 

visit after departing from the Saint Petersburg area. The response variable changes from 

binomial to multinomial as we consider actual ports. To ensure that all 23 possible next 

ports of visit are included in the training and test set, we group the ports into four categories. 

Those categories are: “SW ATLANTIC,” “KOTKA FI AREA,” OTHER FI SE,” and 

“ALL OTHERS.” We use 20 percent of the dataset (160 observations) as our test set and 

the remaining 80 percent (640 observations) as our training set. We fit three random forest 

models, set up similarly to the second objective, to the training data to predict the 

transitional probabilities of a vessel’s next port of visit. The overall misclassification error 

for Model 0 using the training data is 38.5 percent and with the test set it is about 44 percent. 

Model 1 has a lower overall misclassification error with 36.3 percent using the training 

data and about 37 percent with the test set. Model 2 has the lowest overall misclassification 

error in comparison to the first two models. With the training data, the overall 

misclassification error is 31.7 percent and with the test set it is about 30 percent. This 

analysis emphasizes the point that past information matters and is needed to more 

accurately predict a vessel’s next port of visit. Although all possible next ports of visit were 
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not included in this analysis, we consider them all in the next objective by estimating the 

transitional probabilities for all 23 ports.  

The fourth research objective is to explore the dependency that a vessel has on the 

previous ports visited in determining the next port of visit. We predict the next port of visit 

using the variables: MID (country code of vessel), arrival day of the week, arrival day in 

the year (1 = January 1, 2 = January 2, …, 130 = April 30), length of time vessel stays in 

port, first previous port, and second previous port. The three random forest models we use 

in this analysis are intended to show that predicting a vessel’s next port of call is not a 

simple Markov model but more of a HON where the past matters to accurately predict the 

future state. Therefore, the first model has zero prior ports known, with the second model 

having one prior port and the third model having two prior ports known. Even though MID 

is the best estimator in the random forest analysis, the previous port variables increase with 

importance the further into the past we explore. The transitional probabilities changed 

when explanatory variables were added that go deeper into the past, indicating that 

prediction of a vessel’s next port of call is not a simple Markov model but a higher-order 

network where more past information is needed to more accurately predict the future state.  

This methodology is useful in surveillance allocation because it allows the user to 

more accurately predict a VOI’s next port of visit by considering its previous ports visited. 

Misclassification rates decreased with the addition of past information in the prediction 

models. By estimating the probabilities for all 23 possible next ports, there is a difference 

in the models and the transitional probabilities.    

C. RECOMMENDATIONS 

The port of interest we use in this thesis is chosen to simplify the complexity of the 

network. This research can be scaled up to include all ports in the Baltic Sea, rather than 

just focusing on the three ports in the Saint Petersburg area. Scaling up the analysis would 

provide a means of comparing all ports to each other in terms of the time that vessels spend 

in port. It would not have too much of an effect on determining a vessel’s next port of visit. 

Increasing the size of the bounding box or eliminating a bounding box and using worldwide 

data would help improve the transitional probabilities for a vessel going from one port to 
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the next. The bounding box limits where a vessel may have been prior to entering the Baltic 

Sea and gives more weight to the port SW ATLANTIC, which is the sole entrance and exit 

for the Baltic Sea. By using a global dataset, the previous ports encompass the actual ports 

that were visited by a vessel rather than simply labeling it the Southwest Atlantic. A global 

dataset that encompasses a full year is sufficient enough to develop consistent routes and 

capture the effects of the changing seasons.   
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