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Abstract—Untrusted third-party vendors and manufacturers 

have raised security concerns in hardware supply chain. Among 
all existing solutions, formal verification methods provide 
powerful solutions in detection malicious behaviors at the pre-
silicon stage. However, little work have been done towards built-in 
hardware runtime verification at the post- silicon stage. In this 
paper, a runtime formal verification framework is proposed to 
evaluate the trust of hardware during its execution. This 
framework combines the symbolic execution and SMT solving 
methods to validate the user defined properties. The proposed 
framework has been demonstrated on an FPGA platform using a 
SoC design with untrusted IPs. The experimentation results show 
that the proposed approach can provide high-level security 
assurance for hardware at runtime. 

 

I. INTRODUCTION 

The changing landscape of the semiconductor industry has 
increased the demand for third-party intellectual property 
(IP) cores. Various factors such as reduced time to market 
(TTM) and lower design cost have led to the proliferation   
of the IP market. Another contributor to this growth is the 
use of System-on-Chip (SoC) platforms for mobile applica- 
tions. SoC is a monolithic chip containing all the essential 
components for mimicking the functionality of a computing 
system. It is designed by integrating multiple IP cores from 
trusted and untrusted third party vendors. 

Increasing number of third-party vendors have raised se- 
curity concerns in the IC industry. Due to the extremely high 
cost of building foundries, chip manufacturing is usually 
outsourced to existing foundries. Therefore, a comprehensive 
approach is required to protect against attacks from untrusted 
vendors and manufacturers. Formal methods have shown 
their importance in exhaustive hardware security verifica- 
tion [1]–[4], but few of them were designed for securing 
post-fabrication designs. For example, in [2]–[4], the proof- 
carrying hardware (PCH) framework was used to verify se- 
curity properties of soft IP cores. Supported by the Coq proof 
assistant [5], formal security properties were formalized and 
proved to ensure the trustworthiness of IP cores. However, 
model formalization and interactive proof procedures in PCH 
limit the scenario into static verification for design stage in 
the supply chain. 

In this paper, we address the runtime hardware security 
verification challenge by extending our Proof-Carrying 
Hardware (PCH) [3], [4], [6] framework from static to 
dynamic (aka runtime) with a SMT solver and symbolic 
executions. The working procedure of the developed runtime 

 
Fig. 1: Working procedure of runtime PCH framework 

PCH framework is shown in Figure 1. The main contributions 
of this paper are as follows. 

 We combine a SMT solver with a static program analy- 
sis method for runtime checking of security of hardware. 

 The work improves the study of hardware runtime 
verification. Our enhanced PCH framework provides 
comprehensive protection of hardware by complying to 
user specified security properties. 

 
II. BACKGROUND AND RELATED WORK 

A. Attack Model 
Hardware Trojans/Malicious logic can be inserted by ad- 

versaries at the different stages of the IC life-cycle. We 
assume that the rogue agents at the third-party IP design 
house and foundry can insert a hardware Trojan or backdoor 
to the fabricated circuit. Such a Trojan can be triggered either 
by a counter at a predetermined time, by an input vector, or 
under certain physical conditions. Upon activation it can leak 
sensitive information from the chip, modify functionality, or 
cause a denial-of-service to the hardware. 

 
B. Related Work 

In [3], [4], [6], the proof-carrying hardware (PCH) frame- 
work was used to verify security properties of soft IP cores. 
Supported by the Coq proof assistant [5], formal security 
properties were formalized and proved to ensure the trust- 
worthiness of IP cores. However, this framework can only 
provide static verification on design stage of hardware other 
than the runtime of hardware. In [7], a SAT solver is utilized 
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to enhance the PCH to be applicable in runtime scenario. 
Still, expressiveness of the SAT solver is not powerful enough 
so that security properties are difficult to be formalized in 
such framework. 

Verifiable ASICs was proposed by Wahby et.al. [8] to 
verify the correctness of functionality of hardware system. In 
their paper, runtime (or dynamic) verification was performed 
by implementing an interactive encryption protocol between 
untrusted ICs and a second trusted ICs, where the untrusted 
ICs was called 𝑃𝑟𝑜𝑣𝑒𝑟 and trusted ICs was called 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟. 
It was the first attempt to compute proofs of correct 
execution through utilizing verifiable computation. However, 
for secu- rity purpose, their correctness checking method 
would result in high computational cost and overhead. 
Furthermore, their method was designed for checking 
specific property rather than the entire set of functional 
properties. 

 
C. Background 

Satisfiability (SAT) solvers have been used in many elec- 
tronic design automation fields like logic synthesis, verifica- 
tion, and testing. The SAT solvers are originally designed to 
solve the well-known Boolean Satisfiability problem, which 
decides whether a propositional logic formula can be satisfied 
given value assignments of the variables in the formula. 
Based on SAT solver, satisfiability modulo theories (SMT) 
solver is derived by including serval first-order theories, such 
as arithmetic, bit-vectors, quantifiers, etc. [9]. However, due 
to the high computational complexity, there is no hardware 
implementation for SMT solvers, and the software based 
SMT solver are not scalable to large designs. 

Symbolic execution is a program analysis technique that 
can explore multiple paths that a program could take under 
different inputs [10]. In this method, execution paths that the 
program should take are explored systematically to avoid the 
space explosion problem. Specifically, inputs are represented 
as symbols and the solvers are used to check whether there 
are counter examples of the property. For each path, a 
Boolean formula is derived to describe the conditions of the 
branches, while a symbolic memory is used to map variables 
to symbolic expressions. The Boolean formula is updated 
after executing the branch and the symbolic memory is 
updated after each assignment. Integrating these two tech- 
niques overcome the NP-Hard computation complexity issue 
in SAT solver and it provides a comprehensive protection by 
automatically checking the customized properties. 

 
III. RUNTIME PROOF-CARRYING HARDWARE 

In this paper, we give a solution for hardware runtime for- 
mal verification of security properties. The proposed runtime 
PCH framework integrates a static program analysis method 
and a hardware based SMT solver, and provides a high-level 
protection by verifying security properties defined by users. 

In detail, a trusted circuit is designed and manufactured 
by a trusted foundry to verify the trustworthiness of the 
untrusted hardware in runtime. Similar to [8], in our propose- 

d new PCH framework, the untrusted circuit from the third- 
party foundry is called 𝑃𝑟𝑜𝑣𝑒𝑟, while the trusted circuit is 
called 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 as shown in Figure 1. If the verification of 
the security properties/theorems is successful, it indicates 
that the 𝑃𝑟𝑜𝑣𝑒𝑟 is trustworthy. Further, 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 can get all 
the information from 𝑃𝑟𝑜𝑣𝑒𝑟. In the case where the 
verification fails, the 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 can disable the 𝑃𝑟𝑜𝑣𝑒𝑟 at 
anytime. 

There are mainly two entities - untrusted foundry and 
trusted integrator interacting in the developed framework (see 
Figure 1). At first, the untrusted foundry gets requirements of 
ASICs from consumer, and then fabricates the chips as part of 
𝑃𝑟𝑜𝑣𝑒𝑟 depending on the functionality specifications, which 
is golden model in Figure 1. The other part of 𝑃𝑟𝑜𝑣𝑒𝑟 
produces a conjunctive normal form (CNF), which is a 
combination of proof and secure specifications. The CNF 
will be delivered from 𝑃𝑟𝑜𝑣𝑒𝑟 to the solver, and satisfaction 
of the CNF will be checked. If satisfied, then the execution 
of circuit will be continue. If the given CNF is unsolved, 
then the 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 will lock the circuit. Accordingly, the 
trusted integrator, on the side of consumer, designs an extra 
trusted circuit 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 that can provide verification of 
𝑃𝑟𝑜𝑣𝑒𝑟 on runtime and then combine 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 and 𝑃𝑟𝑜𝑣𝑒𝑟 
together to produce the runtime verification system 𝑆. The 
composition of the final system 𝑆 can be presented as 
Equation (1). 

𝑆 ≔ 𝑃⋀𝑉 (1) 

Further, the trusted integrator explores execution paths 
from static program analysis of the functional golden model 
written by hardware description language (HDL) like Verilog. 
In the untrusted foundry side, each execution path will be 
manufactured individually, and we call them individual 
circuit segment, marked as 𝑠𝑒𝑔. So we define the 
functionality of circuits inside the 𝑃 as 𝐹 and then 𝐹 is 
composed of many 𝑠𝑒𝑔 as shown in Equation (2), where 𝑘 ∈
Ζ is the total number of segments. 

 
𝐹 ≔ 𝑠𝑒𝑔1⋀𝑠𝑒𝑔2⋀ ⋅⋅⋅ ⋀𝑠𝑒𝑔𝑘 (2) 

Correspondingly, security property, defined as 𝑃𝑟𝑜𝑝, 
would be given by the integrator and then decomposed into 
sub security properties, defined as 𝑙𝑒𝑚𝑚𝑎. In 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 side, 
satisfaction of each sub property 𝑙𝑒𝑚𝑚𝑎 will be verified for 
the corresponding segment 𝑠𝑒𝑔 as shown in Figure 2. So   
the system level security property 𝑃𝑟𝑜𝑝 is constructed as 
Equation (3). 

 
𝑃𝑟𝑜𝑝 ≔ 𝑙𝑒𝑚𝑚𝑎1⋀𝑙𝑒𝑚𝑚𝑎2⋀ ⋅⋅⋅ ⋀𝑙𝑒𝑚𝑚𝑎𝑘 (3) 

Along with the 𝐹, untrusted foundry requires to give proof 
to satisfy 𝑙𝑒𝑚𝑚𝑎 for each 𝑠𝑒𝑔, and the proof is given in 
form of CNF, defined as 𝑐𝑛𝑓𝑠𝑒𝑔 in Equation (4) where 𝑛 ∈ Ζ   
stands for index number of a list, 𝑇𝑠𝑒𝑖𝑡𝑖𝑛  is a transformation 
that converts boolean circuits to CNF [11]. 

 

                      𝑠𝑒𝑔𝑛
𝑇𝑠𝑒𝑖𝑡𝑖𝑛
→    𝑐𝑛𝑓𝑠𝑒𝑔𝑛 (4) 
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Fig. 2: Circuit segments and property decomposition 

 
 

Meanwhile, 𝑙𝑒𝑚𝑚𝑎 need to be parsed to a hardware 
expression 𝑙𝑒𝑚𝑚𝑎𝑒𝑥𝑝𝑟 that can be represented by using 
HDL. In our proposed framework, parsing is made manually 
in the foundry side. After that, a 𝑇𝑠𝑒𝑖𝑡𝑖𝑛 transformation is 
utilized to convert the 𝑙𝑒𝑚𝑚𝑎𝑒𝑥𝑝𝑟 to a CNF, noted as 𝑐𝑛𝑓𝑙𝑎𝑛. 
The procedure is presented in Equation (5). 

                       
𝑙𝑒𝑚𝑚𝑎𝑛

𝑝𝑎𝑟𝑠𝑒
→   𝑙𝑒𝑚𝑚𝑎𝑒𝑥𝑝𝑟𝑛

𝑇𝑠𝑒𝑖𝑡𝑖𝑛
→    𝑐𝑛𝑓𝑙𝑎𝑛    (5) 

Algorithm 1 DPLL Algorithm  
Input: 

1:  F ⊳ A CNF formula. 
Output: Result ⊳ A Boolean value where True stands for 

satisfaction and False stands for not-satisfaction. 
2: Preprocess F; 
3: if F == False then 
4:  Result ← False; return; 
5: end if 

 

Therefore, proof of sub property for segment is defined as 
a conjunction of 𝑐𝑛𝑓𝑠𝑒𝑞 and 𝑐𝑛𝑓𝑙𝑎𝑛  as shown in Equation 
(6). Furthermore, the entire proof in system level, noted as 
𝐶𝑁𝐹, is composed of all the distributed 𝑐𝑛𝑓𝑛 as described in 
Equation (7). 

6: Find the next unassigned variable, assign the value; 
7: Deduce based on the assignment; 
8: if F == False then 
9: Result ← False; return; 

10: end if 

  𝑐𝑛𝑓𝑛 ≔ 𝑐𝑛𝑓𝑠𝑒𝑔⋀𝑐𝑛𝑓𝑙𝑎𝑛               (6) 11: if The conflict happened in derivation then 
12: Analyze the conflict 

𝐶𝑁𝐹 ≔ 𝑐𝑛𝑓1⋀𝑐𝑛𝑓2⋀ ⋅⋅⋅ ⋀𝑐𝑛𝑓𝑘 (7) 

Finally, in the following Equation (8), 𝑃𝑟𝑜𝑣𝑒𝑟 is con- 
structed from functionality part 𝐹 and proof part 𝐶𝑁𝐹 . In 
the runtime verification process, 𝑐𝑛𝑓𝑛 would be put into the 

13: if F can be looked back upon then 
14: look back upon 
15: else 
16: Result ← False; return; 
17: end if 

DPLL SAT solver and verified individually. The verification 
details will be discussed in the following part. 

𝑃 ≔ 𝐹⋀𝐶𝑁𝐹 (8) 

Except the segment and CNF block, the rest part of Figure 
3 depicts the design of the 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 which comprises a LUT 
and a DPLL SAT solver. The LUT in the proposed 
framework records information that whether the segment has 
been verified or not. The LUT includes two columns, where 
the first column contains a segment list and the second 
column has a binary value for each segment i.e. 1 stands    
for verified, 0 stands for not verified. Before the execution of 
a segment, the corresponding value will be checked. If the 
segment has been verified, then the execution continues. 
Otherwise, the system will be stalled and the verification of 
the segment is performed first. 

A DPLL SAT solver is implemented based on Algorithm 

18: else 
19: return to line 6. 
 20: end if  

 

1. A typical existing SMT solver is constructed based on the 
SAT solver, which is shown in the Figure 4. Specifically, in 
the proposed framework, the SMT solver is developed to get 
the extra constrains from a high level, while the CNF is 
input to the SAT solver directly. In the verification, Proof 
𝑐𝑛𝑓𝑛 is delivered from 𝑃𝑟𝑜𝑣𝑒𝑟 to the solver, and satisfaction 
of the input 𝑐𝑛𝑓𝑛 will be checked. If satisfied, then the 
relevant value in LUT table will be updated as 1. If the given 
𝑐𝑛𝑓𝑛 is unsolved, then the 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 will lock the segment by 
using an AND gate. 
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Fig. 3: Structure of Verifier 

 

Fig. 4: Hardware based SMT solver structure 
 

IV. CASE STUDY 

To demonstrate the effectiveness of the proposed runtime 
verification framework supported by the SMT solver, we 
utilize a FPGA platform implementing a RS232 program. 
Specifically, the RS232-T100, written in Verilog, is selected 
as the benchmark and obtained from [12].  The receiver side 
of this RS232, a micro-UART core, is considered for 
verification. In order to prove the presence/absence of 
hardware Trojan, we will check the important signals like 
in/out interfaces. 

In this experiment, we consider a hardware Trojan em- 
bedded in the benchmark RS232-T100, which manipulates 
output data to cause the Denial-of-Service (DoS) attack. 
Trigger of this Trojan is detecting specific values among the 
control signals and output signal in the receiver part of the 
micro-UART core. Once the Trojan is triggered, the payload 
of this Trojan can stuck the output signals and as zeros. 

In the above case, an example security property is formal- 
ized below: 

∀𝑡 ∄𝑡0, 𝑡𝑛 ∈ 𝑡: (𝑡0 < 𝑡𝑛)⋀(𝑡0 − 𝑡𝑛 > 𝑉𝑡ℎ)⋀ 

(𝑠𝑡𝑎𝑡𝑒𝑡0→𝑡𝑛 = 𝑉𝑤𝑎𝑖𝑡)⋀(𝑟𝑒𝑐_𝑑𝑎𝑡𝑎𝐻𝑡0→𝑡𝑛 = 0𝑥00) 

Here, 𝑡 is the time parameter, 𝑠𝑡𝑎𝑡𝑒 means the current state 
of the RS232 system. 𝑟𝑒𝑐_𝑑𝑎𝑡𝑎𝐻 is the output port with 8 
bits length of the receiver part. Also, 𝑉𝑡ℎ∈𝑍 is the threshold 
that we set for the time interval. 𝑉𝑤𝑎𝑖𝑡 is a specific binary 
vector with value is 3’b011 which implies that the system 
is waiting for sampling in data transmission. The  𝑙𝑒𝑚𝑚𝑎 
states that if output port generates zero values in too long 
consecutive  time  during  data  transmission,  then  there  is a 
high risk of under DOS attack.

 
 

As a result, the SAT solver (kernel of the proposed SMT 
solver) took 4668406745 clock cycles or 9sec (2ns per clock 
cycles based on our configuration) for returning an unsatis- 
faction conclusion for the proof/CNF of initial assignments 
segment, which indeed contains the Trojan. Meanwhile, the 
SAT solver took 7873 clock cycles or 15ms for returning a 
satisfaction conclusion for the same segment without Trojan. 
 

V. CONCLUSION 

In this paper, we give a solution for hardware runtime for- 
mal verification of security properties. The proposed runtime 
PCH framework integrates a static program analysis method 
and a SMT solver, and provides a high-level protection by 
verifying security properties defined by users. The proposed 
method was demonstrated using FPGA and evaluated by 
verifying a RS232 benchmark with an embedded Trojan. 
Consequently, the proposed approach guarantees the security 
of hardware in runtime. 
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