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Abstract—This paper analyzes the performance of an iterative
solution for the nonlinear correction of a digital array receiver
channel. The iterative least mean-square (LMS) algorithm is
compared to weighted least-squares (WLS) and its ability to
adapt to changes in system temperature, and therefore nonlinear
characteristics, is shown. Lastly, a digital array is simulated with
nonlinear channels that represent a real system. The resulting
intermodulation distortion (IMD) is then mitigated using the
LMS correction method.
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I. INTRODUCTION

With the increasing desire for low cost radar systems,
specifically digital phased arrays, with each element requiring
its own Tx/Rx channel, we are forced to use components
with a lower third-order interception point (IP3). This paired
with the possibility for interferers, both in-band and out-of-
band, driving the receivers into compression and creating
intermodulation distortion (IMD), has lead to a great need
for digital nonlinear correction [1], [2]. Digital pre-distortion,
used to correct nonlinearities in the Tx channel, was done in
[3], for example, making use of a cross-memory polynomial
model. Post-distortion methods, correcting distortion in the Rx
channel, were given in [1] and [4], where the authors used
weighted least-squares (WLS) to apply a memory polynomial
model to the distorted data for receiver IMD correction, in
[5], using the least mean-square (LMS) algorithm to apply a
static power series based correction, and in [6], where LMS
was used to correct both RF and baseband nonlinearities.

The use of the post-distortion method allows for correction
in situations where receiver distortion is unavoidable, specif-
ically when interferers drive the system into compression.
This paper demonstrates cases where the LMS method proves
advantageous over WLS in its ability to iteratively adapt the
weights to changes in the system, such as temperature or
frequency changes due to the use of tunable components.
It will also be demonstrated that the memory polynomial,
though it may not be optimal in all cases, can characterize
the nonlinear aspects of the system in both power, frequency,
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and combinations of the two. Lastly, it will be shown that
using an iterative solution for IMD correction on a digital
array provides a much higher increase in dynamic range when
compared to the use of a static solution.

Typically, characterization of the nonlinearities of a system
is done by placing two tones and their respective IMD some-
where in-band. The disadvantages of this method are that it
only characterizes a specific part of the bandwidth and only
at a specific power level. The use of a frequency and power
diverse waveform, such as band-limited white Gaussian noise
(WGN), to characterize the system is much more effective as
it results in many more frequencies and a multitude of power
levels being simultaneously tested.

In this paper, the use of LMS to apply a memory
polynomial-based nonlinear correction to data gathered from
a linear auxiliary channel and a low-cost-nonlinear channel is
presented. The ability of LMS to quickly adapt to changes
in the temperature of the system, compared to that of the
computationally costly WLS, is also shown. Section II demon-
strates the framework of the LMS algorithm. Next, Section
III will show the results of digital nonlinear correction from
both WLS and LMS methods. Section IV shows the nonlinear
characterization of a receiver channel and the use of this
characterization in a MATLAB software suite designed for
digital array simulations. Section V then shows the results of
the the LMS correction on a simulation of a 12 element linear
array with nonlinear receiver channels. Lastly, the Conclusion
will summarize the work discussed in this paper and give
examples of future work.

II. LMS ALGORITHM

The LMS algorithm attempts to minimize the mean-square
error (MSE), the cost function, of the desired signal d(n) and
the corrected signal y(n).

MSE =
1

N

N∑
n=1

[d(n)− y(n)]2 (1)

The cost function is at a minimum when its first derivative
is zero and its second derivative is positive. The gradient of
the cost function J [w(n)] is given by

638



Fig. 1. The testbed setup; Rx1 is the auxilliary channel; Rx2 is the nonlinear
channel, which is distorted by the nonlinear amplifier.

∇J [w(n)] = −2d(n)x(n) + 2x(n)xT (n)w(n)

= −2e(n)x(n)
(2)

where w(n) are the weights used to correct the distorted
signal x(n). The weights are calculated iteratively, where the
next weight is given by

w(n+ 1) = w(n)− µ∇J [w(n)], (3)

where µ is the step size. The weights remain unchanged
and are at their optimum values when the error is minimized.

In order to apply LMS to nonlinear correction we adapt it
to a memory polynomial model, given as

y(n) =
P−1∑
p=0

M−1∑
m=0

wpmx(n−m)|x(n−m)|2p, (4)

where wpm is the weight in the pth row and the mth column
of the LMS weight matrix w. The memory polynomial model
allows for correction in P power levels and M orders, yielding
a total of P × M coefficients to characterize the nonlinear
system.

III. CHANNEL CORRECTION RESULTS

We gathered data from an Analog Devices AD9371
transceiver, using the Tx module to transmit the 20MHz WGN
waveform at 2.7GHz. This was then fed into a power divider,
with one output feeding into the auxiliary channel and the
other output into the pre-amp, a MiniCircuits XRL-3500+,
followed by the nonlinear amplifier, a MiniCircuits ZJL-3G+.
Both of the Rx channels were fitted with attenuators so that
their respective signals had nearly the same amplitude, and
lengths of cables were adjusted so that there was negligible
time-delay between the two channels. We then calibrated and
corrected the data with both WLS and LMS, each using six
power terms (up to the 11th order) and five time delays
(memory terms).

The system was first calibrated using the WLS method
suggested in [1]. The calibrated coefficients were then applied
to the collected data and the results are shown in Fig. 2. This
resulted in about 10dB of correction in the IMD products.

The system was then calibrated and corrected using the
LMS method. This correction produced more than 20dB of

Fig. 2. WLS correction, yellow, of the nonlinear channel, orange, with IMD
mitigation of about 10dB.

IMD mitigation, while increasing the noise floor about 10dB,
seen in Fig. 3.

We then heated the nonlinear amplifier from 30◦C to 60◦C
and gathered the new data. The nonlinear characteristics of
the amplifier change with temperature and this can be seen
in Figures 4 and 5, where the effectiveness of the previously
calibrated coefficients decreased.

In order to continue to mitigate the IMD products as
much as possible, we would need to re-calibrate the nonlinear
system. Since LMS is an iterative algorithm, it is much
more computationally efficient at calculating new coefficients,
especially because this is the same system and its nonlinear
characteristics have only changed slightly. We then ran the
LMS calibration for a few iterations until it converged to new
weights. The mitigation achieved by these new coefficients can

Fig. 3. LMS correction, yellow, of the nonlinear channel, orange, with IMD
mitigation of more than 15dB.
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Fig. 4. WLS correction, yellow, of the heated nonlinear channel, orange, using
the coefficients of the 30◦C channel with slightly less effective correction.

Fig. 5. LMS correction, yellow, of the heated nonlinear channel, orange, using
the coefficients of the 30◦C channel with about 5dB less of IMD suppression.

be seen in Fig. 6.
Another example of the performance of the LMS algorithm

is to apply the previously trained weights, used to produce the
correction in Fig. 3, to a two tone test on the same system,
shown in Fig. 7. Complex baseband tones of -4MHz and
5MHz were pushed through the nonlinear system, producing
third-order IMD about 57dB down from the normalized power
level. With the application of these previously calibrated
weights we were able to achieve 7.5dB and 13dB of mitigation
of the 3rd order IMD. The baseband spurious products seen
in Fig. 7 were not corrected in this paper, but have been
mentioned in [4] and corrected in [6].

Finally, for nonlinear systems, it is interesting to look at the
power-in vs power-out curve as it provides information about
the compression point of the system, observed in the knee, and
the memory effects, seen in the smearing of the points. Fig. 8

Fig. 6. LMS correction, yellow, of the heated nonlinear channel, orange, using
the adaptively trained coefficients with greater than 15dB of IMD mitigation.

Fig. 7. LMS correction, yellow, of the nonlinear channel, orange, with two
tone input and resulting third-order IMD. There are also many baseband
spurious products both receiver channels.

shows the normalized power-in vs power-out curve for the data
from Fig. 3. The LMS method does a good job of correcting
the memory effects at the lower power levels by removing
the smearing, and in correcting the power nonlinearities by
removing the knee and straightening up the curve.

IV. NONLINEAR ARRAY SYSTEM MODELER

The Nonlinear Array System Modeler (NASM), used in [7],
allows us to simulate digital phased array systems. NASM is a
MATLAB software suite designed to simulate an entire digital
array, from the signal source to the antenna element to the
digital beamformer. Nonlinear coefficients can be specified to
produce specific nonlinearities or to represent a real channel.
These coefficient can be calculated from a real system in the
same way the correction was done in the previous section.
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Fig. 8. The normalized power-in vs power-out curve of the LMS correction in
yellow, the nonlinear channel in orange and the ideal linear channel response
in blue.

In order to calculate the nonlinear coefficients of the tested
system, the desired signal is replaced with the nonlinear signal.
The LMS-based correction from the previous section was
then run to determine the nonlinear coefficients to be used in
NASM. Fig. 9 shows that the nonlinear coefficients produce
the same nonlinearities as the real system and Fig. 10 shows
that the normalized power-in power-out curve of the calculated
coefficients follows that of the real data. The coefficients
of the system for both temperatures were calculated. These
coefficients are then used in the next section to simulate a 12
element linear array with IMD caused by two interferers.

Fig. 9. The LMS trained nonlinear distortion, yellow, of the linear channel,
blue, closely matches the nonlinear channel, orange.

V. ARRAY CORRECTION RESULTS

Having demonstrated the performance of the LMS-based
correction on a single channel, we then want to evaluate it’s
effectiveness on an array. Using NASM and the calculated
nonlinear coefficients, we simulated a 12 element linear array
with two-tone input, each tone from a different direction. The
two third-order IMD correlate to predictable angles given by
equations in [8], used by the authors of [4].

The array was simulated with at a frequency of 2.7GHz
with the two tones, at baseband, having frequencies of 11MHz
and 17MHz and directions of 15◦ and −11◦, respectively.
The third-order IMD were at baseband frequencies of 5MHz
and 23MHz with correlated directions of 45.27◦ and −39.68◦,
respectively.

The first array simulation, shown in Fig. 11, used coeffi-
cients from the 30◦C channel. The channels were corrected
using the LMS-based correction method, decorrelating the
third-order IMD by 23.47dB and 24.24dB. The second and
third arrays were simulated using the coefficients from the
60◦C channel. The first of these two simulations was corrected
using the correction coefficients from the first array simulation,
shown in Fig. 12. The decorrelation of the third-order IMD
in this simulation were only 10.61dB and 11.73dB, more
than an order of magnitude less than the correction when the
coefficients were used on the channels they were calibrated
on.

The correction coefficients were then iteratively calibrated,
as in Section III, by running the LMS for a few iterations
on the new data allowing it to adapt the values to the new
channel characteristics. Fig. 13 shows that the adaptive weights
decorrelated the IMD by 19.94dB and 19.68dB. Using the
iterative calibration solution to correct the nonlinear IMD of
an array provided 9dB more mitigation when compared to the
use of static coefficients.

Fig. 10. The power-in vs power-out curve of the LMS trained nonlinear
distortion, yellow, follows that of the nonlinear channel, orange.
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Fig. 11. Digital beamforming of a simulated 12-element array with nonlinear
receive channels, solid lines, and its nonlinear correction, dashed lines. The
two input tones are at baseband frequencies of 11MHz (blue) and 17MHz
(orange) with third-order IMD at 5MHz (yellow) and 23MHz (purple). The
correction shows the decorrelation of the third-order spurs.

Fig. 12. Digital beamforming of a simulated 12-element array with heated
nonlinear receive channels, solid lines, and its nonlinear correction using the
coefficients of the non-heated channels, dashed lines. The two input tones are
at baseband frequencies of 11MHz (blue) and 17MHz (orange) with third-
order IMD at 5MHz (yellow) and 23MHz (purple). The correction shows less
decorrelation of the third-order spurs.

CONCLUSION

The ability of the LMS algorithm to linearize signals that
have been pushed into compression, paired with its ability
to adapt to changes in the system make it a very desirable
way to correct nonlinearities in low cost systems. It was also
shown that having an iterative solution, when correcting IMD
in a digital phased array, provides a much better correction
than when using static coefficients. The next step would be
to show how the LMS algorithm performs with the use of
tunable components, which will greatly change the memory

Fig. 13. Digital beamforming of a simulated 12-element array with heated
nonlinear receive channels, solid lines, and its nonlinear correction using
adaptively trained coefficients, dashed lines. The two input tones are at
baseband frequencies of 11MHz (blue) and 17MHz (orange) with third-order
IMD at 5MHz (yellow) and 23MHz (purple). The correction shows an increase
in the decorrelation of the third-order spurs, as opposed to when the static
correction was used.

Fig. 14. Legend for Figures 11, 12, and 13

effects of the system. In general, it is still an open research
topic to determine the most optimal manner for training
receiver correction to be able to handle the widest variety of
nonlinearities.
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