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ABSTRACT 

This research aims to improve the Monterey-Miami Parabolic Equation 

model (MMPE) by incorporating a higher-order hybrid boundary treatment and 

Fred D. Tappert’s field transformational model to add surface scattering to the 

existing models. The impact of these two additions is investigated for 

improvements in accuracy and stability to the current MMPE model under rough 

surface conditions. Both models were treated with a Pierson-Moskowitz rough 

surface spectrum. 

It was hoped that the hybrid model would provide a reduction of the phase 

errors inherent to the MMPE at long range; however, no improvements were seen, 

and the sensitivity to depth mesh size was not reduced. This could be the result of 

errors in the derivation of the higher-order algorithm. 

The transformational model used Tappert’s field transformation to 

incorporate surface scattering and is thought to perform better when compared 

with the hybrid model by capturing higher modes of propagation. 

The inclusion of rough surface scattering in both models was evaluated for 

energy transmission across the air/water interface and beam dispersion. It was 

observed that the rough surface had minimal impact on energy transmission. 
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I. INTRODUCTION 

In the evaluation of sonar, an accurate and robust underwater propagation 

prediction is required to understand system performance. However, it is difficult to 

accurately and robustly model the underwater environment due to the complexities 

in replicating the many unknown factors and their interactions, which affect 

underwater acoustics. Among the different propagation models, the Parabolic 

Equation model (PE) has been favored for its fast-computational speed and 

relative accuracy. The Monterey-Miami Parabolic Equation (MMPE) model is a 

specific PE algorithm created by Professor Kevin Smith in 1999 and has since then 

undergone several iterations to improve the model’s accuracy and robustness. In 

this thesis, an attempt was made to improve the MMPE model by incorporating a 

higher-order boundary treatment to its hybrid variant to achieve better accuracy. A 

higher-order boundary algorithm provides a more accurate modeling of interface 

density discontinuities with a five-point centered approach compared to the 

conventional three.  

The impact of a higher-order approach was evaluated for accuracy 

improvements and robustness. Rough surface modeling and scattering effects are 

also added to emulate a more realistic underwater environment. A Pierson-

Moskowitz rough surface spectrum (Pierson & Moskowitz, 1964) was used with 

Tappert’s field transformation (Tappert & Nghiem-Phu, 1985) to incorporate 

surface scattering on both the hybrid and conventional MMPE model. The revised 

MMPE model was tested in two simulation scenarios—the shallow and deep 

waters. In the shallow water scenario modeled after the South China Sea, surface 

scattering effects on underwater propagation was evaluated for spatial coherence 

using the hybrid and transformational MMPE model. In the deep-water scenario 

modeled after the Pacific Ocean, surface scattering effects on energy transmission 

across the water-air interface was evaluated using only the hybrid MMPE model. 
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II. BACKGROUND 

Underwater acoustic propagation models based on the parabolic equation 

(PE) have been commonly developed due to their computational efficiency. 

Traditionally, some of the numerical methods used are based on finite difference 

(FD) algorithms while others on finite element (FE) techniques. In 1973, Hardin 

and Tappert (1973) introduced the split-step Fourier (SSF) algorithm that improved 

many of the numerical sensitivities associated with FD and FE algorithms. 

In 1993, the University of Miami Parabolic Equation (UMPE) research model 

was developed by Professor Fred Tappert (Smith & Tappert, 1993), which serves 

as the base model for the Monterey Miami Parabolic Equation (MMPE) model 

(Smith, 2001). The MMPE is an acoustic propagation model written by Prof. Kevin 

B. Smith of the Naval Postgraduate School in the mid-1990s. It relies on most of 

the UMPE model but uses the centered-step scheme in the split-step Fourier 

algorithm for improved accuracy and efficiency (Ead, 2004). MMPE is written in 

the Fortran language. 

The basic description of the ocean environment consists of depth and 

range-dependent sound speed profiles in the water column, a range-dependent 

bottom bathymetry and a range-independent description of the bottom acoustic 

properties (sound speed, density, sound speed gradient, attenuation, shear speed, 

and shear attenuation) (K. Smith, class notes, October 26, 2017). There is also a 

range-dependent sub-bottom bathymetry and associated sub-bottom acoustic 

properties to emulate a sediment layer over a harder sub-bottom. The source 

parameters consist of the source depth, source frequency, frequency bandwidth 

and number of frequency bins. The source is modeled as a point source in the 

absence of a defined array length; otherwise, the source is modeled as a 

continuous vertical line array. 
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A. ORIGINAL MONTEREY MIAMI PARABOLIC EQUATION APPROACH 
(MMPE) 

The original MMPE approach is based on the parabolic equation split-step 

Fourier algorithm (PE/SSF) (Hardin & Tappert, 1973), with the propagation 

operator adopting the Thomson-Chapman Wide Angle Parabolic Equation (TC-

WAPE) approximation (Thompson & Chapman, 1983). The PE/SSF algorithm 

treats the surface as an ideal pressure release boundary (perfect reflector) which 

is automatically satisfied through the SSF algorithm, while the bottom boundary is 

treated with density smoothing functions to represent the discontinuity in sound 

speed and density. 

Starting with the wave equation in 2D cylindrical coordinates for acoustic 

pressure 𝑝(𝑟, 𝑧)  

 2 2

0

1 1
0

p p
r k n p

r r r z z




     
     

      
 (1) 

where 𝑛(𝑟, 𝑧) =
𝑐0

𝑐(𝑟,𝑧)
 is the acoustic index of refraction, 𝑘0 =

𝜔

𝑐0
 is a reference 

acoustic wavenumber (based on a defined reference sound speed 𝑐0), and 𝜌 =

𝜌(𝑧) is the medium density as a function of depth (Yevick & Thomson, 1994). By 

introducing the PE field function defined as 

 0

0( , ) ( , )
ik r

r z k r p r z e 
  (2) 

the 2D wave equation can be shown to reduce to a PE of the form 

 0 (1 )ik Q
r





  


 (3) 

where the PE propagation operator Q is defined as 

 2

2

0

1
Q n

k z z





  
   

  
.  (4) 

In the original MMPE approach, the PE field function is replaced by the 

substitution 

   % (5) 

which satisfies a PE of the form 
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 0 (1 )ik Q
r





  


.  (6) 

In this case, however, where the PE differential operator is  

 
2

2

2 2

0

1
Q N

k z


 


 (7) 

and where the effective index of refraction is defined by  

 

22
2 2

2 2

0

1 1 3 1

2 2
N n

k z z

 

 

   
    

    

. (8) 

The MMPE model uses the TC-WAPE approximation for the PE 

propagation operator based on the operator splitting 

 1 1 1 1Q              (9) 

where 

 2 1N    (10) 

2

2 2

0

1

k z






.  (11) 

 

Formally, one can solve the first order differential equation, assuming no radial 

difference in the operator Q as a forward marching approximation given by (Hardin 

& Tappert, 1973).  

      0, exp 1 ,r r z ik r Q r z        .  (12) 

Expanding the propagation operator using the approximated differential operator 

gives 

      0 0 0exp 1 exp 1 1 exp 1 1ik r Q ik r ik r                     
. (13) 

The SSF algorithm was introduced to efficiently treat this form of operator 

splitting by noting that the differential operator can be written as a simple scalar 

operator in the vertical wavenumber domain. Specifically, MMPE utilizes the 

“centered step” scheme 
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  
     

 
0 0

0
, ,ˆ

2 2, ,
op op

op z

r r
ik U r r z ik U r zik rT k

r r z e IFFT e FFT e r z 
 

   
   

       
   

(14) 

where  

  
22 2

2 2 2 2

0 0

1 ˆ1 1 1 1 1 1 z
op op z

k
T T k

z k z k


  
          

  
 (15) 

and 

  
22

2

2 2

0

1 1 3 1
, 1 1 1 1

2 2
opU r z N n

k z z

 


 

   
          

    

. (16) 

Note that since there are derivatives of 𝜌 in the equation, any step 

discontinuities in the density profile are smoothed appropriately from 𝜌1 to 𝜌2 at the 

depth of the bottom interface 𝑧 = 𝑧𝑏 according to 

 

    1 2 1

1
1 tanh

2

bz z
z

L
   

   
      

  
  (17) 

where 𝐿 denotes the transition region of density change. 

B. HYBRID SPLIT-STEP FINITE-DIFFERENCE ALGORITHM FOR 
BOTTOM BOUNDARY TREATMENT 

The original Monterey Miami Parabolic Equation (MMPE) treatment of 

density discontinuity is known to introduce phase errors at long range (Smith, 

2001). A hybrid Split Step Fourier (SSF) with Finite Difference (FD) PE approach 

can reduce these phase errors by splitting the propagation operator into density-

independent and density-dependent terms and computing only the density-

dependent term with the FD algorithm, while retaining the SSF algorithm for 

density-independent terms (Yevick & Thomson, 1997). This hybrid approach 

retains the computational efficiency of the SSF algorithm while enhancing the 

accuracy of the FD bottom boundary treatment without the use of the density 

smoothing function. 

The hybrid MMPE approach separates the density dependent terms by 

defining the PE propagation operator in the form: 
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 1Q u       (18) 

where 

 

 2 1n     (19) 

 
2

2 2

0

1

k z






 (20) 

 

 
2

0

1

k z z






 
 

 
.  (21) 

 

As before, the TC-WAPE approximation is applied to the PE propagation 

operator as 

 1 1 1 1 2Q u u              .  (22) 

Expansion of the exponential propagation operator now separates the 

density dependent term from the others as 

 

 

     
0

0 0 0

exp 1

exp 1 1 exp 1 1 exp 1 1

ik r Q

ik r ik r u ik r 

    

             
      .  (23) 

The 𝜇 and 𝜀 terms are computed as before, using the SSF approach to give 

the intermediate solution 

 

 

      0 0

,

exp 1 1 exp 1 1 ,

r r z

IFFT ik r u FFT ik r r r z



 

  

          
     

.  (24) 

The final solution at the end of the range step is then achieved by applying 

the density-dependent term as 

      0, exp 1 1 ,r r z ik r r r z          
 

.  (25) 

The FD approach to the density-dependent term uses the Padé [1,1] 

approximation (Yevick & Thompson, 1997).  
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  
 

 

0

0

0

1
1 1

4exp 1 1
1

1 1
4

ik r

ik r

ik r






  
    
 

  

  (26) 

resulting in 

  
 

 
 

0

0

1
1 1

4, ,
1

1 1
4

ik r

r r z r r z

ik r


 



  
    

  

  (27) 

or  

        0 0

1 1
1 1 , 1 1 ,

4 4
ik r r r z ik r r r z   

   
           

   
.  (28) 

This form can then be treated using implicit finite difference techniques. 

Invoking a standard finite different approximation of the operator 𝛾 = −
1

𝑘0
2𝜌

𝜕𝜌

𝜕𝑧

𝜕

𝜕𝑧
 to 

the field function at a point z0 results in the 3-point scheme defined by (Yevick & 
Thomson, 1997) 

      0 1 0 12 2

0

1
1 2 1

k z
                    

 (29) 

where 

  0 0z   (30) 

  1 0z z     (31) 

  1 0z z     (32) 

  1 0z z     (33) 

  1 0z z     (34) 

 
0.5 1

2 


  


 

 


 (35) 

 
0.5 1

2 


  


 

 


  (36) 

  0z  .  (37) 

This results in the implicit FD expression 
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     

     

1 0 1

1 0 1

1 1 2 1

1 1 2 1

         

         

     

     

         

        % % %
  (38) 

where 

  ,r r z    (39) 

  ,r r z   %  (40) 

 
 0

2 2

0

1
1

4
ik r

k z


 




 (41) 

 
 0

2 2

0

1
1

4
ik r

k z


 




 . (42) 

The density discontinuity at the bottom interface is defined formally as 

  
1

2

w b

w b b

b b

z z

for z z

z z



  



 
 

   
  

  (43) 

where w and b define the density in the water and bottom, respectively. Near the 

bottom boundary then, the parameters above reduce to 

 𝑧 = 𝑧𝑏 − ∆𝑧, 𝜌− =
2𝜌𝑤

𝜌𝑤 + 𝜌𝑤
= 1, 𝜌+ =

4𝜌𝑤

3𝜌𝑤 + 𝜌𝑏
 (44) 

 𝑧 = 𝑧𝑏, 𝜌− =
2(𝜌𝑤 + 𝜌𝑏)

3𝜌𝑤 + 𝜌𝑏
, 𝜌+ =

2(𝜌𝑤 + 𝜌𝑏)

3𝜌𝑏 + 𝜌𝑤
 (45) 

 𝑧 = 𝑧𝑏 + ∆𝑧, 𝜌− =
4𝜌𝑏

3𝜌𝑏 + 𝜌𝑤
, 𝜌+ = 1. (46) 

The implicit FD expressions near the boundary then take the forms, from 

Equation (28). 

      0 1 1 1 1

1
1 1 , 1

4
zb zb zbik r r r z R R      

 
       

 
  (47) 

      0 1 1 2 1 2 1

1
1 1 , 1

4
zb zb zb zbik r r r z R R R R        

  
             

  
(48) 
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      0 1 2 2 1

1
1 1 , 1

4
zb zb zbik r r r z R R      

 
        

 
  (49) 

where  

 𝑅1 =
𝜌𝑤 − 𝜌𝑏

3𝜌𝑤 + 𝜌𝑏
 (50) 

 𝑅2 =
𝜌𝑤 − 𝜌𝑏 

3𝜌𝑏 + 𝜌𝑤
 . (51) 

Then it can be shown that 

    1 1 1 1 1 11 1zb zb zb zbR R R R            % %   (52) 

 
 

 

1 1 2 1 2 1

1 1 2 1 2 1

1

1

zb zb zb

zb zb zb

R R R R

R R R R

     

     

 

 

       

      % % %
  (53) 

    2 2 1 2 2 11 1zb zb zb zbR R R R              % %  . (54) 

These three equations with three unknowns can easily be solved 

algebraically, leading to an efficient solution for the final range step correction in 

Equation (25). 

Although the original MMPE only considered density discontinuities at the 

water/bottom interface, it is also possible to consider an identical treatment at the 

water/air interface at the ocean’s surface. Such an approach no longer assumes a 

perfectly reflecting pressure release surface, but directly computes the interaction 

with a realistic water/air interface. In this case, the density discontinuity at the 

water/air interface is defined similarly as 

  
1

2

a s

a w s

w s

z z

for z z

z z



  



 
 

   
  

  (55) 

where sz  refers to the depth of the water/air interface and a  specifies the density 

of air. In simple cases, this interface depth is defined as 0sz  . However, by 

generalizing the model to treat the water/air boundary discontinuity in a manner 

similar to the water/bottom interface, the impact of rough surfaces can easily be 
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accommodated. An equivalent set of algebraic expressions analogous to 

Equations (49) to (51) can then be defined for the water/air interface. 
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III. INVESTIGATION 

A. HIGHER-ORDER BOTTOM BOUNDARY TREATMENT 

In the previous evaluation of the application of 𝛾 = −
1

𝑘0
2𝜌

𝜕𝜌

𝜕𝑧

𝜕

𝜕𝑧
 on 𝜓, a 

second-order accurate centered finite difference approach was used where 

 
1

2 2

d z z
z z

dz z


  

      
             

  (55) 

otherwise represented as 

  0.5 0.5

1

z
   
  


  (56) 

to improve the accuracy of the first derivative estimation, a fourth-order accuracy 

approximation is considered, given by  

  
2

0.5 0.5

1

6

z

z
    


   


  (57) 

where 

  1.5 0.5 0.5 1.53

1
3 3

z
       
     


.  (58) 

Substitution of the third-order derivative gives 

 
1.5 0.5 0.5 1.5

1 1 3 3 1

6 2 2 6z
       

 
     

  
 . (59) 

To obtain the second derivative from the first, the approximation  

  
2

0.5 0.5

1
''''

12

z

z
    


    


  (60) 

is employed, where 

  2 1 0 1 24

1
'''' 4 6 4

z
            


 . (61) 

Substitution of the fourth-order derivative gives 

 2 1 0 1 22

1 1 4 5 4 1

12 3 2 3 12z
        

 
       

  
  (62) 
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𝛾 = −
1

𝑘0
2𝜌

𝜕𝜌

𝜕𝑧

𝜕

𝜕𝑧
 can be expressed as a function of 𝜇 =

1

𝑘0
2

𝜕2

𝜕𝑧2 and its 

transverse derivative 𝜇̃ =
𝜌

𝑘0
2

𝜕

𝜕𝑧
(

1

𝜌

𝜕

𝜕𝑧
) through the relation 𝛾 ≡ 𝜇̃ − 𝜇. Since 

 
2

2 1 0 1 22 2 2 2

0 0

1 1 1 4 5 4 1

12 3 2 3 12k z k z


        

  
       

   
  (63) 

and 

 

 

2

2 2

0 0 0.5 0.5 0.5 0.5

2 1 0 1 22 2

0 0.5 0.5 0.5 0.5

1 0 1 22 2

0 0.5

1 1 1 1 1
''''

12

1
4 6 4

12

1 1 3 3 1

6 2 2 6

z

k z z k z z z z

z z

k z z z

k z

    
 

   

  
    

  


   



   

   

   

  



      
      

        

     
        

    

 
   

 

%

 

2 1 0 1

0.5

2 1 0 1 2

1 1 3 3 1

6 2 2 6

1
4 6 4

12

   


    


  



   

  
     
  

     

 (64) 

then 

 
     

      

2 12 2

0

0 1 2

1
1 9 10

6

18 9 9 9 10 1

k z
        

       

    

      

      

       

%
  (65) 

where it was previously defined  

 𝜌− =
𝜌

𝜌−0.5
=

2𝜌

𝜌 + 𝜌−1
 (66) 

 𝜌+ =
𝜌

𝜌+0.5
=

2𝜌

𝜌 + 𝜌+1
 (67) 

 𝜌−1 = 𝜌(𝑧0 − ∆𝑧) (68) 

 𝜌+1 = 𝜌(𝑧0 − ∆𝑧). (69) 

 

Applying the higher-order FD approximation to the previous marching algorithm  

        0 0

1 1
1 1 , 1 1 ,

4 4
ik r r r z ik r r r z   

   
           

   
  (70) 

gives  
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     

   

     

   

1 2 1 1 1 0

1 1 1 2

1 2 1 1 1 0

1 1 1 2

1 9 10 1 18 9 9

9 10 1

1 9 10 1 18 9 9

9 10 1

          

      

          

      

      

    

      

    

         

     

         

    

 . (71) 

Similar to previously defined variables 

 𝛼1 =

1
4

(1 − 𝑖𝑘0Δ𝑟)

6𝑘0
2∆𝑧2

 (72) 

 𝛽1 =

1
4

(1 + 𝑖𝑘0Δ𝑟)

6𝑘0
2∆𝑧2

 (73) 

Using the same bottom boundary density variations in the MMPE 

simulations as in the lower-order approach 

 𝜌 = {

𝜌𝑤 𝑧 < 𝑧𝑏

1

2
(𝜌𝑤 + 𝜌𝑏) 𝑧 = 𝑧𝑏

𝜌𝑏 𝑧 > 𝑧𝑏

. (74) 

Near the bottom boundary, as in Equations (40) to (42)  

 𝑧 = 𝑧𝑏 − 1, 𝜌− =
2𝜌𝑤

𝜌𝑤 + 𝜌𝑤
= 1, 𝜌+ =

4𝜌𝑤

3𝜌𝑤 + 𝜌𝑏
 (75) 

 𝑧 = 𝑧𝑏,        𝜌− =
2(𝜌𝑤 + 𝜌𝑏)

3𝜌𝑤 + 𝜌𝑏
, 𝜌+ =

2(𝜌𝑤 + 𝜌𝑏)

3𝜌𝑏 + 𝜌𝑤
 (76) 

 𝑧 = 𝑧𝑏 + 1, 𝜌− =
4𝜌𝑏

3𝜌𝑏 + 𝜌𝑤
, 𝜌+ =

2𝜌𝑏

𝜌𝑏 + 𝜌𝑏
= 1. (77) 

 

Consolidating the three cases yields, 

 
   

 

0 1

1 1 1 2 1 1 1 1 1

1
1 1 ,

4

9 9

zb

zb zb zb zb zb

ik r r r z

R R R R

 

     



   

 
     

 

   

  (78) 
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   

    

  

0

1 1 2 2 1 1 2 1

2 1 1 2 2

1
1 1 ,

4

2 18 10 18 1

18 2 10

zb

zb zb zb zb

zb zb

ik r r r z

R Q Q Q Q

Q Q R

 

    

 

 

 

 
      

 

      

   

  (79) 

 
   

 

0 1

1 1 2 1 2 2 1 2 2

1
1 1 ,

4

9 9

zb

zb zb zb zb zb

ik r r r z

R R R R

 

     



   

 
     

 

   

  (80) 

where 

𝑅1 =
𝜌

𝑤
− 𝜌

𝑏

3𝜌
𝑤

+ 𝜌
𝑏

 (81) 

𝑅2 =
𝜌

𝑤
− 𝜌

𝑏

3𝜌
𝑏

+ 𝜌
𝑤

 (82) 

𝑄1 =
𝜌

𝑤
+ 𝜌

𝑏

3𝜌
𝑤

+ 𝜌
𝑏

 (83) 

𝑄2 =
𝜌

𝑤
+ 𝜌

𝑏

3𝜌
𝑏

+ 𝜌
𝑤

. (84) 

 

Since 

𝜓𝑧𝑏−2 = 𝜓̃𝑧𝑏−2 

and 

𝜓𝑧𝑏+2 = 𝜓̃𝑧𝑏+2 

then  

 
 

   

1 1 1 1 1 1 1 1

1 1 1 2 1 1 1 1 1 1 1 1

1 9 9

1 9 9

zb zb zb

zb zb zb zb

R R R

R R R R

     

        

 

  

   

    % % % %
  (85) 

 

 

     

     

   

1 2 1 1 1 2 1 1 2 1 1

1 1 1 2 1 2 1 1 1 2 1

1 2 1 1 1 1 2 2

2 9 5 1 18 1 2 9 5

2 9 5 1 18 1

2 9 5

zb zb zb

zb zb zb

zb zb

Q Q Q Q Q Q

R Q Q Q Q

Q Q R

     

      

    

 

 

 

           

         

    

% % %

% %

      (86) 

 

 
 

   

1 2 1 1 2 1 2 1

1 2 1 1 2 1 2 1 1 1 2 2

9 1 9

9 1 9

zb zb zb

zb zb zb zb

R R R

R R R R

     

        

 

  

   

    % % % %
 . (87) 
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As before, these three equations with three unknowns can easily be solved 

algebraically, leading to an efficient solution for the final range step correction in 

Eq. (25) above.  An analogous set of equations is then also defined for the water/air 

interface. 

1. Numerical Results 

The higher-order boundary treatment was compared with that of the lower-

order method for a flat surface. A “Perkeris” waveguide of 300m depth with an 

isospeed water column of sound speed 1500m/s overlying a homogeneous 

sediment half space with geoacoustic properties of sound speed 1800m/s, density 

1.8g/cm 3 , compressional attenuation of 0.33dB/m/kHz and no shear. A single 

frequency wide angle source at 100Hz and 180m depth was used and results were 

compared with validated results generated from the Finite Element (FE) COMSOL 

model (Littmarck & Saeidi, 2016). Various range and depth mesh sizes were used 

to compare both programs. It was observed that the hybrid algorithm was highly 

sensitive to the choice of depth mesh dz. The wrong choice of depth mesh, which 

deviated from the optimal value, resulted in worse predictions than the non-hybrid 

algorithm (Smith, Aslan, & Moss, 2017). As seen from Figure 1, the choice of depth 

mesh other than dz= 15  resulted in large phase errors when we compare the 

hybrid versus the non-hybrid approach. It was also observed that the higher-order 

boundary treatment did not perform significantly better or worse than that of the 

original lower order hybrid approach. 

It was discovered that the higher-order equations derived were inaccurate 

and did not fully capture the higher-order approximations, rendering the solution 

approximating at second order accuracy as before. This explains why the higher-

order equations did not perform any better, but it does not address the possibility 

that a true fourth order method might. 

Derivation of Equations (54) through (84) above were calculated based on 

differencing schemes provided in the appendix that have subsequently been found 

to be in error. These errors in turn, resulted in a boundary treatment algorithm that 
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remains only second order accurate. Specific errors include the "correction term" 

for Equation (54), which should be divided by 24 instead of 6. This error led to 

improper formulas given in Equations (59) and (61). An additional error in Equation 

(61) is due to the fact that instead of the term 2 12z   , the expression 

 2 24z  


 should have been used. In the Appendix, a corrected fourth-order 

approximation is provided, but there was insufficient time to re-run the simulations. 

Mathematical alternatives were also discussed in the Appendix and would be of 

interest to future students to continue to investigate the higher-order approach. 

Due to the inconclusive nature of the higher-order approach, and the fact that it 

still has a large sensitivity to depth mesh, the remainder of the results presented 

use the previously developed second-order accurate finite difference approach to 

model the effect of density discontinuities for the hybrid MMPE model. 
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 Comparison of higher-order hybrid boundary treatment 
with lower order boundary treatment against validated FE 

COMSOL model at z=100m and (upper) dz= 30 , (middle) dz=

15  and (lower) dz= 10 . 

B. ROUGH SURFACE MODELING 

Because the hybrid approach to a water/air interface is still being evaluated, 

it is desired to have an alternative approach to compare against. Preferably, the 

alternative approach has itself been evaluated as being accurate. However, few 

models exist that can efficiently generate solutions to rough sea surface scattering. 

Fortunately, an alternative version of the MMPE model has been previously tested 

and has demonstrated good performance against both benchmark data and 

experimental data (Smith, Aslan, & Moss, 2017). This alternative version relies on 

the Field Transformation Technique (FTT) introduced by Tappert and Nghiem-Phu 

(1985). A brief overview of that approach is presented here. 
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1. Rough Surface Scattering with Tappert’s Field Transformation 

In the evaluation of underwater acoustic propagation, the sea surface is 

generally treated as a pressure release boundary, while the depth of the sea 

surface boundary is defined by 

 ( )z v r .  (88) 

Here, the physical domain of propagation is bounded by 

 
0 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥 and 𝜈(𝑟) ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥. 

 

The pressure release boundary condition is defined by 

 

  ( ), 0z v r r   . (89) 

In the evaluation of the image ocean, consider the effect of a sloping 

surface, where a slope change of 
𝜕𝜈

𝜕𝑟
 introduces a change in angle of the image ray 

by 2
𝜕𝜈

𝜕𝑟
. A step function in depth is assumed for vertical field symmetry about the 

pressure release boundary, which satisfies odd symmetry, i.e.  

  2 ( ), ( , )z v r r z r     .  (90) 

In contrast the environment (hence,  ,n z r  and opU  ) satisfies even symmetry 

    2 ( ), ,op opU z v r r U z r   .  (91) 

this leads to the following set of respective PEs 

  0 ( ) Real Oceanop opik T U z v r
r





   


  (92) 

  02 ( )  Image Oceanop op

v
ik T U z v r

r r z

 


  
    

  
.  (93) 

Tappert and Nghiem-Phu (1985) showed that by defining a field 

transformation of the form 

  
 

02

( , ) ( ) Real Ocean

,
, 2 ( ) ( ) Image Ocean

v
i k

r

z r z v r

z r
e z z v r z v r













 
  

%   (94) 
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the two respective PEs can be combined into a single PE of the standard form 

  0 op opik T U
r





  



% % % , (95) 

where 

 
 

2

2

( , ) ( ) Real Ocean

2 ( ), 2 ( ) ( ) Image Ocean

op

op

op

U z r z v r

U v
U z v r r z v z v r

r




  
    



%  . (96) 

This allows the existing SSF approach (using a centered step scheme) to 

be implemented as 

 

 

     0 0
0

, ,
2 2

,

( , )
op op

op z

r r
ik U r r z ik U r zik rT k

r r z

e IFFT e FFT e r z




 

   

 

   
    

   

% %%   (97) 

where ˆ ( )opT kz  is the same as Equation (15)  
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2 2 2

0 0

1ˆ ( ) 1 1 1 1 1 1 z
op

k
T kz u

k z k


        


  (98) 

 
 

2

2

ˆ ( , ) ( ) Real Ocean

ˆ 2 ( ), 2 ( ) ( ) Image Ocean

op

op

op

U z r z v r

U v
U z v r r z v z v r

r

 


  
    



% .  (99) 

2. Pierson-Moskowitz (PM) Spectrum 

The rough surface ( )v r  is modeled using realizations of a Pierson-

Moskowitz (PM) spectrum (see Figure 2). This spectrum assumes that “if the wind 

blew steadily for a long period over a large sea surface area, the waves would 

eventually come into equilibrium with the wind”. (Pierson & Moskowitz, 1964). 

The PM spectrum is empirically found to satisfy the form 

 
2 4

5 4

19.5

( ) expPM

g g
S

U


 

 

 
  

 
  (100) 

where 𝛼 = 8.1 × 10−3 and 𝛽 = 0.74 are constants (Pierson & Moskowitz, 1964), 

𝑔 = 9.8𝑚/𝑠2 is the gravitational constant, and 𝑼𝟏𝟗.𝟓 is the wind speed in 𝑚/𝑠 at a 
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height of 19.5m above the sea surface. In terms of angular spatial frequency, 

where 𝑘 is in 𝑟𝑎𝑑/𝑚, the spectrum takes the isotropic form. 

 
2

3 2 4

19.5

( ) exp
2

PM

g
S k

k k U




 
  

 
 . (101) 

 

 Pierson Moskowitz Spectrum. Source: Pierson & 
Moskowitz, 1964. 

To generate the rough surface realization 𝑣 ( rk ) from such a defined 

spectrum, a random realization using a normal distribution is used where 𝑝, 𝜎 ∈

𝑁(0,1), such that 

  0

( )1ˆ ( ) ( ) ( )
22

PM r
r r r

S k
V k p k i k k     (102) 

 *

0 0

1ˆ ˆ ˆ( ) ( ) ( )
2

r r rV k V k V k   
 

  (103) 

and then 

  ˆ( ) ( )rv r IFFT V k . (104) 
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Referring to Figure 3 below, the validation of the algorithm for generating a 

surface with the proper PM spectrum was performed by taking sampled points (in 

red) from the PM spectrum curve and running them through the software that 

generates rough surface realizations. The resulting surface pattern was 

transformed back to the spatial frequency domain (in green). The realization 

surface spectrum was similar to the PM spectrum with small deviations due to the 

randomization introduced. The MATLAB code that validated the approach to 

generating properly scaled realizations was then integrated into a version of MMPE 

for further analysis. 

 

 Validation of software for PM spectrum random 
realization 
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IV. SIMULATIONS AND RESULTS 

In the subsequent simulations, we compare the field transformational 

technique approach (Tappert & Nghiem-Phu, 1985), hereafter called the 

transformational model against the hybrid model (Yevick & Thomson, 1997), 

hereafter called the hybrid model for the air/water interface utilizing realizations of 

the Pierson-Moskowitz rough surface spectrum (Pierson & Moskowitz, 1964). It is 

noted that for both cases, the water-bottom interface uses the Hybrid model. 

A. SIMULATION SCENARIO—SHALLOW WATER 

In the shallow water scenario, we evaluate the impact of a rough surface 

scattering on vertical beam width using both the hybrid water/air and FTT pressure 

release surface MMPE models. We model the environment after that of the South 

China Sea, where a possible water depth could be 200m, with the following bottom 

and source parameters shown in Tables 1 and 2 (shear effects are neglected for 

simplicity): 

Table 1.   Bottom parameters for shallow water 

Depth 200m 

Sound speed profile Isothermal at 1500m/s  

Surface spectrum Pierson-Moskowitz spectrum with wind speed of 20m/s 

Bottom properties Sound speed 1700m/s 

Density 1.5g/cm^3 

Attenuation 0.15dB/km/Hz 

Deep bottom properties Layer depth 30,000m 

Sound speed 1800m/s 

Density 1.8g/cm^3 

Attenuation 0.33dB/km/Hz 

Others Shear effects are neglected in bottom 
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Table 2.   Source parameters for shallow water: 

Source Depth 60m 

Source Frequency 500±300Hz dz = 12  = 0.250m  

750±300Hz dz = 12  = 0.167m 

1200±300Hz dz = 10  = 0.125m 

 

Figure 4 display plots of transmission loss (in dB re 1m) with depth (in m) 

against range (in km) for the three frequencies (500Hz, 750Hz and 1200Hz) 

generated using the transformational and hybrid models. Similar propagation 

structures were observed between the transformational and hybrid models, with 

the structures becoming more distinct at higher frequencies as expected. The 

transformational model performed better (primarily due to stability) in all three 

frequency scenarios and appeared to capture more higher-mode propagation than 

the hybrid model. The hybrid model showed some degradation, which is more 

apparent at lower frequencies. Although the hybrid model could potentially provide 

better accuracy by reducing phase errors at long ranges, it was very depth-mesh 

sensitive, which contributed to the instability of the hybrid model. 
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 Hybrid versus transformational model  

1. Air / Water Energy Transmission 

The hybrid model allows us to compute the energy transmission across the 

air/water interface under various states surface roughness. 
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In Figure 5, we plot the transmission loss (in dB) against range (in km) 

measured at a height of two wavelengths above the air/water interface. Three 

frequencies (500Hz, 750Hz and 1200Hz) were used, and within each frequency, 

the variation in wind speed and therefore surface roughness does not significantly 

impact the transmission loss across the interface. This observation was consistent 

across all frequencies used. With significant scattering, the amount of energy 

crossing the interface did not change appreciably. 

 

 Air/water energy transmission loss versus range, for 
(upper) 500Hz, (middle) 750Hz and (lower) 1200Hz.  

2. Vertical Beam Dispersion at 6km 

Next, we investigate the impact that rough surface has on vertical beam 

dispersion. By extracting all the stored computational data corresponding to the 

solution in the water column, we synthetically create a linear vertical array that 
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spans the entire water column of 200m. Source signal was assumed to be 

impulsive, like with a Hanning window for the coherent source amplitude spectrum. 

In Figure 6, we create an arrival time plot for 750Hz and at 5km using wind 

speeds of 0kts and 25 kits. The arrival time structure is consistent with 

expectations for a shallow water waveguide.  The earliest arrivals correspond to 

propagation near horizontal (lowest modes) while the later arrivals have undergone 

multiple boundary reflections from the bottom and surface. It was observed from 

the arrival time plots that rough surface scattering induced a diffuse spread of 

energy from surface reflections. 

 

 Arrival time structure for 750Hz at 5km for wind speeds 
(left) 0kts and (right) 25kts 

Figure 7 show the arrival angles of one of the ray path from the arrival time 

plot, computed at 750Hz and at a range of 6km, using the transformational model. 

The width of such a beam is related to the signal coherence across the array.  
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 Angles of arrival computed from the transformational 
model at 6km for the frequency band 500Hz at wind speeds of 

0kts, 5kts, 15kts and 25kts 

In our analysis, the centers of the virtual arrays were placed at 4km, 6km 

and 8km from the source. The vertical beam dispersion was evaluated at 

frequencies of 500Hz, 750Hz and 1200Hz, and at the three ranges mentioned 

above, under various state of rough surfaces affected by wind speeds of 0kts (flat 

surface control), 5kts, 15kts and 25kts. Across the parameters used, there are 

several general observations 

 Positive arrival angles correspond to energy propagating downward 

(from the surface) while negative arrival angles are propagating 

upward (from the seafloor). 

 Both the flat (zero wind) and 5kt wind surfaces produce “clean,” 

well-defined arrivals in both time and arrival angle. These 



 31 

correspond to eigenray multipaths between the source and the 

array downrange. 

 By 15kts, the latest arrivals are washed out while nearly all other 

arrivals show a large spread in arrival angle. 

 The positive arrival angles show larger angular spread, dominated 

by angles greater than the non-scattered field. This suggests that 

scattering into steeper angles at each surface interaction is much 

more dominant than forward scatter into more grazing angles. 

 The negative arrival angles do not show the same angular extent, 

since they have undergone an additional bottom bounce. This 

emphasizes the critical angle cutoff for propagation in this 

environment. 

 As the wind speed increases, there is more scattering near the front 

of the arrival structure at the lowest angles. More of the later 

arriving energy has been stripped away from additional surface 

scattering losses into the bottom. 

3. Vertical Beam Width  

The use of a 6dB beam widths for arrival angles provided a means for a 

quantitative analysis of the effects of rough surface scattering on beam dispersion. 

Figure 8 shows the plot of the 6dB beam width at different ranges of 4km, 6km and 

8km and across frequencies of 500Hz, 750Hz and 1200Hz for the transformational 

and hybrid models. Consistent with the beam dispersion spectra, the 6dB beam 

width of the arrival angles increased significantly after the 15kts wind speed as 

observed in the beam dispersion plot. The beam dispersion was more prominent 

at lower frequencies and the arrival angles tended were larger at higher wind 

speeds. 
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 Vertical beam width at 4km, 6km and 8km  

B. SIMULATION SCENARIO—DEEP WATER 

In the deep-water scenario, we evaluate the effects of rough surface 

scattering. We used the transformational model and modeled the environment 

after that of the South Pacific Ocean, where a possible water depth could be 
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4000m, following a typical Munk’s canonical sound speed profile with the following 

bottom and source parameters shown in Tables 3 and 4 (shear effects are 

neglected for simplicity): 

Table 3.   Bottom parameters for deep water 

Depth 4000m 

Sound speed profile Munk’s sound speed profile 

Surface spectrum Pierson-Moskowitz spectrum with wind speed of 25m/s 

Bottom properties Sound speed 1800m/s 

Density 1.8g/cm^3 

Attenuation 0.25dB/km/Hz 

Deep bottom properties Layer depth 30,000m 

Sound speed 1800m/s 

Density 1.8g/cm^3 

Attenuation 0.33dB/km/Hz 

Others Shear effects are neglected in bottom 

Table 4.   Source parameters for deep water 

Source depth 60m 

Source frequency 250±50Hz dz = 0.5m 

 

Computational limitations were encountered in the deep-water scenario, 

especially at higher frequencies, due to the large FFT size required for generating 

depth mesh scales small enough to match expected requirements for valid 

solutions. Only one frequency was tested. Figure 9 below show transmission loss 

(in dB re 1m) with respect to depth (in m) and range (in km) for a 250Hz source 

generated using the transformational model for 0,5,15 and 25 knots surface wind 

speed. It was observed that higher wind speeds registered a slight increase in 

bottom loss, but it was inconclusive whether the loss was due to computational 

inaccuracies of the model at the bottom boundary or to the rougher surface.  
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 Transmission loss (dB re 1m) for transformational 250Hz 
at (top left) 0kts, (top right) 5kts, (bottom left) 15kts, (top right) 

25kts 

As the hybrid model requires more computational space than the 

transformational model, the model was unable to handle the deep-water scenario 

leading to an inability to evaluate the energy transmission across the air/water 

interface. Therefore, deep-water scenario evaluation will remain inconclusive until 

the program can be improved.  
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V. CONCLUSIONS 

Improvements were made to the MMPE model through the introduction of 

properly scaled rough surface realizations. Attempts were also made to expand 

upon the hybrid approach and doing away with the density smoothing approach in 

favor of a finite difference algorithm, in the hope that the hybrid approach would 

provide more accurate solutions at long range while maintaining solution stability. 

We investigated higher-order finite difference approaches for the boundary 

treatment in the hope of solving the depth-mesh sensitivity issues, but the inherent 

instability of the hybrid model persisted. 

Finally, we investigated impacts of rough surface scattering on propagation 

in some environment. As expected, we found that rough surface scattering caused 

arrival angle dispersion, which relates to degraded vertical coherence across the 

array. Interestingly, this impact was only significant above a threshold wind speed 

of approximately 15kts. We also discovered that the rough surface scattering has 

minimal impact on energy transmission across the air/water interface over a wide 

range of surface roughness. Thus, invoking a pressure release boundary condition 

remains justified even in the presence of rough surface scattering. 

Future work should consider the impact of such rough surface scatter on 

horizontal coherence across an array at broadside. Formally, this would require a 

3D propagation model with a 2D rough surface.  Such a version of MMPE is being 

investigated and could be available for future thesis work. 

Due to the instabilities observed with the original hybrid and the higher-order 

approach attempted here, it may not be worth the relatively minor improvement in 

long-range phase accuracy to implement the hybrid method in future MMPE 

versions. While it is important to test the corrected expressions, we noted early in 

the thesis, it is also important to test the original MMPE smoothing method over 

the strong water/air interface discontinuity. This approach may still provide a 

stable, reasonable solution. 
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APPENDIX. FINITE DIFFERENCE (FD) APPROXIMATIONS  

We will discuss mathematical alternatives for FD approximation. They are 

based on Taylor’s Series Expansion. 

A. CURRENT APPROACH 

The approximation to the first-order derivative with fourth-order accuracy for 

𝝍 was obtained from Taylor’s expansion (Stewart, 2015) 

  
         

2 3 4

3 4

1 0 0 0 0 0
2! 3! 4!
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  
           (105) 
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Where the difference of the two equations gave 
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Which could otherwise be represented as follows for half range steps 
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The approximation for third derivative with second-order accuracy can be 

obtained from 

 
    

 
0

0

1
2

n
i

n

in z

n n

n n
z i z

z i

z z


 




    
       

    
 


  (109) 

This equation only gives second-order accuracy for higher derivatives of 𝜓, 

which gave 
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Substitution of the third-order derivative gave 
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Similarly, the approximation to the second-order derivative with fourth-order 

accuracy for 𝜓 was obtained from Taylor’s expansion (Stewart, 2015) 

  
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where the sum of the two equations gave 
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The sample points could also be represented as the difference of first 

derivatives with second-order accuracy in half range steps 
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Combining the two equations result in the following with a change in sign of 

coefficient for 𝜓′′′′ 
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where the fourth derivative with second-order accuracy was obtained from  
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This equation only gives second-order accuracy for higher derivatives of 𝜓, which 

gave  

  2 1 0 1 24

1
'''' 4 6 4

z
            


  (118) 

Substitution of the fourth-order derivative gave 
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This result for the second-order derivative with fourth-order accuracy 

matched that of known FD coefficients. Consequently, this approach can be used 
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to obtain the second-order derivative with fourth-order accuracy from that of first-

order derivative with fourth-order accuracy in the evaluation of 𝛾 = −
1

𝑘0
2𝜌

𝜕𝜌

𝜕𝑧

𝜕

𝜕𝑧
 term. 

B. HIGHER-ORDER ALTERNATIVE  

From the previous case, we can analyze another mathematical alternative 

to approximate the first-order derivative with fourth-order accuracy. Also obtained 

from Taylor’s expansion (Stewart, 2015) 

  
         

2 3 4

3 4

1 0 0 0 0 0
2! 3! 4!

z z z
z z z      

  
           (120) 

  
         

2 3 4

3 4

1 0 0 0 0 0
2! 3! 4!

z z z
z z z      

  
          (121) 

Where the difference of the two equations gave 

  
 

2

0 1 1 0

1

2 3!

z

z
    


   


  (122) 

Which could otherwise be represented as follows for half range steps 

  
 

2

0 0.5 0.5 0

1

24

z

z
    


   


  (123) 

The approximation for third derivative with second-order accuracy can be 

obtained from 

 
    

 
0

0

1
2

n
i

n

in z

n n

n n
z i z

z i

z z


 




    
       

    
 


  (124) 

This equation only gives second-order accuracy for higher derivatives of 𝜓, 

which gave 

  1.5 0.5 0.5 1.53

1
3 3

z
       
     


  (125) 

Substitution of the third-order derivative gave 

  4

1.5 0.5 0.5 1.5

1 1 1
9 9

8 3 3
O z

z
       

 
       

  
  (126) 
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Similarly, the approximation to the second-order derivative with fourth-order 

accuracy for 𝜓 was obtained from Taylor’s expansion (Stewart, 2015) 

  
     

2 3 4

1 0 0 0 0 0 ''''
2! 3! 4!

z z z
z z z      

  
            (127) 

  
     

2 3 4

1 0 0 0 0 0 ''''
2! 3! 4!

z z z
z z z      

  
            (128) 

Where the sum of the two equations gave 

  
2

1 0 12

1
2 ''''

12

z

z
     


    


  (129) 

The sample points could also be represented as the difference of first 

derivatives with second-order accuracy in half range steps 

    0.5 0.5 1 0 12

1 1
2

z z
       
    

 
  (130) 

Combining the two equations result in the following with a change in sign of 

coefficient for 𝜓′′′′ 

  
2

0.5 0.5

1
''''

24

z

z
    


    


  (131) 

where the fourth derivative with second-order accuracy was obtained from  

 
    

 
0

0

1
2

n
i

n

in z

n n

n n
z i z

z i

z z


 




    
       

    
 


  (132) 

This equation only gives second-order accuracy for higher derivatives of 𝜓, which 

gave  

  2 1 0 1 24

1
'''' 4 6 4

z
            


  (133) 

Substitution of the fourth-order derivative gave 

 2 1 0 1 22

1 1 4 5 4 1

12 3 2 3 12z
        

 
       

  
  (134) 

In the previous evaluation of the application of 𝛾 = −
1

𝑘0
2𝜌

𝜕𝜌

𝜕𝑧

𝜕

𝜕𝑧
 on 𝜓, a 

second-order accurate centered finite difference approach was used where 
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1

2 2

d z z
z z

dz z


  

      
             

  (135) 

otherwise represented as 

  0.5 0.5

1

z
   
  


  (136) 

To improve the accuracy of the first derivative estimation, a fourth-order 

accuracy approximation is considered, given by  

  
2

0.5 0.5

1

24

z

z
    


   


  (137) 

where 

  1.5 0.5 0.5 1.53

1
3 3

z
       
     


  (138) 

Substitution of the third-order derivative gives 

 
1.5 0.5 0.5 1.5

1 1 3 3 1
9 9

8 3 2 2 3z
       

 
     

  
  (139) 

To obtain the second derivative from the first, the approximation  

  
2

0.5 0.5

1
''''

24

z

z
    


    


  (140) 

Is employed, where 

  2 1 0 1 24

1
'''' 4 6 4

z
            


  (141) 

Substitution of the fourth-order derivative gives 

 
2 1 0 1 22

1 1 4 5 4 1

12 3 2 3 12z
        

 
       

  
  (142) 

In the evaluation of = −
1

𝑘0
2𝜌

𝜕𝜌

𝜕𝑧

𝜕

𝜕𝑧
 , the equation made use of 𝜇 =

1

𝑘0
2

𝜕2

𝜕𝑧2 and 

its transverse derivative 𝜇̃ =
𝜌

𝑘0
2

𝜕

𝜕𝑧
(

1

𝜌

𝜕

𝜕𝑧
) through the relation 𝛾 ≡ 𝜇̃ − 𝜇 

 
2

2 1 0 1 22 2 2 2

0 0

1 1 1 4 5 4 1

12 3 2 3 12k z k z


        

  
       

   
  (143) 

and 
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2

0

0
2 1 0 1 22

1 0.5 1 0.5 0.5 1 0.5 1

1

4 1 1 1 1 1 1 1 1

3 16 16 16 16

k z z

z

 





    

       
   

       

  
  

  

  
         

   

%

(144) 

Then 
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O z
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 

     
  

     

 

 

 

     

   
        

    

     
                  

     

%

  (145) 

where it was previously defined that  

 𝜌− =
𝜌

𝜌−0.5
=

2𝜌

𝜌 + 𝜌−1
 (146) 

 𝜌+ =
𝜌

𝜌+0.5
=

2𝜌

𝜌 + 𝜌+1
 (147) 

 𝜌−1 = 𝜌(𝑧0 − ∆𝑧) (148) 

 𝜌+1 = 𝜌(𝑧0 − ∆𝑧) (149) 

 
𝜌−0.5 = 𝜌 (𝑧0 +

∆𝑧

2
) 

(150) 

 
𝜌+1 = 𝜌 (𝑧0 +

∆𝑧

2
) 

(151) 

 

Applying the higher-order FD approximation to the previous marching algorithm  

        0 0

1 1
1 1 , 1 1 ,

4 4
ik r r r z ik r r r z   

   
           

   
  (152) 

gives  
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 (153) 

where similar to previously defined variables 

 𝛼1 =
(1 − 𝑖𝑘0Δ𝑟)

48𝑘0
2∆𝑧2

 (154) 

 𝛽1 =
(1 + 𝑖𝑘0Δ𝑟)

48𝑘0
2∆𝑧2

 (155) 

Using the same bottom boundary density variations in the MMPE 

simulations as per the lower-order approach 

 𝜌 = {

𝜌𝑤 𝑧 < 𝑧𝑏

1

2
(𝜌𝑤 + 𝜌𝑏) 𝑧 = 𝑧𝑏

𝜌𝑏 𝑧 > 𝑧𝑏

 (156) 

Near the bottom boundary, same as (41) to (43)  

 𝑧 = 𝑧𝑏 − 1, 𝜌− =
2𝜌𝑤

𝜌𝑤 + 𝜌𝑤
= 1, 𝜌+ =

4𝜌𝑤

3𝜌𝑤 + 𝜌𝑏
 (157) 

 𝑧 = 𝑧𝑏,        𝜌− =
2(𝜌𝑤 + 𝜌𝑏)

3𝜌𝑤 + 𝜌𝑏
, 𝜌+ =

2(𝜌𝑤 + 𝜌𝑏)

3𝜌𝑏 + 𝜌𝑤
 (158) 

 𝑧 = 𝑧𝑏 + 1, 𝜌− =
4𝜌𝑏

3𝜌𝑏 + 𝜌𝑤
, 𝜌+ =

2𝜌𝑏

𝜌𝑏 + 𝜌𝑏
= 1 (159) 
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