

 ARL-TR-8372 ● Jun 2018

 US Army Research Laboratory

Convolutional Neural Networks for 1-D
Many-Channel Data

by John S Hyatt, Eliseo Iglesias, and Michael Lee

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official

endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8372 ● Jun 2018

 US Army Research Laboratory

Convolutional Neural Networks for 1-D
Many-Channel Data

by John S Hyatt and Michael Lee
Computational and Information Sciences Directorate, ARL

Eliseo Iglesias
Vehicle Technology Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

June 2018

2. REPORT TYPE

Technical Report

3. DATES COVERED (From - To)

September 2017–May 2018

4. TITLE AND SUBTITLE

Convolutional Neural Networks for 1-D Many-Channel Data

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

John S Hyatt, Eliseo Iglesias, and Michael Lee

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory

ATTN: RDRL-CIH-C

Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8372

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Deep convolutional neural networks (CNNs) represent the state of the art in image recognition. The same properties that led to

their success in that domain allow them to be applied to superficially very different problems with minimal modification. In

this work, we have modified a simple CNN, originally written to classify digits in the MNIST database (28 × 28 pixels, 1

channel), for use on 1-D acoustic data taken from experiments focused on crack detection (8,000 data points, 72 channels).

Though the model’s predictive ability is limited to fitting the trend, its partial success suggests that the application of

convolutional networks to novel domains deserves further attention.

15. SUBJECT TERMS

machine learning, regression, ultrasound, material fatigue, nondestructive testing

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

44

19a. NAME OF RESPONSIBLE PERSON

Michael S Lee

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-5888
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.

iii

Contents

List of Figures iv

List of Tables iv

Acknowledgments v

1. Introduction 1

2. Methods: Adapting an Image Classifier to 1-D Signal Regression 2

2.1 Crack Detection via Acoustic Pitch/Catch Sensors 3

2.2 MNIST Classifier to Signal Regressor in Four Steps 5

2.3 Further Enhancements 7

2.3.1 Data Preprocessing 8

2.3.2 Dropout 9

2.3.3 k-fold Cross-validation 10

2.3.4 Hyperparameter Optimization 10

3. Results and Discussion 12

4. Conclusions 14

5. References 16

Appendix. Python Scripts for a 72-Channel Acoustic Signal Regressor 17

List of Symbols, Abbreviations, and Acronyms 36

Distribution List 37

Approved for public release; distribution is unlimited.

iv

List of Figures

Fig. 1 A schematic of the experimental setup is shown in panel a. Oscillatory
extensile stress is applied to the metal plate via clamps attached to its
wide ends. Panels b–d show a close-up of the crack propagation area
over the course of one experiment. The square markings are 1 mm on a
side. ... 4

Fig. 2 A schematic of differences between the original MNIST classifier and
our regressor. There may be more than three convolution/pooling layer
pairs in the models tested in this work. ... 7

Fig. 3 Representative acoustic measurements representing the lowest and
highest of the eight measured frequencies. The first row shows the
“pitch” signal, and the other rows show the “catch” signals received by
the sensors. Rows 2, 3, and 4 show paths 1–6, 2–5, and 3–4,
respectively. Blue lines represent the baseline taken t = 500 s into the
fatiguing process. Orange lines are from measurements taken just
before complete failure, t = 27,000 s. ... 8

Fig. 4 Predicted vs. actual t/tc for the 14 cross-validation data sets. The black
line has a slope of 1. .. 13

Fig. 5 Predicted vs. actual t/tc for the two test data sets. The black line has a
slope of 1. .. 14

List of Tables

Table 1 Hyperparameter ranges ... 11

Table 2 Optimized hyperparameter values .. 12

Approved for public release; distribution is unlimited.

v

Acknowledgments

We would like to thank M Coatney, A Hall, R Haynes, and R Valisetty for helpful

discussions. Computer time was provided by the US Army Research Laboratory’s

Department of Defense Supercomputing Resource Center.

Approved for public release; distribution is unlimited.

1

1. Introduction

Machine learning, in a nutshell, is the process by which an algorithm builds a model

based on a certain amount of example data and uses that model to make predictions,

given new data. In general, the specifics of the model are not set by the programmer.

Rather, the programmer provides an outline of the model’s architecture along with

example data. The training algorithm then iteratively searches within that

framework for the model that best describes the example data.

Of the many possible architectures, we focus on deep convolutional neural

networks (CNNs).1 Though there are many variations on the theme, standard CNNs

are generally built from the same basic components:

 Input layer – The input data, often a collection of images or time-series

(audio, video) data of fixed size/length over all input samples.

 Convolutional layer – A collection of filters, much smaller than the input

(e.g., 5 × 5 pixels, with the same depth as the input). Each of these filters is

convolved with every patch of the same size in the original image. The

output depth (i.e., number of output channels) is equal to the number of

filters.

 Pooling layer – Usually a 2 × 2 max pooling layer, in which a 2 × 2 patch

of pixels is represented by the highest-valued pixel in that patch. This

downsamples the data in the previous layer by a factor of 4. Convolutional

and pooling layers are usually alternated several times, with the output of

each pooling layer serving as the input of the next convolutional layer.

 Dense layer – After the final pooling layer, a dense layer gives the output

of the network (e.g., with one node for every class in a classifier). The

many-channel output of the convolutional and pooling layers must be

flattened (number of dimensions reduced to one) before being passed to the

dense layer.

Because the filters in a convolutional layer are applied identically to each patch of

input pixels, it can recognize features larger than one pixel and requires many fewer

parameters to describe than does a dense layer capable of processing the same input.

The filters of a trained network encode the features it has learned, and which it

looks for when presented with new data. Because the pooling layers repeatedly

downsample the data as it propagates through the network, each successive

convolutional layer looks at a larger fraction of the original input image. Moreover,

the output of each convolutional layer (an “image” of filter activations, with one

Approved for public release; distribution is unlimited.

2

channel per filter) is fed to the next-deeper layer as input. Thus, the filters in deeper

layers correspond to features that are not only larger, but more complex as well.

None of this implies that CNNs are restricted to 2-D inputs. In fact, while a black-

and-white image has only two dimensions (height and width, in pixels), a color

image has three dimensions: height, width, and depth (red, green, and blue [RGB]

values separated into three channels). Image analysis applications routinely

accommodate this higher dimensionality not by combining the color channels

during preprocessing, but by using convolutional filters whose dimensions match

those of the input layer.

Similarly, 1-D data can be modeled by a CNN with 1-D kernels, and the resulting

model can accommodate an arbitrary number of channels. The idea that CNNs can

be used to model time-series data is not new.2 However, despite the fact that signal

analysis is key to many applications in engineering, medicine, and other fields, we

know of very few occasions where CNNs have been adapted to this domain.3,4 For

the most part, they have been restricted to image analysis applications, although

they have been used in speech recognition and natural language processing as well.5

None of these applications combine data from a large number of channels.

Our primary goal is to illustrate the potential usefulness of CNNs in modeling 1-D,

many-channel data via application to a real-world problem. Despite using a very

simple CNN to regress quite noisy data, we show that it is possible to obtain

meaningful results. Additionally, while we assume basic familiarity with machine

learning concepts, we have deliberately shifted our focus away from the technical

details as much as possible (beyond what is necessary to explain our work). This is

because, as a secondary goal, we want to provide a working example of practical

CNN implementation, accessible to as broad an audience as possible. Machine

learning is a fast-growing field, and many useful tools are new or in a state of active

development; as a result, there are not many such examples that include these tools.

2. Methods: Adapting an Image Classifier to 1-D Signal
Regression

Somewhat counterintuitively, there is little fundamental difference between a CNN

designed to classify images and one that interprets 1-D signals. This is because, in

both cases, all the CNN “sees” is an array of numbers that represent either pixel

intensity at a particular coordinate, or signal amplitude as a function of time.

In this section, we discuss a 1-D signal regression problem, namely using acoustic

signals at discrete frequencies to monitor crack formation in a fatigued metal plate.

We then describe the fairly small alterations that must be made to a simple image

Approved for public release; distribution is unlimited.

3

classifier to produce a regression algorithm (“regressor”) suitable for examining

this problem. Finally, we combine several existing machine learning training and

optimization tools to develop the best possible signal regressor within the

constraints of the original simple classifier’s architecture.

2.1 Crack Detection via Acoustic Pitch/Catch Sensors

Condition-based maintenance is the concept that equipment maintenance is only

performed when necessary, rather than at fixed intervals. It is motivated by the

prospects of cost savings, increased efficiency, and decreased maintenance-related

downtime, but is not easy to implement. The chief reason for this is that every piece

of equipment must be monitored in real time to identify deteriorating components

to be replaced before they become dangerous.

We have received data from our colleagues in the Vehicle Technology Directorate

of the US Army Research Laboratory. The precise experimental setup is described

elsewhere.6 The goal of their project was to find a way to quantify the condition of

a fatigued metal plate by using acoustic measurements to answer questions like, “Is

the plate about to crack? Has it cracked? How much has the crack grown?”

In those experiments, aluminum plates are prepared as shown in Fig. 1. A hole is

drilled through the center of the plate, with a notch cut into one side to promote

crack formation. Three piezoelectric actuators are attached to one end of the plate,

and three sensors to the other end. After a baseline measurement, the plate is

fatigued (subjected to oscillatory extensile stress), with acoustic measurements

made every 500 s.

During the measurement intervals, the stress is relaxed, and acoustic signals,

emitted by the actuators, are recorded by the sensors after passing through the plate.

Because there are three actuators (labeled 1–3 in panel a of Fig. 1) and three sensors

(4–6), the acoustic signals follow nine unique paths, each including the summed

contributions of direct transmission and acoustic reflections. Only one actuator is

active at one time. Moreover, each actuator successively emits signals in eight

distinct frequencies, ranging from 150 to 500 kHz in increments of 50 kHz. The

sensors thus record 72 data sets (signal amplitude vs. time), each containing 8,000

data points (sampling frequency 48 MHz).

Approved for public release; distribution is unlimited.

4

Fig. 1 A schematic of the experimental setup is shown in panel a.6 Oscillatory extensile

stress is applied to the metal plate via clamps attached to its wide ends. Panels b–d show a

close-up of the crack propagation area over the course of one experiment. The square

markings are 1 mm on a side.

Changes in the plate’s microstructure due to ongoing fatigue are much too small to

affect the acoustic signals, which initially remain unchanged from one

measurement to the next. Eventually, however, a crack forms at the notch and

begins to propagate through the shaded region marked “Crack Propagation Area”

in panel a of Fig. 1.

Panels b, c, and d of Fig. 1 show a close-up of this region, photographed over the

course of the experiment. In panel b, the experiment has just begun and there is no

damage to the plate. Panel c shows the plate after a fatigue-induced crack has

propagated about halfway to the edge of the plate, and panel d shows the plate at

the end of the experiment, after it has cracked all the way through.

The crack propagation area cuts directly through only three of the linear paths:

1–4, 1–5, and 2–4. However, the crack’s presence affects the signals received along

every path, since each signal incorporates reflections from the boundaries of the

plate, and the growing crack changes those boundaries. The problem thus involves

obtaining a single measure of “condition” from 72 channels of 1-D data. Because

Approved for public release; distribution is unlimited.

5

the acoustic measurements are not sensitive to changes in the material before a

crack forms, we chose “time since a crack has formed” as our condition indicator,

since we know the crack will continue to grow with time. We defined tc as the time

a crack is first visible (by comparing photographs taken at successive measurements

with the one taken at the beginning of the experiment), and our condition indicator

as t/tc. When t/tc < 1, no crack has visibly formed. Larger t/tc corresponds to a longer

crack and therefore more fatigue damage.

On the surface, this type of regression problem has little in common with image

classification. A regression algorithm has only one output (in this case, the

condition indicator of the plate), which is generally a continuous value. A classifier,

on the other hand, sorts input data into one of several discrete categories.

However, the entire architectural difference between two CNNs—one a regressor,

the other a classifier—lies in the final layer of the network, specifically the output

shape and the activation function, if any. Similarly, the entire architectural

difference between CNNs that accept input data sets with different dimensionalities

is contained in the shape of the convolutional filters and pooling layers.

Concerning the data itself, the 1-D, 72-channel acoustic data described above are

distinguished from 2-D, 3-channel RGB images only by the shape of the arrays

needed to contain them. In the same way that multispectral imaging combines light

intensity from multiple spectral bands, this data combines the acoustic intensity

from multiple frequencies of soundwaves. Taking all of this into account, it makes

sense to look for a CNN that can regress the condition indicator of the metal plate

at some time from the acoustic signals measured at that time.

In the remainder of this section we discuss the original Modified National Institute

of Standards and Technology (MNIST) classifier and the ways it is changed to

obtain our condition regressor.

2.2 MNIST Classifier to Signal Regressor in Four Steps

The MNIST database is a collection of 70,000 handwritten digits (the numbers

0–9), formatted as 28 × 28 pixel grayscale images. These are divided into a training

set (60,000 images) and a test set (10,000 images). CNNs gained widespread

recognition after one was used to correctly sort these digits into the correct

categories7 for use by banks and the United States Postal Service. By many

standards, the problem is quite forgiving, and partly for this reason it remains a

popular first test case for new classifiers (and new CNN practitioners).

An MNIST classifier represents one of the most basic CNNs. We want to keep

things as simple as possible and highlight the similarities between a 2-D image

Approved for public release; distribution is unlimited.

6

classifier and our 1-D signal regressor. In line with those goals, we begin with an

MNIST classifier and convert it to a regressor in four steps.

The initial classifier has three 2-D convolutional layers with 8, 16, and 24 kernels,

respectively. Each kernel is 3 × 3 pixels (stride 1), and each convolutional layer is

followed by a max pooling layer with pool size 2 × 2. The final two layers are a

global average pooling layer and a dense layer with 10 nodes, which represent the

10 possible output categories.

An MNIST classifier can reach high validation accuracy with fewer layers and/or

kernels, but takes more epochs to train. This architecture represents a good balance

between simplicity and training speed (this model trains to less than 1% validation

error in fewer than 20 epochs). Similarly, the kernel and pool sizes in each layer do

not have to be fixed at 3 × 3 and 2 × 2, respectively, but those values, particularly

for the pool size, are customary and work well.

To convert this simple image classifier to a regressor suitable for our problem, we

only needed to make four changes, illustrated in Fig. 2:

 Change the input shape – The MNIST images are 28 × 28 pixels and only

have one channel, so the input data for the classifier has the shape

(28,28,1). Each data set for our signal regressor has 8,000 time steps

and (9 paths) × (8 frequencies) = 72 channels, so the input data for the

regressor has the shape (8000,72).

 Change the dimensionality of the convolution and pooling layers –

Keras has separately defined layers for 1-D and 2-D inputs (because the

convolution and pooling layers treat each channel separately, they are not

counted as “dimensions” for this purpose). Simply change the Conv2D,

MaxPooling2D, and GlobalAveragePooling2D layers to

Conv1D, MaxPooling1D, and GlobalAveragePooling1D.

 Change the final dense layer – The classifier’s final dense layer has 10

nodes and a softmax activation function, 8 which ensures that the sum of the

10 values produced by a given input image adds up to 1, each of the 10

giving the probability that the input corresponds to a particular digit. Our

signal regressor has only one output, namely the condition indicator (the

time since a crack has formed); therefore, it needs only one node. Because

the condition indicator does not have an upper bound, we also remove the

softmax activation function; thus, we change the final layer from

Dense(10, activation='softmax') to Dense(1).

Approved for public release; distribution is unlimited.

7

 Change the loss function – The loss function to be minimized during

training represents the “distance” between the values outputted by our

model, given some input data, and the “true” values. In the case of the

classifier, this is the cross entropy between the probability distribution

predicted by the classifier, and the true probability distribution given by

each image’s label. Our regressor uses mean squared error, so we changed

the loss function from loss='categorical_crossentropy' to

loss='mean_squared_error'.

Fig. 2 A schematic of differences between the original MNIST classifier and our regressor.

There may be more than three convolution/pooling layer pairs in the models tested in this

work.

2.3 Further Enhancements

With these changes, the model is now capable of receiving the acoustic signals as

input and producing the right type of the output. However, we can make the model

somewhat more flexible and robust by adding several additional features, described

below. The code for our final regressor, including these features, is shared in the

Appendix.

Approved for public release; distribution is unlimited.

8

2.3.1 Data Preprocessing

The acoustic data (actually voltage generated by the piezoelectric sensor in

response to acoustic oscillations) were taken at snapshots every 500 s during the

fatiguing process. Each data set contains 72 individual measurements (one for each

combination of nine paths and eight frequencies), and each of those contains 8,000

data points.

Figure 3 shows representative raw measurement data for several frequencies, paths,

and measurement times. The “pitch” signal, shown in black and echoed in the data,

dominates the early signal, even when the direct path between actuator and sensor

is broken by a discontinuity in the metal. However, as the figure shows, the later

parts of the signal vary substantially for a given frequency both across different

paths and over time within the same path.

Fig. 3 Representative acoustic measurements representing the lowest and highest of the

eight measured frequencies. The first row shows the “pitch” signal, and the other rows show

the “catch” signals received by the sensors. Rows 2, 3, and 4 show paths 1–6, 2–5, and 3–4,

respectively. Blue lines represent the baseline taken t = 500 s into the fatiguing process. Orange

lines are from measurements taken just before complete failure, t = 27,000 s.

Particularly for the lower frequencies, the measurement window is not long enough

to capture a significant portion of the true response, which is cut off before it has

fully decayed. Unfortunately, this likely means any model we develop will not

benefit from training on any information contained in this low-frequency, long-time

region.

Also, note the different y-scales used for the two frequencies. Because the

amplitude of the signal varies, we rescaled the data as part of a preprocessing step.

Each channel is normalized by the standard deviation of that channel across all

measurements, including those from different experiments. It should be noted that

Approved for public release; distribution is unlimited.

9

we normalized the training and validation data sets separately. The data is

oscillatory and therefore already very close to zero-mean.

Furthermore, because experiments differed slightly in the amount of time it took

the plate to crack completely, some experiments had more data sets than others.

Our Python code relies on the data being collected into arrays. Because the

dimensions of an array must be internally consistent, we randomly removed points

from the longer experiments until all had the same number. Matching the number

of trained samples per experiment also balances the data to ensure some

experiments are not more impactful than others.

Finally, the experiments also varied in the amount of time before the plate began to

crack. Since the acoustic signal is not sensitive to changes in the plate

microstructure before a crack forms, the data has no built-in way to account for this

variability. In an attempt to do so, we scaled the experiment duration, t, by the

“crack time,” tc, the time at which a crack became visible. We were provided with

photographs taken of the Crack Propagation Area at each measurement interval for

this purpose. As shown in Section 3, scaling based on the photographs was not

perfectly accurate in every case, but close enough to be helpful.

2.3.2 Dropout

Generally, the performance of a CNN increases with the depth and complexity of

its architecture, as it can then learn more complicated relationships between its

input and output.9 An important caveat to this is that a more complex model is also

more likely to overfit the data it is trained on, and not generalize well to new data.

A training procedure called “dropout” is one way to resolve this dilemma, allowing

the network to contain a high degree of complexity while avoiding overfitting.

The concept of dropout was originally developed to address this problem in dense

neural networks (not CNNs).10 The idea is that, during training, each node has a

probability d of being dropped, or temporarily removed, from the network for the

current epoch. Then, in the final trained model, all nodes are included and their

weights are scaled by d. The result is an approximate average of the predicted

outputs of many networks, each with a different architecture, all sharing the same

weights. This both forces the model to incorporate redundancy, and guards against

overfitting.

Note that while dropout can be used while training a CNN (individual filters have

probability d of being dropped out in a given epoch), convolutional layers already

have fewer parameters than an equivalent dense layer by design. (This is actually

the whole point of convolutional layers in the first place.) This means that dropout

has less of an effect when applied to a convolutional layer, because there are fewer

Approved for public release; distribution is unlimited.

10

parameters to be dropped, but it still has a net positive effect on the CNN’s

performance.10

In our model, we incorporate dropout after each convolution/max pooling layer

pair, using a single value of d across all layers.

2.3.3 k-fold Cross-validation

By default, the MNIST data set is divided into a training set and a smaller validation

set. During every training epoch, the model is fed the training data and allowed to

update its weights, learning to fit the training data more accurately as it goes.

However, validating the model’s performance on an independent data set—one not

used for training—is critical, and is performed at the end of every epoch to ensure

that the model can generalize to new data. (This validation set is separate from the

test data set presented to the model after development is complete.)

Having separate training and validation sets keeps things simple. However, there

are many more sophisticated alternatives,11 including k-fold cross-validation, which

is the method we use.

In k-fold cross-validation, the training and validation data are not kept separate from

the beginning. Instead, the combined data is separated into k equal subsets, or

“folds.” Rather than training and validating only one model, we then train k separate

models. For each such model, one of the k folds is reserved as the validation data

set, and the others are combined into one training set. The final validation loss of

the model, after training, is the average of the validation losses of all k separately

trained and validated models. Not only does this give a better estimation of the

model’s true performance, the standard deviation of this average validation loss

provides a measure of the model’s stability.

When the k-fold cross-validation is complete, if performance is satisfactory, the

model is retrained on all the data (a less computationally expensive task) to give

the final model.

2.3.4 Hyperparameter Optimization

We chose the model hyperparameters (another name for the model architecture) for

our MNIST classifier somewhat arbitrarily. If we had specified a different number

of layers or kernels per layer, or different kernel or pool sizes, the classifier would

likely have performed well anyway. However, some sets of hyperparameters are

better than others, depending on the details of a particular problem. In order to find

good hyperparameters, we included an optimization function using the

Approved for public release; distribution is unlimited.

11

gp_minimize function from Python’s Scikit-Optimize library, which allows

computationally costly functions to be minimized efficiently.

Rather than being set from the beginning, some hyperparameters (dropout rate, d;

the number of kernels per layer, ni; and the pool size per layer, pi) are given an

allowed range, while maintaining the basic architecture of the original MNIST

classifier, as shown in Table 1. To decrease the number of hyperparameters to

optimize over, we set the kernel size of each convolution layer equal to 1 plus twice

the pool size of the corresponding max pooling layer. This ensures that the data is

downsampled on a scale smaller than the size of the convolutional filters used in

the previous layer.

Table 1 Hyperparameter ranges

Hyperparameter [min, max]

dropout rate, d [0, 0.25]

kernels in conv. layer i, ni [8, 64]

pool size after conv. layer i, pi [2, 16]

Additionally, downsampling limits the sizes of the pools in the model, such that

their product must be less than the original number of data points (8,000). If the

chosen pool sizes violate this rule, the deepest convolution/max pooling layer pair

is removed from the model, repeating until the rule is satisfied. We allow the

number of convolution/max pooling layer pairs to vary between 3 and 5 as a result.

The gp_minimize function chooses specific hyperparameter values within the

allowed ranges and fully trains a k-fold cross-validated model for each of them. The

hyperparameters of the first few models are chosen randomly. The gp_minimize

function chooses subsequent hyperparameter sets by approximating the loss

function of the CNN as a Gaussian process, allowing it to estimate the change in

hyperparameters most likely to decrease the loss function. At the end of the

optimization process, the models that had the lowest average validation loss are

trained on all the data to give the final model. When selecting the best model, we

check that the standard deviation of the validation losses obtained across each fold

for that model is neither unusually large compared to the standard deviation of other

tested models, nor larger than the average.

Approved for public release; distribution is unlimited.

12

3. Results and Discussion

After optimization, we find that the best model, subject to these constraints, has the

hyperparameter values displayed in Table 2.

Table 2 Optimized hyperparameter values

Hyperparameter Value

d 0.04

n1 8

n2 35

n3 58

n4 12

n5 2

p1 7

p2 8

p3 3

p4 13

p5 2

This network, trained on k = 14 folds (one for each data set), gives a validation loss

(mean squared error between predicted and measured t/tc) of 0.6 ± 0.5, indicating

that the model was not able to generalize very well from the training data. This is

confirmed by Fig. 4, where we plot the predicted t/tc versus the t/tc obtained from

the measurement timestamps. There are 14 plots, one for each cross-validation fold.

Approved for public release; distribution is unlimited.

13

Fig. 4 Predicted vs. actual t/tc for the 14 cross-validation data sets. The black line has a

slope of 1.

As shown in Fig. 4, however, the model does pick out the most important features

of the data. To begin with, every measurement begins with a flat plateau for

0 < t/tc < 1, indicating that the model cannot differentiate between acoustic signals

in the absence of a crack. However, at about t/tc = 1, the predicted value begins to

change.

For t/tc < 1, the predicted t/tc is not consistent between experiments, with average

and standard deviation 0.9 and 0.4, respectively. Further, the line of best fit to the

points with t/tc > 1 has a slope of only 0.7. (If the model performed perfectly, every

point in Fig. 4 would lie on a line with slope 1 and intercept 0.) Moreover, the

predicted values for several data sets oscillate rather than increase monotonically.

Accurately predicting the “time since a crack has formed” is not possible in this

study.

The same points hold true for the test data. We held back two data sets (i.e., true

test data) separate from the training/validation data upon which we optimized and

trained. After optimizing and cross-validating, we retrained the optimized network

on the entire cross-validation set, then tested that model on the held-back data sets.

Figure 5 shows the predicted t/tc versus the t/tc obtained from the measurement

timestamps.

Both test sets are flat for an initial period before a crack forms then increase,

although only one does so monotonically, and neither follows the line with slope 1.

Approved for public release; distribution is unlimited.

14

Fig. 5 Predicted vs. actual t/tc for the two test data sets. The black line has a slope of 1.

However, if the only desired property of the model is to determine whether a crack

has formed or not, it actually performs fairly well. The predicted value of

t/tc at t/tc = 0, whatever that predicted value is, remains constant until a crack forms.

At this point it changes, usually increasing by a factor of about 2 (varying from

experiment to experiment) as the crack grows. One baseline measurement, taken

before the crack forms, provides enough information in most cases to determine

with reasonable confidence whether a crack has formed at some future time, even

without any prior knowledge as to the value of tc for that experiment. The baseline

can even be taken after the fatiguing process is mostly complete. Perhaps this

problem would be better recast as a classifier, with the two possible states “cracked”

and “not cracked.”

4. Conclusions

We have broken down the surprising similarity between a simple image classifier

and a signal regressor in a way that emphasizes the universality of the problems to

which a CNN can be applied. Specifically, though, the input shapes are, on the

surface, very different (2-D, 1-channel images vs. 1-D, 72-channel data sets), both

are ultimately just arrays. The CNN does not care about the shape of the array it

receives.

Approved for public release; distribution is unlimited.

15

Despite our very simple approach to the problem, we obtained a model that, in

qualitative terms, performed surprisingly well. Given acoustic data from a baseline

measurement performed on a metal plate during fatigue experiments, the model can

determine whether a crack has formed, although it cannot reliably quantify the

extent of the crack or the remaining time to complete failure of the plate.

Nevertheless, we regard the outcome as at least a qualified success.

Perhaps more importantly, we demonstrate that a CNN can be developed to

approach problems vastly different from image recognition, which is by far the

most common application. Said another way, a CNN cannot tell whether a given

data set represents an image or not, and there is no reason not to use CNNs to model

phenomena besides images.

Finally, in the Appendix, we have provided an example CNN implementation in

Python using several powerful tools developed over the years by the deep learning

community, but not often collected together in one place. We hope that fellow users

of machine learning will find these helpful as they look for ways to apply CNNs to

their own work.

Approved for public release; distribution is unlimited.

16

5. References

1. Goodfellow I, Benjio Y, Courville A. Deep Learning. Cambridge (MA): MIT

Press; 2016 [accessed 2018 Mar 15]. https://www.deeplearningbook.org.

2. LeCun Y, Yoshua B. Convolutional networks for images, speech, and time-

series. In: Arbib MA, editor. The handbook of brain theory and neural networks.

Cambridge (MA): MIT Press; 1995. p. 255–258.

3. Malek S, Melgani F, Bazi Y. One-dimensional convolutional neural networks

for spectroscopic signal regression. J. Chemom. 2018;32(5):e2977.

4. O’Shea T, Roy T, Clancy TC. Over the air deep learning based radio signal

classification. IEEE J. Sel. Topics Signal Process. 2018 Feb;12(1):168−179.

5. van den Oord et al. WaveNet: a generative model for raw audio.

arXiv:1609.03499.

6. Iglesias EE, Haynes RA, Shiao C. Inspection correlation study of ultrasonic-

based in situ structural health monitoring monthly report for December 2014–

January 2015. Aberdeen Proving Ground (MD): Army Research Laboratory

(US); 2015 May. Report No.: ARL-TN-0671.

7. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to

document recognition. Proc. IEEE. 1998 Nov;86(11):2278–2324.

8. Bishop CM. Pattern recognition and machine learning. New York (NY):

Springer; 2006. (Information Science and Statistics).

9. Raghu M, Poole B, Kleinberg J, Ganguli S, Sohl-Dickstein J. On the expressive

power of deep neural networks. In: Precup D and Teh YW, editors. ICML 2017.

Proceedings of the 34th International Conference on Machine Learning; 2017

Aug 6–11; Sydney, NSW, Australia. Brookline (MA): Proceedings of Machine

Learning Research; c2017. p. 2847–2854.

10. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout:

a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.

2014;15:1929–1958.

11. Arlot S, Celisse A. A survey of cross-validation procedures for model selection.

Stat. Surv. 2010;4:40–79.

Approved for public release; distribution is unlimited.

17

Appendix. Python Scripts for a 72-Channel Acoustic Signal
Regressor

Approved for public release; distribution is unlimited.

18

The signal regressor shown below is written in Python and uses the Keras machine

learning library. More information about Keras, including documentation and

required libraries, can be found at https://keras.io. We use TensorFlow as the

backend in the following code.

The code incorporates the Scikit-Optimize (skopt) module. More information about

skopt, including documentation and required libraries, can be found at

https://scikit-optimize.github.io.

Additionally, for clarity and ease of use, it is broken into three parts: (1) a top-level

script, CNN_acoustic.py; (2) a wrapper for the model, CNN_model.py; and

(3) an empty file, CNN_globals.py, used to shuttle global variables back and

forth between the first two.

(1) CNN_acoustic.py

"""MODULES""" 1

 2

import numpy as np 3

import random as rn 4

import os 5

import sys 6

import keras 7

import pickle 8

from skopt import gp_minimize 9

 10

If you are not storing all three scripts in the same 11

directory, change the path below to include the

location of CNN_model.py and CNN_globals.py.

sys.path.append('.') 12

import CNN_model 13

import CNN_globals 14

 15

16

 17

"""PARAMETERS""" 18

 19

if optimize=True, run skopt to optimize the 20

hyperparameters. (Do this first.)

if optimize=False, train the model on specified 21

hyperparameters. (Do this second.)

optimize = True 22

CNN_globals.optimize = optimize 23

 24

https://keras.io/
https://scikit-optimize.github.io/

Approved for public release; distribution is unlimited.

19

if optimize=False, this is where you input the 25

hyperparameters on which to train your final model.

if not optimize: 26

 # The dropout rate. 27

 d = 0 28

 29

 # The number of filters in each of the 5 layers. 30

 nfilter1 = 8 31

 nfilter2 = 8 32

 nfilter3 = 8 33

 nfilter4 = 8 34

 nfilter5 = 8 35

 36

 # The pool size in each pooling layers. 37

 psize1 = 2 38

 psize2 = 2 39

 psize3 = 2 40

 psize4 = 2 41

 psize5 = 2 42

 43

 # All the parameters go into a list. 44

 x = [d, 45

 nfilter1, nfilter2, nfilter3, nfilter4, nfilter5, 46

 psize1, psize2, psize3, psize4, psize5] 47

 48

if optimize=False, the model must be saved after 49

training and validation on each fold.

if not optimize: 50

 save_dir = 'saved_acoustic_models' 51

 model_name = 'acoustic_model_k%s.h5' 52

 model_path = os.path.join(save_dir, model_name) 53

 54

 CNN_globals.save_dir = save_dir 55

 CNN_globals.model_name = model_name 56

 CNN_globals.model_path = model_path 57
 58

You can use previous optimizations for the same 59

problem to inform the current iteration. This means 60

you can run multiple parallel optimizations and use 61

this feature to combine them all afterwards. 62

if import_prev_results=True, you are using the 63

results 64

of previous optimizations to inform the optimizer.

Approved for public release; distribution is unlimited.

20

if import_prev_results=False, you are not. 65

import_prev_result = False 66

 67

if import_prev_results: 68

 # The paths to the res objects you got from the 69

previous optimizations go in the following list.

(These are pickled.)

 prev_optims = [] 70

 71

How many folds are you going to cross-validate over? 72

num_splits = 2 73

CNN_globals.num_splits = num_splits 74

 75

How many epochs are you going to train over? 76

num_epochs = 40 77

CNN_globals.num_epochs = num_epochs 78

 79

Early stopping keeps the model from running for 80

longer than it needs to and helps avoid overfitting.

early_stop = keras.callbacks.EarlyStopping(81

 monitor='val_loss', 82

 min_delta=0, 83

 patience=20, 84

 verbose=0, 85

 mode='auto') 86
callbacks_list = [early_stop] 87

CNN_globals.callbacks_list = callbacks_list 88

 89

experiments.pkl is a pickled list of paths, each one 90

pointed at the directory containing the data from one

experiment. Each directory contains 2 numpy files, one

each for the data and labels, named X.npy and Y.npy,

respectively.

experiments = pickle.load(open(91

 '/some_directory/experiments.pkl', rb')) 92

 93

Number of random starts during the optimization. 94

if optimize: 95

 num_rands = 1 96

 97

Number of times to run the optimizer (including the 98

random starts).

if optimize: 99

Approved for public release; distribution is unlimited.

21

 num_calls = 2 100

 CNN_globals.num_calls = num_calls 101

 102

Number of files per batch during training. 103

batch = 16 104

CNN_globals.batch = batch 105

 106

Each measurement is 8,000 points long and 72 107

channels deep.

img_length = 8000 108

img_depth = 72 109

 110

CNN_globals.img_length = img_length 111

CNN_globals.img_depth = img_depth 112

 113

The outputs of the optimizer will be stored in the 114

following dictionary:

outputs = { 115

 'hyperparameters':[], 116

 'train_loss_mean':[], 117

 'train_loss_std':[], 118

 'val_loss_mean':[], 119

 'val_loss_std':[]} 120

CNN_globals.outputs = outputs 121

 122

123

 124

"""IMPORT PREVIOUS RESULTS""" 125

if import_prev_results: 126

 127

 # The previous results will go in these empty lists: 128

 x_0 = [] 129

 y_0 = [] 130

 131

 # Locate and unpickle the res objects from the 132

previous optimizations:

 for prev in prev_optims: 133

 opt_hist = pickle.load(open(prev, 'rb')) 134

 135

 # Load the hyperparameters and validation loss 136

values into x_0 and y_0, respectively.

 for i in range(len(opt_hist['hyperparameters'])): 137

 temp_list =[138

 [opt_hist['hyperparameters'][i][0]], 139

Approved for public release; distribution is unlimited.

22

 opt_hist['hyperparameters'][i][1], 140

 opt_hist['hyperparameters'][i][2]] 141

 temp_list = [142

 val for sublist in temp_list for val in 143

 sublist]

 x_0.append(temp_list) 144

 145

 y_0.append(opt_hist['val_loss_mean']) 146

 147

else: 148

 x_0 = None 149

 y_0 = None 150

 151

152

 153

"""LOAD AND PREPROCESS EXPERIMENTAL DATA""" 154

 155

Empty lists to accept the data. 156

X_loaded = [] 157

Y_loaded = [] 158

 159

Load the data. All of the experiment names in 160

experiments.pkl correspond to one directory that

contains the data. The data is separated into 2 files,

X_ExperimentNumber.npy and Y_ExperimentNumber.npy.

We unfortunately have not been given permission to 161

release the actual data.

for experiment in experiments: 162

 X_loaded.append(np.load(experiment + 'X.npy')) 163

 Y_loaded.append(np.load(experiment + 'Y.npy')) 164

 165

Some experiments lasted slightly less time than 166

others. Because the data all has to be in array format

(due to the way KFold works) we have to truncate the

longer experiments. Basically, data points are removed

randomly from the longer experiments until all have

the same length as the shortest experiment.

An alternative would be to copy random points from 167

the shorter experiments, until all are the same length

as the longest experiment.

 168

What were the original lengths of each experiment? 169

original_lengths = [] 170

 171

Approved for public release; distribution is unlimited.

23

for i in range(len(experiments)): 172

 original_lengths.append(len(Y_loaded[i])) 173

 174

What is the length of the shortest experiment? 175

min_length = min(original_lengths) 176

CNN_globals.min_length = min_length 177

 178

Randomly delete measurements from the longer 179

experiments until all have the same length.

for i in range(len(experiments)): 180

 while len(X_loaded[i]) > min_length: 181

 rand_temp = rn.randint(0, len(X_loaded[i]) – 1) 182

 X_loaded[i] = np.delete(X_loaded[i], rand_temp, 0) 183

 Y_loaded[i] = np.delete(Y_loaded[i], rand_temp, 0) 184

 185

How many measurements were lost from each experiment 186

when X and Y were converted to arrays?

measurements_lost = [] 187

for experiment in experiments: 188

 measurements_lost.append(original_lengths[189

 experiments.index(experiment)] – min_length) 190

 191

Now that they’re all the same length, convert them 192

into arrays.

X_loaded = np.asarray(X_loaded) 193

Y_loaded = np.asarray(Y_loaded) 194

 195

Shuffle the experiments. 196

shuffler = np.arange(len(X_loaded)) 197

np.random.shuffle(shuffler) 198

 199

These are the final X and Y that will be used to 200

train and cross-validate the model.

X = X_loaded[shuffler] 201

Y = Y_loaded[shuffler] 202

 203

CNN_globals.X = X 204

CNN_globals.Y = Y 205

 206

207

 208

"""RUN THE MODEL""" 209

 210

if optimize=True, use gp_minimize to find the 211

Approved for public release; distribution is unlimited.

24

optimal hyperparameters.

if optimize=False, train the model using the 212

optimized hyperparameters.

 213

if optimize: 214

 215

 # Set the upper and lower bounds for the 216

hyperparameters to be optimized.

 d_min = 0 217

 d_max = 0.25 218

 nfilter_min = 8 219

 nfilter_max = 64 220

 psize_min = 2 221

 psize_max = 16 222

 223

 res = gp_minimize(CNN_model.runModel, 224

 [(d_min, d_max), # d 225

 (nfilter_min, nfilter_max), # nfilter1 226

 (nfilter_min, nfilter_max), # nfilter2 227

 (nfilter_min, nfilter_max), # nfilter3 228

 (nfilter_min, nfilter_max), # nfilter4 229

 (nfilter_min, nfilter_max), # nfilter5 230

 (psize_min, psize_max), # psize1 231

 (psize_min, psize_max), # psize2 232

 (psize_min, psize_max), # psize3 233

 (psize_min, psize_max), # psize4 234

 (psize_min, psize_max), # psize5 235

], 236

 n_calls=num_calls, 237

 n_restarts_optimizer=1, 238

verbose=True, 239

x0=x_0, 240

y0=y_0, 241

n_random_starts=num_rands) 242

 243

 print(res.x) 244

 print(res.fun) 245

 246

 with open('res.pkl', 'wb') as f: 247

 pickle.dump(res, f) 248

 249

else: 250

 CNN_model.runModel(x) 251

 252

Approved for public release; distribution is unlimited.

25

for experiment in experiments: 253

 print('%s measurements skipped from %s (254

 original length: %s measurements).' % (255

 measurements_lost[experiments.index(experiment)], 256

 experiment, 257

 original_lengths[experiments.index(experiment)])) 258

Approved for public release; distribution is unlimited.

26

(2) CNN_model.py

"""MODULES""" 1

 2

import keras 3

from sklearn.model_selection import KFold 4

import os 5

import numpy as np 6

import sys 7

import pickle 8

 9

If you are not storing all three files in the same 10

directory, change the path below to include the

location of CNN_model.py and CNN_globals.py.

sys.path.append('.') 11

import CNN_globals 12

 13

14

 15

"""MODEL""" 16

 17

def runModel(x): 18

 19

 # The dropout rate. 20

 d = x[0] 21

 22

 # The number of filters in each of the 5 layers. 23

 nfilter1 = int(x[1]) 24

 nfilter2 = int(x[2]) 25

 nfilter3 = int(x[3]) 26

 nfilter4 = int(x[4]) 27

 nfilter5 = int(x[5]) 28

 29

 # The pool size in each pooling layer. 30

 psize1 = int(x[6]) 31

 psize2 = int(x[7]) 32

 psize3 = int(x[8]) 33

 psize4 = int(x[9]) 34

 psize5 = int(x[10]) 35

 36

 # We do not keep kernel and pool sizes independent. 37

 ksize1 = 2 * psize1 + 1 38

 ksize2 = 2 * psize2 + 1 39

 ksize3 = 2 * psize3 + 1 40

Approved for public release; distribution is unlimited.

27

 ksize4 = 2 * psize4 + 1 41

 ksize5 = 2 * psize5 + 1 42

 43

 # Display only the relevant parameter values. 44

Remember, the data cannot be downsampled to less than

1 point.

 if psize1 * psize2 * psize3 * psize4 > 8000: 45

 print('dropout rate = ', d) 46

 print('# filters = ', 47

 nfilter1, nfilter2, nfilter3) 48

 print('kernel sizes = ', ksize1, ksize2, ksize3) 49

 print('pool sizes = ', psize1, psize2, psize3) 50

 print('---') 51

 52

 elif psize1 * psize2 * psize3 * psize4 < 8000 and 53

psize1 * psize2 * psize3 * psize4 * psize5 > 8000:

 print('dropout rate = ', d) 54

 print('# filters = ', 55

 nfilter1, nfilter2, nfilter3, nfilter4) 56

 print('kernel sizes = ', 57

 ksize1, ksize2, ksize3, ksize4) 58

 print('pool sizes = ', 59

 psize1, psize2, psize3, psize4) 60

 print('---') 61

 62

 elif psize1 * psize2 * psize3 * psize4 * psize5 < 63

8000:

 print('dropout rate = ', d) 64

 print('# filters = ', 65

 nfilter1, nfilter2, nfilter3, nfilter4, 66

 nfilter5) 67

 print('kernel sizes = ', 68

 ksize1, ksize2, ksize3, ksize4, ksize5) 69

 print('pool sizes = ', 70

 psize1, psize2, psize3, psize4, psize5) 71

 print('---') 72

 73

 # Define the model. 74

 model_input = keras.layers.Input(75

 shape=(CNN_globals.img_length, 76

 CNN_globals.img_depth)) 77

 78

 conv_1 = keras.layers.Conv1D(79

Approved for public release; distribution is unlimited.

28

 nfilter1, 80

 kernel_size=ksize1, 81

 strides=1, 82

 activation='relu', 83

 padding='same', 84

 name='conv_1')(model_input) 85

 pool_1 = keras.layers.MaxPool1D(86

 pool_size=psize1, 87

 name='pool_1')(conv_1) 88

 dropout_1 = keras.layers.Dropout(89

 d, 90

 name='dropout_1')(pool_1) 91

 92

 conv_2 = keras.layers.Conv1D(93

 nfilter2, 94

 kernel_size=ksize2, 95

 strides=1, 96

 activation='relu', 97

 padding='same', 98

 name='conv_2')(dropout_1) 99

 pool_2 = keras.layers.MaxPool1D(100

 pool_size=psize2, 101

 name='pool_2')(conv_2) 102

 dropout_2 = keras.layers.Dropout(103

 d, 104

 name='dropout_2')(pool_2) 105

 106

 conv_3 = keras.layers.Conv1D(107

 nfilter3, 108

 kernel_size=ksize3, 109

 strides=1, 110

 activation='relu', 111

 padding='same', 112

 name='conv_3')(dropout_2) 113

 pool_3 = keras.layers.MaxPool1D(114

 pool_size=psize3, 115

 name='pool_3')(conv_3) 116

 dropout_3 = keras.layers.Dropout(117

 d, 118

 name='dropout_3')(pool_3) 119

Approved for public release; distribution is unlimited.

29

 120

 # If the pool sizes in the early layers are large 121

enough, the model may be truncated after 3 or 4

layers.

 122

 if psize1 * psize2 * psize3 * psize4 < 8000: 123

 conv_4 = keras.layers.Conv1D(124

 nfilter4, 125

 kernel_size=ksize4, 126

 strides=1, 127

 activation='relu', 128

 padding='same', 129

 name='conv_4')(dropout_3) 130

 pool_4 = keras.layers.MaxPool1D(131

 pool_size=psize4, 132

 name='pool_4')(conv_4) 133

 dropout_4 = keras.layers.Dropout(134

 d, 135

 name='dropout_4')(pool_4) 136

 137

 if psize1 * psize2 * psize3 * psize4 * psize5 < 138

8000:

 conv_5 = keras.layers.Conv1D(139

 nfilter5, 140

 kernel_size=ksize5, 141

 strides=1, 142

 activation='relu', 143

 padding='same', 144

 name='conv_4')(dropout_4) 145

 pool_5 = keras.layers.MaxPool1D(146

 pool_size=psize5, 147

 name='pool_5')(conv_5) 148

 dropout_5 = keras.layers.Dropout(149

 d, 150

 name='dropout_5')(pool_5) 151

 152

 pool_global = keras.layers.GlobalAveragePooling1D(153

 name='pool_global')(dropout_5) 154

 155

 output = keras.layers.Dense(156

Approved for public release; distribution is unlimited.

30

 1, 157

 name='output')(pool_global) 158

 159

 model.compile(160

 loss='mean_squared_error', 161

 optimizer='adam') 162

 163
 # Save the (random) initial weights to reset the 164

model at the beginning of every fold.

 initial_weights = model.get_weights() 165

 166

 print(model.summary()) 167

 168

 ## 169

 170

 """K-FOLD CROSS-VALIDATION""" 171

 172

 # Each of the k folds divides the data into training 173

and validation sets for that fold.

 Kfold = KFold(174

 n_splits=CNN_globals.num_splits, 175

 shuffle=False) 176

 177

 # Make a list to hold the training and validation 178

losses for each fold.

 kfolds_results = [] 179

 180

 # These will be split into two lists. 181

 training_loss = [] 182

 validation_loss = [] 183

 184

 # What is the number of the current fold? 185

 fold_num = 0 186

 187

 ## 188

 189

 """TRAIN AND EVALUATE THE MODEL""" 190

 191

 # Each channel in the training and validation sets 192

are normalized by their respective standard

deviations. This is done again for each fold.

 193

 if not CNN_globals.optimize: 194

Approved for public release; distribution is unlimited.

31

 Y_actual = {} 195

 Y_predict = {} 196

 197

 for train_set, val_set in kfold.split(CNN_globals.X, 198

CNN_globals.Y):

 199

 # Increment the fold index. 200

 fold_num += 1 201

 print('Evaluating fold %s of %s.' % (202

 fold_num, CNN_globals.num_splits)) 203

 204

 # Make an empty dictionary to receive the output 205

later.

 output = {} 206

 207

 # Separate out the training and validation sets 208

for this fold.

 X_train = CNN_globals.X[train_set] 209

 X_val = CNN_globals.X[val_set] 210

 211

 Y_train = CNN_globals.Y[train_set] 212

 Y_val = CNN_globals.Y[val_set] 213

 214

 X_train_norm = np.zeros_like(X_train) 215

 X_val_norm = np.zeros_like(X_val) 216

 217

 # Divide each channel by the standard deviation of 218

all values in that channel. Do this separately for 219

training and validation sets in each fold. 220

 for i in range(0,CNN_globals.img_depth): 221

 X_train_temp = X_train[:,:,:,i] 222

 X_val_temp = X_val[:,:,:,i] 223

 224

 X_train_norm[:,:,:,i] = X_train_temp / 225

 np.std(X_train_temp) 226

 X_val_norm[:,:,:,i] = X_val_temp / 227

 np.std(X_val_temp) 228

 229

 X_train_norm = X_train_norm.reshape(230

 len(train_set) * CNN_globals.min_length, 231

 CNN_globals.img_length, 232

 CNN_globals.img_depth) 233

 X_val_norm = X_val_norm.reshape(234

 len(val_set) * CNN_globals.min_length, 235

Approved for public release; distribution is unlimited.

32

 CNN_globals.img_length, 236

 CNN_globals.img_depth) 237

 238

 Y_train = Y_train.reshape(239

 len(train_set * CNN_globals.min_length) 240

 Y_val = Y_val.reshape(241

 len(val_set * CNN_globals.min_length) 242

 243

 # Reset the initial weights at each fold. 244

 model.set_weights(initial_weights) 245

 246

 # Each fold’s output comes from training and 247

validation of that fold’s model.

 output = model.fit(248

 X_train_norm, 249

 Y_train, batch_size=CNN_globals.batch, 250

 epochs=CNN_globals.num_epochs, 251

 verbose=1, 252

 shuffle=True, 253

 validation_data=(X_val_norm, Y_val), 254

 callbacks=CNN_globals.model_callbacks).history 255

 256

 # Add each model’s scores to its output. 257

 output['train_scores'] = model.evaluate(258

 X_train_norm, 259

 Y_train, 260

 verbose=0) 261

 output['val_scores'] = model.evaluate(262

 X_val_norm, 263

 Y_val, 264

 verbose=0) 265

 266

 # For quantifying the model’s performance, save 267

the predicted and actual output values.

 if not CNN_globals.optimize: 268

 Y_predict[fold_num] = model.predict(X_val_norm) 269

 Y_actual[fold_num] = Y_val 270

 271

 kfolds_results.append(output) 272

 273

 ## 274

 275

 """SAVE MODEL AND WEIGHTS""" 276

 277

Approved for public release; distribution is unlimited.

33

 # Save each fold’s model. 278

 if not CNN_globals.optimize: 279

 model.save(CNN_globals.model_path % fold_num) 280

 print('Saved trained model at %s.' % (281

 CNN_globals.model_path)) 282

 283

 ## 284

 285

 """SCORE THE MODEL""" 286

 287

 # Collect the training and validation loss from each 288

fold.

 for i in range(CNN_globals.num_splits): 289

 training_loss.append(290

 kfolds_results[i]['train_scores']) 291

 validation_loss.append(292

 kfolds_results[i]['val_scores']) 293

 294

 # Find their mean and standard deviation. 295

 training_loss_mean = np.mean(training_loss) 296

 training_loss_std = np.std(training_loss) 297

 298

 validation_loss_mean = np.mean(validation_loss) 299

 validation_loss_std = np.std(validation_loss) 300

 301

 # Print the final results of the cross-validation. 302

 print('training loss = %s' % training_loss) 303

 print('validation loss = %s' % validation_loss) 304

 print('best training loss = %s +/- %s' % (305

 training_loss_mean, training_loss_std)) 306

 print('number of folds = %s' % (307

 CNN_globals.num_splits)) 308

 309

 ## 310

 311

 """SAVE OPTIMIZATION HISTORY""" 312

 313

 # Save the hyperparameters from each iteration of 314

the optimizer.

 if CNN_globals.optimize: 315

 CNN_globals.outputs['hyperparameters'].append(316

 [[d], 317

 [nfilter1, nfilter2, nfilter3, nfilter4, 318

 nfilter5], 319

Approved for public release; distribution is unlimited.

34

 [ksize1, ksize2, ksize3, ksize4, ksize5], 320

 [psize1, psize2, psize3, psize4, psize5]]) 321

 CNN_globals.outputs['train_loss_mean'].append(322

 training_loss_mean) 323

 CNN_globals.outputs['train_loss_std'].append(324

 training_loss_std) 325

 CNN_globals.outputs['val_loss_mean'].append(326

 validation_loss_mean) 327

 CNN_globals.outputs['val_loss_std'].append(328

 validation_loss_std) 329

 330

 # Save the optimization history every 5 iterations 331

or when it has run through CNN_globals.num_calls

iterations.

 if len(CNN_globals.outputs['val_loss_mean']) % 5 332

is 0 or len(CNN_globals.outputs['val_los_mean']) is

CNN_globals.num_calls:

 with open('optimization_history.pkl', 'wb') as 333

f:

 pickle.dump(CNN_globals.outputs, f) 334

 335

 ## 336

 337

 """RETURN THE PARAMETER TO BE OPTIMIZED""" 338

 339

 if CNN_globals.optimize: 340

 return(validation_loss_mean) 341

Approved for public release; distribution is unlimited.

35

(3) CNN_globals.py

This file is empty. Global variables are written 1

into it and read out by CNN_acoustic.py and

CNN_model.py.

Approved for public release; distribution is unlimited.

36

List of Symbols, Abbreviations, and Acronyms

1-D 1-dimensional

2-D 2-dimensional

ARL US Army Research Laboratory

CNN convolutional neural network

MNIST Modified National Institute of Standards and Technology

RGB red, green, and blue

Approved for public release; distribution is unlimited.

37

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 2 DIR ARL

 (PDF) IMAL HRA

 RECORDS MGMT

 RDRL DCL

 TECH LIB

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 9 RDRL CIH S

 (PDF) D SHIRES

 RDRL CIH C

 E CHIN

 M LEE

 RDRL SLE W

 M MARKOWSKI

 A BEVEC

 RDRL VTM

 M COATNEY

 A HALL

 R HAYNES

 RDRL VTP

 A HOOD

