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ABSTRACT 

Naval Supply Systems Command Weapon Systems Support (NAVSUP WSS) 

serves as the Navy’s inventory control point, managing approximately 375,000 line items. 

Constrained by funding, NAVSUP WSS uses the Wholesale Inventory Optimization 

Model (WIOM), a mixed-integer linear program developed by Naval Postgraduate School 

faculty, to maximize customer service. Since demand distributions for different parts 

change over time, NAVSUP WSS updates the inputs to WIOM and reruns it quarterly. 

However, large changes to the solution create an administrative burden. To deal with this 

problem, referred to as churn, WIOM has a persistence parameter that can discourage 

change from one run to the next, but it is inherently at odds with customer service 

performance.  

This thesis presents a new model, the Comparative Optimized Results Simulation 

(CORS). Using CORS, the thesis explores the system’s performance under different 

settings of the persistence parameter and different periodicities of running WIOM. The 

thesis finds that periodicities greater than quarterly significantly degrade customer service. 

Additionally, the thesis finds that increasing the persistence parameter dramatically 

improves churn while only marginally degrading customer service. 
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EXECUTIVE SUMMARY 

Naval Supply Systems Command, Weapon Systems Support (NAVSUP WSS) 

serves as the main inventory control point for the Navy, managing approximately 375,000 

unique line items. NAVSUP WSS strives to maintain the best possible material support to 

the fleet by effectively managing the Navy’s wholesale inventory. Constrained by budget, 

it does this by managing when it orders material.  

To optimize this support, NAVSUP WSS uses the Wholesale Inventory 

Optimization Model (WIOM), a tool developed by Naval Postgraduate School faculty 

(Salmeron and Craparo 2017). WIOM strives to maximize a function closely related to fill 

rate, which is a standard measure of customer support, while staying within budgetary 

constraints. NAVSUP WSS runs WIOM once a quarter. In his 2016 NPS thesis, Lieutenant 

Commander Geoffrey Roth used a simulation study to show that WIOM performed better 

than NAVSUP WSS’s legacy optimization model. Since this research, NAVSUP WSS 

identified desirable new features for WIOM. One of these new features, persistence, was 

added to WIOM in order to preserve legacy values from previous solutions. This reduces 

what is known as churn: the change in solution from one model run to the next.  

The reduction of churn is beneficial for NAVSUP WSS from an administrative 

perspective. However, enforcing persistence may also reduce fill rate performance and 

support to the fleet. This thesis develops the Comparative Optimized Results Simulation 

(CORS) in order to test wholesale inventory performance. CORS is a discrete event 

simulation that uses 4.5 years of historic demand data provided by NAVSUP WSS as input 

and allows multiple runs of WIOM during the simulation period. This is fundamentally 

different from the previous simulation study, which used one WIOM run and stochastic 

demand arrivals with the assumption that the underlying demand patterns were 

unchanging. 

Using CORS, the thesis tests the effects of modifying two variables: persistence 

parameter and periodicity of running WIOM. We consider persistence parameter settings 

at four levels we define as none, low, medium and high. We consider quarterly, semi-
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annual, and annual periodicities. We create 15 different combinations of periodicities and 

persistence parameter settings and use CORS to test inventory system performance in terms 

of simulated fill rate under these settings. 

The thesis gains several insights from the experimental results. First, fill rates 

between poor- and high-performing designs take time to diverge. An excellent and poor 

design take at least six months before a difference in performance is noted. Next, we 

conclude that designs with quarterly periodicities clearly outperform semi-annual and 

annual periodicities. WIOM solutions appear to “expire” as time passes and underlying 

demand patterns of the system change. Finally, we determine that churn can be drastically 

reduced without sacrificing system performance. In our experiments we are able to reduce 

the churn by 99% without practically significant degradation in fill rate. In fact, we are 

unable to substantially reduce fill rate performance by increasing the persistence parameter. 

We find that increasing the persistence parameter has a decreasing marginal effect on 

churn, and above a certain level has no further effect and a minimum churn is reached. In 

this case the minimum level of churn reached by WIOM was not constraining enough to 

cause a reduction in fill rate performance. We do not, however, conclude that this is the 

case generally, and further research is warranted. 
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I. INTRODUCTION 

A. BACKGROUND 

Naval Supply Systems Command, Weapon Systems Support (NAVSUP WSS) 

serves as the main inventory control point for the Navy. The command manages over 

375,000 unique line items (NAVSUP 2018) used in the repair of ships, submarines, Navy 

and Marine Corps aircraft, and associated weapons systems. The effective management of 

this supply chain is essential in maintaining readiness of the fleet to operate and conduct 

combat operations around the world. 

Like any organization, NAVSUP WSS has a limited set of resources with which to 

conduct its operations. The biggest constraint is financial. Given limited budgetary means, 

NAVSUP WSS strives to maximize support to the warfighter. The predominant metric 

used to measure customer support is fill rate. When NAVSUP WSS receives a requisition, 

one of two things can happen. Either the requisition is filled immediately with stock on 

hand, or the requisition is backordered. The fill rate metric shows the relationship between 

the number of requisitions filled immediately on receipt and the number of requisitions that 

are backordered. Fill rate is defined mathematically as follows: 

Fill rate = Requisitions Filled / Requisitions Received. 
For example, if 50 requisitions were received in a given period, and 43 of them were filled 

and 7 were backordered, then a fill rate of .86 or 86% was achieved for this period. The 

above calculation can be applied to a specific item or to a group of items. When it is applied 

to a group of items, it can be done in one of two ways. First, the fill rate can be calculated 

as an average of all the individual item fill rates. Or, the fill rate can be calculated with the 

above equation without regard to what the particular item is. This is also called demand 

weighting, because it is equivalent to a weighted average of item fill rates, weighted 

according to the demands of the individual items. In this thesis, we use demand weighted 

fill rate unless specifically noted otherwise. 

In the past NAVSUP WSS used commercially-developed optimization software to 

maximize their achieved fill rate given their budget constraints. Developed by MCA 
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Solutions, the Service Planning and Optimization (SPO) was effective but had 

shortcomings. First, it was a “black box” to the users at NAVSUP WSS, who did not have 

access to the models and algorithms SPO used to develop its solutions. SPO did not have 

the ability to accept budget as a constraint. Therefore, NAVSUP WSS had to run SPO 

iteratively, adjusting a fill rate constraint until a satisfactory budget figure was reached. 

Additionally, SPO was expensive, costing around $800,000 per year in licensing fees. 

In order to replace SPO with a better-functioning optimization tool at reduced cost, 

Naval Postgraduate School faculty developed the Wholesale Inventory Optimization 

Model (WIOM) (Salmeron and Craparo 2017). WIOM is a mixed-integer linear program 

designed to maximize a function closely related to fill rate, for the wholesale inventory 

managed by NAVSUP WSS. In his 2016 thesis, Lieutenant Commander Geoffrey Roth 

used simulation modeling to conclude that WIOM 3.51 was in fact superior to SPO in 

maximizing fill rates. NAVSUP WSS sunset SPO and began using WIOM in April of 2017. 

While WIOM performs well compared to SPO, NAVSUP WSS identified further 

features they would like to be incorporated into WIOM. First, WIOM 3.51 did not use 

demand weighting. Instead, it had two settings that could be used. First, WIOM could treat 

each National Item Identification Number (NIIN) equally. This is not desirable because it 

ignores the relative importance of NIINs with high demand. Alternatively, WIOM could 

give preferential treatment to NIINs that were assigned to specific groups called level-

setting strategy indicators (LSSIs). By assigning high-demand NIINs to a certain LSSI and 

then assigning that LSSI a high weight, NAVSUP WSS could mitigate the demand 

weighting issue. Additionally, NAVSUP WSS could use a series of business rules to create 

low-demand cutoff points, choosing to leave very low demand NIINs out of the 

optimization altogether. In order to address this concern, WIOM was revised to use demand 

weighting, and incorporated this change into the WIOM 4.1 release. 

NAVSUP WSS has an additional concern with WIOM (and SPO before it): churn. 

Churn is the change between solutions from one model run to the next. NAVSUP WSS 

runs the optimization model once every quarter. In the three months between model runs, 

the number of requisitions received changes the demand parameters that feed into WIOM. 

Subsequently, the optimization problems are quite different and considerably differing 
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solutions are possible. Indeed, if multiple optimal (or near-optimal) solutions exist, churn 

may occur even in the absence of changes to the input data. This churn creates an 

administrative burden in contracting and can reduce senior leadership’s confidence in 

optimization efforts. To deal with the churn problem, Salmeron and Craparo (2017) 

included a term in WIOM’s objective function that calculates a churn penalty. This term 

contains two penalty parameters. One is indexed by NIIN, allowing the user to adjust the 

relative importance of each NIIN within the churn term. The other is a global persistence 

parameter that reflects the overall importance of the churn term. This thesis focuses on the 

global persistence parameter; for simplicity we use the term “persistence parameter” 

hereafter. The persistence parameter rewards a solution for maintaining legacy values from 

one model run to the next. The parameter is not an on/off switch; rather, it is a continuous 

parameter that can be set from zero to an arbitrarily large number. At zero, the persistence 

parameter is “off.” As the parameter increases, the model more strongly prefers to retain 

incumbent solutions. Additionally, there is an inherent tradeoff between churn reduction 

and achieved fill rate. The higher the persistence parameter, the less important fill rate 

becomes in the objective function. 

B. LITERATURE REVIEW 

1. Inventory Management 

Wholesale inventory management is concerned with finding strategies to meet 

demand requirements from customers at an acceptable service level and an acceptable cost 

level. Many different models have been proposed, but the two we will discuss are the order-

point, order-quantity (s,Q) model and the classic inventory model. 

Order-point, order-quantity models are discussed in Silver et al. (1998). In an (s,Q) 

system, two parameters are used to make decisions on stock replenishment. The first is the 

reorder point, s. As an item’s stock level decreases, a reorder is triggered once the item’s 

inventory position decreases to the level of the reorder point. Inventory position is defined 

as the quantity on hand plus the quantity on order minus the quantity in a backordered 

status (i.e., owed to customers). The second parameter is the order quantity Q. This is the 

quantity of material ordered every time there is a reorder. When a reorder is placed, the 
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time it takes for this order to arrive is known as the lead time. A key feature of an (s,Q) 

system is that each reorder is triggered by a low inventory position, not low inventory on 

hand. This prevents the system from placing extra orders when there is already an order 

due-in that will replenish stock sufficiently. Silver et al. provide an analogy: “A good 

example of ordering on the basis of inventory position is the way a person takes aspirin to 

relieve a headache. After taking two aspirin, it is not necessary to take two more every five 

minutes until the headache goes away. Rather, it is understood that the relief is ‘on order’—

aspirin operates with a delay” (Silver et al. 1998).  

WIOM uses the (s,Q) system to model NAVSUP WSS’s wholesale inventory. 

However, NAVSUP WSS only determines reorder points. The quantity of the reorders is 

decided by Navy Enterprise Resource Planning (ERP), and is treated as input by NAVSUP 

WSS, who then strives to maximize effectiveness by deciding on appropriate reorder 

points. 

A special case of the (s,Q) system is the classical inventory model discussed in 

Tersine (1994). The classical inventory model uses an (s,Q) system but with a very rigid 

set of assumptions. Among other things that are not relevant to our purposes, the classical 

inventory model assumes the following: 

• Deterministic and constant demand 

• Constant deterministic lead time 

• Reorders arrive as a whole lot of size Q 

• Backorders are not allowed, since demand and leadtime are constant they 

are avoided 

The resulting system creates a characteristic saw-tooth pattern as shown in Figure 1. 

This inventory model is used primarily as a means to estimate an order quantity that 

minimizes cost, known as the economic order quantity. Since NAVSUP WSS treats the 

order quantity as a given input from ERP, we are not concerned with that aspect of the 

model. However, the model has some unique qualities that we will use when establishing 

initial conditions for our simulation. Specifically, a result of the model is that the average 
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amount of inventory on hand is equal to Q/2. Furthermore, the inventory on hand at any 

given time is distributed uniformly from zero to Q. 

 

Figure 1.  Classical Inventory Model 

2. Discrete Event Simulation 

Discrete event simulation is addressed in detail in Law (2015). Discrete event 

simulations are those that advance time from one discrete event to the next. These events 

may change the state of the system being represented, and the system cannot change during 

the time between events. Law presents several important definitions to understand such a 

simulation: 

System state: The collection of state variables necessary to describe the 
system at a particular time; 

Simulation Clock: A variable giving the current value of simulated time; 

Event List: A list containing the next time when each type of event will 
occur; 

Initialization Routine: A subprogram to initialize the simulation model at 
time 0; 
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Event Routine: A subprogram that updates the system state when a 
particular type of even occurs (there is one event routing for each event 
type). (Law 2015) 

This thesis develops a simulation using this next-event time advance principle. 

Events in the system are arranged in time in an event list. The simulated time moves 

forward from one event to the next according to the events’ arrangement in time. The 

current event is evaluated, state changes to the system are made as necessary, and the 

simulation moves to the next event in time while the simulation clock is updated.  

3. Previous WIOM Simulation Study 

In his 2016 thesis, Geoffrey Roth conducted a comparative simulation study 

between three different optimization methods: simple calculation (a heuristic), SPO, and 

WIOM. Using a discrete event simulation and testing across five types of material, Roth 

concluded that WIOM was the best performing of these three alternatives. However, Roth’s 

simulation relies on several strong assumptions: 

• NIIN demand probability distributions are known and unchanging through 

time 

• NIIN demands arrive in quantities of one only 

• Demands are uncorrelated between NIINs 

In addition to these assumptions, the simulation models a lengthy warm-up period 

of 400,000 days to reach steady state. Due to these assumptions and warm-up period, 

Roth’s simulation would be ineffective to try to model short-term performance of the 

system with frequent WIOM runs and changes in estimated demand distributions every 

quarter. 

C. OBJECTIVES 

The thesis creates a discrete event simulation that uses historical requisitions as 

input and requires no warm-up period. We call this simulation the Comparative Optimized 

Results Simulation (CORS). By using historical data and not requiring a warm-up period, 
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CORS allows for multiple runs of WIOM during the test period. This thesis conducts a 

series of experiments using the simulation and analyzes the output in order to: 

• Gain insight into the relative tradeoff between churn and fill rate using 

differing settings for the persistence parameter. 

• Gain insight into the effect of WIOM periodicity on fill rate. 

D. SCOPE, LIMITATIONS, AND ASSUMPTIONS 

During the course of the research, we restrict ourselves to looking at the impact of 

running WIOM at differing periodicities and with differing persistence parameters. In 

practice, NAVSUP WSS has historically used a set of business rules to help it overcome 

limitations in SPO. These business rules include mandating minimum and maximum 

reorder points for some NIINs, which restrict the range of solutions that SPO can use. 

Additionally, NAVSUP WSS would not input NIINs with exceptionally low demand into 

SPO. While NAVSUP WSS may choose to continue using these business rules, the current 

version of WIOM accounts for churn by use of the persistence parameter and accounts for 

low demand by using demand weighting. Therefore, no additional business rules will be 

used in this study. 

While exploring differing concepts of operations for NAVSUP WSS, we do not 

explore all possible periodicities. Running WIOM and implementing its solution is 

administratively burdensome, and organizationally NAVSUP WSS wants to maintain a 

normal battle rhythm (Ellis et al. 2017). For this reason, we assume that WIOM can only 

be run quarterly, semiannually, or annually. 

The thesis is limited to non-nuclear consumable material. Modeling repairable 

material is more complex and not addressed in this study. 

CORS does not attempt to model all aspects of inventory management. Therefore, 

while the model delivers insight into performance, it only does so relatively. That is to say, 

we are only comparing between simulations and claiming which operating condition 

performed better. A simulation output is not an absolute prediction of how the system 

would have performed in real life. For example, say the simulations of concept of 
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operations a and concept of operations b give overall fill rates of 75% and 70%. In this 

case, we assert that a performed better than b. But, we do not make the assertion that the 

actual fill rate would have been 75% had a been in place in real life. 

Using deterministic demand gives great flexibility to explore the effects of different 

concepts of operations that a long term steady state simulation does not. However, by using 

deterministic demand we are essentially restricted to one data point and a trace simulation. 

Thus, our conclusions are inherently limited. We can say that one concept of operations 

performed better than another in the simulation, but only for the given set of demands. 

There is no basis to assert with confidence that the same would be true for a different set 

of demands from the same underlying demand distributions. 
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II. DATA AND METHODOLOGY 

A. DATA 

In order to run CORS, we need two main sets of data. First, CORS needs 

optimization output from WIOM (or SPO). Second, CORS needs historical requisition 

data. To obtain these data we reorganize data received from NAVSUP WSS, which was 

provided in four forms for fiscal year (FY) 2013 through FY2017 (1 Oct 2012–30 Sep 

2017) (Ellis 2017).  

The simplest set of data provided is budget figures. NAVSUP WSS provided the 

historical budgetary constraint placed on each class of material for each quarter of the 

period of interest (Motter 2017). Instead of using the budget data as provided, the mean of 

the budget across the period of interest is taken and this constant budget is used throughout. 

This is because there is an instance when the historical budget changed in the middle of the 

fiscal year. As will be discussed later, some of our experimental designs will only run 

WIOM annually. Using the mean allows the experiments to be comparable for different 

periodicities. Additionally, there is no serious tradeoff by taking the mean since we are not 

comparing simulation performance to actual performance in our experiments. We only 

require that budget information be representative. 

The set of data provided includes historical requisitions (Ellis 2017). The 

requisition data are a record of all demands that NAVSUP WSS received during the time 

period. Each line item in the data represents a single requisition received from the fleet and 

has 75 data elements recorded. However, most of the data elements are not relevant to 

running CORS, and we focus on only a few elements. For each requisition, we need to 

know the NIIN, if the NIIN is a repairable or consumable material, if the NIIN is for 

aviation or maritime material, if the NIIN is nuclear material, if the requisition was filled, 

and the Julian date of the requisition. Of note, the Julian date does not represent the date a 

requisition is received by NAVSUP WSS. Rather, it is part of the template of a requisition 

number that is assigned by the originating activity when the requisition is created. 

However, a number of factors could lead to a delay in the requisition being transmitted 
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after it has been created. In the absence of better information, however, we assume that the 

Julian date represents the date the requisition is received by NAVSUP WSS. 

The next set of data provided consists of historical candidates files (Ellis 2017). 

These files contain information for all the NIINs that were input into SPO for each quarter. 

The files contain 20 data elements for each NIIN that are necessary to run WIOM. These 

files are ready to input into WIOM. However, some issues with the data prevent their 

unaltered use. First, these files are not available for the entire period. Files are only 

available for the quarters between and including April 2014 and July 2017. Secondly, 

relatively few NIINs are in all of the files, because the files were created with low-demand 

cut-offs in accordance with NAVSUP WSS’s business rules. 

Also provided are historical wholesale data files (Ellis 2017). These files have the 

majority of the data elements needed to run in WIOM, but they do not include the budget 

category, which is necessary to classify a NIIN as a particular type of material. They also 

contain more NIINs than the provided candidates files. Additionally, this data source is not 

available for the last two quarters of the period: April and July 2017. Since data is not 

available for the second half of FY17, the period of interest is shortened by six months, 

and is now Oct 2012 through June 2017.  

We reorganize the provided data sets to create what we need to run WIOM and 

conduct our experiments in CORS: candidates files with a consistent set of NIINs for the 

whole test period. Since the provided candidates files have such a small set of NIINs that 

are present throughout, we do not use them as the basis for our new candidates files. 

Instead, we start with the wholesale data files. The budget category, which identifies the 

class of material, is still missing. In order to identify the NIINs of interest (consumable 

non-nuclear maritime material), we look to the requisition data and the provided candidates 

files. The requisition data is modified to cut out all requisitions for material that is not 

consumable non-nuclear maritime. The list of NIINs present in the modified requisition 

data now represents the list of NIINs of interest for our new candidates files. The newly 

created candidates files are cross referenced with this list and NIINs not in the list are 

deleted from the candidates files. As an additional safeguard, the NIINs present in the new 

candidates files are cross-referenced with the provided candidates files: any NIIN that is 
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identified as another class of material in any provided candidates file is deleted. The newly-

formed candidates files are then cross-referenced with each other. NIINs that appear in the 

candidates file for each period are retained and the remainder are deleted. Lastly, the 

requisition data is scrubbed in the same way, and requisitions for NIINs not in the 

candidates files are deleted. The final result is a set of quarterly candidates files with 3,808 

consumable, non-nuclear, maritime NIINs and requisition data with 106,565 requisitions. 

B. METAMODEL 

As input, CORS requires requisition data and WIOM outputs for each quarter of 

the time period being tested. To obtain the necessary WIOM outputs, we start by running 

WIOM for the first quarter in the time period. This run uses the candidates file for the first 

time period developed above, the budget figure, and the persistence parameter we are 

exploring. The second WIOM run for the next sequential quarter requires all the same input 

data plus the first WIOM solution, as it uses this information to enforce persistence. The 

third WIOM run requires the second WIOM solution, the fourth WIOM run requires the 

third WIOM solution, etc. After repeating the process for all available quarters we have a 

library of WIOM output. This WIOM output contains both the optimal reorder points 

(ROPs) and the NIIN characteristics CORS requires; namely, each NIIN’s lead time (LT) 

and order quantity (Q). This library of 18 WIOM outputs is fed into CORS, along with the 

requisition data. CORS then performs its simulation and outputs system performance in 

terms of fill rate. Figure 2 illustrates the process. 
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Figure 2.  Metamodel Relationships 

C. SIMULATION MODEL DEVELOPMENT 

Using the available requisition data as input we develop CORS to model 

performance of the system under varying inputs of WIOM employment. As discussed, 

CORS works as a discrete event simulation, progressing forward in time from one event to 

the next. Simulating one NIIN at a time, CORS maintains an event queue with events 

aligned in time to trigger demand arrivals, order arrivals, and parameter changes due to 

new WIOM input. Each event triggers a particular logic sequence that examines the current 

state of the system and makes appropriate changes to the system and event queue. Table 1 

shows system characteristics the simulation tracks as it runs. 

Table 1.   Tracked System Characteristics 

 Variable Abbreviation 
1 Order Quantity Q 
2 Reorder Point ROP 
3 Lead Time LT 
4 Quantity On-Hand Q_O/H 
5 Inventory Position IP 
6 Time t 
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When the simulation run begins, the Initialization Event starts. Figure 3 is a flow 

chart summarizing the event. First, the event adds a Parameter Reset Event to the event 

queue for the start of each quarter. These reset events hold information for updating Q, 

ROP, and LT based on the WIOM output for that period. Next, the event populates the 

queue with Demand Arrival Events, adding each requisition for the current NIIN onto the 

event queue. The Demand Events note both the date of the demand arrival and the quantity 

demanded for that requisition. With the event queue populated with all input data to the 

simulation, the event queue is sorted by date. 

 

Figure 3.  Initialization Event Flow Chart 
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Next, the initialization event sets the initial system conditions, assigning an initial 

value to each state variable. Initial Q, ROP, and LT values are assigned based on the first 

WIOM output in the event queue. However, we also have to assign an initial Q_O/H, IP, 

and trigger any order arrivals the initial IP would have caused prior to the simulation 

window beginning. This is a problem because the simulation runs with no warm-up period, 

so we must find a way to assign a starting condition that would be reasonable to find in the 

middle of a steady state condition. To address this issue, we make a simplifying assumption 

and choose to treat the inventory system as a classic inventory system. Recall that in the 

classical inventory model, the quantity of material on hand at any given time is distributed 

uniformly from zero to Q. We therefore assign the initial quantity on hand in CORS to be 

a uniform integer random variable (RV) between 0 and Q. This assignment ignores the 

possibility of material in a backorder status and the possibility of presence of stock in 

greater quantity than Q. But, it provides a quick way of calculating a starting condition that 

is on the right order of magnitude with no warm-up period. With a Q_O/H assigned, we 

use the same inventory model again to assign a reorder if necessary and insert it into the 

event queue at the appropriate time. In this model, a reorder is triggered when Q_O/H 

reaches ROP, and arrives precisely when Q_O/H reaches zero. We mimic this by first 

checking the newly assigned Q_O/H against the ROP. If Q_O/H is greater than ROP, no 

further action is required and the initialization event is complete. But, if Q_O/H is less than 

or equal to ROP, a reorder event is triggered. An order arrival event is added to the event 

queue with a quantity of Q. Now the question is when to have that order arrival event 

inserted into the event queue. If the Q_O/H is close to ROP, most of the lead time should 

still be left because the event would have been triggered recently. However, if Q_O/H is 

much lower than ROP, the order arrival would have been triggered further in the past. We 

therefore use the ratio of Q_O/H to ROP to calculate how much of the lead time is left and 

assign the date for the order arrival event. If triggered in initialization, this order arrival 

event is scheduled according to the following equation and IP is adjusted accordingly: 

_ /_ _ Q O Hevent time start time LT
ROP

= +
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After the initialization event creates the event queue and sets the system state, the 

simulation advances from one event to the next in the event queue and completes the 

appropriate logic according to event type. The simplest of these event types is a parameter 

Reset Event. Figure 4 shows a flow chart illustrating the Reset Event actions. This event in 

the queue has a date as well as values for ROP, Q, and LT. This event simply reassigns the 

parameters ROP, Q, and LT to the appropriate values in the Reset Event.  These parameters 

are constants that stay in effect until the next Reset Event. 

 

Figure 4.  Parameter Reset Event Flow Chart 

The next possible event type is a Demand Event. Flow chart for Demand Event 

logic is illustrated in Figure 5. Demands in the event queue have a date when they occur 

and a quantity demanded. The demand arrival event first checks the demand quantity 

against the Q_O/H. If the demand quantity is greater than the Q_O/H, this Demand Event 

is marked as being backordered. If the demand quantity is less than or equal to the Q_O/H, 

the event is marked as being filled. In either case, Q_O/H is then decremented by the 

demand quantity (negative Q_O/H representing items in a backorder status). IP is also 

decremented by demand quantity. The logic then checks IP against ROP. If IP is less than 

or equal to ROP, an Order Arrival Event is scheduled to occur in one LT, and the Order 

Arrival Event is scheduled with a quantity of Q. IP is increased by Q. The logic rechecks 

IP against ROP and continues these steps until IP is greater than ROP. At this point the 

event is complete and the next event in the queue is processed. 
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Figure 5.  Demand Arrival Event Flow Chart 

The final possible event type is the Order Arrival Event, illustrated in Figure 6. The 

Order Arrival event checks whether the Q_O/H is positive, negative, or zero. If it is 

negative, the logic runs a process to clear existing backorders as feasible with the quantity 

of the order arrival. If Q_O/H is zero or greater, this process is skipped. Either way, the 

logic then updates the Q_O/H, adding the order quantity Q to Q_O/H. 
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Figure 6.  Order Arrival Event Flow Chart 

We implement the simulation logic in the R programming language (R Core Team 

2016) to run CORS. Additional logic not detailed here is included to record statistics of 

system performance. 

D. MODEL OUTPUT 

The model outputs information that can be used to calculate fill rate in a variety of 

ways. First, the model outputs the overall fill rate for each NIIN for the entire simulation. 

Next the model outputs aggregate data for all NIINs that can be used to calculate the fill 

rates for a number of time frames. For each month, the total number of requisitions filled 

(across all NIINs) and the total number of requisitions received are both recorded. With 

these pieces of data, aggregate demand weighted fill rates can be calculated for any 

periodicity that is a multiple of months (i.e., quarterly, annually, etc.). Finally, the model 

outputs the average length all backordered requisitions stayed in a backorder status. 
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III. ANALYSIS 

A. OPERATING CONCEPTS EXPLORED 

With a working CORS, we next must decide what concepts of operations to 

simulate. We have two items we wish to explore: run periodicity and the persistence 

parameter. Based on our assumptions discussed in Chapter I, we only consider periodicities 

of quarterly, semi-annually, and annually. For the persistence parameter, we choose to use 

parameters that roughly correlate to none, low, medium, and high. The low, medium, and 

high values of persistence are 0.1, 1.0, and 5.0, respectively. We chose these numbers based 

on our observation of the impact of persistence parameter on WIOM’s predicted fill rate. 

Using these 3 periodicities and 4 persistence parameters, there are 12 total possible 

combinations, all of which we include in our experiments. Additionally, we explore the 

possibility of a hybrid approach, where WIOM is run every quarter, but with different 

persistence parameters. In this hybrid idea, persistence is turned off in one model run per 

year in order for the solution to “reset” and adapt to any drift that has occurred in the 

demand distributions. The other three quarters the persistence parameter is set at the low, 

medium, or high level. These three hybrid designs bring the total experiment to 15 

concepts. Table 2 shows the list of settings for the 15 designs and the resulting overall fill 

rates achieved by each, as simulated in CORS. Note that WIOM does not directly maximize 

fill rate; rather, it minimizes a series of piecewise linear penalties associated with negative 

deviations from fill rate goals. Nonetheless, overall fill rate provides a simple aggregate 

figure of merit by which to judge system performance. 
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Table 2.   Overall Simulated Fill Rates 

Design Periodicity Persistence Overall Fill Rate 
1 Annual 0.0 51.77% 
2 Annual 0.1 51.88% 
3 Annual 1.0 51.85% 
4 Annual 5.0 51.74% 
5 Semi-annual 0.0 58.34% 
6 Semi-annual 0.1 58.08% 
7 Semi-annual 1.0 58.45% 
8 Semi-annual 5.0 58.01% 
9 Quarterly 0.0 61.57% 
10 Quarterly 0.1 61.16% 
11 Quarterly 1.0 61.43% 
12 Quarterly 5.0 60.90% 
13 Annual/Quarterly 0.0/0.1 61.53% 
14 Annual/Quarterly 0.0/1.0 61.46% 
15 Annual/Quarterly 0.0/5.0 61.32% 

 

B. TIME TO DIVERGE 

The results of our experiment shown in Table 2 indicate a clear delineation between 

certain concepts of operation in the overall fill rates across the simulation. The greatest 

difference occurs for designs 4 and 9, which differ by 9.83%. However, these concepts of 

operation, the best and the worst performing in the simulation, do not show any immediate 

difference in fill rates during the early parts of the simulation. Figure 7 shows the difference 

between monthly fill rates for these two designs, calculated as the monthly fill rate for 

design 9 minus the fill rate for design 4. 
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Figure 7.  Monthly Difference in Simulated Fill Rate between Designs 4 and 9  

We do not observe a difference of about 10% (roughly the overall difference 

between the two designs) until month 20. It takes six months for the designs to start to 

diverge and almost two years until we gain an idea of the performance differences between 

these two designs. The time to show clear divergence is even longer with a design that has 

less degradation from the best.  

Figure 8 shows the difference in monthly fill rates between designs 8 and 9, which 

have an overall fill rate difference of 3.56%. Here the first deviations are at month 6, 7, and 

8, but the difference is less in subsequent months. Divergence is not clear until about 

month 18. 

The key insight here is that the system takes a long time to show differences in 

performance. Based on what we see here, we expect at least two quarters before any impact 

of a WIOM implementation is felt, and much longer before the degree of impact is shown. 
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This makes intuitive sense as well, as the average lead time across the NIINs tested is a 

little more than a year. 

 

Figure 8.  Monthly Difference in Simulated Fill Rate between Designs 8 and 9 

C. EFFECT OF PERIODICITY 

One of the goals of this thesis is to test whether running WIOM at different 

periodicities affects system performance. Our results indicate a clear degradation in system 

performance with longer periodicities. At any level of persistence, performance degrades 

with increases in time between WIOM runs. Table 3 shows overall fill rates of quarterly, 

semi-annual, and annual periodicities with the persistence parameter set to zero.  
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Table 3.   Fill Rates by Periodicity 

Design Periodicity Overall Fill Rate Degradation from Best 
1 Annual 51.77% 9.80% 
5 Semi-Annual 58.34% 3.23% 
9 Quarterly 61.57% 0.00% 

 

Differences between periodicities are similar at all tested levels of persistence. We 

see a clear degradation in fill rate from a quarterly concept to a semi-annual concept, and 

a dramatic degradation from quarterly to annual. This degradation with longer periodicities 

provides evidence of the system changing over time. This change over time seems to give 

any WIOM solution an inherent “shelf-life.”  Operating the system with an overaged 

WIOM solution delivers sub-optimal performance.  

D. EFFECT OF PERSISTENCE PARAMETER 

The next goal of the thesis is to quantify the trade-off between churn and fill rate 

performance. Achieving this goal involves a two-step process. The change in input to the 

model to vary churn is the persistence parameter. However, the persistence parameter does 

not directly set a certain level of churn. Rather, it is a change in the weighting of the 

objective function for the WIOM optimization model. So, we must first analyze the effect 

of the persistence parameter on churn, and then analyze the effect on fill rate performance. 

It is important to note here that we are comparing churn, which is calculated in WIOM, 

against simulated fill rate performance, which is not. The purpose here is not to compare 

the relative values of the two terms in WIOM’s objective function. Rather, our goal in this 

study is to compare churn against simulated system performance. Having shown that 

annual and semi-annual concepts perform poorly, we restrict the persistence analysis to 

quarterly periodicities only. 

1. Effect of Persistence Parameter on Churn 

The persistence parameter in WIOM enforces persistence by applying a penalty 

when the safety stock of a NIIN differs from the previous safety stock level. The safety 

stock is the expected quantity on hand when a reorder arrives. The penalty for any given 
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NIIN can be defined by the following expression, where 0ŝ  is the NIIN’s safety stock in 

the incumbent solution and s  is the safety stock in the new solution: 

0

0

ˆ
ˆ 1
s s
s
−

+  

This expression calculates a penalty that is proportional to the relative magnitude 

of the change. For example, a change of solution from 9 to 10 incurs a penalty of 0.1, while 

a change from 9 to 19 incurs a penalty of 1.0. A NIIN with no solution change incurs no 

penalty. The penalties from all NIINs are summed in the objective function. If we define 

the set of NIINs as I  and index them as i I∈ , we can express the summation of the 

penalties by the following expression: 

0

0
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−
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This expression can be used to define the total churn present in a given solution. 

We can then compare values from different solutions. If one solution has a lower value of 

this expression, it represents less churn (an improvement). WIOM uses a mathematically 

equivalent, but different, expression to define churn. The expression presented here is used 

instead of WIOM’s for simplicity. WIOM’s expression avoids using an absolute value in 

order to make the optimization problem linear, but requires multiple constraints in order to 

do so. 

To compare the churn across our quarterly designs, we compute this value for every 

quarter, and take the mean value across the simulation time period for each concept of 

operation design. The results of these calculations are shown in Table 4. 
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Table 4.   Churn Value by Design 

Design Persistence Average Churn 
9 0.0 5,673 

10 0.1 600 
11 1.0 154 
12 5.0 50 
13 0.0/0.1 2,512 
14 0.0/1.0 2,328 
15 0.0/5.0 2,137 

 

The designs using a constant persistence parameter every quarter show a clear 

reduction in churn with increasing persistence parameter. The highest persistence 

parameter tested has, on average, less than 1% the churn present with the parameter set to 

0.0. The impact of the parameter is less obvious on the hybrid concept designs: 13, 14, 

and 15. In these designs, the parameter is set to 0.0 once a year, and the other three quarters 

it is set as indicated in Table 4. Here the average churn decreases marginally from one 

design to the next, and each hybrid design has more average churn than all other designs 

except design 9, which uses a persistence parameter of 0.0 throughout. Looking more 

closely at the hybrid designs, we see that they have very high churn rates the one time of 

year that they use a parameter of 0.0. Table 5 shows the average churn rates of these designs 

when the parameter is equal to zero and when it is not. 

Table 5.   Churn Values for Hybrid Designs 

Design Persistence Average with 
Zero Persistence 

Average with 
Positive Persistence 

Overall 

13 0.0/0.1 8,816 572 2,512 
14 0.0/1.0 9,391 155 2,328 
15 0.0/5.0 8,925 49 2,137 

 

Looking at Table 5, we make two observations. First, in the quarters when 

persistence above 0.0 is used, average churn for designs 13, 14, and 15 is very similar to 

average churn for designs 10, 11, and 12, respectively (see Table 4). The next observation 

is that the large overall average churn for the hybrid designs comes from the annual runs 
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with persistence set to 0.0. In these designs churn is very high during the annual “reset” of 

the WIOM solution but effectively reduced during other quarters. 

The above analysis shows that the persistence parameter reduces churn. However, 

this definition of churn is abstract and mathematical, and there is no immediate 

understanding of what its values mean to the system. An alternate way to express churn 

that is more intuitive is to define it as the proportion of NIINs that had any change in safety 

stock. While WIOM does not use this definition (nor does it pursue such a goal in the 

objective function), we expect this measurement to decrease in concert with WIOM’s 

definition of churn, and we wish to know if it does not. Using this alternate definition of 

churn as a proportion, we calculate the average across the simulation period for the 

different designs in Table 6. As expected, increasing the persistence parameter reduces the 

proportion of NIINs that have a change in safety stock. However, the reduction is less 

dramatic than that reflected in the churn formula. The churn formula calculated churn at 

persistence parameter level 5.0 as less than 1% of the churn at persistence parameter 0.0. 

Using this alternate definition, the reduced churn for the same designs is about 25%.  

Table 6.   Churn as Percentage of Items with Change 

Design Persistence Average Items with Churn 
9 0.0 39.99% 

10 0.1 30.72% 
11 1.0 16.12% 
12 5.0 10.35% 
13 0.0/0.1 36.73% 
14 0.0/1.0 27.34% 
15 0.0/5.0 23.10% 

 

As in Table 5, we also calculate the rates by phase for the hybrid designs. These 

results are presented in Table 7. Results using the new definition of churn are much like 

when using the original definition. Churn is effectively reduced when using the parameter 

and large amounts of churn are seen at the annual “reset” when the persistence parameter 

is set to 0.0. 
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Table 7.   Churn as Percentage of Items with Change for Hybrid Designs 

Design Persistence Average with 
Zero Persistence 

Average with 
Positive Persistence 

Overall 

13 0.0/0.1 55.00% 31.10% 36.73% 
14 0.0/1.0 62.11% 16.65% 27.34% 
15 0.0/5.0 64.49% 10.36% 23.10% 

 

A third way to define churn is by dollar value. For any given NIIN, we can define 

a change in the stock cost as the absolute value of the change in the solution times the unit 

cost of that NIIN. This dollar value can be an effective way to think of the difference 

between one solution and another. However, as before, this is not the way WIOM pursues 

churn reduction. Using this definition, we create Tables 8 and 9, equivalent to Tables 6 and 

7 but using the dollar value definition of churn. We see similar behavior to results seen 

using the other two definitions. 

Table 8.   Churn as Dollar Value 

Design Persistence Average Churn 
(Millions $) 

9 0.0 6.29 
10 0.1 4.68 
11 1.0 2.83 
12 5.0 1.95 
13 0.0/0.1 5.49 
14 0.0/1.0 4.55 
15 0.0/5.0 4.08 

Table 9.   Churn as Dollar Value for Hybrid Designs 

Design Persistence Average with 
Zero Persistence 

Average with 
Positive Persistence 

Overall 

13 0.0/0.1 7.05 5.01 5.49 
14 0.0/1.0 8.69 3.28 4.55 
15 0.0/5.0 10.18 2.21 4.08 
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2. Churn versus Fill Rate Trade-off 

Having calculated persistence, we can now address one of the thesis’s fundamental 

questions: what is the trade-off between churn and fill rate performance?  For this analysis 

we use WIOM’s calculation of churn. We start by looking at the relationship between churn 

value and fill rate for our seven quarterly designs. A graph of these points is presented in 

Figure 9. However, it is important to note that we are graphing the simulated fill rates 

achieved over the time period. We are not attempting to find the Pareto curve of efficient 

solutions, which would be applicable to the two components of the objective value 

calculated by WIOM. Rather, we are trying to get an idea of the trade-off of between fill 

rate performance and churn achieved in a production-type environment. 

 

Figure 9.  Graph of Fill Rate by Churn Value 

It appears that there is a very slight increase (improvement) in fill rate associated 

with an increase (degradation) in churn, which is what we expect. But, we have few data 

points and the increase is very slight. Reductions (improvement) in churn are very “cheap” 

in terms of fill rate for these levels of persistence parameter for this set of historical 

demand. 
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E. PERSISTENCE PARAMETER FURTHER EXPLORATION 

Based on the results of the quarterly concepts from our original experimental 

design, we observe only a small trade-off relationship between churn value and simulated 

fill rate. However, we know that at some level a larger trade-off exists. The annual and 

semi-annual designs effectively have churn-free solutions in the quarters that WIOM is not 

run. These designs have clear degradation in fill rate compared to the quarterly designs. 

Therefore, there must be some threshold of churn improvement that causes greater levels 

of simulated fill rate degradation. However, the persistence parameters we explored did 

not create churn reduction that crossed that threshold. We therefore conduct a new 

experiment with higher settings of the persistence parameter to find this threshold and find 

a steeper trade-off between churn and fill rate. 

1. New Concept Testing 

We add three new concepts of operation to our experiment. We use quarterly runs 

with the persistence parameter set at 10, 100, and 1000. For this analysis we exclude the 

hybrid designs. Our new design is presented in Table 10. Using these designs we perform 

WIOM runs as applicable and run the output in CORS to conduct the experiment. 

Table 10.   Follow-on Concepts Testing (All Quarterly) 

Design Persistence 
1B 0.0 
2B 0.1 
3B 1.0 
4B 5.0 
5B 10.0 
6B 100.0 
7B 1,000.0 
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2. Effect on Churn 

Despite the large increases in the persistence parameter for designs 5B, 6B, and 7B, 

there is relatively little effect on churn as measured by any of our three definitions. Churn 

values are presented in Table 11. 

Table 11.   Churn for Follow-on Concepts Testing 

Design Persistence Average Churn Average Items 
with Churn 

Average Churn 
(Millions $) 

1B 0.0 5,673 39.99% 6.29 
2B 0.1 600 30.72% 4.68 
3B 1.0 154 16.12% 2.83 
4B 5.0 50 10.35% 1.95 
5B 10.0 33 8.69% 1.76 
6B 100.0 29 8.09% 1.71 
7B 1,000.0 29 8.08% 1.71 

 

It appears that increasing the persistence parameter above 5.0 only marginally 

decreases churn, and increasing it over 10.0 affects churn only modestly. We observe 

severe decreasing marginal returns for increasing the persistence parameter. Graphing 

average churn against the persistence parameter for designs 1B-5B in Figure 11 shows this 

phenomenon clearly. There is an obvious “knee” in the curve.  
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Figure 10.  Graph of Churn Value by Persistence Parameter 

3. Effect on Fill Rate 

As the increase in persistence parameter has little effect on churn, it also has little 

effect on fill rate performance. Fill rate performance by persistence parameter is shown in 

Table 12. Only marginal decreases in fill rate are observed. 

Table 12.   Follow-on Testing Fill Rate Results 

Design Persistence Overall Fill rate 
1B 0.0 61.57% 
2B 0.1 61.16% 
3B 1.0 61.43% 
4B 5.0 60.90% 
5B 10.0 60.50% 
6B 100.0 60.29% 
7B 1,000.0 60.26% 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis develops a new simulation model, CORS, in order to explore the effects 

of different concepts of operation for WIOM implementation. These concepts of operation 

vary in terms of the periodicity that WIOM is executed and the persistence parameter used. 

We explore a variety of different concepts of operations using CORS and we measure 

system performance for each design in terms of simulated fill rate and churn. Through the 

course of this research we have gained several key insights into NAVSUP WSS’s 

wholesale inventory system. 

The first insight we gain is that it takes time for different implementation concepts 

to differentiate in terms of fill rate. Even very clearly different solutions take at least six 

months to produce different fill rates. It takes even longer for the magnitude of the 

difference to become clear. This insight is important because it reminds us to be cautious 

in judging the performance of the system in the short term. 

Our next key insight into the system is that WIOM solutions have a short shelf life. 

The system changes sufficiently over time that there are clear degradation to fill rate 

performance for semi-annual designs and dramatic degradation for annual designs. While 

different solutions take time to diverge, it is important for the optimization model to be 

able to adjust to changes in the underlying demand structure quickly. We see no reason to 

recommend a change to the quarterly periodicity that NAVSUP WSS currently uses. 

Perhaps our most important finding is that, for the historical demand considered, 

churn can be drastically reduced without sacrificing system performance in terms of fill 

rate. By implementing the use of the persistence parameter, NAVSUP WSS can gain 

significant improvement in churn, which reduces administrative burden in contracting and 

improves explainability of WIOM results to senior leadership. All this improvement can 

be gained without sacrificing fill rate performance and support to the fleet.  

Our final finding is unexpected. It appears that WIOM has a limit to how far it can 

enforce persistence. Beyond a certain point, increasing the persistence parameter has no 
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practical effect on churn. Even increasing the persistence parameter several orders of 

magnitude has virtually no effect on churn. This may be due to a WIOM solution in one 

quarter not being feasible in a following quarter. For instance, this could occur due to 

WIOM’s budget constraint. If the incumbent solution is too costly for the current budget, 

the lowest feasible value of churn will be strictly positive. Or, this phenomenon may be 

due to optimality tolerance. This study used a relative optimality gap of 3% when solving 

WIOM. More testing is required for a definitive conclusion. 

While we noticed several important features in the system, it is also important to be 

clear about what we did not find. Our first important caveat concerns the lack of reduction 

in fill rate with increases in the persistence parameter. In this particular case, we observed 

that the limit that persistence could be enforced was above the critical threshold where it 

would impact simulated fill rates. In this way, we could increase the persistence parameter 

to an arbitrarily large number and not affect fill rates. However, we do not have evidence 

that this is true generally. It may well be that this is simply a happy coincidence of this 

particular type of material, for these demands, and at this budget level. 

The next important caveat is that our conclusions are based on only 4.5 years of 

data. We showed that simulated fill rates did not degrade with increases in the persistence 

parameter for this time period only. We also showed that the difference between a good 

and bad concept of operations takes time to develop. It is possible that some level of 

persistence does impact long-term fill rates when viewed from a longer term horizon. 

B. FOLLOW-ON RESEARCH RECOMMENDATIONS 

This thesis explored NAVSUP WSS’s wholesale inventory system in several ways. 

However, there is much more to be done. We present the following as recommended areas 

for follow on study and research. 

First, the CORS model was only applied to maritime, non-nuclear, consumable 

material. Without change to the simulation, CORS can be used to do testing on other 

consumable material types, namely aviation material and maritime nuclear material. These 

datasets are considerably different in terms of demand, budget, and cost. Additionally, it is 
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possible to revise the simulation to accommodate repairable material and perform tests on 

both maritime and aviation repairable material. 

We also recommend revising the model to include more elements of the inventory 

management system. Two key elements of the wholesale inventory system not modeled in 

CORS are substitute NIINs and demand priority. CORS does not fill requisitions with any 

NIIN but the one requisitioned, while the actual system can fill requisitions with alternate 

or substitute NIINs if they are available. CORS does not use any demand priority scheme, 

and instead treats each requisition as equal. Follow on research including these elements 

into the model will give greater granularity to system performance. 

Using CORS we are limited to deterministic historical demand. This restricts how 

much we can test the robustness of the system to changes in demand and limits us in terms 

of time horizon we can test. We recommend future research find a way to revise the 

metamodel to make demand arrivals stochastic and to run the simulation for a longer period 

of time. 

We also recommend future research in revising WIOM. We calculated churn by 

proportion of NIINs that were unchanged and by dollar value change in this thesis. The 

optimization model can be amended to reduce churn according to one of these (or a 

different) definitions. 
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APPENDIX.  CORS CODE 

rm(list = ls()) 
setwd("C:/Users/Sean/Desktop/Thesis/Testing Environment") 
require(lubridate) 
require(plyr) 
set.seed(736) 
#FY13 Req Data 
req13=read.csv("FY13 Fill Rate Data.csv") #raw data is WSS provided excel files resaved 
as .csv files 
req13=req13[req13$CR=="Consumables",] 
req13=req13[req13$SOURCE=="Maritime",] 
req13=req13[req13$NUC=="Non-Nuclear",] 
#subset out columns not of interest 
req13=req13[,c(8,21,69,27)] 
req13$historical=0 
req13[(req13$HIT.MISS.FINAL=="H"),]$historical=1 
req13=req13[,c(1,2,3,5)] 
req13$JUL.DATE=as.integer(as.character(req13$JUL.DATE)) 
#FY14 Req data 
req14=read.csv("FY14 Fill Rate Data.csv")  
req14=req14[req14$CR=="Consumables",] 
req14=req14[req14$SOURCE=="Maritime",] 
req14=req14[req14$NUC=="Non-Nuclear",] 
#subset out columns not of interest 
req14=req14[,c(8,21,69,27)] 
req14$historical=0 
req14[(req14$HIT.MISS.FINAL=="H"),]$historical=1 
req14=req14[,c(1,2,3,5)] 
req14$JUL.DATE=as.integer(as.character(req14$JUL.DATE)) 
#FY15 Req data 
req15=read.csv("FY15 Fill Rate Data.csv") 
req15[76:91]=list(NULL) #remove excess columns 
#subset requisition data into Maritime Consumables only 
req15=req15[req15$CR=="Consumables",] 
req15=req15[req15$SOURCE=="Maritime",] 
req15=req15[req15$NUC=="Non-Nuclear",] 
#subset out columns not of interest 
req15=req15[,c(8,21,69,27)] 
req15$historical=0 
req15[(req15$HIT.MISS.FINAL=="H"),]$historical=1 
req15=req15[,c(1,2,3,5)] 
req15$JUL.DATE=as.integer(as.character(req15$JUL.DATE)) 
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#FY16 req data 
req16=read.csv("FY16 Fill Rate Data.csv")   
#subset requisition data into Maritime Consumables only 
req16=req16[req16$CR=="Consumables",] 
req16=req16[req16$SOURCE=="Maritime",] 
req16=req16[req16$NUC=="Non-Nuclear",] 
#subset out columns not of interest 
req16=req16[,c(8,21,69,27)] 
req16$historical=0 
req16[(req16$HIT.MISS.FINAL=="H"),]$historical=1 
req16=req16[,c(1,2,3,5)] 
req16$JUL.DATE=as.integer(as.character(req16$JUL.DATE)) 
#FY17 Req Data 
req17=read.csv("FY17 Fill Rate Data.csv")  
req17=req17[req17$CR=="Consumables",] 
req17=req17[req17$SOURCE=="Maritime",] 
req17=req17[req17$NUC=="Non-Nuclear",] 
#subset out columns not of interest 
req17=req17[,c(8,21,69,27)] 
req17$historical=0 
req17[(req17$HIT.MISS.FINAL=="H"),]$historical=1 
req17=req17[,c(1,2,3,5)] 
req17$JUL.DATE=as.integer(as.character(req17$JUL.DATE)) 
####bind multiple req datas together here#### 
reqs=rbind(req13,req14,req15,req16,req17) 
sum(is.na(reqs$JUL.DATE)) #see how many NAs are created when cleaning data 
#delete unused dfs to save memory 
req13=NULL 
req14=NULL 
req15=NULL 
req16=NULL 
req17=NULL 
####add new WIOM output files here to add data#### 
#WIOM runs 
WIOM_1210=read.csv("WIOM_1210.csv") 
WIOM_1210=WIOM_1210[,c(1,4,3,32)] 
WIOM_1301=read.csv("WIOM_1301.csv") 
WIOM_1301=WIOM_1301[,c(1,4,3,32)] 
WIOM_1304=read.csv("WIOM_1304.csv")  
WIOM_1304=WIOM_1304[,c(1,4,3,32)] 
WIOM_1307=read.csv("WIOM_1307.csv")  
WIOM_1307=WIOM_1307[,c(1,4,3,32)] 
WIOM_1310=read.csv("WIOM_1310.csv") 
WIOM_1310=WIOM_1310[,c(1,4,3,32)] 
WIOM_1401=read.csv("WIOM_1401.csv")  
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WIOM_1401=WIOM_1401[,c(1,4,3,32)] 
WIOM_1404=read.csv("WIOM_1404.csv")  
WIOM_1404=WIOM_1404[,c(1,4,3,32)] 
WIOM_1407=read.csv("WIOM_1407.csv")  
WIOM_1407=WIOM_1407[,c(1,4,3,32)] 
WIOM_1410=read.csv("WIOM_1410.csv")  
WIOM_1410=WIOM_1410[,c(1,4,3,32)] 
WIOM_1501=read.csv("WIOM_1501.csv")  
WIOM_1501=WIOM_1501[,c(1,4,3,32)] 
WIOM_1504=read.csv("WIOM_1504.csv") 
WIOM_1504=WIOM_1504[,c(1,4,3,32)] 
WIOM_1507=read.csv("WIOM_1507.csv") 
WIOM_1507=WIOM_1507[,c(1,4,3,32)] 
WIOM_1510=read.csv("WIOM_1510.csv") 
WIOM_1510=WIOM_1510[,c(1,4,3,32)] 
WIOM_1601=read.csv("WIOM_1601.csv")  
WIOM_1601=WIOM_1601[,c(1,4,3,32)] 
WIOM_1604=read.csv("WIOM_1604.csv") 
WIOM_1604=WIOM_1604[,c(1,4,3,32)] 
WIOM_1607=read.csv("WIOM_1607.csv")  
WIOM_1607=WIOM_1607[,c(1,4,3,32)] 
WIOM_1610=read.csv("WIOM_1610.csv") 
WIOM_1610=WIOM_1610[,c(1,4,3,32)] 
WIOM_1701=read.csv("WIOM_1701.csv")  
WIOM_1701=WIOM_1701[,c(1,4,3,32)] 
RECAP_total=NULL #ensure summary dataframe is empty when beginning 
#order requisitions by NIIN  
reqs=reqs[order(reqs$NIIN),] 
row.names(reqs)=1:nrow(reqs) 
#format order quantity as a numeric, removing EA or other non quantitative info 
reqs$ORDER.QTY=as.character(reqs$ORDER.QTY) 
reqs$ORDER.QTY=do.call(rbind,strsplit(reqs$ORDER.QTY,' '))[,1] 
reqs$ORDER.QTY=as.numeric(reqs$ORDER.QTY) 
#sum(is.na(reqs$ORDER.QTY)) #see how many NAs are created when cleaning order qty 
data 
#split julian date into year and julian date 
reqs$JUL.DATE=as.character(reqs$JUL.DATE) 
reqs$Year=substring(reqs$JUL.DATE, 1,1) 
reqs$JUL.DATE=substring(reqs$JUL.DATE, 2,4) 
reqs$Year=as.numeric(reqs$Year)+2010 
#create a time stamp equal to midnight of jan 1 of the year for the row (in ZULU time) 
reqs$Start=paste(as.character(reqs$Year),"-01-01 00:00:00",sep="") 
#convert the character to date format using lubridates ymd_hms() function 
reqs$Start=ymd_hms(reqs$Start, tz = "UTC") 
#add numeric dates to convert julian date into regular date format 
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reqs$Date=reqs$Start+(as.numeric(reqs$JUL.DATE)-1)*24*60*60 
#subset out columns that were used in formatting dates that are no longer required 
reqs=reqs[,c(7,1,3,4)] 
#subset out requisitions that are prior to or after our period of interest 
####adjust date when adding data#### 
reqs=reqs[(reqs$Date>as.Date("2012-09-30")),] 
reqs=reqs[(reqs$Date<as.Date("2017-04-01")),] 
row.names(reqs)=1:nrow(reqs) 
NIIN_list=read.csv("CAN_1210.txt") 
#check to see if the NIINs in req file are also in WIOM_ files 
reqs$InCanFile= (reqs$NIIN %in% NIIN_list$NIIN) 
numreqs=sum(reqs$InCanFile) 
#subset out the NIINs without WIOM_ file info 
reqs=reqs[(reqs$InCanFile==TRUE),] 
#subset out rows with missing information, format and clean dataframe 
reqs=na.omit(reqs) 
reqs$NIIN=factor(reqs$NIIN) 
reqs$InCanFile=NULL 
#remove historical info for experiment 
reqs$historical=NULL 
#set up summary data frame 
####adjust number of months based on data being ran#### 
dfsum=data.frame( 
  Month1=numeric(), 
  Month2=numeric(), 
  Month3=numeric(), 
  Month4=numeric(), 
  Month5=numeric(), 
  Month6=numeric(), 
  Month7=numeric(), 
  Month8=numeric(), 
  Month9=numeric(), 
  Month10=numeric(), 
  Month11=numeric(), 
  Month12=numeric(), 
  Month13=numeric(), 
  Month14=numeric(), 
  Month15=numeric(), 
  Month16=numeric(), 
  Month17=numeric(), 
  Month18=numeric(), 
  Month19=numeric(), 
  Month20=numeric(), 
  Month21=numeric(), 
  Month22=numeric(), 
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  Month23=numeric(), 
  Month24=numeric(), 
  Month25=numeric(), 
  Month26=numeric(), 
  Month27=numeric(), 
  Month28=numeric(), 
  Month29=numeric(), 
  Month30=numeric(), 
  Month31=numeric(), 
  Month32=numeric(), 
  Month33=numeric(), 
  Month34=numeric(), 
  Month35=numeric(), 
  Month36=numeric(), 
  Month37=numeric(), 
  Month38=numeric(), 
  Month39=numeric(), 
  Month40=numeric(), 
  Month41=numeric(), 
  Month42=numeric(), 
  Month43=numeric(), 
  Month44=numeric(), 
  Month45=numeric(), 
  Month46=numeric(), 
  Month47=numeric(), 
  Month48=numeric(), 
  Month49=numeric(), 
  Month50=numeric(), 
  Month51=numeric(), 
  Month52=numeric(), 
  Month53=numeric(), 
  Month54=numeric(), 
  TotalFillRate=numeric(), 
  AvgBB=numeric(), 
  stringsAsFactors=FALSE) 
dfactualfills=data.frame( 
  Month1=numeric(), 
  Month2=numeric(), 
  Month3=numeric(), 
  Month4=numeric(), 
  Month5=numeric(), 
  Month6=numeric(), 
  Month7=numeric(), 
  Month8=numeric(), 
  Month9=numeric(), 
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  Month10=numeric(), 
  Month11=numeric(), 
  Month12=numeric(), 
  Month13=numeric(), 
  Month14=numeric(), 
  Month15=numeric(), 
  Month16=numeric(), 
  Month17=numeric(), 
  Month18=numeric(), 
  Month19=numeric(), 
  Month20=numeric(), 
  Month21=numeric(), 
  Month22=numeric(), 
  Month23=numeric(), 
  Month24=numeric(), 
  Month25=numeric(), 
  Month26=numeric(), 
  Month27=numeric(), 
  Month28=numeric(), 
  Month29=numeric(), 
  Month30=numeric(), 
  Month31=numeric(), 
  Month32=numeric(), 
  Month33=numeric(), 
  Month34=numeric(), 
  Month35=numeric(), 
  Month36=numeric(), 
  Month37=numeric(), 
  Month38=numeric(), 
  Month39=numeric(), 
  Month40=numeric(), 
  Month41=numeric(), 
  Month42=numeric(), 
  Month43=numeric(), 
  Month44=numeric(), 
  Month45=numeric(), 
  Month46=numeric(), 
  Month47=numeric(), 
  Month48=numeric(), 
  Month49=numeric(), 
  Month50=numeric(), 
  Month51=numeric(), 
  Month52=numeric(), 
  Month53=numeric(), 
  Month54=numeric(), 
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  stringsAsFactors=FALSE) 
dfactualrequirements=data.frame( 
  Month1=numeric(), 
  Month2=numeric(), 
  Month3=numeric(), 
  Month4=numeric(), 
  Month5=numeric(), 
  Month6=numeric(), 
  Month7=numeric(), 
  Month8=numeric(), 
  Month9=numeric(), 
  Month10=numeric(), 
  Month11=numeric(), 
  Month12=numeric(), 
  Month13=numeric(), 
  Month14=numeric(), 
  Month15=numeric(), 
  Month16=numeric(), 
  Month17=numeric(), 
  Month18=numeric(), 
  Month19=numeric(), 
  Month20=numeric(), 
  Month21=numeric(), 
  Month22=numeric(), 
  Month23=numeric(), 
  Month24=numeric(), 
  Month25=numeric(), 
  Month26=numeric(), 
  Month27=numeric(), 
  Month28=numeric(), 
  Month29=numeric(), 
  Month30=numeric(), 
  Month31=numeric(), 
  Month32=numeric(), 
  Month33=numeric(), 
  Month34=numeric(), 
  Month35=numeric(), 
  Month36=numeric(), 
  Month37=numeric(), 
  Month38=numeric(), 
  Month39=numeric(), 
  Month40=numeric(), 
  Month41=numeric(), 
  Month42=numeric(), 
  Month43=numeric(), 
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  Month44=numeric(), 
  Month45=numeric(), 
  Month46=numeric(), 
  Month47=numeric(), 
  Month48=numeric(), 
  Month49=numeric(), 
  Month50=numeric(), 
  Month51=numeric(), 
  Month52=numeric(), 
  Month53=numeric(), 
  Month54=numeric(), 
  stringsAsFactors=FALSE) 
dfbyNIIN=data.frame( 
  NIIN=(levels(reqs$NIIN)), 
  stringsAsFactors = FALSE) 
####set up number of replications of experiment:#### 
NumberReps=30 
#Configure by NIIN data collection to have a column for each replication 
NewNIINcols=1 
while(NewNIINcols<=NumberReps){ 
  dfbyNIIN[,(1+NewNIINcols)]=NA 
  NewNIINcols=NewNIINcols+1 
} 
#initialize experiment 
RepNum=1 
start=Sys.time() 
while(RepNum<=NumberReps){ 
#loop through all NIINs 
for ( j in levels(reqs$NIIN) ) {   
#subset out all NIINs except for the current one 
NIIN=reqs[reqs$NIIN==j,] 
#set up event queue data frame for current NIIN 
EQ=NIIN 
EQ$Reset=0 
EQ$Fill=0 
EQ$BB=0 
EQ$NewEOQ=0 
EQ$NewROP=0 
EQ$QinBB=0 
EQ$LenBB=0 
EQ$NIIN=NULL 
EQ=EQ[,c(1,3,2,4,5,6,7,8,9)] 
colnames(EQ)[3]="DeltaQ" 
EQ$DeltaQ=as.numeric(EQ$DeltaQ) 
EQ$DeltaQ=-1*EQ$DeltaQ 
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EQ$LT=0  
####adjust initialization date based on start of simulation#### 
#initialize date at start of simulation period 
t=as.Date("2012-09-30") 
####add additional WIOM output files to event q here#### 
#pull WIOM output information for current NIIN 
WIOM_item=WIOM_1210[WIOM_1210$NIIN==j,] 
#set EOQ,ROP, and LT at start of simulation 
EOQ=max(1,round(WIOM_item[,2])) 
ROP=WIOM_item[,3] 
LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#make new row in event queue for WIOM output file info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2012-09-30") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1301[WIOM_1301$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2013-01-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1304[WIOM_1304$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2013-04-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
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EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1307[WIOM_1307$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2013-07-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1310[WIOM_1310$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2013-10-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1401[WIOM_1401$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2014-01-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
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#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1404[WIOM_1404$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2014-04-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1407[WIOM_1407$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2014-07-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#pull WIOM output information for current NIIN 
WIOM_item=WIOM_1410[WIOM_1410$NIIN==j,] 
#make new row in event queue for WIOM output file info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2014-10-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
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#add next WIOM output to event q 
WIOM_item=WIOM_1501[WIOM_1501$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2015-01-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1504[WIOM_1504$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2015-04-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1507[WIOM_1507$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2015-07-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1, round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1510[WIOM_1510$NIIN==j,] 
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#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2015-10-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1601[WIOM_1601$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2016-01-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1604[WIOM_1604$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2016-04-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1607[WIOM_1607$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2016-07-01") 
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EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1610[WIOM_1610$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2016-10-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#add next WIOM output to event q 
WIOM_item=WIOM_1701[WIOM_1701$NIIN==j,] 
#make new row in event queue for WIOM output info update 
EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
EQ[nrow(EQ),]$Date=as.Date("2017-01-01") 
EQ[nrow(EQ),][,c(2:9)]=0 
EQ[nrow(EQ),]$Reset=1 
#populate event queue with WIOM output info 
EQ[nrow(EQ),]$NewEOQ=max(1,round(WIOM_item[,2])) 
EQ[nrow(EQ),]$NewROP=WIOM_item[,3] 
EQ[nrow(EQ),]$LT=round_any((WIOM_item[,4]*90),1,ceiling) 
#order event q by date 
EQ=EQ[order(EQ[,1]),] 
row.names(EQ)=1:nrow(EQ) 
#initialize stock posture at beginning of simulation 
OutstandingReorder=0 
#bootstrap starting condition of quantity o/h 
#random uniform integer between 0 and target inventory 
Q=sample(1:(EOQ),1) 
if(ROP<0){ 
  Q=0 
} 
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#initialize inventory position equal to quantity o/h 
IP=Q 
#initialize outstanding reorders at start of simulation 
#while IP is less than ROP, add a reorder to event q 
while(IP<=ROP){ 
  OutstandingReorder=OutstandingReorder+1 
  IP=IP+EOQ 
  EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
  EQ[nrow(EQ),]$Date=t+round_any((Q/ROP)*LT,1) 
  EQ[nrow(EQ),][,c(2:9)]=0 
  EQ[nrow(EQ),]$DeltaQ=EOQ 
  EQ=EQ[order(EQ[,1]),] 
  row.names(EQ)=1:nrow(EQ) 
} 
#loop through all events in event q for current NIIN 
i=1 
while(i<nrow(EQ)+1){ 
  #update time counter 
  t=EQ[i,]$Date 
  #check to see if event is a parameter update 
  #if yes, update EOQ, ROP, Lead Time 
  if(EQ[i,]$Reset==1){ 
    EOQ=EQ[i,]$NewEOQ 
    ROP=EQ[i,]$NewROP 
    LT=EQ[i,]$LT 
  } 
  #check to see if event is a requisition 
  #if yes, perform requisition tasks 
  if(EQ[i,]$DeltaQ<0){ 
    #check to see if quantity o/h can fill req 
    #if it can't, flag event row as a backorder 
    #and calculate the quantity in backorder status 
    if(abs(EQ[i,]$DeltaQ)>Q){ 
      EQ[i,]$BB=1 
      if(Q>0){ 
        EQ[i,]$QinBB=abs(Q+EQ[i,]$DeltaQ) 
      } 
      if(Q<=0){ 
        EQ[i,]$QinBB=abs(EQ[i,]$DeltaQ) 
      } 
    } 
    #if quantity o/h can satisfy req, 
    #flag event row as a filled req 
    if(abs(EQ[i,]$DeltaQ)<=Q){ 
      EQ[i,]$Fill=1 
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    } 
  } 
  #update quantity o/h 
  Q=Q+EQ[i,]$DeltaQ 
  #update inventory position 
  #inventory position only changes for reqs, 
  #arriving reorders don't change it 
  if (EQ[i,]$DeltaQ<0){ 
    IP=IP+EQ[i,]$DeltaQ 
  } 
  #check if event is an arriving reorder 
  #if yes, perform reorder actions 
  if(EQ[i,]$DeltaQ>0){ 
    #reduce the amount of outstanding reorders 
    #to reflect that one just came in 
    OutstandingReorder=OutstandingReorder-1 
    #record the quantity arriving 
    ReorderQuantity=EQ[i,]$DeltaQ 
    #make a vector of all reqs that have outstanding 
    #quantity in backorder 
    BBvec=which((EQ$QinBB>0)) 
    #cycle through each req in event q with quantity in backorder, 
    for ( k in BBvec ){ 
      #if amount in reorder is not enough to satisfy backorder 
      #reduce quantity in backorder by available reorder 
      #and set available reorder to 0 
      if (ReorderQuantity<EQ[k,]$QinBB){ 
        EQ[k,]$QinBB=EQ[k,]$QinBB-ReorderQuantity 
        ReorderQuantity=0 
      } 
      #if amount in reorder is enough to satisfy backorder 
      #reduce amount of available reorder quantity, 
      #and set the quantity in backorder for that req to 0 
      #record the length of the backorder 
      if (ReorderQuantity>=EQ[k,]$QinBB){ 
        ReorderQuantity=ReorderQuantity-EQ[k,]$QinBB 
        EQ[k,]$QinBB=0 
        EQ[k,]$LenBB=as.numeric(as.Date(EQ[i,]$Date))-
as.numeric(as.Date(EQ[k,]$Date)) 
      } 
    } 
  } 
  #at completion of event actions, check IP against ROP 
  #and add reorder to event q if necessary 
  while(IP<=ROP){ 
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    OutstandingReorder=OutstandingReorder+1 
    IP=IP+EOQ 
    EQ[nrow(EQ)+1,]=EQ[nrow(EQ),] 
    EQ[nrow(EQ),]$Date=t+LT*24*60*60 
    EQ[nrow(EQ),][,c(2:9)]=0 
    EQ[nrow(EQ),]$DeltaQ=EOQ 
    EQ=EQ[order(EQ[,1]),] 
    row.names(EQ)=1:nrow(EQ) 
  } 
  i=i+1 
###End of i loop### 
} 
#make dataframe that collects performance info for this NIIN 
RECAP_item=EQ[((EQ$Fill==1)|(EQ$BB==1)),] 
RECAP_item=RECAP_item[,c(1,4,5,9)] 
#combine dataframe for this NIIN with all others 
RECAP_total=rbind(RECAP_item,RECAP_total) 
#record by NIIN data 
NIIN_rate=sum(RECAP_item$Fill)/nrow(RECAP_item) 
dfbyNIIN[(dfbyNIIN$NIIN==j),(1+RepNum)]=NIIN_rate 
} 
###End of j loop### 
###Collect Data on this replication of the experiment: 
#order RECAP by date 
RECAP_total=RECAP_total[order(RECAP_total$Date),] 
#Assign a tag to each req saying what month it happened 
RECAP_total$increments=cut.POSIXt(RECAP_total$Date, breaks="month") 
#sum up all BBs and Fills in each month, combine into a single dataframe 
output.df=aggregate(x=RECAP_total$Fill, by = list(time.increment = 
RECAP_total$increments),FUN=sum, na.rm=TRUE) 
output2.df=aggregate(x=RECAP_total$BB, by = list(time.increment = 
RECAP_total$increments),FUN=sum, na.rm=TRUE) 
output3.df=cbind(output.df,output2.df) 
#calculate the fillrate for each month 
output3.df$fillrate=output3.df[,2]/(output3.df[,2]+output3.df[,4]) 
#populate summary df with fill rate info for each month 
p=1 
while (p<=length(unique(RECAP_total$increments))){ 
  dfsum[RepNum,p]=output3.df[p,]$fillrate 
  p=p+1 
} 
#populate summary df with total fill rate info and average BB length for entire time period 
dfsum[RepNum,]$TotalFillRate=mean(RECAP_total$Fill) 
dfsum[RepNum,]$AvgBB=mean(RECAP_total[(RECAP_total$LenBB>0),]$LenBB) 
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####Info by months (Raw number of fills) 
#populate summary df with fill info for each month 
p=1 
while (p<=length(unique(RECAP_total$increments))){ 
  dfactualfills[RepNum,p]=output3.df[p,2] 
  p=p+1 
} 
####Info by months (Raw number of requirements) 
#populate summary df with fill info for each month 
p=1 
while (p<=length(unique(RECAP_total$increments))){ 
  dfactualrequirements[RepNum,p]=output3.df[p,2]+output3.df[p,4] 
  p=p+1 
} 
#clean up df's to save memory 
RECAP_total=NULL 
output.df=NULL 
output2.df=NULL 
output3.df=NULL 
if(RepNum==2){ 
  write.csv(dfsum, file = "ExperimentRates2.csv") 
  write.csv(dfactualfills, file = "ExperimentFills2.csv") 
  write.csv(dfactualrequirements, file = "ExperimentRequirements2.csv") 
  write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown2.csv") 
} 
if(RepNum==8){ 
  write.csv(dfsum, file = "ExperimentRates8.csv") 
  write.csv(dfactualfills, file = "ExperimentFills8.csv") 
  write.csv(dfactualrequirements, file = "ExperimentRequirements8.csv") 
  write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown8.csv") 
} 
if(RepNum==15){ 
  write.csv(dfsum, file = "ExperimentRates15.csv") 
  write.csv(dfactualfills, file = "ExperimentFills15.csv") 
  write.csv(dfactualrequirements, file = "ExperimentRequirements15.csv") 
  write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown15.csv") 
} 
if(RepNum==20){ 
  write.csv(dfsum, file = "ExperimentRates20.csv") 
  write.csv(dfactualfills, file = "ExperimentFills20.csv") 
  write.csv(dfactualrequirements, file = "ExperimentRequirements20.csv") 
  write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown20.csv") 
} 
#next replication 
RepNum=RepNum+1 
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} 
finish=Sys.time() 
length=finish-start 
print(length) 
####end of experiment#### 
write.csv(dfsum, file = "ExperimentRates30.csv") 
write.csv(dfactualfills, file = "ExperimentFills30.csv") 
write.csv(dfactualrequirements, file = "ExperimentRequirements30.csv") 
write.csv(dfbyNIIN, file = "ExperimentNIINbreakDown30.csv") 
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