
 
 
 

 ARL-TR-8372 ● Jun 2018 
 
 
 

 US Army Research Laboratory 

 
 
Convolutional Neural Networks for 1-D  
Many-Channel Data 
 
by John S Hyatt, Eliseo Iglesias, and Michael Lee 
 
 
 
 
 
 
 
 
 
 
 

 

 

Approved for public release; distribution is unlimited. 



 

 

 

 

 

 

 

 

 

 

 

NOTICES 

Disclaimers 

The findings in this report are not to be construed as an official Department of the 

Army position unless so designated by other authorized documents. 

Citation of manufacturer’s or trade names does not constitute an official 

endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it to the originator.



 
 

 ARL-TR-8372 ● Jun 2018 

 
 US Army Research Laboratory 

 
 
Convolutional Neural Networks for 1-D  
Many-Channel Data 
 
by John S Hyatt and Michael Lee 
Computational and Information Sciences Directorate, ARL 

 
Eliseo Iglesias 
Vehicle Technology Directorate, ARL 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 

valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

June 2018 

2. REPORT TYPE 

Technical Report 

3. DATES COVERED (From - To) 

September 2017–May 2018 

4. TITLE AND SUBTITLE 

Convolutional Neural Networks for 1-D Many-Channel Data 

 

5a. CONTRACT NUMBER 

 

5b. GRANT NUMBER 

 

5c. PROGRAM ELEMENT NUMBER 

 

6. AUTHOR(S) 

John S Hyatt, Eliseo Iglesias, and Michael Lee 

5d. PROJECT NUMBER 

 

5e. TASK NUMBER 

 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Research Laboratory 

ATTN: RDRL-CIH-C 

Aberdeen Proving Ground, MD 21005 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 

ARL-TR-8372 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 

10. SPONSOR/MONITOR'S ACRONYM(S) 

 

11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

Deep convolutional neural networks (CNNs) represent the state of the art in image recognition. The same properties that led to 

their success in that domain allow them to be applied to superficially very different problems with minimal modification. In 

this work, we have modified a simple CNN, originally written to classify digits in the MNIST database (28 × 28 pixels, 1 

channel), for use on 1-D acoustic data taken from experiments focused on crack detection (8,000 data points, 72 channels). 

Though the model’s predictive ability is limited to fitting the trend, its partial success suggests that the application of 

convolutional networks to novel domains deserves further attention. 

 

15. SUBJECT TERMS 

machine learning, regression, ultrasound, material fatigue, nondestructive testing 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

44 

19a. NAME OF RESPONSIBLE PERSON 

Michael S Lee 

a. REPORT 

Unclassified 

b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

(410) 278-5888 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

Approved for public release; distribution is unlimited. 

iii 

Contents 

List of Figures iv 

List of Tables iv 

Acknowledgments v 

1. Introduction 1 

2. Methods: Adapting an Image Classifier to 1-D Signal Regression 2 

2.1 Crack Detection via Acoustic Pitch/Catch Sensors 3 

2.2 MNIST Classifier to Signal Regressor in Four Steps 5 

2.3 Further Enhancements 7 

2.3.1 Data Preprocessing 8 

2.3.2 Dropout 9 

2.3.3 k-fold Cross-validation 10 

2.3.4 Hyperparameter Optimization 10 

3. Results and Discussion 12 

4. Conclusions 14 

5. References 16 

Appendix. Python Scripts for a 72-Channel Acoustic Signal Regressor 17 

List of Symbols, Abbreviations, and Acronyms 36 

Distribution List 37



 

Approved for public release; distribution is unlimited. 

iv 

List of Figures 

Fig. 1 A schematic of the experimental setup is shown in panel a. Oscillatory 
extensile stress is applied to the metal plate via clamps attached to its 
wide ends. Panels b–d show a close-up of the crack propagation area 
over the course of one experiment. The square markings are 1 mm on a 
side. ....................................................................................................... 4 

Fig. 2 A schematic of differences between the original MNIST classifier and 
our regressor. There may be more than three convolution/pooling layer 
pairs in the models tested in this work. ................................................. 7 

Fig. 3 Representative acoustic measurements representing the lowest and 
highest of the eight measured frequencies. The first row shows the 
“pitch” signal, and the other rows show the “catch” signals received by 
the sensors. Rows 2, 3, and 4 show paths 1–6, 2–5, and 3–4, 
respectively. Blue lines represent the baseline taken t = 500 s into the 
fatiguing process. Orange lines are from measurements taken just 
before complete failure, t = 27,000 s. ................................................... 8 

Fig. 4 Predicted vs. actual t/tc for the 14 cross-validation data sets. The black 
line has a slope of 1. ............................................................................ 13 

Fig. 5 Predicted vs. actual t/tc for the two test data sets. The black line has a 
slope of 1. ............................................................................................ 14 

 

List of Tables 

Table 1 Hyperparameter ranges ....................................................................... 11 

Table 2 Optimized hyperparameter values ...................................................... 12 
  



 

Approved for public release; distribution is unlimited. 

v 

Acknowledgments 

We would like to thank M Coatney, A Hall, R Haynes, and R Valisetty for helpful 

discussions. Computer time was provided by the US Army Research Laboratory’s 

Department of Defense Supercomputing Resource Center. 

  



 

Approved for public release; distribution is unlimited. 

1 

1. Introduction 

Machine learning, in a nutshell, is the process by which an algorithm builds a model 

based on a certain amount of example data and uses that model to make predictions, 

given new data. In general, the specifics of the model are not set by the programmer. 

Rather, the programmer provides an outline of the model’s architecture along with 

example data. The training algorithm then iteratively searches within that 

framework for the model that best describes the example data.  

Of the many possible architectures, we focus on deep convolutional neural 

networks (CNNs).1 Though there are many variations on the theme, standard CNNs 

are generally built from the same basic components:  

 Input layer – The input data, often a collection of images or time-series 

(audio, video) data of fixed size/length over all input samples.  

 Convolutional layer – A collection of filters, much smaller than the input 

(e.g., 5 × 5 pixels, with the same depth as the input). Each of these filters is 

convolved with every patch of the same size in the original image. The 

output depth (i.e., number of output channels) is equal to the number of 

filters.  

 Pooling layer – Usually a 2 × 2 max pooling layer, in which a 2 × 2 patch 

of pixels is represented by the highest-valued pixel in that patch. This 

downsamples the data in the previous layer by a factor of 4. Convolutional 

and pooling layers are usually alternated several times, with the output of 

each pooling layer serving as the input of the next convolutional layer.  

 Dense layer – After the final pooling layer, a dense layer gives the output 

of the network (e.g., with one node for every class in a classifier). The 

many-channel output of the convolutional and pooling layers must be 

flattened (number of dimensions reduced to one) before being passed to the 

dense layer.  

Because the filters in a convolutional layer are applied identically to each patch of 

input pixels, it can recognize features larger than one pixel and requires many fewer 

parameters to describe than does a dense layer capable of processing the same input.  

The filters of a trained network encode the features it has learned, and which it 

looks for when presented with new data. Because the pooling layers repeatedly 

downsample the data as it propagates through the network, each successive 

convolutional layer looks at a larger fraction of the original input image. Moreover, 

the output of each convolutional layer (an “image” of filter activations, with one 
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channel per filter) is fed to the next-deeper layer as input. Thus, the filters in deeper 

layers correspond to features that are not only larger, but more complex as well.  

None of this implies that CNNs are restricted to 2-D inputs. In fact, while a black-

and-white image has only two dimensions (height and width, in pixels), a color 

image has three dimensions: height, width, and depth (red, green, and blue [RGB] 

values separated into three channels). Image analysis applications routinely 

accommodate this higher dimensionality not by combining the color channels 

during preprocessing, but by using convolutional filters whose dimensions match 

those of the input layer.  

Similarly, 1-D data can be modeled by a CNN with 1-D kernels, and the resulting 

model can accommodate an arbitrary number of channels. The idea that CNNs can 

be used to model time-series data is not new.2 However, despite the fact that signal 

analysis is key to many applications in engineering, medicine, and other fields, we 

know of very few occasions where CNNs have been adapted to this domain.3,4 For 

the most part, they have been restricted to image analysis applications, although 

they have been used in speech recognition and natural language processing as well.5 

None of these applications combine data from a large number of channels.  

Our primary goal is to illustrate the potential usefulness of CNNs in modeling 1-D, 

many-channel data via application to a real-world problem. Despite using a very 

simple CNN to regress quite noisy data, we show that it is possible to obtain 

meaningful results. Additionally, while we assume basic familiarity with machine 

learning concepts, we have deliberately shifted our focus away from the technical 

details as much as possible (beyond what is necessary to explain our work). This is 

because, as a secondary goal, we want to provide a working example of practical 

CNN implementation, accessible to as broad an audience as possible. Machine 

learning is a fast-growing field, and many useful tools are new or in a state of active 

development; as a result, there are not many such examples that include these tools.  

2. Methods: Adapting an Image Classifier to 1-D Signal 
Regression 

Somewhat counterintuitively, there is little fundamental difference between a CNN 

designed to classify images and one that interprets 1-D signals. This is because, in 

both cases, all the CNN “sees” is an array of numbers that represent either pixel 

intensity at a particular coordinate, or signal amplitude as a function of time.  

In this section, we discuss a 1-D signal regression problem, namely using acoustic 

signals at discrete frequencies to monitor crack formation in a fatigued metal plate. 

We then describe the fairly small alterations that must be made to a simple image 
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classifier to produce a regression algorithm (“regressor”) suitable for examining 

this problem. Finally, we combine several existing machine learning training and 

optimization tools to develop the best possible signal regressor within the 

constraints of the original simple classifier’s architecture.  

2.1 Crack Detection via Acoustic Pitch/Catch Sensors  

Condition-based maintenance is the concept that equipment maintenance is only 

performed when necessary, rather than at fixed intervals. It is motivated by the 

prospects of cost savings, increased efficiency, and decreased maintenance-related 

downtime, but is not easy to implement. The chief reason for this is that every piece 

of equipment must be monitored in real time to identify deteriorating components 

to be replaced before they become dangerous.  

We have received data from our colleagues in the Vehicle Technology Directorate 

of the US Army Research Laboratory. The precise experimental setup is described 

elsewhere.6 The goal of their project was to find a way to quantify the condition of 

a fatigued metal plate by using acoustic measurements to answer questions like, “Is 

the plate about to crack?  Has it cracked?  How much has the crack grown?” 

In those experiments, aluminum plates are prepared as shown in Fig. 1. A hole is 

drilled through the center of the plate, with a notch cut into one side to promote 

crack formation. Three piezoelectric actuators are attached to one end of the plate, 

and three sensors to the other end. After a baseline measurement, the plate is 

fatigued (subjected to oscillatory extensile stress), with acoustic measurements 

made every 500 s.  

During the measurement intervals, the stress is relaxed, and acoustic signals, 

emitted by the actuators, are recorded by the sensors after passing through the plate.  

Because there are three actuators (labeled 1–3 in panel a of Fig. 1) and three sensors 

(4–6), the acoustic signals follow nine unique paths, each including the summed 

contributions of direct transmission and acoustic reflections. Only one actuator is 

active at one time. Moreover, each actuator successively emits signals in eight 

distinct frequencies, ranging from 150 to 500 kHz in increments of 50 kHz. The 

sensors thus record 72 data sets (signal amplitude vs. time), each containing 8,000 

data points (sampling frequency 48 MHz).  
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Fig. 1 A schematic of the experimental setup is shown in panel a.6 Oscillatory extensile 

stress is applied to the metal plate via clamps attached to its wide ends. Panels b–d show a 

close-up of the crack propagation area over the course of one experiment. The square 

markings are 1 mm on a side. 

Changes in the plate’s microstructure due to ongoing fatigue are much too small to 

affect the acoustic signals, which initially remain unchanged from one 

measurement to the next. Eventually, however, a crack forms at the notch and 

begins to propagate through the shaded region marked “Crack Propagation Area” 

in panel a of Fig. 1.  

Panels b, c, and d of Fig. 1 show a close-up of this region, photographed over the 

course of the experiment. In panel b, the experiment has just begun and there is no 

damage to the plate. Panel c shows the plate after a fatigue-induced crack has 

propagated about halfway to the edge of the plate, and panel d shows the plate at 

the end of the experiment, after it has cracked all the way through. 

The crack propagation area cuts directly through only three of the linear paths:  

1–4, 1–5, and 2–4. However, the crack’s presence affects the signals received along 

every path, since each signal incorporates reflections from the boundaries of the 

plate, and the growing crack changes those boundaries. The problem thus involves 

obtaining a single measure of “condition” from 72 channels of 1-D data. Because 
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the acoustic measurements are not sensitive to changes in the material before a 

crack forms, we chose “time since a crack has formed” as our condition indicator, 

since we know the crack will continue to grow with time. We defined tc as the time 

a crack is first visible (by comparing photographs taken at successive measurements 

with the one taken at the beginning of the experiment), and our condition indicator 

as t/tc. When t/tc < 1, no crack has visibly formed. Larger t/tc corresponds to a longer 

crack and therefore more fatigue damage.  

On the surface, this type of regression problem has little in common with image 

classification. A regression algorithm has only one output (in this case, the 

condition indicator of the plate), which is generally a continuous value. A classifier, 

on the other hand, sorts input data into one of several discrete categories.  

However, the entire architectural difference between two CNNs—one a regressor, 

the other a classifier—lies in the final layer of the network, specifically the output 

shape and the activation function, if any. Similarly, the entire architectural 

difference between CNNs that accept input data sets with different dimensionalities 

is contained in the shape of the convolutional filters and pooling layers.  

Concerning the data itself, the 1-D, 72-channel acoustic data described above are 

distinguished from 2-D, 3-channel RGB images only by the shape of the arrays 

needed to contain them. In the same way that multispectral imaging combines light 

intensity from multiple spectral bands, this data combines the acoustic intensity 

from multiple frequencies of soundwaves.  Taking all of this into account, it makes 

sense to look for a CNN that can regress the condition indicator of the metal plate 

at some time from the acoustic signals measured at that time.  

In the remainder of this section we discuss the original Modified National Institute 

of Standards and Technology (MNIST) classifier and the ways it is changed to 

obtain our condition regressor.  

2.2 MNIST Classifier to Signal Regressor in Four Steps 

The MNIST database is a collection of 70,000 handwritten digits (the numbers  

0–9), formatted as 28 × 28 pixel grayscale images. These are divided into a training 

set (60,000 images) and a test set (10,000 images). CNNs gained widespread 

recognition after one was used to correctly sort these digits into the correct 

categories7 for use by banks and the United States Postal Service. By many 

standards, the problem is quite forgiving, and partly for this reason it remains a 

popular first test case for new classifiers (and new CNN practitioners).  

An MNIST classifier represents one of the most basic CNNs. We want to keep 

things as simple as possible and highlight the similarities between a 2-D image 
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classifier and our 1-D signal regressor. In line with those goals, we begin with an 

MNIST classifier and convert it to a regressor in four steps.  

The initial classifier has three 2-D convolutional layers with 8, 16, and 24 kernels, 

respectively. Each kernel is 3 × 3 pixels (stride 1), and each convolutional layer is 

followed by a max pooling layer with pool size 2 × 2. The final two layers are a 

global average pooling layer and a dense layer with 10 nodes, which represent the 

10 possible output categories.  

An MNIST classifier can reach high validation accuracy with fewer layers and/or 

kernels, but takes more epochs to train. This architecture represents a good balance 

between simplicity and training speed (this model trains to less than 1% validation 

error in fewer than 20 epochs). Similarly, the kernel and pool sizes in each layer do 

not have to be fixed at 3 × 3 and 2 × 2, respectively, but those values, particularly 

for the pool size, are customary and work well.  

To convert this simple image classifier to a regressor suitable for our problem, we 

only needed to make four changes, illustrated in Fig. 2:  

 Change the input shape – The MNIST images are 28 × 28 pixels and only 

have one channel, so the input data for the classifier has the shape 

(28,28,1). Each data set for our signal regressor has 8,000 time steps 

and (9 paths) × (8 frequencies) = 72 channels, so the input data for the 

regressor has the shape (8000,72).  

 Change the dimensionality of the convolution and pooling layers – 

Keras has separately defined layers for 1-D and 2-D inputs (because the 

convolution and pooling layers treat each channel separately, they are not 

counted as “dimensions” for this purpose). Simply change the Conv2D, 

MaxPooling2D, and GlobalAveragePooling2D layers to 

Conv1D, MaxPooling1D, and GlobalAveragePooling1D. 

 Change the final dense layer – The classifier’s final dense layer has 10 

nodes and a softmax activation function, 8 which ensures that the sum of the 

10 values produced by a given input image adds up to 1, each of the 10 

giving the probability that the input corresponds to a particular digit. Our 

signal regressor has only one output, namely the condition indicator (the 

time since a crack has formed); therefore, it needs only one node. Because 

the condition indicator does not have an upper bound, we also remove the 

softmax activation function; thus, we change the final layer from 

Dense(10, activation='softmax') to Dense(1). 
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 Change the loss function – The loss function to be minimized during 

training represents the “distance” between the values outputted by our 

model, given some input data, and the “true” values. In the case of the 

classifier, this is the cross entropy between the probability distribution 

predicted by the classifier, and the true probability distribution given by 

each image’s label. Our regressor uses mean squared error, so we changed 

the loss function from loss='categorical_crossentropy' to 

loss='mean_squared_error'. 

  

Fig. 2 A schematic of differences between the original MNIST classifier and our regressor. 

There may be more than three convolution/pooling layer pairs in the models tested in this 

work. 

2.3 Further Enhancements 

With these changes, the model is now capable of receiving the acoustic signals as 

input and producing the right type of the output. However, we can make the model 

somewhat more flexible and robust by adding several additional features, described 

below. The code for our final regressor, including these features, is shared in the 

Appendix.  
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2.3.1 Data Preprocessing 

The acoustic data (actually voltage generated by the piezoelectric sensor in 

response to acoustic oscillations) were taken at snapshots every 500 s during the 

fatiguing process. Each data set contains 72 individual measurements (one for each 

combination of nine paths and eight frequencies), and each of those contains 8,000 

data points.  

Figure 3 shows representative raw measurement data for several frequencies, paths, 

and measurement times. The “pitch” signal, shown in black and echoed in the data, 

dominates the early signal, even when the direct path between actuator and sensor 

is broken by a discontinuity in the metal. However, as the figure shows, the later 

parts of the signal vary substantially for a given frequency both across different 

paths and over time within the same path.  

 

Fig. 3 Representative acoustic measurements representing the lowest and highest of the 

eight measured frequencies. The first row shows the “pitch” signal, and the other rows show 

the “catch” signals received by the sensors. Rows 2, 3, and 4 show paths 1–6, 2–5, and 3–4, 

respectively. Blue lines represent the baseline taken t = 500 s into the fatiguing process. Orange 

lines are from measurements taken just before complete failure, t = 27,000 s. 

Particularly for the lower frequencies, the measurement window is not long enough 

to capture a significant portion of the true response, which is cut off before it has 

fully decayed. Unfortunately, this likely means any model we develop will not 

benefit from training on any information contained in this low-frequency, long-time 

region.  

Also, note the different y-scales used for the two frequencies. Because the 

amplitude of the signal varies, we rescaled the data as part of a preprocessing step. 

Each channel is normalized by the standard deviation of that channel across all 

measurements, including those from different experiments. It should be noted that 
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we normalized the training and validation data sets separately. The data is 

oscillatory and therefore already very close to zero-mean.  

Furthermore, because experiments differed slightly in the amount of time it took 

the plate to crack completely, some experiments had more data sets than others. 

Our Python code relies on the data being collected into arrays. Because the 

dimensions of an array must be internally consistent, we randomly removed points 

from the longer experiments until all had the same number. Matching the number 

of trained samples per experiment also balances the data to ensure some 

experiments are not more impactful than others. 

Finally, the experiments also varied in the amount of time before the plate began to 

crack. Since the acoustic signal is not sensitive to changes in the plate 

microstructure before a crack forms, the data has no built-in way to account for this 

variability. In an attempt to do so, we scaled the experiment duration, t, by the 

“crack time,” tc, the time at which a crack became visible. We were provided with 

photographs taken of the Crack Propagation Area at each measurement interval for 

this purpose. As shown in Section 3, scaling based on the photographs was not 

perfectly accurate in every case, but close enough to be helpful. 

2.3.2 Dropout 

Generally, the performance of a CNN increases with the depth and complexity of 

its architecture, as it can then learn more complicated relationships between its 

input and output.9 An important caveat to this is that a more complex model is also 

more likely to overfit the data it is trained on, and not generalize well to new data. 

A training procedure called “dropout” is one way to resolve this dilemma, allowing 

the network to contain a high degree of complexity while avoiding overfitting.  

The concept of dropout was originally developed to address this problem in dense 

neural networks (not CNNs).10 The idea is that, during training, each node has a 

probability d of being dropped, or temporarily removed, from the network for the 

current epoch. Then, in the final trained model, all nodes are included and their 

weights are scaled by d. The result is an approximate average of the predicted 

outputs of many networks, each with a different architecture, all sharing the same 

weights. This both forces the model to incorporate redundancy, and guards against 

overfitting.  

Note that while dropout can be used while training a CNN (individual filters have 

probability d of being dropped out in a given epoch), convolutional layers already 

have fewer parameters than an equivalent dense layer by design. (This is actually 

the whole point of convolutional layers in the first place.)  This means that dropout 

has less of an effect when applied to a convolutional layer, because there are fewer 
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parameters to be dropped, but it still has a net positive effect on the CNN’s 

performance.10  

In our model, we incorporate dropout after each convolution/max pooling layer 

pair, using a single value of d across all layers.  

2.3.3 k-fold Cross-validation  

By default, the MNIST data set is divided into a training set and a smaller validation 

set. During every training epoch, the model is fed the training data and allowed to 

update its weights, learning to fit the training data more accurately as it goes. 

However, validating the model’s performance on an independent data set—one not 

used for training—is critical, and is performed at the end of every epoch to ensure 

that the model can generalize to new data. (This validation set is separate from the 

test data set presented to the model after development is complete.)   

Having separate training and validation sets keeps things simple. However, there 

are many more sophisticated alternatives,11 including k-fold cross-validation, which 

is the method we use.  

In k-fold cross-validation, the training and validation data are not kept separate from 

the beginning. Instead, the combined data is separated into k equal subsets, or 

“folds.” Rather than training and validating only one model, we then train k separate 

models. For each such model, one of the k folds is reserved as the validation data 

set, and the others are combined into one training set. The final validation loss of 

the model, after training, is the average of the validation losses of all k separately 

trained and validated models. Not only does this give a better estimation of the 

model’s true performance, the standard deviation of this average validation loss 

provides a measure of the model’s stability.  

When the k-fold cross-validation is complete, if performance is satisfactory, the 

model is retrained on all the data (a less computationally expensive task) to give 

the final model.  

2.3.4 Hyperparameter Optimization  

We chose the model hyperparameters (another name for the model architecture) for 

our MNIST classifier somewhat arbitrarily. If we had specified a different number 

of layers or kernels per layer, or different kernel or pool sizes, the classifier would 

likely have performed well anyway. However, some sets of hyperparameters are 

better than others, depending on the details of a particular problem. In order to find 

good hyperparameters, we included an optimization function using the 
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gp_minimize function from Python’s Scikit-Optimize library, which allows 

computationally costly functions to be minimized efficiently.  

Rather than being set from the beginning, some hyperparameters (dropout rate, d; 

the number of kernels per layer, ni; and the pool size per layer, pi) are given an 

allowed range, while maintaining the basic architecture of the original MNIST 

classifier, as shown in Table 1. To decrease the number of hyperparameters to 

optimize over, we set the kernel size of each convolution layer equal to 1 plus twice 

the pool size of the corresponding max pooling layer. This ensures that the data is 

downsampled on a scale smaller than the size of the convolutional filters used in 

the previous layer.  

Table 1 Hyperparameter ranges 

Hyperparameter [min, max] 

dropout rate, d [0, 0.25] 

# kernels in conv. layer i, ni [8, 64] 

pool size after conv. layer i, pi [2, 16] 

 

Additionally, downsampling limits the sizes of the pools in the model, such that 

their product must be less than the original number of data points (8,000). If the 

chosen pool sizes violate this rule, the deepest convolution/max pooling layer pair 

is removed from the model, repeating until the rule is satisfied. We allow the 

number of convolution/max pooling layer pairs to vary between 3 and 5 as a result. 

The gp_minimize function chooses specific hyperparameter values within the 

allowed ranges and fully trains a k-fold cross-validated model for each of them. The 

hyperparameters of the first few models are chosen randomly. The gp_minimize 

function chooses subsequent hyperparameter sets by approximating the loss 

function of the CNN as a Gaussian process, allowing it to estimate the change in 

hyperparameters most likely to decrease the loss function. At the end of the 

optimization process, the models that had the lowest average validation loss are 

trained on all the data to give the final model. When selecting the best model, we 

check that the standard deviation of the validation losses obtained across each fold 

for that model is neither unusually large compared to the standard deviation of other 

tested models, nor larger than the average.  
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3. Results and Discussion 

After optimization, we find that the best model, subject to these constraints, has the 

hyperparameter values displayed in Table 2.  

Table 2 Optimized hyperparameter values 

Hyperparameter Value 

d 0.04 

n1 8 

n2 35 

n3 58 

n4 12 

n5 2 

p1 7 

p2 8 

p3 3 

p4 13 

p5 2 

 

This network, trained on k = 14 folds (one for each data set), gives a validation loss 

(mean squared error between predicted and measured t/tc) of 0.6 ± 0.5, indicating 

that the model was not able to generalize very well from the training data. This is 

confirmed by Fig. 4, where we plot the predicted t/tc versus the t/tc obtained from 

the measurement timestamps. There are 14 plots, one for each cross-validation fold. 
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Fig. 4 Predicted vs. actual t/tc for the 14 cross-validation data sets. The black line has a 

slope of 1. 

As shown in Fig. 4, however, the model does pick out the most important features 

of the data. To begin with, every measurement begins with a flat plateau for  

0 < t/tc < 1, indicating that the model cannot differentiate between acoustic signals 

in the absence of a crack. However, at about t/tc = 1, the predicted value begins to 

change.  

For t/tc < 1, the predicted t/tc is not consistent between experiments, with average 

and standard deviation 0.9 and 0.4, respectively. Further, the line of best fit to the 

points with t/tc > 1 has a slope of only 0.7. (If the model performed perfectly, every 

point in Fig. 4 would lie on a line with slope 1 and intercept 0.)  Moreover, the 

predicted values for several data sets oscillate rather than increase monotonically. 

Accurately predicting the “time since a crack has formed” is not possible in this 

study. 

The same points hold true for the test data. We held back two data sets (i.e., true 

test data) separate from the training/validation data upon which we optimized and 

trained. After optimizing and cross-validating, we retrained the optimized network 

on the entire cross-validation set, then tested that model on the held-back data sets. 

Figure 5 shows the predicted t/tc versus the t/tc obtained from the measurement 

timestamps. 

Both test sets are flat for an initial period before a crack forms then increase, 

although only one does so monotonically, and neither follows the line with slope 1. 
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Fig. 5 Predicted vs. actual t/tc for the two test data sets. The black line has a slope of 1. 

However, if the only desired property of the model is to determine whether a crack 

has formed or not, it actually performs fairly well. The predicted value of  

t/tc at t/tc = 0, whatever that predicted value is, remains constant until a crack forms. 

At this point it changes, usually increasing by a factor of about 2 (varying from 

experiment to experiment) as the crack grows. One baseline measurement, taken 

before the crack forms, provides enough information in most cases to determine 

with reasonable confidence whether a crack has formed at some future time, even 

without any prior knowledge as to the value of tc for that experiment. The baseline 

can even be taken after the fatiguing process is mostly complete. Perhaps this 

problem would be better recast as a classifier, with the two possible states “cracked” 

and “not cracked.” 

4. Conclusions 

We have broken down the surprising similarity between a simple image classifier 

and a signal regressor in a way that emphasizes the universality of the problems to 

which a CNN can be applied. Specifically, though, the input shapes are, on the 

surface, very different (2-D, 1-channel images vs. 1-D, 72-channel data sets), both 

are ultimately just arrays. The CNN does not care about the shape of the array it 

receives.  
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Despite our very simple approach to the problem, we obtained a model that, in 

qualitative terms, performed surprisingly well. Given acoustic data from a baseline 

measurement performed on a metal plate during fatigue experiments, the model can 

determine whether a crack has formed, although it cannot reliably quantify the 

extent of the crack or the remaining time to complete failure of the plate. 

Nevertheless, we regard the outcome as at least a qualified success.  

Perhaps more importantly, we demonstrate that a CNN can be developed to 

approach problems vastly different from image recognition, which is by far the 

most common application. Said another way, a CNN cannot tell whether a given 

data set represents an image or not, and there is no reason not to use CNNs to model 

phenomena besides images.  

Finally, in the Appendix, we have provided an example CNN implementation in 

Python using several powerful tools developed over the years by the deep learning 

community, but not often collected together in one place. We hope that fellow users 

of machine learning will find these helpful as they look for ways to apply CNNs to 

their own work.  
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Appendix. Python Scripts for a 72-Channel Acoustic Signal 
Regressor 
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The signal regressor shown below is written in Python and uses the Keras machine 

learning library. More information about Keras, including documentation and 

required libraries, can be found at https://keras.io. We use TensorFlow as the 

backend in the following code.  

The code incorporates the Scikit-Optimize (skopt) module. More information about 

skopt, including documentation and required libraries, can be found at  

https://scikit-optimize.github.io.  

Additionally, for clarity and ease of use, it is broken into three parts: (1) a top-level 

script, CNN_acoustic.py; (2) a wrapper for the model, CNN_model.py; and 

(3) an empty file, CNN_globals.py, used to shuttle global variables back and 

forth between the first two.  

(1) CNN_acoustic.py 

"""MODULES""" 1 

 2 

import numpy as np 3 

import random as rn 4 

import os 5 

import sys 6 

import keras 7 

import pickle 8 

from skopt import gp_minimize 9 

 10 

# If you are not storing all three scripts in the same  11 

directory, change the path below to include the 

location of CNN_model.py and CNN_globals.py. 

sys.path.append('.') 12 

import CNN_model 13 

import CNN_globals 14 

 15 

###################################################### 16 

 17 

"""PARAMETERS""" 18 

 19 

# if optimize=True, run skopt to optimize the  20 

hyperparameters. (Do this first.) 

# if optimize=False, train the model on specified  21 

hyperparameters. (Do this second.) 

optimize = True 22 

CNN_globals.optimize = optimize 23 

 24 

https://keras.io/
https://scikit-optimize.github.io/
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# if optimize=False, this is where you input the  25 

hyperparameters on which to train your final model. 

if not optimize: 26 

  # The dropout rate. 27 

  d = 0 28 

 29 

  # The number of filters in each of the 5 layers. 30 

  nfilter1 = 8 31 

  nfilter2 = 8 32 

  nfilter3 = 8 33 

  nfilter4 = 8 34 

  nfilter5 = 8 35 

 36 

  # The pool size in each pooling layers. 37 

  psize1 = 2 38 

  psize2 = 2 39 

  psize3 = 2 40 

  psize4 = 2 41 

  psize5 = 2 42 

 43 

  # All the parameters go into a list. 44 

  x = [d,  45 

    nfilter1, nfilter2, nfilter3, nfilter4, nfilter5,  46 

    psize1, psize2, psize3, psize4, psize5] 47 

 48 

# if optimize=False, the model must be saved after  49 

training and validation on each fold. 

if not optimize: 50 

  save_dir = 'saved_acoustic_models' 51 

  model_name = 'acoustic_model_k%s.h5' 52 

  model_path = os.path.join(save_dir, model_name) 53 

 54 

  CNN_globals.save_dir = save_dir 55 

  CNN_globals.model_name = model_name 56 

  CNN_globals.model_path = model_path 57 
 58 

# You can use previous optimizations for the same 59 

problem to inform the current iteration. This means 60 

you can run multiple parallel optimizations and use 61 

this feature to combine them all afterwards.  62 

# if import_prev_results=True, you are using the 63 

results  64 

of previous optimizations to inform the optimizer.  
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# if import_prev_results=False, you are not. 65 

import_prev_result = False 66 

 67 

if import_prev_results: 68 

  # The paths to the res objects you got from the  69 

previous optimizations go in the following list. 

(These are pickled.)   

  prev_optims = [] 70 

 71 

# How many folds are you going to cross-validate over? 72 

num_splits = 2 73 

CNN_globals.num_splits = num_splits 74 

 75 

# How many epochs are you going to train over? 76 

num_epochs = 40 77 

CNN_globals.num_epochs = num_epochs 78 

 79 

# Early stopping keeps the model from running for  80 

longer than it needs to and helps avoid overfitting. 

early_stop = keras.callbacks.EarlyStopping( 81 

  monitor='val_loss',  82 

  min_delta=0,  83 

  patience=20,  84 

  verbose=0,  85 

  mode='auto') 86 
callbacks_list = [early_stop] 87 

CNN_globals.callbacks_list = callbacks_list 88 

 89 

# experiments.pkl is a pickled list of paths, each one 90 

pointed at the directory containing the data from one 

experiment. Each directory contains 2 numpy files, one 

each for the data and labels, named X.npy and Y.npy, 

respectively. 

experiments = pickle.load(open( 91 

  '/some_directory/experiments.pkl', rb')) 92 

 93 

# Number of random starts during the optimization. 94 

if optimize: 95 

  num_rands = 1 96 

 97 

# Number of times to run the optimizer (including the  98 

random starts). 

if optimize: 99 
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  num_calls = 2 100 

  CNN_globals.num_calls = num_calls 101 

 102 

# Number of files per batch during training. 103 

batch = 16 104 

CNN_globals.batch = batch 105 

 106 

# Each measurement is 8,000 points long and 72  107 

channels deep. 

img_length = 8000 108 

img_depth = 72 109 

 110 

CNN_globals.img_length = img_length 111 

CNN_globals.img_depth = img_depth 112 

 113 

# The outputs of the optimizer will be stored in the  114 

following dictionary: 

outputs = { 115 

  'hyperparameters':[],  116 

  'train_loss_mean':[],  117 

  'train_loss_std':[],  118 

  'val_loss_mean':[],  119 

  'val_loss_std':[]} 120 

CNN_globals.outputs = outputs 121 

 122 

###################################################### 123 

 124 

"""IMPORT PREVIOUS RESULTS""" 125 

if import_prev_results: 126 

 127 

  # The previous results will go in these empty lists:  128 

  x_0 = [] 129 

  y_0 = [] 130 

 131 

  # Locate and unpickle the res objects from the  132 

previous optimizations: 

  for prev in prev_optims: 133 

    opt_hist = pickle.load(open(prev, 'rb')) 134 

 135 

    # Load the hyperparameters and validation loss  136 

values into x_0 and y_0, respectively. 

    for i in range(len(opt_hist['hyperparameters'])): 137 

      temp_list =[ 138 

        [opt_hist['hyperparameters'][i][0]], 139 
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        opt_hist['hyperparameters'][i][1], 140 

        opt_hist['hyperparameters'][i][2]] 141 

      temp_list = [ 142 

        val for sublist in temp_list for val in  143 

          sublist] 

      x_0.append(temp_list) 144 

 145 

    y_0.append(opt_hist['val_loss_mean']) 146 

 147 

else: 148 

  x_0 = None 149 

  y_0 = None 150 

 151 

###################################################### 152 

 153 

"""LOAD AND PREPROCESS EXPERIMENTAL DATA""" 154 

 155 

# Empty lists to accept the data. 156 

X_loaded = [] 157 

Y_loaded = [] 158 

 159 

# Load the data. All of the experiment names in  160 

experiments.pkl correspond to one directory that 

contains the data. The data is separated into 2 files, 

X_ExperimentNumber.npy and Y_ExperimentNumber.npy.  

# We unfortunately have not been given permission to  161 

release the actual data. 

for experiment in experiments: 162 

  X_loaded.append(np.load(experiment + 'X.npy')) 163 

  Y_loaded.append(np.load(experiment + 'Y.npy')) 164 

 165 

# Some experiments lasted slightly less time than  166 

others. Because the data all has to be in array format 

(due to the way KFold works) we have to truncate the 

longer experiments. Basically, data points are removed 

randomly from the longer experiments until all have 

the same length as the shortest experiment.  

# An alternative would be to copy random points from  167 

the shorter experiments, until all are the same length 

as the longest experiment.  

 168 

# What were the original lengths of each experiment? 169 

original_lengths = [] 170 

 171 
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for i in range(len(experiments)): 172 

  original_lengths.append(len(Y_loaded[i])) 173 

 174 

# What is the length of the shortest experiment? 175 

min_length = min(original_lengths) 176 

CNN_globals.min_length = min_length 177 

 178 

# Randomly delete measurements from the longer  179 

experiments until all have the same length. 

for i in range(len(experiments)): 180 

  while len(X_loaded[i]) > min_length: 181 

  rand_temp = rn.randint(0, len(X_loaded[i]) – 1) 182 

  X_loaded[i] = np.delete(X_loaded[i], rand_temp, 0) 183 

  Y_loaded[i] = np.delete(Y_loaded[i], rand_temp, 0) 184 

 185 

# How many measurements were lost from each experiment  186 

when X and Y were converted to arrays? 

measurements_lost = [] 187 

for experiment in experiments: 188 

  measurements_lost.append(original_lengths[ 189 

    experiments.index(experiment)] – min_length) 190 

 191 

# Now that they’re all the same length, convert them  192 

into arrays. 

X_loaded = np.asarray(X_loaded) 193 

Y_loaded = np.asarray(Y_loaded) 194 

 195 

# Shuffle the experiments.  196 

shuffler = np.arange(len(X_loaded)) 197 

np.random.shuffle(shuffler) 198 

 199 

# These are the final X and Y that will be used to  200 

train and cross-validate the model. 

X = X_loaded[shuffler] 201 

Y = Y_loaded[shuffler] 202 

 203 

CNN_globals.X = X 204 

CNN_globals.Y = Y 205 

 206 

###################################################### 207 

 208 

"""RUN THE MODEL""" 209 

 210 

# if optimize=True, use gp_minimize to find the  211 
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optimal hyperparameters.  

# if optimize=False, train the model using the  212 

optimized hyperparameters.  

 213 

if optimize: 214 

 215 

  # Set the upper and lower bounds for the  216 

hyperparameters to be optimized. 

  d_min = 0 217 

  d_max = 0.25 218 

  nfilter_min = 8 219 

  nfilter_max = 64 220 

  psize_min = 2 221 

  psize_max = 16 222 

 223 

  res = gp_minimize(CNN_model.runModel, 224 

  [(d_min, d_max), # d 225 

  (nfilter_min, nfilter_max), # nfilter1 226 

  (nfilter_min, nfilter_max), # nfilter2 227 

  (nfilter_min, nfilter_max), # nfilter3 228 

  (nfilter_min, nfilter_max), # nfilter4 229 

  (nfilter_min, nfilter_max), # nfilter5 230 

  (psize_min, psize_max), # psize1 231 

  (psize_min, psize_max), # psize2 232 

  (psize_min, psize_max), # psize3 233 

  (psize_min, psize_max), # psize4 234 

  (psize_min, psize_max), # psize5 235 

  ], 236 

  n_calls=num_calls,  237 

          n_restarts_optimizer=1,  238 

verbose=True,  239 

x0=x_0,  240 

y0=y_0,  241 

n_random_starts=num_rands) 242 

 243 

  print(res.x) 244 

  print(res.fun) 245 

 246 

  with open('res.pkl', 'wb') as f: 247 

    pickle.dump(res, f) 248 

 249 

else: 250 

  CNN_model.runModel(x) 251 

 252 
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for experiment in experiments: 253 

  print('%s measurements skipped from %s ( 254 

    original length: %s measurements).' % ( 255 

    measurements_lost[experiments.index(experiment)],  256 

    experiment,  257 

    original_lengths[experiments.index(experiment)])) 258 
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(2) CNN_model.py 

"""MODULES""" 1 

 2 

import keras 3 

from sklearn.model_selection import KFold 4 

import os 5 

import numpy as np 6 

import sys 7 

import pickle 8 

 9 

# If you are not storing all three files in the same  10 

directory, change the path below to include the 

location of CNN_model.py and CNN_globals.py. 

sys.path.append('.') 11 

import CNN_globals 12 

 13 

###################################################### 14 

 15 

"""MODEL""" 16 

 17 

def runModel(x): 18 

 19 

  # The dropout rate. 20 

  d = x[0] 21 

 22 

  # The number of filters in each of the 5 layers. 23 

  nfilter1 = int(x[1]) 24 

  nfilter2 = int(x[2]) 25 

  nfilter3 = int(x[3]) 26 

  nfilter4 = int(x[4]) 27 

  nfilter5 = int(x[5]) 28 

 29 

  # The pool size in each pooling layer. 30 

  psize1 = int(x[6]) 31 

  psize2 = int(x[7]) 32 

  psize3 = int(x[8]) 33 

  psize4 = int(x[9]) 34 

  psize5 = int(x[10]) 35 

 36 

  # We do not keep kernel and pool sizes independent. 37 

  ksize1 = 2 * psize1 + 1 38 

  ksize2 = 2 * psize2 + 1 39 

  ksize3 = 2 * psize3 + 1 40 
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  ksize4 = 2 * psize4 + 1 41 

  ksize5 = 2 * psize5 + 1 42 

 43 

  # Display only the relevant parameter values.  44 

Remember, the data cannot be downsampled to less than 

1 point.  

  if psize1 * psize2 * psize3 * psize4 > 8000: 45 

    print('dropout rate = ', d) 46 

    print('# filters = ',  47 

      nfilter1, nfilter2, nfilter3) 48 

    print('kernel sizes = ', ksize1, ksize2, ksize3) 49 

    print('pool sizes = ', psize1, psize2, psize3) 50 

    print('-----------------------------------------') 51 

 52 

  elif psize1 * psize2 * psize3 * psize4 < 8000 and  53 

psize1 * psize2 * psize3 * psize4 * psize5 > 8000: 

    print('dropout rate = ', d) 54 

    print('# filters = ',  55 

      nfilter1, nfilter2, nfilter3, nfilter4) 56 

    print('kernel sizes = ',  57 

      ksize1, ksize2, ksize3, ksize4) 58 

    print('pool sizes = ',  59 

      psize1, psize2, psize3, psize4) 60 

    print('-----------------------------------------') 61 

 62 

  elif psize1 * psize2 * psize3 * psize4 * psize5 <  63 

8000: 

    print('dropout rate = ', d) 64 

    print('# filters = ',  65 

      nfilter1, nfilter2, nfilter3, nfilter4,  66 

      nfilter5) 67 

    print('kernel sizes = ',  68 

      ksize1, ksize2, ksize3, ksize4, ksize5) 69 

    print('pool sizes = ',  70 

      psize1, psize2, psize3, psize4, psize5) 71 

    print('-----------------------------------------') 72 

 73 

  # Define the model. 74 

  model_input = keras.layers.Input( 75 

    shape=(CNN_globals.img_length,  76 

    CNN_globals.img_depth)) 77 

 78 

  conv_1 = keras.layers.Conv1D( 79 
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    nfilter1,  80 

    kernel_size=ksize1,  81 

    strides=1,  82 

    activation='relu',  83 

    padding='same',  84 

    name='conv_1')(model_input) 85 

  pool_1 = keras.layers.MaxPool1D( 86 

    pool_size=psize1,  87 

    name='pool_1')(conv_1) 88 

  dropout_1 = keras.layers.Dropout( 89 

    d,  90 

    name='dropout_1')(pool_1) 91 

 92 

  conv_2 = keras.layers.Conv1D( 93 

    nfilter2,  94 

    kernel_size=ksize2,  95 

    strides=1,  96 

    activation='relu',  97 

    padding='same',  98 

    name='conv_2')(dropout_1) 99 

  pool_2 = keras.layers.MaxPool1D( 100 

    pool_size=psize2,  101 

    name='pool_2')(conv_2) 102 

  dropout_2 = keras.layers.Dropout( 103 

    d,  104 

    name='dropout_2')(pool_2) 105 

 106 

  conv_3 = keras.layers.Conv1D( 107 

    nfilter3,  108 

    kernel_size=ksize3,  109 

    strides=1,  110 

    activation='relu',  111 

    padding='same',  112 

    name='conv_3')(dropout_2) 113 

  pool_3 = keras.layers.MaxPool1D( 114 

    pool_size=psize3,  115 

    name='pool_3')(conv_3) 116 

  dropout_3 = keras.layers.Dropout( 117 

    d,  118 

    name='dropout_3')(pool_3) 119 
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 120 

  # If the pool sizes in the early layers are large  121 

enough, the model may be truncated after 3 or 4 

layers. 

 122 

  if psize1 * psize2 * psize3 * psize4 < 8000: 123 

    conv_4 = keras.layers.Conv1D( 124 

      nfilter4, 125 

      kernel_size=ksize4,  126 

      strides=1,  127 

      activation='relu',  128 

      padding='same',  129 

      name='conv_4')(dropout_3) 130 

    pool_4 = keras.layers.MaxPool1D( 131 

      pool_size=psize4,  132 

      name='pool_4')(conv_4)  133 

    dropout_4 = keras.layers.Dropout( 134 

      d,  135 

      name='dropout_4')(pool_4) 136 

 137 

    if psize1 * psize2 * psize3 * psize4 * psize5 <  138 

8000: 

      conv_5 = keras.layers.Conv1D( 139 

        nfilter5,  140 

        kernel_size=ksize5,  141 

        strides=1,  142 

        activation='relu',  143 

        padding='same',  144 

        name='conv_4')(dropout_4) 145 

      pool_5 = keras.layers.MaxPool1D( 146 

        pool_size=psize5,  147 

        name='pool_5')(conv_5) 148 

      dropout_5 = keras.layers.Dropout( 149 

        d,  150 

        name='dropout_5')(pool_5) 151 

 152 

  pool_global = keras.layers.GlobalAveragePooling1D( 153 

    name='pool_global')(dropout_5) 154 

 155 

  output = keras.layers.Dense( 156 
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    1,  157 

    name='output')(pool_global) 158 

 159 

  model.compile( 160 

    loss='mean_squared_error',  161 

    optimizer='adam') 162 

 163 
  # Save the (random) initial weights to reset the  164 

model at the beginning of every fold. 

  initial_weights = model.get_weights() 165 

 166 

  print(model.summary()) 167 

 168 

  #################################################### 169 

 170 

  """K-FOLD CROSS-VALIDATION""" 171 

 172 

  # Each of the k folds divides the data into training  173 

and validation sets for that fold.  

  Kfold = KFold( 174 

    n_splits=CNN_globals.num_splits,  175 

    shuffle=False) 176 

 177 

  # Make a list to hold the training and validation  178 

losses for each fold. 

  kfolds_results = [] 179 

 180 

  # These will be split into two lists. 181 

  training_loss = [] 182 

  validation_loss = [] 183 

 184 

  # What is the number of the current fold? 185 

  fold_num = 0 186 

 187 

  #################################################### 188 

 189 

  """TRAIN AND EVALUATE THE MODEL""" 190 

 191 

  # Each channel in the training and validation sets  192 

are normalized by their respective standard 

deviations. This is done again for each fold. 

 193 

  if not CNN_globals.optimize: 194 
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    Y_actual = {} 195 

    Y_predict = {} 196 

 197 

  for train_set, val_set in kfold.split(CNN_globals.X,  198 

CNN_globals.Y): 

 199 

    # Increment the fold index. 200 

    fold_num += 1 201 

    print('Evaluating fold %s of %s.' % ( 202 

      fold_num, CNN_globals.num_splits)) 203 

 204 

    # Make an empty dictionary to receive the output  205 

later. 

    output = {} 206 

 207 

    # Separate out the training and validation sets  208 

for this fold. 

    X_train = CNN_globals.X[train_set] 209 

    X_val = CNN_globals.X[val_set] 210 

 211 

    Y_train = CNN_globals.Y[train_set] 212 

    Y_val = CNN_globals.Y[val_set] 213 

 214 

    X_train_norm = np.zeros_like(X_train) 215 

    X_val_norm = np.zeros_like(X_val) 216 

 217 

    # Divide each channel by the standard deviation of 218 

all values in that channel. Do this separately for 219 

training and validation sets in each fold. 220 

    for i in range(0,CNN_globals.img_depth): 221 

      X_train_temp = X_train[:,:,:,i] 222 

      X_val_temp = X_val[:,:,:,i] 223 

 224 

      X_train_norm[:,:,:,i] = X_train_temp / 225 

        np.std(X_train_temp) 226 

      X_val_norm[:,:,:,i] = X_val_temp / 227 

        np.std(X_val_temp) 228 

 229 

    X_train_norm = X_train_norm.reshape( 230 

      len(train_set) * CNN_globals.min_length,  231 

      CNN_globals.img_length,  232 

      CNN_globals.img_depth) 233 

    X_val_norm = X_val_norm.reshape( 234 

      len(val_set) * CNN_globals.min_length,  235 
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      CNN_globals.img_length,  236 

      CNN_globals.img_depth) 237 

 238 

    Y_train = Y_train.reshape( 239 

      len(train_set * CNN_globals.min_length) 240 

    Y_val = Y_val.reshape( 241 

      len(val_set * CNN_globals.min_length) 242 

 243 

    # Reset the initial weights at each fold. 244 

    model.set_weights(initial_weights) 245 

 246 

    # Each fold’s output comes from training and  247 

validation of that fold’s model. 

    output = model.fit( 248 

      X_train_norm,  249 

      Y_train, batch_size=CNN_globals.batch,  250 

      epochs=CNN_globals.num_epochs,  251 

      verbose=1,  252 

      shuffle=True,  253 

      validation_data=(X_val_norm, Y_val),  254 

      callbacks=CNN_globals.model_callbacks).history 255 

 256 

    # Add each model’s scores to its output. 257 

    output['train_scores'] = model.evaluate( 258 

      X_train_norm,  259 

      Y_train,  260 

      verbose=0) 261 

    output['val_scores'] = model.evaluate( 262 

      X_val_norm,  263 

      Y_val,  264 

      verbose=0) 265 

 266 

    # For quantifying the model’s performance, save  267 

the predicted and actual output values. 

    if not CNN_globals.optimize: 268 

      Y_predict[fold_num] = model.predict(X_val_norm) 269 

      Y_actual[fold_num] = Y_val 270 

 271 

    kfolds_results.append(output) 272 

 273 

    ################################################## 274 

 275 

    """SAVE MODEL AND WEIGHTS""" 276 

 277 
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    # Save each fold’s model. 278 

    if not CNN_globals.optimize: 279 

      model.save(CNN_globals.model_path % fold_num) 280 

      print('Saved trained model at %s.' % ( 281 

        CNN_globals.model_path)) 282 

 283 

  #################################################### 284 

 285 

  """SCORE THE MODEL""" 286 

 287 

  # Collect the training and validation loss from each  288 

fold. 

  for i in range(CNN_globals.num_splits): 289 

    training_loss.append( 290 

      kfolds_results[i]['train_scores']) 291 

    validation_loss.append( 292 

      kfolds_results[i]['val_scores']) 293 

 294 

  # Find their mean and standard deviation. 295 

  training_loss_mean = np.mean(training_loss) 296 

  training_loss_std = np.std(training_loss) 297 

 298 

  validation_loss_mean = np.mean(validation_loss) 299 

  validation_loss_std = np.std(validation_loss) 300 

 301 

  # Print the final results of the cross-validation. 302 

  print('training loss = %s' % training_loss) 303 

  print('validation loss = %s' % validation_loss) 304 

  print('best training loss = %s +/- %s' % ( 305 

    training_loss_mean, training_loss_std)) 306 

  print('number of folds = %s' % ( 307 

    CNN_globals.num_splits)) 308 

 309 

  #################################################### 310 

 311 

  """SAVE OPTIMIZATION HISTORY""" 312 

 313 

  # Save the hyperparameters from each iteration of  314 

the optimizer. 

  if CNN_globals.optimize: 315 

    CNN_globals.outputs['hyperparameters'].append( 316 

      [[d],  317 

      [nfilter1, nfilter2, nfilter3, nfilter4,  318 

      nfilter5],  319 
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      [ksize1, ksize2, ksize3, ksize4, ksize5], 320 

      [psize1, psize2, psize3, psize4, psize5]]) 321 

    CNN_globals.outputs['train_loss_mean'].append( 322 

      training_loss_mean) 323 

    CNN_globals.outputs['train_loss_std'].append( 324 

      training_loss_std) 325 

    CNN_globals.outputs['val_loss_mean'].append( 326 

      validation_loss_mean) 327 

    CNN_globals.outputs['val_loss_std'].append( 328 

      validation_loss_std) 329 

 330 

    # Save the optimization history every 5 iterations  331 

or when it has run through CNN_globals.num_calls 

iterations. 

    if len(CNN_globals.outputs['val_loss_mean']) % 5  332 

is 0 or len(CNN_globals.outputs['val_los_mean']) is 

CNN_globals.num_calls: 

      with open('optimization_history.pkl', 'wb') as  333 

f: 

        pickle.dump(CNN_globals.outputs, f) 334 

 335 

  #################################################### 336 

 337 

  """RETURN THE PARAMETER TO BE OPTIMIZED""" 338 

 339 

  if CNN_globals.optimize: 340 

    return(validation_loss_mean) 341 
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(3) CNN_globals.py 

# This file is empty. Global variables are written  1 

into it and read out by CNN_acoustic.py and 

CNN_model.py.



 

Approved for public release; distribution is unlimited. 

36 

List of Symbols, Abbreviations, and Acronyms 

1-D  1-dimensional 

2-D  2-dimensional 

ARL  US Army Research Laboratory 

CNN  convolutional neural network 

MNIST Modified National Institute of Standards and Technology 

RGB  red, green, and blue 
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