

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

SIMULATED OPERATING CONCEPTS FOR WIOM
IMPLEMENTATION

by

Sean M. Teter

March 2018

Thesis Advisor: Emily Craparo
Second Reader: Javier Salmeron

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2018

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
SIMULATED OPERATING CONCEPTS FOR WIOM IMPLEMENTATION

5. FUNDING NUMBERS

6. AUTHOR(S) Sean M. Teter

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Naval Supply Systems Command Weapon Systems Support (NAVSUP WSS) serves as the Navy’s
inventory control point, managing approximately 375,000 line items. Constrained by funding, NAVSUP
WSS uses the Wholesale Inventory Optimization Model (WIOM), a mixed-integer linear program developed
by Naval Postgraduate School faculty, to maximize customer service. Since demand distributions for
different parts change over time, NAVSUP WSS updates the inputs to WIOM and reruns it quarterly.
However, large changes to the solution create an administrative burden. To deal with this problem, referred
to as churn, WIOM has a persistence parameter that can discourage change from one run to the next, but it
is inherently at odds with customer service performance.

This thesis presents a new model, the Comparative Optimized Results Simulation (CORS). Using
CORS, the thesis explores the system’s performance under different settings of the persistence parameter
and different periodicities of running WIOM. The thesis finds that periodicities greater than quarterly
significantly degrade customer service. Additionally, the thesis finds that increasing the persistence
parameter dramatically improves churn while only marginally degrading customer service.

14. SUBJECT TERMS
inventory management; discrete event simulation; wholesale inventory optimization model

15. NUMBER OF
PAGES

79
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

SIMULATED OPERATING CONCEPTS FOR WIOM IMPLEMENTATION

Sean M. Teter
Lieutenant Commander, United States Navy

B.A., Florida State University, 2005
B.A., Florida State University, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 2018

Approved by: Dr. Emily Craparo
Thesis Advisor

Dr. Javier Salmeron
Second Reader

Dr. Patricia Jacobs
Chair, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Naval Supply Systems Command Weapon Systems Support (NAVSUP WSS)

serves as the Navy’s inventory control point, managing approximately 375,000 line items.

Constrained by funding, NAVSUP WSS uses the Wholesale Inventory Optimization

Model (WIOM), a mixed-integer linear program developed by Naval Postgraduate School

faculty, to maximize customer service. Since demand distributions for different parts

change over time, NAVSUP WSS updates the inputs to WIOM and reruns it quarterly.

However, large changes to the solution create an administrative burden. To deal with this

problem, referred to as churn, WIOM has a persistence parameter that can discourage

change from one run to the next, but it is inherently at odds with customer service

performance.

This thesis presents a new model, the Comparative Optimized Results Simulation

(CORS). Using CORS, the thesis explores the system’s performance under different

settings of the persistence parameter and different periodicities of running WIOM. The

thesis finds that periodicities greater than quarterly significantly degrade customer service.

Additionally, the thesis finds that increasing the persistence parameter dramatically

improves churn while only marginally degrading customer service.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. LITERATURE REVIEW ...3

1. Inventory Management ...3
2. Discrete Event Simulation ...5
3. Previous WIOM Simulation Study...6

C. OBJECTIVES ..6
D. SCOPE, LIMITATIONS, AND ASSUMPTIONS7

II. DATA AND METHODOLOGY ..9
A. DATA ..9
B. METAMODEL ..11
C. SIMULATION MODEL DEVELOPMENT ...12
D. MODEL OUTPUT ...17

III. ANALYSIS ...19
A. OPERATING CONCEPTS EXPLORED ...19
B. TIME TO DIVERGE ..20
C. EFFECT OF PERIODICITY ...22
D. EFFECT OF PERSISTENCE PARAMETER23

1. Effect of Persistence Parameter on Churn23
2. Churn versus Fill Rate Trade-off ...28

E. PERSISTENCE PARAMETER FURTHER EXPLORATION29
1. New Concept Testing ...29
2. Effect on Churn ..30
3. Effect on Fill Rate ..31

IV. CONCLUSIONS AND RECOMMENDATIONS ...33
A. CONCLUSIONS ..33
B. FOLLOW-ON RESEARCH RECOMMENDATIONS34

APPENDIX. CORS CODE ..37

LIST OF REFERENCES ..57

INITIAL DISTRIBUTION LIST ...59

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Classical Inventory Model ...5

Figure 2. Metamodel Relationships...12

Figure 3. Initialization Event Flow Chart ..13

Figure 4. Parameter Reset Event Flow Chart ..15

Figure 5. Demand Arrival Event Flow Chart ..16

Figure 6. Order Arrival Event Flow Chart ..17

Figure 7. Monthly Difference in Simulated Fill Rate between Designs 4 and 921

Figure 8. Monthly Difference in Simulated Fill Rate between Designs 8 and 922

Figure 9. Graph of Fill Rate by Churn Value ..28

Figure 10. Graph of Churn Value by Persistence Parameter31

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Tracked System Characteristics ...12

Table 2. Overall Simulated Fill Rates ..20

Table 3. Fill Rates by Periodicity...23

Table 4. Churn Value by Design ..25

Table 5. Churn Values for Hybrid Designs ..25

Table 6. Churn as Percentage of Items with Change ...26

Table 7. Churn as Percentage of Items with Change for Hybrid Designs27

Table 8. Churn as Dollar Value ...27

Table 9. Churn as Dollar Value for Hybrid Designs ..27

Table 10. Follow-on Concepts Testing (All Quarterly) ...29

Table 11. Churn for Follow-on Concepts Testing ...30

Table 12. Follow-on Testing Fill Rate Results ..31

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

CORS Comparative Optimized Results Simulation

ERP Navy Enterprise Resource Planning

FY fiscal year

IP inventory position

LSSI level setting strategy indicator

LT lead time

NAVSUP WSS Naval Supply Systems Command, Weapon System Support

NIIN national item identification number

Q order quantity

Q_O/H quantity on-hand

ROP reorder point

SPO Service Planning and Optimization

WIOM Wholesale Inventory Optimization Model

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Naval Supply Systems Command, Weapon Systems Support (NAVSUP WSS)

serves as the main inventory control point for the Navy, managing approximately 375,000

unique line items. NAVSUP WSS strives to maintain the best possible material support to

the fleet by effectively managing the Navy’s wholesale inventory. Constrained by budget,

it does this by managing when it orders material.

To optimize this support, NAVSUP WSS uses the Wholesale Inventory

Optimization Model (WIOM), a tool developed by Naval Postgraduate School faculty

(Salmeron and Craparo 2017). WIOM strives to maximize a function closely related to fill

rate, which is a standard measure of customer support, while staying within budgetary

constraints. NAVSUP WSS runs WIOM once a quarter. In his 2016 NPS thesis, Lieutenant

Commander Geoffrey Roth used a simulation study to show that WIOM performed better

than NAVSUP WSS’s legacy optimization model. Since this research, NAVSUP WSS

identified desirable new features for WIOM. One of these new features, persistence, was

added to WIOM in order to preserve legacy values from previous solutions. This reduces

what is known as churn: the change in solution from one model run to the next.

The reduction of churn is beneficial for NAVSUP WSS from an administrative

perspective. However, enforcing persistence may also reduce fill rate performance and

support to the fleet. This thesis develops the Comparative Optimized Results Simulation

(CORS) in order to test wholesale inventory performance. CORS is a discrete event

simulation that uses 4.5 years of historic demand data provided by NAVSUP WSS as input

and allows multiple runs of WIOM during the simulation period. This is fundamentally

different from the previous simulation study, which used one WIOM run and stochastic

demand arrivals with the assumption that the underlying demand patterns were

unchanging.

Using CORS, the thesis tests the effects of modifying two variables: persistence

parameter and periodicity of running WIOM. We consider persistence parameter settings

at four levels we define as none, low, medium and high. We consider quarterly, semi-

 xvi

annual, and annual periodicities. We create 15 different combinations of periodicities and

persistence parameter settings and use CORS to test inventory system performance in terms

of simulated fill rate under these settings.

The thesis gains several insights from the experimental results. First, fill rates

between poor- and high-performing designs take time to diverge. An excellent and poor

design take at least six months before a difference in performance is noted. Next, we

conclude that designs with quarterly periodicities clearly outperform semi-annual and

annual periodicities. WIOM solutions appear to “expire” as time passes and underlying

demand patterns of the system change. Finally, we determine that churn can be drastically

reduced without sacrificing system performance. In our experiments we are able to reduce

the churn by 99% without practically significant degradation in fill rate. In fact, we are

unable to substantially reduce fill rate performance by increasing the persistence parameter.

We find that increasing the persistence parameter has a decreasing marginal effect on

churn, and above a certain level has no further effect and a minimum churn is reached. In

this case the minimum level of churn reached by WIOM was not constraining enough to

cause a reduction in fill rate performance. We do not, however, conclude that this is the

case generally, and further research is warranted.

References

Roth G (2016) A simulation of alternative for wholesale inventory replenishment. Master’s
thesis, Operations Research Department, Naval Postgraduate School, Monterey, CA.
https://calhoun.nps.edu/handle/10945/48587.

Salmeron J, Craparo E (2017) Wholesale Inventory Optimization Model. Naval Postgraduate
School, Monterey, CA.

 xvii

ACKNOWLEDGMENTS

Completing this academic program has been a humbling experience. Having good

people around me has helped immensely. I’d like to thank all of the fellow students in my

cohort who weathered the storm alongside me, and all the professors who guided us

through to calmer waters on the other side. I couldn’t have asked for a better group of

either.

Completing this thesis proved to be even more humbling. Immense thanks go to

my advisor, Emily Craparo, for her constant support, encouragement, and guidance.

Further thanks to my second reader, Javier Salmeron, who refused to accept any less than

my best work and made me better in the process.

I would never be here in the first place if it weren’t for my family. My parents have

been unfailing in support for every endeavor I have ever taken and have been my biggest

cheerleaders. My big sister, Caitlin, has been a constant role model I have looked up to for

as long as I can remember. While I was initially (and vocally) disappointed that my little

sister, Claire, wasn’t a boy, I guess she’s okay too.

Of course, no thanks or words in the world can express my gratitude to my wife,

Judy. Her love, encouragement, and strength through this process made it possible. While

there’s no dedication section in this thesis, I choose to dedicate it nonetheless:

For my wife and daughter, the loves of my life.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Naval Supply Systems Command, Weapon Systems Support (NAVSUP WSS)

serves as the main inventory control point for the Navy. The command manages over

375,000 unique line items (NAVSUP 2018) used in the repair of ships, submarines, Navy

and Marine Corps aircraft, and associated weapons systems. The effective management of

this supply chain is essential in maintaining readiness of the fleet to operate and conduct

combat operations around the world.

Like any organization, NAVSUP WSS has a limited set of resources with which to

conduct its operations. The biggest constraint is financial. Given limited budgetary means,

NAVSUP WSS strives to maximize support to the warfighter. The predominant metric

used to measure customer support is fill rate. When NAVSUP WSS receives a requisition,

one of two things can happen. Either the requisition is filled immediately with stock on

hand, or the requisition is backordered. The fill rate metric shows the relationship between

the number of requisitions filled immediately on receipt and the number of requisitions that

are backordered. Fill rate is defined mathematically as follows:

Fill rate = Requisitions Filled / Requisitions Received.
For example, if 50 requisitions were received in a given period, and 43 of them were filled

and 7 were backordered, then a fill rate of .86 or 86% was achieved for this period. The

above calculation can be applied to a specific item or to a group of items. When it is applied

to a group of items, it can be done in one of two ways. First, the fill rate can be calculated

as an average of all the individual item fill rates. Or, the fill rate can be calculated with the

above equation without regard to what the particular item is. This is also called demand

weighting, because it is equivalent to a weighted average of item fill rates, weighted

according to the demands of the individual items. In this thesis, we use demand weighted

fill rate unless specifically noted otherwise.

In the past NAVSUP WSS used commercially-developed optimization software to

maximize their achieved fill rate given their budget constraints. Developed by MCA

 2

Solutions, the Service Planning and Optimization (SPO) was effective but had

shortcomings. First, it was a “black box” to the users at NAVSUP WSS, who did not have

access to the models and algorithms SPO used to develop its solutions. SPO did not have

the ability to accept budget as a constraint. Therefore, NAVSUP WSS had to run SPO

iteratively, adjusting a fill rate constraint until a satisfactory budget figure was reached.

Additionally, SPO was expensive, costing around $800,000 per year in licensing fees.

In order to replace SPO with a better-functioning optimization tool at reduced cost,

Naval Postgraduate School faculty developed the Wholesale Inventory Optimization

Model (WIOM) (Salmeron and Craparo 2017). WIOM is a mixed-integer linear program

designed to maximize a function closely related to fill rate, for the wholesale inventory

managed by NAVSUP WSS. In his 2016 thesis, Lieutenant Commander Geoffrey Roth

used simulation modeling to conclude that WIOM 3.51 was in fact superior to SPO in

maximizing fill rates. NAVSUP WSS sunset SPO and began using WIOM in April of 2017.

While WIOM performs well compared to SPO, NAVSUP WSS identified further

features they would like to be incorporated into WIOM. First, WIOM 3.51 did not use

demand weighting. Instead, it had two settings that could be used. First, WIOM could treat

each National Item Identification Number (NIIN) equally. This is not desirable because it

ignores the relative importance of NIINs with high demand. Alternatively, WIOM could

give preferential treatment to NIINs that were assigned to specific groups called level-

setting strategy indicators (LSSIs). By assigning high-demand NIINs to a certain LSSI and

then assigning that LSSI a high weight, NAVSUP WSS could mitigate the demand

weighting issue. Additionally, NAVSUP WSS could use a series of business rules to create

low-demand cutoff points, choosing to leave very low demand NIINs out of the

optimization altogether. In order to address this concern, WIOM was revised to use demand

weighting, and incorporated this change into the WIOM 4.1 release.

NAVSUP WSS has an additional concern with WIOM (and SPO before it): churn.

Churn is the change between solutions from one model run to the next. NAVSUP WSS

runs the optimization model once every quarter. In the three months between model runs,

the number of requisitions received changes the demand parameters that feed into WIOM.

Subsequently, the optimization problems are quite different and considerably differing

 3

solutions are possible. Indeed, if multiple optimal (or near-optimal) solutions exist, churn

may occur even in the absence of changes to the input data. This churn creates an

administrative burden in contracting and can reduce senior leadership’s confidence in

optimization efforts. To deal with the churn problem, Salmeron and Craparo (2017)

included a term in WIOM’s objective function that calculates a churn penalty. This term

contains two penalty parameters. One is indexed by NIIN, allowing the user to adjust the

relative importance of each NIIN within the churn term. The other is a global persistence

parameter that reflects the overall importance of the churn term. This thesis focuses on the

global persistence parameter; for simplicity we use the term “persistence parameter”

hereafter. The persistence parameter rewards a solution for maintaining legacy values from

one model run to the next. The parameter is not an on/off switch; rather, it is a continuous

parameter that can be set from zero to an arbitrarily large number. At zero, the persistence

parameter is “off.” As the parameter increases, the model more strongly prefers to retain

incumbent solutions. Additionally, there is an inherent tradeoff between churn reduction

and achieved fill rate. The higher the persistence parameter, the less important fill rate

becomes in the objective function.

B. LITERATURE REVIEW

1. Inventory Management

Wholesale inventory management is concerned with finding strategies to meet

demand requirements from customers at an acceptable service level and an acceptable cost

level. Many different models have been proposed, but the two we will discuss are the order-

point, order-quantity (s,Q) model and the classic inventory model.

Order-point, order-quantity models are discussed in Silver et al. (1998). In an (s,Q)

system, two parameters are used to make decisions on stock replenishment. The first is the

reorder point, s. As an item’s stock level decreases, a reorder is triggered once the item’s

inventory position decreases to the level of the reorder point. Inventory position is defined

as the quantity on hand plus the quantity on order minus the quantity in a backordered

status (i.e., owed to customers). The second parameter is the order quantity Q. This is the

quantity of material ordered every time there is a reorder. When a reorder is placed, the

 4

time it takes for this order to arrive is known as the lead time. A key feature of an (s,Q)

system is that each reorder is triggered by a low inventory position, not low inventory on

hand. This prevents the system from placing extra orders when there is already an order

due-in that will replenish stock sufficiently. Silver et al. provide an analogy: “A good

example of ordering on the basis of inventory position is the way a person takes aspirin to

relieve a headache. After taking two aspirin, it is not necessary to take two more every five

minutes until the headache goes away. Rather, it is understood that the relief is ‘on order’—

aspirin operates with a delay” (Silver et al. 1998).

WIOM uses the (s,Q) system to model NAVSUP WSS’s wholesale inventory.

However, NAVSUP WSS only determines reorder points. The quantity of the reorders is

decided by Navy Enterprise Resource Planning (ERP), and is treated as input by NAVSUP

WSS, who then strives to maximize effectiveness by deciding on appropriate reorder

points.

A special case of the (s,Q) system is the classical inventory model discussed in

Tersine (1994). The classical inventory model uses an (s,Q) system but with a very rigid

set of assumptions. Among other things that are not relevant to our purposes, the classical

inventory model assumes the following:

• Deterministic and constant demand

• Constant deterministic lead time

• Reorders arrive as a whole lot of size Q

• Backorders are not allowed, since demand and leadtime are constant they

are avoided

The resulting system creates a characteristic saw-tooth pattern as shown in Figure 1.

This inventory model is used primarily as a means to estimate an order quantity that

minimizes cost, known as the economic order quantity. Since NAVSUP WSS treats the

order quantity as a given input from ERP, we are not concerned with that aspect of the

model. However, the model has some unique qualities that we will use when establishing

initial conditions for our simulation. Specifically, a result of the model is that the average

 5

amount of inventory on hand is equal to Q/2. Furthermore, the inventory on hand at any

given time is distributed uniformly from zero to Q.

Figure 1. Classical Inventory Model

2. Discrete Event Simulation

Discrete event simulation is addressed in detail in Law (2015). Discrete event

simulations are those that advance time from one discrete event to the next. These events

may change the state of the system being represented, and the system cannot change during

the time between events. Law presents several important definitions to understand such a

simulation:

System state: The collection of state variables necessary to describe the
system at a particular time;

Simulation Clock: A variable giving the current value of simulated time;

Event List: A list containing the next time when each type of event will
occur;

Initialization Routine: A subprogram to initialize the simulation model at
time 0;

 6

Event Routine: A subprogram that updates the system state when a
particular type of even occurs (there is one event routing for each event
type). (Law 2015)

This thesis develops a simulation using this next-event time advance principle.

Events in the system are arranged in time in an event list. The simulated time moves

forward from one event to the next according to the events’ arrangement in time. The

current event is evaluated, state changes to the system are made as necessary, and the

simulation moves to the next event in time while the simulation clock is updated.

3. Previous WIOM Simulation Study

In his 2016 thesis, Geoffrey Roth conducted a comparative simulation study

between three different optimization methods: simple calculation (a heuristic), SPO, and

WIOM. Using a discrete event simulation and testing across five types of material, Roth

concluded that WIOM was the best performing of these three alternatives. However, Roth’s

simulation relies on several strong assumptions:

• NIIN demand probability distributions are known and unchanging through

time

• NIIN demands arrive in quantities of one only

• Demands are uncorrelated between NIINs

In addition to these assumptions, the simulation models a lengthy warm-up period

of 400,000 days to reach steady state. Due to these assumptions and warm-up period,

Roth’s simulation would be ineffective to try to model short-term performance of the

system with frequent WIOM runs and changes in estimated demand distributions every

quarter.

C. OBJECTIVES

The thesis creates a discrete event simulation that uses historical requisitions as

input and requires no warm-up period. We call this simulation the Comparative Optimized

Results Simulation (CORS). By using historical data and not requiring a warm-up period,

 7

CORS allows for multiple runs of WIOM during the test period. This thesis conducts a

series of experiments using the simulation and analyzes the output in order to:

• Gain insight into the relative tradeoff between churn and fill rate using

differing settings for the persistence parameter.

• Gain insight into the effect of WIOM periodicity on fill rate.

D. SCOPE, LIMITATIONS, AND ASSUMPTIONS

During the course of the research, we restrict ourselves to looking at the impact of

running WIOM at differing periodicities and with differing persistence parameters. In

practice, NAVSUP WSS has historically used a set of business rules to help it overcome

limitations in SPO. These business rules include mandating minimum and maximum

reorder points for some NIINs, which restrict the range of solutions that SPO can use.

Additionally, NAVSUP WSS would not input NIINs with exceptionally low demand into

SPO. While NAVSUP WSS may choose to continue using these business rules, the current

version of WIOM accounts for churn by use of the persistence parameter and accounts for

low demand by using demand weighting. Therefore, no additional business rules will be

used in this study.

While exploring differing concepts of operations for NAVSUP WSS, we do not

explore all possible periodicities. Running WIOM and implementing its solution is

administratively burdensome, and organizationally NAVSUP WSS wants to maintain a

normal battle rhythm (Ellis et al. 2017). For this reason, we assume that WIOM can only

be run quarterly, semiannually, or annually.

The thesis is limited to non-nuclear consumable material. Modeling repairable

material is more complex and not addressed in this study.

CORS does not attempt to model all aspects of inventory management. Therefore,

while the model delivers insight into performance, it only does so relatively. That is to say,

we are only comparing between simulations and claiming which operating condition

performed better. A simulation output is not an absolute prediction of how the system

would have performed in real life. For example, say the simulations of concept of

 8

operations a and concept of operations b give overall fill rates of 75% and 70%. In this

case, we assert that a performed better than b. But, we do not make the assertion that the

actual fill rate would have been 75% had a been in place in real life.

Using deterministic demand gives great flexibility to explore the effects of different

concepts of operations that a long term steady state simulation does not. However, by using

deterministic demand we are essentially restricted to one data point and a trace simulation.

Thus, our conclusions are inherently limited. We can say that one concept of operations

performed better than another in the simulation, but only for the given set of demands.

There is no basis to assert with confidence that the same would be true for a different set

of demands from the same underlying demand distributions.

 9

II. DATA AND METHODOLOGY

A. DATA

In order to run CORS, we need two main sets of data. First, CORS needs

optimization output from WIOM (or SPO). Second, CORS needs historical requisition

data. To obtain these data we reorganize data received from NAVSUP WSS, which was

provided in four forms for fiscal year (FY) 2013 through FY2017 (1 Oct 2012–30 Sep

2017) (Ellis 2017).

The simplest set of data provided is budget figures. NAVSUP WSS provided the

historical budgetary constraint placed on each class of material for each quarter of the

period of interest (Motter 2017). Instead of using the budget data as provided, the mean of

the budget across the period of interest is taken and this constant budget is used throughout.

This is because there is an instance when the historical budget changed in the middle of the

fiscal year. As will be discussed later, some of our experimental designs will only run

WIOM annually. Using the mean allows the experiments to be comparable for different

periodicities. Additionally, there is no serious tradeoff by taking the mean since we are not

comparing simulation performance to actual performance in our experiments. We only

require that budget information be representative.

The set of data provided includes historical requisitions (Ellis 2017). The

requisition data are a record of all demands that NAVSUP WSS received during the time

period. Each line item in the data represents a single requisition received from the fleet and

has 75 data elements recorded. However, most of the data elements are not relevant to

running CORS, and we focus on only a few elements. For each requisition, we need to

know the NIIN, if the NIIN is a repairable or consumable material, if the NIIN is for

aviation or maritime material, if the NIIN is nuclear material, if the requisition was filled,

and the Julian date of the requisition. Of note, the Julian date does not represent the date a

requisition is received by NAVSUP WSS. Rather, it is part of the template of a requisition

number that is assigned by the originating activity when the requisition is created.

However, a number of factors could lead to a delay in the requisition being transmitted

 10

after it has been created. In the absence of better information, however, we assume that the

Julian date represents the date the requisition is received by NAVSUP WSS.

The next set of data provided consists of historical candidates files (Ellis 2017).

These files contain information for all the NIINs that were input into SPO for each quarter.

The files contain 20 data elements for each NIIN that are necessary to run WIOM. These

files are ready to input into WIOM. However, some issues with the data prevent their

unaltered use. First, these files are not available for the entire period. Files are only

available for the quarters between and including April 2014 and July 2017. Secondly,

relatively few NIINs are in all of the files, because the files were created with low-demand

cut-offs in accordance with NAVSUP WSS’s business rules.

Also provided are historical wholesale data files (Ellis 2017). These files have the

majority of the data elements needed to run in WIOM, but they do not include the budget

category, which is necessary to classify a NIIN as a particular type of material. They also

contain more NIINs than the provided candidates files. Additionally, this data source is not

available for the last two quarters of the period: April and July 2017. Since data is not

available for the second half of FY17, the period of interest is shortened by six months,

and is now Oct 2012 through June 2017.

We reorganize the provided data sets to create what we need to run WIOM and

conduct our experiments in CORS: candidates files with a consistent set of NIINs for the

whole test period. Since the provided candidates files have such a small set of NIINs that

are present throughout, we do not use them as the basis for our new candidates files.

Instead, we start with the wholesale data files. The budget category, which identifies the

class of material, is still missing. In order to identify the NIINs of interest (consumable

non-nuclear maritime material), we look to the requisition data and the provided candidates

files. The requisition data is modified to cut out all requisitions for material that is not

consumable non-nuclear maritime. The list of NIINs present in the modified requisition

data now represents the list of NIINs of interest for our new candidates files. The newly

created candidates files are cross referenced with this list and NIINs not in the list are

deleted from the candidates files. As an additional safeguard, the NIINs present in the new

candidates files are cross-referenced with the provided candidates files: any NIIN that is

 11

identified as another class of material in any provided candidates file is deleted. The newly-

formed candidates files are then cross-referenced with each other. NIINs that appear in the

candidates file for each period are retained and the remainder are deleted. Lastly, the

requisition data is scrubbed in the same way, and requisitions for NIINs not in the

candidates files are deleted. The final result is a set of quarterly candidates files with 3,808

consumable, non-nuclear, maritime NIINs and requisition data with 106,565 requisitions.

B. METAMODEL

As input, CORS requires requisition data and WIOM outputs for each quarter of

the time period being tested. To obtain the necessary WIOM outputs, we start by running

WIOM for the first quarter in the time period. This run uses the candidates file for the first

time period developed above, the budget figure, and the persistence parameter we are

exploring. The second WIOM run for the next sequential quarter requires all the same input

data plus the first WIOM solution, as it uses this information to enforce persistence. The

third WIOM run requires the second WIOM solution, the fourth WIOM run requires the

third WIOM solution, etc. After repeating the process for all available quarters we have a

library of WIOM output. This WIOM output contains both the optimal reorder points

(ROPs) and the NIIN characteristics CORS requires; namely, each NIIN’s lead time (LT)

and order quantity (Q). This library of 18 WIOM outputs is fed into CORS, along with the

requisition data. CORS then performs its simulation and outputs system performance in

terms of fill rate. Figure 2 illustrates the process.

 12

Figure 2. Metamodel Relationships

C. SIMULATION MODEL DEVELOPMENT

Using the available requisition data as input we develop CORS to model

performance of the system under varying inputs of WIOM employment. As discussed,

CORS works as a discrete event simulation, progressing forward in time from one event to

the next. Simulating one NIIN at a time, CORS maintains an event queue with events

aligned in time to trigger demand arrivals, order arrivals, and parameter changes due to

new WIOM input. Each event triggers a particular logic sequence that examines the current

state of the system and makes appropriate changes to the system and event queue. Table 1

shows system characteristics the simulation tracks as it runs.

Table 1. Tracked System Characteristics

 Variable Abbreviation
1 Order Quantity Q
2 Reorder Point ROP
3 Lead Time LT
4 Quantity On-Hand Q_O/H
5 Inventory Position IP
6 Time t

 13

When the simulation run begins, the Initialization Event starts. Figure 3 is a flow

chart summarizing the event. First, the event adds a Parameter Reset Event to the event

queue for the start of each quarter. These reset events hold information for updating Q,

ROP, and LT based on the WIOM output for that period. Next, the event populates the

queue with Demand Arrival Events, adding each requisition for the current NIIN onto the

event queue. The Demand Events note both the date of the demand arrival and the quantity

demanded for that requisition. With the event queue populated with all input data to the

simulation, the event queue is sorted by date.

Figure 3. Initialization Event Flow Chart

 14

Next, the initialization event sets the initial system conditions, assigning an initial

value to each state variable. Initial Q, ROP, and LT values are assigned based on the first

WIOM output in the event queue. However, we also have to assign an initial Q_O/H, IP,

and trigger any order arrivals the initial IP would have caused prior to the simulation

window beginning. This is a problem because the simulation runs with no warm-up period,

so we must find a way to assign a starting condition that would be reasonable to find in the

middle of a steady state condition. To address this issue, we make a simplifying assumption

and choose to treat the inventory system as a classic inventory system. Recall that in the

classical inventory model, the quantity of material on hand at any given time is distributed

uniformly from zero to Q. We therefore assign the initial quantity on hand in CORS to be

a uniform integer random variable (RV) between 0 and Q. This assignment ignores the

possibility of material in a backorder status and the possibility of presence of stock in

greater quantity than Q. But, it provides a quick way of calculating a starting condition that

is on the right order of magnitude with no warm-up period. With a Q_O/H assigned, we

use the same inventory model again to assign a reorder if necessary and insert it into the

event queue at the appropriate time. In this model, a reorder is triggered when Q_O/H

reaches ROP, and arrives precisely when Q_O/H reaches zero. We mimic this by first

checking the newly assigned Q_O/H against the ROP. If Q_O/H is greater than ROP, no

further action is required and the initialization event is complete. But, if Q_O/H is less than

or equal to ROP, a reorder event is triggered. An order arrival event is added to the event

queue with a quantity of Q. Now the question is when to have that order arrival event

inserted into the event queue. If the Q_O/H is close to ROP, most of the lead time should

still be left because the event would have been triggered recently. However, if Q_O/H is

much lower than ROP, the order arrival would have been triggered further in the past. We

therefore use the ratio of Q_O/H to ROP to calculate how much of the lead time is left and

assign the date for the order arrival event. If triggered in initialization, this order arrival

event is scheduled according to the following equation and IP is adjusted accordingly:

_ /_ _ Q O Hevent time start time LT
ROP

= +

 15

After the initialization event creates the event queue and sets the system state, the

simulation advances from one event to the next in the event queue and completes the

appropriate logic according to event type. The simplest of these event types is a parameter

Reset Event. Figure 4 shows a flow chart illustrating the Reset Event actions. This event in

the queue has a date as well as values for ROP, Q, and LT. This event simply reassigns the

parameters ROP, Q, and LT to the appropriate values in the Reset Event. These parameters

are constants that stay in effect until the next Reset Event.

Figure 4. Parameter Reset Event Flow Chart

The next possible event type is a Demand Event. Flow chart for Demand Event

logic is illustrated in Figure 5. Demands in the event queue have a date when they occur

and a quantity demanded. The demand arrival event first checks the demand quantity

against the Q_O/H. If the demand quantity is greater than the Q_O/H, this Demand Event

is marked as being backordered. If the demand quantity is less than or equal to the Q_O/H,

the event is marked as being filled. In either case, Q_O/H is then decremented by the

demand quantity (negative Q_O/H representing items in a backorder status). IP is also

decremented by demand quantity. The logic then checks IP against ROP. If IP is less than

or equal to ROP, an Order Arrival Event is scheduled to occur in one LT, and the Order

Arrival Event is scheduled with a quantity of Q. IP is increased by Q. The logic rechecks

IP against ROP and continues these steps until IP is greater than ROP. At this point the

event is complete and the next event in the queue is processed.

 16

Figure 5. Demand Arrival Event Flow Chart

The final possible event type is the Order Arrival Event, illustrated in Figure 6. The

Order Arrival event checks whether the Q_O/H is positive, negative, or zero. If it is

negative, the logic runs a process to clear existing backorders as feasible with the quantity

of the order arrival. If Q_O/H is zero or greater, this process is skipped. Either way, the

logic then updates the Q_O/H, adding the order quantity Q to Q_O/H.

 17

Figure 6. Order Arrival Event Flow Chart

We implement the simulation logic in the R programming language (R Core Team

2016) to run CORS. Additional logic not detailed here is included to record statistics of

system performance.

D. MODEL OUTPUT

The model outputs information that can be used to calculate fill rate in a variety of

ways. First, the model outputs the overall fill rate for each NIIN for the entire simulation.

Next the model outputs aggregate data for all NIINs that can be used to calculate the fill

rates for a number of time frames. For each month, the total number of requisitions filled

(across all NIINs) and the total number of requisitions received are both recorded. With

these pieces of data, aggregate demand weighted fill rates can be calculated for any

periodicity that is a multiple of months (i.e., quarterly, annually, etc.). Finally, the model

outputs the average length all backordered requisitions stayed in a backorder status.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. ANALYSIS

A. OPERATING CONCEPTS EXPLORED

With a working CORS, we next must decide what concepts of operations to

simulate. We have two items we wish to explore: run periodicity and the persistence

parameter. Based on our assumptions discussed in Chapter I, we only consider periodicities

of quarterly, semi-annually, and annually. For the persistence parameter, we choose to use

parameters that roughly correlate to none, low, medium, and high. The low, medium, and

high values of persistence are 0.1, 1.0, and 5.0, respectively. We chose these numbers based

on our observation of the impact of persistence parameter on WIOM’s predicted fill rate.

Using these 3 periodicities and 4 persistence parameters, there are 12 total possible

combinations, all of which we include in our experiments. Additionally, we explore the

possibility of a hybrid approach, where WIOM is run every quarter, but with different

persistence parameters. In this hybrid idea, persistence is turned off in one model run per

year in order for the solution to “reset” and adapt to any drift that has occurred in the

demand distributions. The other three quarters the persistence parameter is set at the low,

medium, or high level. These three hybrid designs bring the total experiment to 15

concepts. Table 2 shows the list of settings for the 15 designs and the resulting overall fill

rates achieved by each, as simulated in CORS. Note that WIOM does not directly maximize

fill rate; rather, it minimizes a series of piecewise linear penalties associated with negative

deviations from fill rate goals. Nonetheless, overall fill rate provides a simple aggregate

figure of merit by which to judge system performance.

 20

Table 2. Overall Simulated Fill Rates

Design Periodicity Persistence Overall Fill Rate
1 Annual 0.0 51.77%
2 Annual 0.1 51.88%
3 Annual 1.0 51.85%
4 Annual 5.0 51.74%
5 Semi-annual 0.0 58.34%
6 Semi-annual 0.1 58.08%
7 Semi-annual 1.0 58.45%
8 Semi-annual 5.0 58.01%
9 Quarterly 0.0 61.57%
10 Quarterly 0.1 61.16%
11 Quarterly 1.0 61.43%
12 Quarterly 5.0 60.90%
13 Annual/Quarterly 0.0/0.1 61.53%
14 Annual/Quarterly 0.0/1.0 61.46%
15 Annual/Quarterly 0.0/5.0 61.32%

B. TIME TO DIVERGE

The results of our experiment shown in Table 2 indicate a clear delineation between

certain concepts of operation in the overall fill rates across the simulation. The greatest

difference occurs for designs 4 and 9, which differ by 9.83%. However, these concepts of

operation, the best and the worst performing in the simulation, do not show any immediate

difference in fill rates during the early parts of the simulation. Figure 7 shows the difference

between monthly fill rates for these two designs, calculated as the monthly fill rate for

design 9 minus the fill rate for design 4.

 21

Figure 7. Monthly Difference in Simulated Fill Rate between Designs 4 and 9

We do not observe a difference of about 10% (roughly the overall difference

between the two designs) until month 20. It takes six months for the designs to start to

diverge and almost two years until we gain an idea of the performance differences between

these two designs. The time to show clear divergence is even longer with a design that has

less degradation from the best.

Figure 8 shows the difference in monthly fill rates between designs 8 and 9, which

have an overall fill rate difference of 3.56%. Here the first deviations are at month 6, 7, and

8, but the difference is less in subsequent months. Divergence is not clear until about

month 18.

The key insight here is that the system takes a long time to show differences in

performance. Based on what we see here, we expect at least two quarters before any impact

of a WIOM implementation is felt, and much longer before the degree of impact is shown.

 22

This makes intuitive sense as well, as the average lead time across the NIINs tested is a

little more than a year.

Figure 8. Monthly Difference in Simulated Fill Rate between Designs 8 and 9

C. EFFECT OF PERIODICITY

One of the goals of this thesis is to test whether running WIOM at different

periodicities affects system performance. Our results indicate a clear degradation in system

performance with longer periodicities. At any level of persistence, performance degrades

with increases in time between WIOM runs. Table 3 shows overall fill rates of quarterly,

semi-annual, and annual periodicities with the persistence parameter set to zero.

 23

Table 3. Fill Rates by Periodicity

Design Periodicity Overall Fill Rate Degradation from Best
1 Annual 51.77% 9.80%
5 Semi-Annual 58.34% 3.23%
9 Quarterly 61.57% 0.00%

Differences between periodicities are similar at all tested levels of persistence. We

see a clear degradation in fill rate from a quarterly concept to a semi-annual concept, and

a dramatic degradation from quarterly to annual. This degradation with longer periodicities

provides evidence of the system changing over time. This change over time seems to give

any WIOM solution an inherent “shelf-life.” Operating the system with an overaged

WIOM solution delivers sub-optimal performance.

D. EFFECT OF PERSISTENCE PARAMETER

The next goal of the thesis is to quantify the trade-off between churn and fill rate

performance. Achieving this goal involves a two-step process. The change in input to the

model to vary churn is the persistence parameter. However, the persistence parameter does

not directly set a certain level of churn. Rather, it is a change in the weighting of the

objective function for the WIOM optimization model. So, we must first analyze the effect

of the persistence parameter on churn, and then analyze the effect on fill rate performance.

It is important to note here that we are comparing churn, which is calculated in WIOM,

against simulated fill rate performance, which is not. The purpose here is not to compare

the relative values of the two terms in WIOM’s objective function. Rather, our goal in this

study is to compare churn against simulated system performance. Having shown that

annual and semi-annual concepts perform poorly, we restrict the persistence analysis to

quarterly periodicities only.

1. Effect of Persistence Parameter on Churn

The persistence parameter in WIOM enforces persistence by applying a penalty

when the safety stock of a NIIN differs from the previous safety stock level. The safety

stock is the expected quantity on hand when a reorder arrives. The penalty for any given

 24

NIIN can be defined by the following expression, where 0ŝ is the NIIN’s safety stock in

the incumbent solution and s is the safety stock in the new solution:

0

0

ˆ
ˆ 1
s s
s
−

+

This expression calculates a penalty that is proportional to the relative magnitude

of the change. For example, a change of solution from 9 to 10 incurs a penalty of 0.1, while

a change from 9 to 19 incurs a penalty of 1.0. A NIIN with no solution change incurs no

penalty. The penalties from all NIINs are summed in the objective function. If we define

the set of NIINs as I and index them as i I∈ , we can express the summation of the

penalties by the following expression:

0

0

ˆ
ˆ 1i I

s s
s∈

−

+∑

This expression can be used to define the total churn present in a given solution.

We can then compare values from different solutions. If one solution has a lower value of

this expression, it represents less churn (an improvement). WIOM uses a mathematically

equivalent, but different, expression to define churn. The expression presented here is used

instead of WIOM’s for simplicity. WIOM’s expression avoids using an absolute value in

order to make the optimization problem linear, but requires multiple constraints in order to

do so.

To compare the churn across our quarterly designs, we compute this value for every

quarter, and take the mean value across the simulation time period for each concept of

operation design. The results of these calculations are shown in Table 4.

 25

Table 4. Churn Value by Design

Design Persistence Average Churn
9 0.0 5,673

10 0.1 600
11 1.0 154
12 5.0 50
13 0.0/0.1 2,512
14 0.0/1.0 2,328
15 0.0/5.0 2,137

The designs using a constant persistence parameter every quarter show a clear

reduction in churn with increasing persistence parameter. The highest persistence

parameter tested has, on average, less than 1% the churn present with the parameter set to

0.0. The impact of the parameter is less obvious on the hybrid concept designs: 13, 14,

and 15. In these designs, the parameter is set to 0.0 once a year, and the other three quarters

it is set as indicated in Table 4. Here the average churn decreases marginally from one

design to the next, and each hybrid design has more average churn than all other designs

except design 9, which uses a persistence parameter of 0.0 throughout. Looking more

closely at the hybrid designs, we see that they have very high churn rates the one time of

year that they use a parameter of 0.0. Table 5 shows the average churn rates of these designs

when the parameter is equal to zero and when it is not.

Table 5. Churn Values for Hybrid Designs

Design Persistence Average with
Zero Persistence

Average with
Positive Persistence

Overall

13 0.0/0.1 8,816 572 2,512
14 0.0/1.0 9,391 155 2,328
15 0.0/5.0 8,925 49 2,137

Looking at Table 5, we make two observations. First, in the quarters when

persistence above 0.0 is used, average churn for designs 13, 14, and 15 is very similar to

average churn for designs 10, 11, and 12, respectively (see Table 4). The next observation

is that the large overall average churn for the hybrid designs comes from the annual runs

 26

with persistence set to 0.0. In these designs churn is very high during the annual “reset” of

the WIOM solution but effectively reduced during other quarters.

The above analysis shows that the persistence parameter reduces churn. However,

this definition of churn is abstract and mathematical, and there is no immediate

understanding of what its values mean to the system. An alternate way to express churn

that is more intuitive is to define it as the proportion of NIINs that had any change in safety

stock. While WIOM does not use this definition (nor does it pursue such a goal in the

objective function), we expect this measurement to decrease in concert with WIOM’s

definition of churn, and we wish to know if it does not. Using this alternate definition of

churn as a proportion, we calculate the average across the simulation period for the

different designs in Table 6. As expected, increasing the persistence parameter reduces the

proportion of NIINs that have a change in safety stock. However, the reduction is less

dramatic than that reflected in the churn formula. The churn formula calculated churn at

persistence parameter level 5.0 as less than 1% of the churn at persistence parameter 0.0.

Using this alternate definition, the reduced churn for the same designs is about 25%.

Table 6. Churn as Percentage of Items with Change

Design Persistence Average Items with Churn
9 0.0 39.99%

10 0.1 30.72%
11 1.0 16.12%
12 5.0 10.35%
13 0.0/0.1 36.73%
14 0.0/1.0 27.34%
15 0.0/5.0 23.10%

As in Table 5, we also calculate the rates by phase for the hybrid designs. These

results are presented in Table 7. Results using the new definition of churn are much like

when using the original definition. Churn is effectively reduced when using the parameter

and large amounts of churn are seen at the annual “reset” when the persistence parameter

is set to 0.0.

 27

Table 7. Churn as Percentage of Items with Change for Hybrid Designs

Design Persistence Average with
Zero Persistence

Average with
Positive Persistence

Overall

13 0.0/0.1 55.00% 31.10% 36.73%
14 0.0/1.0 62.11% 16.65% 27.34%
15 0.0/5.0 64.49% 10.36% 23.10%

A third way to define churn is by dollar value. For any given NIIN, we can define

a change in the stock cost as the absolute value of the change in the solution times the unit

cost of that NIIN. This dollar value can be an effective way to think of the difference

between one solution and another. However, as before, this is not the way WIOM pursues

churn reduction. Using this definition, we create Tables 8 and 9, equivalent to Tables 6 and

7 but using the dollar value definition of churn. We see similar behavior to results seen

using the other two definitions.

Table 8. Churn as Dollar Value

Design Persistence Average Churn
(Millions $)

9 0.0 6.29
10 0.1 4.68
11 1.0 2.83
12 5.0 1.95
13 0.0/0.1 5.49
14 0.0/1.0 4.55
15 0.0/5.0 4.08

Table 9. Churn as Dollar Value for Hybrid Designs

Design Persistence Average with
Zero Persistence

Average with
Positive Persistence

Overall

13 0.0/0.1 7.05 5.01 5.49
14 0.0/1.0 8.69 3.28 4.55
15 0.0/5.0 10.18 2.21 4.08

 28

2. Churn versus Fill Rate Trade-off

Having calculated persistence, we can now address one of the thesis’s fundamental

questions: what is the trade-off between churn and fill rate performance? For this analysis

we use WIOM’s calculation of churn. We start by looking at the relationship between churn

value and fill rate for our seven quarterly designs. A graph of these points is presented in

Figure 9. However, it is important to note that we are graphing the simulated fill rates

achieved over the time period. We are not attempting to find the Pareto curve of efficient

solutions, which would be applicable to the two components of the objective value

calculated by WIOM. Rather, we are trying to get an idea of the trade-off of between fill

rate performance and churn achieved in a production-type environment.

Figure 9. Graph of Fill Rate by Churn Value

It appears that there is a very slight increase (improvement) in fill rate associated

with an increase (degradation) in churn, which is what we expect. But, we have few data

points and the increase is very slight. Reductions (improvement) in churn are very “cheap”

in terms of fill rate for these levels of persistence parameter for this set of historical

demand.

 29

E. PERSISTENCE PARAMETER FURTHER EXPLORATION

Based on the results of the quarterly concepts from our original experimental

design, we observe only a small trade-off relationship between churn value and simulated

fill rate. However, we know that at some level a larger trade-off exists. The annual and

semi-annual designs effectively have churn-free solutions in the quarters that WIOM is not

run. These designs have clear degradation in fill rate compared to the quarterly designs.

Therefore, there must be some threshold of churn improvement that causes greater levels

of simulated fill rate degradation. However, the persistence parameters we explored did

not create churn reduction that crossed that threshold. We therefore conduct a new

experiment with higher settings of the persistence parameter to find this threshold and find

a steeper trade-off between churn and fill rate.

1. New Concept Testing

We add three new concepts of operation to our experiment. We use quarterly runs

with the persistence parameter set at 10, 100, and 1000. For this analysis we exclude the

hybrid designs. Our new design is presented in Table 10. Using these designs we perform

WIOM runs as applicable and run the output in CORS to conduct the experiment.

Table 10. Follow-on Concepts Testing (All Quarterly)

Design Persistence
1B 0.0
2B 0.1
3B 1.0
4B 5.0
5B 10.0
6B 100.0
7B 1,000.0

 30

2. Effect on Churn

Despite the large increases in the persistence parameter for designs 5B, 6B, and 7B,

there is relatively little effect on churn as measured by any of our three definitions. Churn

values are presented in Table 11.

Table 11. Churn for Follow-on Concepts Testing

Design Persistence Average Churn Average Items
with Churn

Average Churn
(Millions $)

1B 0.0 5,673 39.99% 6.29
2B 0.1 600 30.72% 4.68
3B 1.0 154 16.12% 2.83
4B 5.0 50 10.35% 1.95
5B 10.0 33 8.69% 1.76
6B 100.0 29 8.09% 1.71
7B 1,000.0 29 8.08% 1.71

It appears that increasing the persistence parameter above 5.0 only marginally

decreases churn, and increasing it over 10.0 affects churn only modestly. We observe

severe decreasing marginal returns for increasing the persistence parameter. Graphing

average churn against the persistence parameter for designs 1B-5B in Figure 11 shows this

phenomenon clearly. There is an obvious “knee” in the curve.

 31

Figure 10. Graph of Churn Value by Persistence Parameter

3. Effect on Fill Rate

As the increase in persistence parameter has little effect on churn, it also has little

effect on fill rate performance. Fill rate performance by persistence parameter is shown in

Table 12. Only marginal decreases in fill rate are observed.

Table 12. Follow-on Testing Fill Rate Results

Design Persistence Overall Fill rate
1B 0.0 61.57%
2B 0.1 61.16%
3B 1.0 61.43%
4B 5.0 60.90%
5B 10.0 60.50%
6B 100.0 60.29%
7B 1,000.0 60.26%

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis develops a new simulation model, CORS, in order to explore the effects

of different concepts of operation for WIOM implementation. These concepts of operation

vary in terms of the periodicity that WIOM is executed and the persistence parameter used.

We explore a variety of different concepts of operations using CORS and we measure

system performance for each design in terms of simulated fill rate and churn. Through the

course of this research we have gained several key insights into NAVSUP WSS’s

wholesale inventory system.

The first insight we gain is that it takes time for different implementation concepts

to differentiate in terms of fill rate. Even very clearly different solutions take at least six

months to produce different fill rates. It takes even longer for the magnitude of the

difference to become clear. This insight is important because it reminds us to be cautious

in judging the performance of the system in the short term.

Our next key insight into the system is that WIOM solutions have a short shelf life.

The system changes sufficiently over time that there are clear degradation to fill rate

performance for semi-annual designs and dramatic degradation for annual designs. While

different solutions take time to diverge, it is important for the optimization model to be

able to adjust to changes in the underlying demand structure quickly. We see no reason to

recommend a change to the quarterly periodicity that NAVSUP WSS currently uses.

Perhaps our most important finding is that, for the historical demand considered,

churn can be drastically reduced without sacrificing system performance in terms of fill

rate. By implementing the use of the persistence parameter, NAVSUP WSS can gain

significant improvement in churn, which reduces administrative burden in contracting and

improves explainability of WIOM results to senior leadership. All this improvement can

be gained without sacrificing fill rate performance and support to the fleet.

Our final finding is unexpected. It appears that WIOM has a limit to how far it can

enforce persistence. Beyond a certain point, increasing the persistence parameter has no

 34

practical effect on churn. Even increasing the persistence parameter several orders of

magnitude has virtually no effect on churn. This may be due to a WIOM solution in one

quarter not being feasible in a following quarter. For instance, this could occur due to

WIOM’s budget constraint. If the incumbent solution is too costly for the current budget,

the lowest feasible value of churn will be strictly positive. Or, this phenomenon may be

due to optimality tolerance. This study used a relative optimality gap of 3% when solving

WIOM. More testing is required for a definitive conclusion.

While we noticed several important features in the system, it is also important to be

clear about what we did not find. Our first important caveat concerns the lack of reduction

in fill rate with increases in the persistence parameter. In this particular case, we observed

that the limit that persistence could be enforced was above the critical threshold where it

would impact simulated fill rates. In this way, we could increase the persistence parameter

to an arbitrarily large number and not affect fill rates. However, we do not have evidence

that this is true generally. It may well be that this is simply a happy coincidence of this

particular type of material, for these demands, and at this budget level.

The next important caveat is that our conclusions are based on only 4.5 years of

data. We showed that simulated fill rates did not degrade with increases in the persistence

parameter for this time period only. We also showed that the difference between a good

and bad concept of operations takes time to develop. It is possible that some level of

persistence does impact long-term fill rates when viewed from a longer term horizon.

B. FOLLOW-ON RESEARCH RECOMMENDATIONS

This thesis explored NAVSUP WSS’s wholesale inventory system in several ways.

However, there is much more to be done. We present the following as recommended areas

for follow on study and research.

First, the CORS model was only applied to maritime, non-nuclear, consumable

material. Without change to the simulation, CORS can be used to do testing on other

consumable material types, namely aviation material and maritime nuclear material. These

datasets are considerably different in terms of demand, budget, and cost. Additionally, it is

 35

possible to revise the simulation to accommodate repairable material and perform tests on

both maritime and aviation repairable material.

We also recommend revising the model to include more elements of the inventory

management system. Two key elements of the wholesale inventory system not modeled in

CORS are substitute NIINs and demand priority. CORS does not fill requisitions with any

NIIN but the one requisitioned, while the actual system can fill requisitions with alternate

or substitute NIINs if they are available. CORS does not use any demand priority scheme,

and instead treats each requisition as equal. Follow on research including these elements

into the model will give greater granularity to system performance.

Using CORS we are limited to deterministic historical demand. This restricts how

much we can test the robustness of the system to changes in demand and limits us in terms

of time horizon we can test. We recommend future research find a way to revise the

metamodel to make demand arrivals stochastic and to run the simulation for a longer period

of time.

We also recommend future research in revising WIOM. We calculated churn by

proportion of NIINs that were unchanged and by dollar value change in this thesis. The

optimization model can be amended to reduce churn according to one of these (or a

different) definitions.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

APPENDIX. CORS CODE

rm(list = ls())
setwd("C:/Users/Sean/Desktop/Thesis/Testing Environment")
require(lubridate)
require(plyr)
set.seed(736)
#FY13 Req Data
req13=read.csv("FY13 Fill Rate Data.csv") #raw data is WSS provided excel files resaved
as .csv files
req13=req13[req13$CR=="Consumables",]
req13=req13[req13$SOURCE=="Maritime",]
req13=req13[req13$NUC=="Non-Nuclear",]
#subset out columns not of interest
req13=req13[,c(8,21,69,27)]
req13$historical=0
req13[(req13$HIT.MISS.FINAL=="H"),]$historical=1
req13=req13[,c(1,2,3,5)]
req13$JUL.DATE=as.integer(as.character(req13$JUL.DATE))
#FY14 Req data
req14=read.csv("FY14 Fill Rate Data.csv")
req14=req14[req14$CR=="Consumables",]
req14=req14[req14$SOURCE=="Maritime",]
req14=req14[req14$NUC=="Non-Nuclear",]
#subset out columns not of interest
req14=req14[,c(8,21,69,27)]
req14$historical=0
req14[(req14$HIT.MISS.FINAL=="H"),]$historical=1
req14=req14[,c(1,2,3,5)]
req14$JUL.DATE=as.integer(as.character(req14$JUL.DATE))
#FY15 Req data
req15=read.csv("FY15 Fill Rate Data.csv")
req15[76:91]=list(NULL) #remove excess columns
#subset requisition data into Maritime Consumables only
req15=req15[req15$CR=="Consumables",]
req15=req15[req15$SOURCE=="Maritime",]
req15=req15[req15$NUC=="Non-Nuclear",]
#subset out columns not of interest
req15=req15[,c(8,21,69,27)]
req15$historical=0
req15[(req15$HIT.MISS.FINAL=="H"),]$historical=1
req15=req15[,c(1,2,3,5)]
req15$JUL.DATE=as.integer(as.character(req15$JUL.DATE))

 38

#FY16 req data
req16=read.csv("FY16 Fill Rate Data.csv")
#subset requisition data into Maritime Consumables only
req16=req16[req16$CR=="Consumables",]
req16=req16[req16$SOURCE=="Maritime",]
req16=req16[req16$NUC=="Non-Nuclear",]
#subset out columns not of interest
req16=req16[,c(8,21,69,27)]
req16$historical=0
req16[(req16$HIT.MISS.FINAL=="H"),]$historical=1
req16=req16[,c(1,2,3,5)]
req16$JUL.DATE=as.integer(as.character(req16$JUL.DATE))
#FY17 Req Data
req17=read.csv("FY17 Fill Rate Data.csv")
req17=req17[req17$CR=="Consumables",]
req17=req17[req17$SOURCE=="Maritime",]
req17=req17[req17$NUC=="Non-Nuclear",]
#subset out columns not of interest
req17=req17[,c(8,21,69,27)]
req17$historical=0
req17[(req17$HIT.MISS.FINAL=="H"),]$historical=1
req17=req17[,c(1,2,3,5)]
req17$JUL.DATE=as.integer(as.character(req17$JUL.DATE))
####bind multiple req datas together here####
reqs=rbind(req13,req14,req15,req16,req17)
sum(is.na(reqs$JUL.DATE)) #see how many NAs are created when cleaning data
#delete unused dfs to save memory
req13=NULL
req14=NULL
req15=NULL
req16=NULL
req17=NULL
####add new WIOM output files here to add data####
#WIOM runs
WIOM_1210=read.csv("WIOM_1210.csv")
WIOM_1210=WIOM_1210[,c(1,4,3,32)]
WIOM_1301=read.csv("WIOM_1301.csv")
WIOM_1301=WIOM_1301[,c(1,4,3,32)]
WIOM_1304=read.csv("WIOM_1304.csv")
WIOM_1304=WIOM_1304[,c(1,4,3,32)]
WIOM_1307=read.csv("WIOM_1307.csv")
WIOM_1307=WIOM_1307[,c(1,4,3,32)]
WIOM_1310=read.csv("WIOM_1310.csv")
WIOM_1310=WIOM_1310[,c(1,4,3,32)]
WIOM_1401=read.csv("WIOM_1401.csv")

 39

WIOM_1401=WIOM_1401[,c(1,4,3,32)]
WIOM_1404=read.csv("WIOM_1404.csv")
WIOM_1404=WIOM_1404[,c(1,4,3,32)]
WIOM_1407=read.csv("WIOM_1407.csv")
WIOM_1407=WIOM_1407[,c(1,4,3,32)]
WIOM_1410=read.csv("WIOM_1410.csv")
WIOM_1410=WIOM_1410[,c(1,4,3,32)]
WIOM_1501=read.csv("WIOM_1501.csv")
WIOM_1501=WIOM_1501[,c(1,4,3,32)]
WIOM_1504=read.csv("WIOM_1504.csv")
WIOM_1504=WIOM_1504[,c(1,4,3,32)]
WIOM_1507=read.csv("WIOM_1507.csv")
WIOM_1507=WIOM_1507[,c(1,4,3,32)]
WIOM_1510=read.csv("WIOM_1510.csv")
WIOM_1510=WIOM_1510[,c(1,4,3,32)]
WIOM_1601=read.csv("WIOM_1601.csv")
WIOM_1601=WIOM_1601[,c(1,4,3,32)]
WIOM_1604=read.csv("WIOM_1604.csv")
WIOM_1604=WIOM_1604[,c(1,4,3,32)]
WIOM_1607=read.csv("WIOM_1607.csv")
WIOM_1607=WIOM_1607[,c(1,4,3,32)]
WIOM_1610=read.csv("WIOM_1610.csv")
WIOM_1610=WIOM_1610[,c(1,4,3,32)]
WIOM_1701=read.csv("WIOM_1701.csv")
WIOM_1701=WIOM_1701[,c(1,4,3,32)]
RECAP_total=NULL #ensure summary dataframe is empty when beginning
#order requisitions by NIIN
reqs=reqs[order(reqs$NIIN),]
row.names(reqs)=1:nrow(reqs)
#format order quantity as a numeric, removing EA or other non quantitative info
reqs$ORDER.QTY=as.character(reqs$ORDER.QTY)
reqs$ORDER.QTY=do.call(rbind,strsplit(reqs$ORDER.QTY,' '))[,1]
reqs$ORDER.QTY=as.numeric(reqs$ORDER.QTY)
#sum(is.na(reqs$ORDER.QTY)) #see how many NAs are created when cleaning order qty
data
#split julian date into year and julian date
reqs$JUL.DATE=as.character(reqs$JUL.DATE)
reqs$Year=substring(reqs$JUL.DATE, 1,1)
reqs$JUL.DATE=substring(reqs$JUL.DATE, 2,4)
reqs$Year=as.numeric(reqs$Year)+2010
#create a time stamp equal to midnight of jan 1 of the year for the row (in ZULU time)
reqs$Start=paste(as.character(reqs$Year),"-01-01 00:00:00",sep="")
#convert the character to date format using lubridates ymd_hms() function
reqs$Start=ymd_hms(reqs$Start, tz = "UTC")
#add numeric dates to convert julian date into regular date format

 40

reqs$Date=reqs$Start+(as.numeric(reqs$JUL.DATE)-1)*24*60*60
#subset out columns that were used in formatting dates that are no longer required
reqs=reqs[,c(7,1,3,4)]
#subset out requisitions that are prior to or after our period of interest
####adjust date when adding data####
reqs=reqs[(reqs$Date>as.Date("2012-09-30")),]
reqs=reqs[(reqs$Date<as.Date("2017-04-01")),]
row.names(reqs)=1:nrow(reqs)
NIIN_list=read.csv("CAN_1210.txt")
#check to see if the NIINs in req file are also in WIOM_ files
reqs$InCanFile= (reqs$NIIN %in% NIIN_list$NIIN)
numreqs=sum(reqs$InCanFile)
#subset out the NIINs without WIOM_ file info
reqs=reqs[(reqs$InCanFile==TRUE),]
#subset out rows with missing information, format and clean dataframe
reqs=na.omit(reqs)
reqs$NIIN=factor(reqs$NIIN)
reqs$InCanFile=NULL
#remove historical info for experiment
reqs$historical=NULL
#set up summary data frame
####adjust number of months based on data being ran####
dfsum=data.frame(
 Month1=numeric(),
 Month2=numeric(),
 Month3=numeric(),
 Month4=numeric(),
 Month5=numeric(),
 Month6=numeric(),
 Month7=numeric(),
 Month8=numeric(),
 Month9=numeric(),
 Month10=numeric(),
 Month11=numeric(),
 Month12=numeric(),
 Month13=numeric(),
 Month14=numeric(),
 Month15=numeric(),
 Month16=numeric(),
 Month17=numeric(),
 Month18=numeric(),
 Month19=numeric(),
 Month20=numeric(),
 Month21=numeric(),
 Month22=numeric(),

 41

 Month23=numeric(),
 Month24=numeric(),
 Month25=numeric(),
 Month26=numeric(),
 Month27=numeric(),
 Month28=numeric(),
 Month29=numeric(),
 Month30=numeric(),
 Month31=numeric(),
 Month32=numeric(),
 Month33=numeric(),
 Month34=numeric(),
 Month35=numeric(),
 Month36=numeric(),
 Month37=numeric(),
 Month38=numeric(),
 Month39=numeric(),
 Month40=numeric(),
 Month41=numeric(),
 Month42=numeric(),
 Month43=numeric(),
 Month44=numeric(),
 Month45=numeric(),
 Month46=numeric(),
 Month47=numeric(),
 Month48=numeric(),
 Month49=numeric(),
 Month50=numeric(),
 Month51=numeric(),
 Month52=numeric(),
 Month53=numeric(),
 Month54=numeric(),
 TotalFillRate=numeric(),
 AvgBB=numeric(),
 stringsAsFactors=FALSE)
dfactualfills=data.frame(
 Month1=numeric(),
 Month2=numeric(),
 Month3=numeric(),
 Month4=numeric(),
 Month5=numeric(),
 Month6=numeric(),
 Month7=numeric(),
 Month8=numeric(),
 Month9=numeric(),

 42

 Month10=numeric(),
 Month11=numeric(),
 Month12=numeric(),
 Month13=numeric(),
 Month14=numeric(),
 Month15=numeric(),
 Month16=numeric(),
 Month17=numeric(),
 Month18=numeric(),
 Month19=numeric(),
 Month20=numeric(),
 Month21=numeric(),
 Month22=numeric(),
 Month23=numeric(),
 Month24=numeric(),
 Month25=numeric(),
 Month26=numeric(),
 Month27=numeric(),
 Month28=numeric(),
 Month29=numeric(),
 Month30=numeric(),
 Month31=numeric(),
 Month32=numeric(),
 Month33=numeric(),
 Month34=numeric(),
 Month35=numeric(),
 Month36=numeric(),
 Month37=numeric(),
 Month38=numeric(),
 Month39=numeric(),
 Month40=numeric(),
 Month41=numeric(),
 Month42=numeric(),
 Month43=numeric(),
 Month44=numeric(),
 Month45=numeric(),
 Month46=numeric(),
 Month47=numeric(),
 Month48=numeric(),
 Month49=numeric(),
 Month50=numeric(),
 Month51=numeric(),
 Month52=numeric(),
 Month53=numeric(),
 Month54=numeric(),

 43

 stringsAsFactors=FALSE)
dfactualrequirements=data.frame(
 Month1=numeric(),
 Month2=numeric(),
 Month3=numeric(),
 Month4=numeric(),
 Month5=numeric(),
 Month6=numeric(),
 Month7=numeric(),
 Month8=numeric(),
 Month9=numeric(),
 Month10=numeric(),
 Month11=numeric(),
 Month12=numeric(),
 Month13=numeric(),
 Month14=numeric(),
 Month15=numeric(),
 Month16=numeric(),
 Month17=numeric(),
 Month18=numeric(),
 Month19=numeric(),
 Month20=numeric(),
 Month21=numeric(),
 Month22=numeric(),
 Month23=numeric(),
 Month24=numeric(),
 Month25=numeric(),
 Month26=numeric(),
 Month27=numeric(),
 Month28=numeric(),
 Month29=numeric(),
 Month30=numeric(),
 Month31=numeric(),
 Month32=numeric(),
 Month33=numeric(),
 Month34=numeric(),
 Month35=numeric(),
 Month36=numeric(),
 Month37=numeric(),
 Month38=numeric(),
 Month39=numeric(),
 Month40=numeric(),
 Month41=numeric(),
 Month42=numeric(),
 Month43=numeric(),

 44

 Month44=numeric(),
 Month45=numeric(),
 Month46=numeric(),
 Month47=numeric(),
 Month48=numeric(),
 Month49=numeric(),
 Month50=numeric(),
 Month51=numeric(),
 Month52=numeric(),
 Month53=numeric(),
 Month54=numeric(),
 stringsAsFactors=FALSE)
dfbyNIIN=data.frame(
 NIIN=(levels(reqs$NIIN)),
 stringsAsFactors = FALSE)
####set up number of replications of experiment:####
NumberReps=30
#Configure by NIIN data collection to have a column for each replication
NewNIINcols=1
while(NewNIINcols<=NumberReps){
 dfbyNIIN[,(1+NewNIINcols)]=NA
 NewNIINcols=NewNIINcols+1
}
#initialize experiment
RepNum=1
start=Sys.time()
while(RepNum<=NumberReps){
#loop through all NIINs
for (j in levels(reqs$NIIN)) {
#subset out all NIINs except for the current one
NIIN=reqs[reqs$NIIN==j,]
#set up event queue data frame for current NIIN
EQ=NIIN
EQ$Reset=0
EQ$Fill=0
EQ$BB=0
EQ$NewEOQ=0
EQ$NewROP=0
EQ$QinBB=0
EQ$LenBB=0
EQ$NIIN=NULL
EQ=EQ[,c(1,3,2,4,5,6,7,8,9)]
colnames(EQ)[3]="DeltaQ"
EQ$DeltaQ=as.numeric(EQ$DeltaQ)
EQ$DeltaQ=-1*EQ$DeltaQ

 45

EQ$LT=0
####adjust initialization date based on start of simulation####
#initialize date at start of simulation period
t=as.Date("2012-09-30")
####add additional WIOM output files to event q here####
#pull WIOM output information for current NIIN
WIOM_item=WIOM_1210[WIOM_1210$NIIN==j,]
#set EOQ,ROP, and LT at start of simulation
EOQ=max(1,round(WIOM_item[,2]))
ROP=WIOM_item[,3]
LT=round_any((WIOM_item[,4]*90),1,ceiling)
#make new row in event queue for WIOM output file info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2012-09-30")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1301[WIOM_1301$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2013-01-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1304[WIOM_1304$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2013-04-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info

 46

EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1307[WIOM_1307$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2013-07-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1310[WIOM_1310$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2013-10-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1401[WIOM_1401$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2014-01-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)

 47

#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1404[WIOM_1404$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2014-04-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1407[WIOM_1407$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2014-07-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#pull WIOM output information for current NIIN
WIOM_item=WIOM_1410[WIOM_1410$NIIN==j,]
#make new row in event queue for WIOM output file info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2014-10-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)

 48

#add next WIOM output to event q
WIOM_item=WIOM_1501[WIOM_1501$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2015-01-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1504[WIOM_1504$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2015-04-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1507[WIOM_1507$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2015-07-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1, round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1510[WIOM_1510$NIIN==j,]

 49

#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2015-10-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1601[WIOM_1601$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2016-01-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1604[WIOM_1604$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2016-04-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1607[WIOM_1607$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2016-07-01")

 50

EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1610[WIOM_1610$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2016-10-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#add next WIOM output to event q
WIOM_item=WIOM_1701[WIOM_1701$NIIN==j,]
#make new row in event queue for WIOM output info update
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
EQ[nrow(EQ),]$Date=as.Date("2017-01-01")
EQ[nrow(EQ),][,c(2:9)]=0
EQ[nrow(EQ),]$Reset=1
#populate event queue with WIOM output info
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2]))
EQ[nrow(EQ),]$NewROP=WIOM_item[,3]
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling)
#order event q by date
EQ=EQ[order(EQ[,1]),]
row.names(EQ)=1:nrow(EQ)
#initialize stock posture at beginning of simulation
OutstandingReorder=0
#bootstrap starting condition of quantity o/h
#random uniform integer between 0 and target inventory
Q=sample(1:(EOQ),1)
if(ROP<0){
 Q=0
}

 51

#initialize inventory position equal to quantity o/h
IP=Q
#initialize outstanding reorders at start of simulation
#while IP is less than ROP, add a reorder to event q
while(IP<=ROP){
 OutstandingReorder=OutstandingReorder+1
 IP=IP+EOQ
 EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
 EQ[nrow(EQ),]$Date=t+round_any((Q/ROP)*LT,1)
 EQ[nrow(EQ),][,c(2:9)]=0
 EQ[nrow(EQ),]$DeltaQ=EOQ
 EQ=EQ[order(EQ[,1]),]
 row.names(EQ)=1:nrow(EQ)
}
#loop through all events in event q for current NIIN
i=1
while(i<nrow(EQ)+1){
 #update time counter
 t=EQ[i,]$Date
 #check to see if event is a parameter update
 #if yes, update EOQ, ROP, Lead Time
 if(EQ[i,]$Reset==1){
 EOQ=EQ[i,]$NewEOQ
 ROP=EQ[i,]$NewROP
 LT=EQ[i,]$LT
 }
 #check to see if event is a requisition
 #if yes, perform requisition tasks
 if(EQ[i,]$DeltaQ<0){
 #check to see if quantity o/h can fill req
 #if it can't, flag event row as a backorder
 #and calculate the quantity in backorder status
 if(abs(EQ[i,]$DeltaQ)>Q){
 EQ[i,]$BB=1
 if(Q>0){
 EQ[i,]$QinBB=abs(Q+EQ[i,]$DeltaQ)
 }
 if(Q<=0){
 EQ[i,]$QinBB=abs(EQ[i,]$DeltaQ)
 }
 }
 #if quantity o/h can satisfy req,
 #flag event row as a filled req
 if(abs(EQ[i,]$DeltaQ)<=Q){
 EQ[i,]$Fill=1

 52

 }
 }
 #update quantity o/h
 Q=Q+EQ[i,]$DeltaQ
 #update inventory position
 #inventory position only changes for reqs,
 #arriving reorders don't change it
 if (EQ[i,]$DeltaQ<0){
 IP=IP+EQ[i,]$DeltaQ
 }
 #check if event is an arriving reorder
 #if yes, perform reorder actions
 if(EQ[i,]$DeltaQ>0){
 #reduce the amount of outstanding reorders
 #to reflect that one just came in
 OutstandingReorder=OutstandingReorder-1
 #record the quantity arriving
 ReorderQuantity=EQ[i,]$DeltaQ
 #make a vector of all reqs that have outstanding
 #quantity in backorder
 BBvec=which((EQ$QinBB>0))
 #cycle through each req in event q with quantity in backorder,
 for (k in BBvec){
 #if amount in reorder is not enough to satisfy backorder
 #reduce quantity in backorder by available reorder
 #and set available reorder to 0
 if (ReorderQuantity<EQ[k,]$QinBB){
 EQ[k,]$QinBB=EQ[k,]$QinBB-ReorderQuantity
 ReorderQuantity=0
 }
 #if amount in reorder is enough to satisfy backorder
 #reduce amount of available reorder quantity,
 #and set the quantity in backorder for that req to 0
 #record the length of the backorder
 if (ReorderQuantity>=EQ[k,]$QinBB){
 ReorderQuantity=ReorderQuantity-EQ[k,]$QinBB
 EQ[k,]$QinBB=0
 EQ[k,]$LenBB=as.numeric(as.Date(EQ[i,]$Date))-
as.numeric(as.Date(EQ[k,]$Date))
 }
 }
 }
 #at completion of event actions, check IP against ROP
 #and add reorder to event q if necessary
 while(IP<=ROP){

 53

 OutstandingReorder=OutstandingReorder+1
 IP=IP+EOQ
 EQ[nrow(EQ)+1,]=EQ[nrow(EQ),]
 EQ[nrow(EQ),]$Date=t+LT*24*60*60
 EQ[nrow(EQ),][,c(2:9)]=0
 EQ[nrow(EQ),]$DeltaQ=EOQ
 EQ=EQ[order(EQ[,1]),]
 row.names(EQ)=1:nrow(EQ)
 }
 i=i+1
###End of i loop###
}
#make dataframe that collects performance info for this NIIN
RECAP_item=EQ[((EQ$Fill==1)|(EQ$BB==1)),]
RECAP_item=RECAP_item[,c(1,4,5,9)]
#combine dataframe for this NIIN with all others
RECAP_total=rbind(RECAP_item,RECAP_total)
#record by NIIN data
NIIN_rate=sum(RECAP_item$Fill)/nrow(RECAP_item)
dfbyNIIN[(dfbyNIIN$NIIN==j),(1+RepNum)]=NIIN_rate
}
###End of j loop###
###Collect Data on this replication of the experiment:
#order RECAP by date
RECAP_total=RECAP_total[order(RECAP_total$Date),]
#Assign a tag to each req saying what month it happened
RECAP_total$increments=cut.POSIXt(RECAP_total$Date, breaks="month")
#sum up all BBs and Fills in each month, combine into a single dataframe
output.df=aggregate(x=RECAP_total$Fill, by = list(time.increment =
RECAP_total$increments),FUN=sum, na.rm=TRUE)
output2.df=aggregate(x=RECAP_total$BB, by = list(time.increment =
RECAP_total$increments),FUN=sum, na.rm=TRUE)
output3.df=cbind(output.df,output2.df)
#calculate the fillrate for each month
output3.df$fillrate=output3.df[,2]/(output3.df[,2]+output3.df[,4])
#populate summary df with fill rate info for each month
p=1
while (p<=length(unique(RECAP_total$increments))){
 dfsum[RepNum,p]=output3.df[p,]$fillrate
 p=p+1
}
#populate summary df with total fill rate info and average BB length for entire time period
dfsum[RepNum,]$TotalFillRate=mean(RECAP_total$Fill)
dfsum[RepNum,]$AvgBB=mean(RECAP_total[(RECAP_total$LenBB>0),]$LenBB)

 54

####Info by months (Raw number of fills)
#populate summary df with fill info for each month
p=1
while (p<=length(unique(RECAP_total$increments))){
 dfactualfills[RepNum,p]=output3.df[p,2]
 p=p+1
}
####Info by months (Raw number of requirements)
#populate summary df with fill info for each month
p=1
while (p<=length(unique(RECAP_total$increments))){
 dfactualrequirements[RepNum,p]=output3.df[p,2]+output3.df[p,4]
 p=p+1
}
#clean up df's to save memory
RECAP_total=NULL
output.df=NULL
output2.df=NULL
output3.df=NULL
if(RepNum==2){
 write.csv(dfsum, file = "ExperimentRates2.csv")
 write.csv(dfactualfills, file = "ExperimentFills2.csv")
 write.csv(dfactualrequirements, file = "ExperimentRequirements2.csv")
 write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown2.csv")
}
if(RepNum==8){
 write.csv(dfsum, file = "ExperimentRates8.csv")
 write.csv(dfactualfills, file = "ExperimentFills8.csv")
 write.csv(dfactualrequirements, file = "ExperimentRequirements8.csv")
 write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown8.csv")
}
if(RepNum==15){
 write.csv(dfsum, file = "ExperimentRates15.csv")
 write.csv(dfactualfills, file = "ExperimentFills15.csv")
 write.csv(dfactualrequirements, file = "ExperimentRequirements15.csv")
 write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown15.csv")
}
if(RepNum==20){
 write.csv(dfsum, file = "ExperimentRates20.csv")
 write.csv(dfactualfills, file = "ExperimentFills20.csv")
 write.csv(dfactualrequirements, file = "ExperimentRequirements20.csv")
 write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown20.csv")
}
#next replication
RepNum=RepNum+1

 55

}
finish=Sys.time()
length=finish-start
print(length)
####end of experiment####
write.csv(dfsum, file = "ExperimentRates30.csv")
write.csv(dfactualfills, file = "ExperimentFills30.csv")
write.csv(dfactualrequirements, file = "ExperimentRequirements30.csv")
write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown30.csv")

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

LIST OF REFERENCES

Ellis D, Cardillo J, Motter, M (2017) Information regarding NAVSUP WSS operations
and WIOM implementation provided to author in person via personal
communication during site visit to NAVSUP WSS, June 13–15.

Ellis D (2017) Data files from NAVSUP WSS provided to author via personal
communication, October 18–19.

Law A (2015) Simulation Modeling and Analysis, 5th ed. (McGraw-Hill Education, New
York, NY).

Motter M (2017) Data files from NAVSUP WSS provided to author via personal
communication, December 20.

NAVSUP (2018) NAVSUP Enterprise. Accessed February 11, 2017,
https://www.navsup.navy.mil/public/navsup/enterprise/.

R Core Team (2016) R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-
project.org/.

Roth G (2016) A simulation of alternative for wholesale inventory replenishment.
Master’s thesis, Operations Research Department, Naval Postgraduate School,
Monterey, CA. https://calhoun.nps.edu/handle/10945/48587.

Salmeron J, Craparo E (2017) Wholesale Inventory Optimization Model. Naval
Postgraduate School, Monterey, CA.

Silver E, Pyke D, Peterson R (1998) Inventory Management and Production Planning
and Scheduling, 3rd ed. (John Wiley and Sons, Hoboken, NJ).

Tersine R (1994) Principles of Inventory and Materials Management, 4th ed. (PTR
Prentice Hall, Upper Saddle River, NJ).

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. BACKGROUND
	B. LITERATURE REVIEW
	1. Inventory Management
	2. Discrete Event Simulation
	3. Previous WIOM Simulation Study

	C. OBJECTIVES
	D. SCOPE, LIMITATIONS, and ASSUMPTIONS

	II. data and methodology
	A. DATA
	B. METAMODEL
	C. SIMULATION MODEL DEVELOPMENT
	D. MODEL OUTPUT

	III. ANALYSIS
	A. OPERATING CONCEPTS Explored
	B. TIME TO DIVERGE
	C. EFFECT OF PERIODICITY
	D. EFFECT OF PERSISTENCE PARAMETER
	1. Effect of Persistence Parameter on Churn
	2. Churn versus Fill Rate Trade-off

	E. Persistence Parameter Further Exploration
	1. New Concept Testing
	2. Effect on Churn
	3. Effect on Fill Rate

	IV. CONCLUSIONS AND RECOMMENDATIONS
	A. CONCLUSIONS
	B. follow-on research recommendations

	appendix. cors code
	List of References
	initial distribution list

