
Runtime SoC Trust Verification using Integrated
Symbolic Execution and Solver

Xiaolong Guo, Jiaji He, and Yier Jin
Department of Electrical and Computer Engineering, University of Florida

yier.jin@ece.ufl.edu

Abstract—Untrusted third-party vendors and manufacturers

have raised security concerns in hardware supply chain. Among
all existing solutions, formal verification methods provide
powerful solutions in detection malicious behaviors at the pre-
silicon stage. However, little work have been done towards built-in
hardware runtime verification at the post- silicon stage. In this
paper, a runtime formal verification framework is proposed to
evaluate the trust of hardware during its execution. This
framework combines the symbolic execution and SMT solving
methods to validate the user defined properties. The proposed
framework has been demonstrated on an FPGA platform using a
SoC design with untrusted IPs. The experimentation results show
that the proposed approach can provide high-level security
assurance for hardware at runtime.

I. INTRODUCTION

The changing landscape of the semiconductor industry has
increased the demand for third-party intellectual property
(IP) cores. Various factors such as reduced time to market
(TTM) and lower design cost have led to the proliferation
of the IP market. Another contributor to this growth is the
use of System-on-Chip (SoC) platforms for mobile applica-
tions. SoC is a monolithic chip containing all the essential
components for mimicking the functionality of a computing
system. It is designed by integrating multiple IP cores from
trusted and untrusted third party vendors.

Increasing number of third-party vendors have raised se-
curity concerns in the IC industry. Due to the extremely high
cost of building foundries, chip manufacturing is usually
outsourced to existing foundries. Therefore, a comprehensive
approach is required to protect against attacks from untrusted
vendors and manufacturers. Formal methods have shown
their importance in exhaustive hardware security verifica-
tion [1]–[4], but few of them were designed for securing
post-fabrication designs. For example, in [2]–[4], the proof-
carrying hardware (PCH) framework was used to verify se-
curity properties of soft IP cores. Supported by the Coq proof
assistant [5], formal security properties were formalized and
proved to ensure the trustworthiness of IP cores. However,
model formalization and interactive proof procedures in PCH
limit the scenario into static verification for design stage in
the supply chain.

In this paper, we address the runtime hardware security
verification challenge by extending our Proof-Carrying
Hardware (PCH) [3], [4], [6] framework from static to
dynamic (aka runtime) with a SMT solver and symbolic
executions. The working procedure of the developed runtime

Fig. 1: Working procedure of runtime PCH framework

PCH framework is shown in Figure 1. The main contributions
of this paper are as follows.

 We combine a SMT solver with a static program analy-
sis method for runtime checking of security of hardware.

 The work improves the study of hardware runtime
verification. Our enhanced PCH framework provides
comprehensive protection of hardware by complying to
user specified security properties.

II. BACKGROUND AND RELATED WORK

A. Attack Model
Hardware Trojans/Malicious logic can be inserted by ad-

versaries at the different stages of the IC life-cycle. We
assume that the rogue agents at the third-party IP design
house and foundry can insert a hardware Trojan or backdoor
to the fabricated circuit. Such a Trojan can be triggered either
by a counter at a predetermined time, by an input vector, or
under certain physical conditions. Upon activation it can leak
sensitive information from the chip, modify functionality, or
cause a denial-of-service to the hardware.

B. Related Work

In [3], [4], [6], the proof-carrying hardware (PCH) frame-
work was used to verify security properties of soft IP cores.
Supported by the Coq proof assistant [5], formal security
properties were formalized and proved to ensure the trust-
worthiness of IP cores. However, this framework can only
provide static verification on design stage of hardware other
than the runtime of hardware. In [7], a SAT solver is utilized

Distribution A: Approved for public release; distribution unlimited.

660

mailto:yier.jin@ece.ufl.edu

to enhance the PCH to be applicable in runtime scenario.
Still, expressiveness of the SAT solver is not powerful enough
so that security properties are difficult to be formalized in
such framework.

Verifiable ASICs was proposed by Wahby et.al. [8] to
verify the correctness of functionality of hardware system. In
their paper, runtime (or dynamic) verification was performed
by implementing an interactive encryption protocol between
untrusted ICs and a second trusted ICs, where the untrusted
ICs was called 𝑃𝑟𝑜𝑣𝑒𝑟 and trusted ICs was called 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟.
It was the first attempt to compute proofs of correct
execution through utilizing verifiable computation. However,
for secu- rity purpose, their correctness checking method
would result in high computational cost and overhead.
Furthermore, their method was designed for checking
specific property rather than the entire set of functional
properties.

C. Background

Satisfiability (SAT) solvers have been used in many elec-
tronic design automation fields like logic synthesis, verifica-
tion, and testing. The SAT solvers are originally designed to
solve the well-known Boolean Satisfiability problem, which
decides whether a propositional logic formula can be satisfied
given value assignments of the variables in the formula.
Based on SAT solver, satisfiability modulo theories (SMT)
solver is derived by including serval first-order theories, such
as arithmetic, bit-vectors, quantifiers, etc. [9]. However, due
to the high computational complexity, there is no hardware
implementation for SMT solvers, and the software based
SMT solver are not scalable to large designs.

Symbolic execution is a program analysis technique that
can explore multiple paths that a program could take under
different inputs [10]. In this method, execution paths that the
program should take are explored systematically to avoid the
space explosion problem. Specifically, inputs are represented
as symbols and the solvers are used to check whether there
are counter examples of the property. For each path, a
Boolean formula is derived to describe the conditions of the
branches, while a symbolic memory is used to map variables
to symbolic expressions. The Boolean formula is updated
after executing the branch and the symbolic memory is
updated after each assignment. Integrating these two tech-
niques overcome the NP-Hard computation complexity issue
in SAT solver and it provides a comprehensive protection by
automatically checking the customized properties.

III. RUNTIME PROOF-CARRYING HARDWARE

In this paper, we give a solution for hardware runtime for-
mal verification of security properties. The proposed runtime
PCH framework integrates a static program analysis method
and a hardware based SMT solver, and provides a high-level
protection by verifying security properties defined by users.

In detail, a trusted circuit is designed and manufactured
by a trusted foundry to verify the trustworthiness of the
untrusted hardware in runtime. Similar to [8], in our propose-

d new PCH framework, the untrusted circuit from the third-
party foundry is called 𝑃𝑟𝑜𝑣𝑒𝑟, while the trusted circuit is
called 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 as shown in Figure 1. If the verification of
the security properties/theorems is successful, it indicates
that the 𝑃𝑟𝑜𝑣𝑒𝑟 is trustworthy. Further, 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 can get all
the information from 𝑃𝑟𝑜𝑣𝑒𝑟. In the case where the
verification fails, the 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 can disable the 𝑃𝑟𝑜𝑣𝑒𝑟 at
anytime.

There are mainly two entities - untrusted foundry and
trusted integrator interacting in the developed framework (see
Figure 1). At first, the untrusted foundry gets requirements of
ASICs from consumer, and then fabricates the chips as part of
𝑃𝑟𝑜𝑣𝑒𝑟 depending on the functionality specifications, which
is golden model in Figure 1. The other part of 𝑃𝑟𝑜𝑣𝑒𝑟
produces a conjunctive normal form (CNF), which is a
combination of proof and secure specifications. The CNF
will be delivered from 𝑃𝑟𝑜𝑣𝑒𝑟 to the solver, and satisfaction
of the CNF will be checked. If satisfied, then the execution
of circuit will be continue. If the given CNF is unsolved,
then the 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 will lock the circuit. Accordingly, the
trusted integrator, on the side of consumer, designs an extra
trusted circuit 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 that can provide verification of
𝑃𝑟𝑜𝑣𝑒𝑟 on runtime and then combine 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 and 𝑃𝑟𝑜𝑣𝑒𝑟
together to produce the runtime verification system 𝑆. The
composition of the final system 𝑆 can be presented as
Equation (1).

𝑆 ≔ 𝑃⋀𝑉 (1)

Further, the trusted integrator explores execution paths
from static program analysis of the functional golden model
written by hardware description language (HDL) like Verilog.
In the untrusted foundry side, each execution path will be
manufactured individually, and we call them individual
circuit segment, marked as 𝑠𝑒𝑔. So we define the
functionality of circuits inside the 𝑃 as 𝐹 and then 𝐹 is
composed of many 𝑠𝑒𝑔 as shown in Equation (2), where 𝑘 ∈
Ζ is the total number of segments.

𝐹 ≔ 𝑠𝑒𝑔1⋀𝑠𝑒𝑔2⋀ ⋅⋅⋅ ⋀𝑠𝑒𝑔𝑘 (2)

Correspondingly, security property, defined as 𝑃𝑟𝑜𝑝,
would be given by the integrator and then decomposed into
sub security properties, defined as 𝑙𝑒𝑚𝑚𝑎. In 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 side,
satisfaction of each sub property 𝑙𝑒𝑚𝑚𝑎 will be verified for
the corresponding segment 𝑠𝑒𝑔 as shown in Figure 2. So
the system level security property 𝑃𝑟𝑜𝑝 is constructed as
Equation (3).

𝑃𝑟𝑜𝑝 ≔ 𝑙𝑒𝑚𝑚𝑎1⋀𝑙𝑒𝑚𝑚𝑎2⋀ ⋅⋅⋅ ⋀𝑙𝑒𝑚𝑚𝑎𝑘 (3)

Along with the 𝐹, untrusted foundry requires to give proof
to satisfy 𝑙𝑒𝑚𝑚𝑎 for each 𝑠𝑒𝑔, and the proof is given in
form of CNF, defined as 𝑐𝑛𝑓𝑠𝑒𝑔 in Equation (4) where 𝑛 ∈ Ζ
stands for index number of a list, 𝑇𝑠𝑒𝑖𝑡𝑖𝑛 is a transformation
that converts boolean circuits to CNF [11].

 𝑠𝑒𝑔𝑛
𝑇𝑠𝑒𝑖𝑡𝑖𝑛
→ 𝑐𝑛𝑓𝑠𝑒𝑔𝑛 (4)

661

Fig. 2: Circuit segments and property decomposition

Meanwhile, 𝑙𝑒𝑚𝑚𝑎 need to be parsed to a hardware
expression 𝑙𝑒𝑚𝑚𝑎𝑒𝑥𝑝𝑟 that can be represented by using
HDL. In our proposed framework, parsing is made manually
in the foundry side. After that, a 𝑇𝑠𝑒𝑖𝑡𝑖𝑛 transformation is
utilized to convert the 𝑙𝑒𝑚𝑚𝑎𝑒𝑥𝑝𝑟 to a CNF, noted as 𝑐𝑛𝑓𝑙𝑎𝑛.
The procedure is presented in Equation (5).

𝑙𝑒𝑚𝑚𝑎𝑛

𝑝𝑎𝑟𝑠𝑒
→ 𝑙𝑒𝑚𝑚𝑎𝑒𝑥𝑝𝑟𝑛

𝑇𝑠𝑒𝑖𝑡𝑖𝑛
→ 𝑐𝑛𝑓𝑙𝑎𝑛 (5)

Algorithm 1 DPLL Algorithm
Input:

1: F ⊳ A CNF formula.
Output: Result ⊳ A Boolean value where True stands for

satisfaction and False stands for not-satisfaction.
2: Preprocess F;
3: if F == False then
4: Result ← False; return;
5: end if

Therefore, proof of sub property for segment is defined as
a conjunction of 𝑐𝑛𝑓𝑠𝑒𝑞 and 𝑐𝑛𝑓𝑙𝑎𝑛 as shown in Equation
(6). Furthermore, the entire proof in system level, noted as
𝐶𝑁𝐹, is composed of all the distributed 𝑐𝑛𝑓𝑛 as described in
Equation (7).

6: Find the next unassigned variable, assign the value;
7: Deduce based on the assignment;
8: if F == False then
9: Result ← False; return;

10: end if

 𝑐𝑛𝑓𝑛 ≔ 𝑐𝑛𝑓𝑠𝑒𝑔⋀𝑐𝑛𝑓𝑙𝑎𝑛 (6) 11: if The conflict happened in derivation then
12: Analyze the conflict

𝐶𝑁𝐹 ≔ 𝑐𝑛𝑓1⋀𝑐𝑛𝑓2⋀ ⋅⋅⋅ ⋀𝑐𝑛𝑓𝑘 (7)

Finally, in the following Equation (8), 𝑃𝑟𝑜𝑣𝑒𝑟 is con-
structed from functionality part 𝐹 and proof part 𝐶𝑁𝐹 . In
the runtime verification process, 𝑐𝑛𝑓𝑛 would be put into the

13: if F can be looked back upon then
14: look back upon
15: else
16: Result ← False; return;
17: end if

DPLL SAT solver and verified individually. The verification
details will be discussed in the following part.

𝑃 ≔ 𝐹⋀𝐶𝑁𝐹 (8)

Except the segment and CNF block, the rest part of Figure
3 depicts the design of the 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 which comprises a LUT
and a DPLL SAT solver. The LUT in the proposed
framework records information that whether the segment has
been verified or not. The LUT includes two columns, where
the first column contains a segment list and the second
column has a binary value for each segment i.e. 1 stands
for verified, 0 stands for not verified. Before the execution of
a segment, the corresponding value will be checked. If the
segment has been verified, then the execution continues.
Otherwise, the system will be stalled and the verification of
the segment is performed first.

A DPLL SAT solver is implemented based on Algorithm

18: else
19: return to line 6.
 20: end if

1. A typical existing SMT solver is constructed based on the
SAT solver, which is shown in the Figure 4. Specifically, in
the proposed framework, the SMT solver is developed to get
the extra constrains from a high level, while the CNF is
input to the SAT solver directly. In the verification, Proof
𝑐𝑛𝑓𝑛 is delivered from 𝑃𝑟𝑜𝑣𝑒𝑟 to the solver, and satisfaction
of the input 𝑐𝑛𝑓𝑛 will be checked. If satisfied, then the
relevant value in LUT table will be updated as 1. If the given
𝑐𝑛𝑓𝑛 is unsolved, then the 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 will lock the segment by
using an AND gate.

662

Fig. 3: Structure of Verifier

Fig. 4: Hardware based SMT solver structure

IV. CASE STUDY

To demonstrate the effectiveness of the proposed runtime
verification framework supported by the SMT solver, we
utilize a FPGA platform implementing a RS232 program.
Specifically, the RS232-T100, written in Verilog, is selected
as the benchmark and obtained from [12]. The receiver side
of this RS232, a micro-UART core, is considered for
verification. In order to prove the presence/absence of
hardware Trojan, we will check the important signals like
in/out interfaces.

In this experiment, we consider a hardware Trojan em-
bedded in the benchmark RS232-T100, which manipulates
output data to cause the Denial-of-Service (DoS) attack.
Trigger of this Trojan is detecting specific values among the
control signals and output signal in the receiver part of the
micro-UART core. Once the Trojan is triggered, the payload
of this Trojan can stuck the output signals and as zeros.

In the above case, an example security property is formal-
ized below:

∀𝑡 ∄𝑡0, 𝑡𝑛 ∈ 𝑡: (𝑡0 < 𝑡𝑛)⋀(𝑡0 − 𝑡𝑛 > 𝑉𝑡ℎ)⋀

(𝑠𝑡𝑎𝑡𝑒𝑡0→𝑡𝑛 = 𝑉𝑤𝑎𝑖𝑡)⋀(𝑟𝑒𝑐_𝑑𝑎𝑡𝑎𝐻𝑡0→𝑡𝑛 = 0𝑥00)

Here, 𝑡 is the time parameter, 𝑠𝑡𝑎𝑡𝑒 means the current state
of the RS232 system. 𝑟𝑒𝑐_𝑑𝑎𝑡𝑎𝐻 is the output port with 8
bits length of the receiver part. Also, 𝑉𝑡ℎ∈𝑍 is the threshold
that we set for the time interval. 𝑉𝑤𝑎𝑖𝑡 is a specific binary
vector with value is 3’b011 which implies that the system
is waiting for sampling in data transmission. The 𝑙𝑒𝑚𝑚𝑎
states that if output port generates zero values in too long
consecutive time during data transmission, then there is a
high risk of under DOS attack.

As a result, the SAT solver (kernel of the proposed SMT
solver) took 4668406745 clock cycles or 9sec (2ns per clock
cycles based on our configuration) for returning an unsatis-
faction conclusion for the proof/CNF of initial assignments
segment, which indeed contains the Trojan. Meanwhile, the
SAT solver took 7873 clock cycles or 15ms for returning a
satisfaction conclusion for the same segment without Trojan.

V. CONCLUSION

In this paper, we give a solution for hardware runtime for-
mal verification of security properties. The proposed runtime
PCH framework integrates a static program analysis method
and a SMT solver, and provides a high-level protection by
verifying security properties defined by users. The proposed
method was demonstrated using FPGA and evaluated by
verifying a RS232 benchmark with an embedded Trojan.
Consequently, the proposed approach guarantees the security
of hardware in runtime.

ACKNOWLEDGEMENT

This work was partially supported by National Science
Foundation (CNS-1812071), Army Research Office
(W911NF-17-1-0477) and Cisco.

REFERENCES

[1] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware
trojans in third-party digital ip cores,” in Hardware-Oriented Security
and Trust (HOST), 2011 IEEE International Symposium on, 2011,
pp. 67–70.

[2] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual
property: A pathway to trusted module acquisition,” IEEE
Transactions on Information Forensics and Security, vol. 7, no. 1, pp.
25–40, 2012.

[3] Y. Jin, B. Yang, and Y. Makris, “Cycle-accurate information
assurance by proof-carrying based signal sensitivity tracing,” in IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST), 2013, pp. 99–106.

[4] Y. Jin, “Design-for-security vs. design-for-testability: A case study on
dft chain in cryptographic circuits,” in IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2014, pp. 19–24.

[5] INRIA, “The coq proof assistant,” 2010,
http://coq.inria.fr/.

[6] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra,
“Pre-silicon security verification and validation: A formal
perspective,” in Proceedings of the 52Nd Annual Design Automation
Conference, ser. DAC ’15, 2015, pp. 145:1–145:6.

[7] X. Guo, R. G. Dutta, J. He, and Y. Jin, “PCH framework for ip
runtime security verification,” in Asian Hardware Oriented Security
and Trust (AsianHOST), 2017, (to appear).

[8] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish,
“Verifiable asics,” in Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 2016, pp. 759–778.

[9] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” Tools
and Algorithms for the Construction and Analysis of Systems, pp.
337–340, 2008.

[10] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” arXiv preprint
arXiv:1610.00502, 2016.

[11] G. Tseitin, “On the complexity ofderivation in propositional
calculus,” Studies in Constrained Mathematics and Mathematical
Logic, 1968.

[12] https://www.trust-hub.org/.

663

http://coq.inria.fr/
http://www.trust-hub.org/

