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ABSTRACT 

Due to the emergence of powerful global terrorist organizations such as Al Qaeda 

and ISIS over the last 15 years, social network analysis is increasingly leveraged by the 

Department of Defense to develop strategies to combat criminal and terrorist organizations. 

Understanding and correctly classifying networks improves our ability to destroy criminal 

and terrorist networks because we can leverage existing literature that identifies the optimal 

strategy for dismantling these networks based on their network structure. However, these 

strategies typically assume complete information about the underlying network. Due to the 

limited ability of an analyst to process all of the available data, our inability to detect all 

members of these networks, and the efforts of criminal organizations to hide their activities 

and structure, analysts must classify these networks and develop strategies to combat them 

with missing information. This thesis analyzes the performance of a variety of network 

statistics in the context of incomplete information by leveraging simulation to remove 

nodes and edges from networks and evaluating the effect this missing information has on 

our ability to accurately classify the underlying structure of the network. We provide 

recommendations to intelligence analysts about which statistics provide the most 

information, conditions under which it is reasonable to assert a classification, and a 

framework for the evaluation of network statistics for the purposes of classifying network 

graphs under incomplete information. 
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EXECUTIVE SUMMARY 

A. BACKGROUND AND MOTIVATION 

While September 11, 2001 (9/11) is known to many as a watershed for warfare in 

the modern era, even prior to the 9/11 attacks, Arquilla and Ronfeldt (2001) asserted in 

their publication Networks and Netwars that the nature of modern warfare has evolved to 

that of a lower intensity war against criminals and terrorists in a network-based, 

organizational structure instead of full intensity conflicts by state actors as featured in 

World War I and World War II. Recent military actions throughout the world seem to 

validate Arquilla and Ronfeldt’s assertion. In this environment, the role and value of social 

network analysis in fighting terrorism (Ressler 2006), cyber crime (Yip 2008), as well as 

other networked criminal activities (Sparrow 1991) has been steadily increasing. 

Network analysis is the science of “using mathematical properties inherent in the 

graphical structure to seek and uncover differing patterns in the network to determine the 

conditions under which the networks operate and may best be exploited” (Hopkins 2010). 

Many researchers agree that characterizing graphs to a high level of accuracy is an essential 

goal for security forces whose end-state is to curb criminal activity (Cinar et al. 2017). 

Understanding and correctly classifying the network allows us to effectively disrupt, 

destabilize or destroy these networks, and graph statistics not only allow us to classify these 

networks but also measure the effectiveness of destabilization strategies (Hopkins 2010).  

One of the biggest problems with current approaches to network analysis in real-

world practice is that most applications assume complete information (Carley et al. 2003). 

As Sparrow (1991) notes, “criminal network data is also inevitably incomplete; i.e., some 

existent links or nodes will be unobserved or unrecorded. Little research has been done on 

the effects of incomplete information on apparent structure” (p. 262). Analysts with 

incomplete information may incorrectly classify the network and hence recommend the 

use of a strategy meant for a one network type on another, which would not only be 

ineffective but a waste of resources. Inevitably, most intelligence collection will be based 



 xx 

on incomplete information, but there is little published work on the effects of incomplete 

information on network analysis (Sparrow 1991). 

B.  RESEARCH OBJECTIVES  

This thesis addresses this gap in the existing literature by considering the following 

research questions in the context of missing information (i.e., hidden edges and 

vertices): 

1. Which network statistics provide the most predictive power in classifying 
the network type?  

2. What is the effect of changing the (a) edge density, (b) size (number of 
vertices) of the original network, (c) proportion of information loss, and 
(d) type of information loss (edges or vertices), (e) network type (Erdos-
Renyi [ER], Small World [SW] or Barabasi-Albert [BA]) on the ability to 
classify a graph type correctly?  

3. Can we establish a framework through which we can learn (1) and (2) for 
any combination of network statistics? 

The key objectives of this thesis are twofold: (1) to make a recommendation to 

intelligence analysts as to the conditions under which it is reasonable to classify networks 

with incomplete information, and (2) to produce a methodology that will allow researchers 

to assess the performance and robustness of any graph statistic for network classification 

as information about the network is lost. 

C. METHODOLOGY 

The methodology we use to answer these research questions is illustrated in Figure 

E-1 and summarized as follows: 

1. Simulation and Descriptive Analysis (Simulation): We develop a 
simulation model that randomly removes edges or vertices (i.e., represents 
information loss) on different sizes and types of graphs and record the 
resulting behavior of graph statistics as information is lost; this provides 
the opportunity to observe the effect of information loss on individual 
statistics.  

2. Generation of Data for Machine Learning (Design of Experiments): We 
use a space-filling Design of Experiments (DOE) to create training and 
test datasets that represent networks exhibiting a variety of sizes (i.e., 
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number of vertices), edge densities, number of nodes, and other 
parameters and then use the simulation model to build all of the needed 
design points. 

3. Machine Learning for Network Classification (Machine Learning Model): 
We use Classification and Regression Trees (CART) (Breiman et al. 1984) 
and Random Forest (RF) classification models (Breiman 2001) to build 
machine learning models from the training dataset that describe the 
contribution of various statistics for accurate classification of networks 
and test the performance of these models on the out-of-sample test dataset.  

4. Analysis of Results (Analysis of Results): We use logistic regression 
(Agresti 2012) and CART models to analyze the effect of many different 
situational factors (i.e., simulation parameters) on our ability to accurately 
distinguish between the three networks types commonly encountered in 
intelligence analysis applications.  

Figure E-1. Overview of Methodology 

 
This figure illustrates our methodology. In step 1, we develop a simulation model to 
randomly remove nodes and edges (i.e., simulate information loss) from a variety of 
networks and record the resulting effect on graph statistics. In step 2, we use a space-filling 
NOLH DOE to design training and test datasets that represent networks under a variety of 
conditions and then use the simulation model to build all of the needed design points, all 
of which are networks in which some information has been lost. In step 3, we use the 
training data set to build machine learning models for classifying networks based on 
observed graph statistics. In step 4, we use logistic regression (illustrated with profile plots) 
to analyze the effect of the many studied factors on our ability to accurately classify the 
design points in the test dataset based on their observed graph statistics. 
Detailed profile plots are in Figure E-3. 
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Figure E-2 provides an illustration for how the simulation model functions. The 

simulation model begins by creating an ER, SW, or BA network with the network 

parameters in the second column available for specification. Then, the simulation model 

iteratively and randomly removes either links or edges until a specified amount of 

information has been removed from the network. The result of this process is an obscured 

network (i.e., a network with missing information), representing the view of the true 

network that an intelligence analyst might see in the real world. A variety of graph statistics 

are calculated at each step in the removal process, providing the opportunity to observe 

how information loss affects these statistics. The key finding of this observational analysis 

is that no single statistic always distinguishes between the three graph types under the 

studied conditions of information loss. This finding motivates the use of machine learning 

models to combine the information from multiple observed statistics to improve our ability 

to classify with incomplete information.  

Figure E-2. Illustration of Simulating Missing Information 

 
This figure outlines the process of simulating missing information. Looking at the figure 
from left to right, we first generate initial graphs of each of the three graph types based on 
different network parameters such as size, edge density, etc. Based on a specified 
proportion of removal and removal type (edge/vertex), the initial graph becomes obscured. 
Statistics of the obscured graph are observed and recorded, and used later to assert a 
classification of the graph. 



 xxiii 

C. RESULTS 

This section summarizes the most significant research results obtained in answering 

each of the three research questions posed in the introduction. 

1. Which network statistics provide the most predictive power in classifying 
the network type? 

• We find that no single statistic is sufficient to distinguish between 
these three types of graphs under conditions of incomplete 
information. Rather, even the simplest CART model requires more 
than one statistic to help to classify the network. Moreover, we 
observe that ensemble machine learning methods such as RF 
models provide even more predictive power by combining models 
leveraging all of the available graph statistics.  

2. What is the effect of changing the edge density of the original network (p), 
size (number of vertices) of the original network (n), proportion of 
information loss (rhat), and type of information loss (edges vs. vertices), 
and network type (ER, SW or BA) on the ability to classify a graph type 
correctly? 

• This analysis indicates that the proportion of removals (i.e., 
amount of missing information) is the most significant factor in 
classification performance, followed by type of missing 
information (edge vs. vertex) and network type. The most 
significant finding is that the ability to accurately classify 
networks declines precipitously once more than 80% of the 
information about the network is missing (as illustrated in the 
left-most panel in the figure). Figure E-3 provides a simple 
illustration depicting the general shape of the studied effects from 
the logistic regression analysis, with movement towards the top of 
the figure indicating improvement in classification performance. 
Factors within the bold box were statistically significant effects. 
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Figure E-3. Prediction Profiler for Graph Characteristics in 
Classifying Networks 

 
This figure outlines the relationship between factor levels and classification performance 
as found in logistic regression analysis is outlined. Factors which are statistically 
significant are outlined in the bold box. For those with a positive slope (network size, edge 
density, number of neighbors within which two vertices are connected), increasing factor 
levels increases the probability of correct classification. A high proportion of removals, 
having a SW graph or hidden edges increases the probability that the graph is misclassified. 

3. Can we establish a framework by which we can learn (1) and (2) for any 
combination of network statistics? 

• This thesis provides a framework for evaluating the contribution of 
various network statistics on our ability to classify graphs. To date, 
research in this area has focused on analyzing the performance of 
individual network statistics for classifying networks. While this 
thesis finds that an ensemble of statistics can classify a network 
with high accuracy using RF models, it also establishes a general 
framework with which any new statistic can be evaluated for its 
utility in classifying networks (in comparison to its peers) under 
conditions of incomplete information.  

D.  APPLICATION FOR INTELLIGENCE ANALYSIS 

Figure E-4 provides a detailed view of the effect of information loss on our ability 

to classify network graphs with both CART and RF models. The amount of information 

missing has the most significant effect on our ability distinguish between these three 

network types commonly encountered in intelligence analysis. This graph provides several 

key insights for applications of network analysis in the intelligence domain. First, only 

about 20% of the information about a network is needed in order to achieve better than 

90% accuracy in network classification. This means that we do not need to spend resources 

to completely map a network in order to accurately classify it.  
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Second, the significant performance improvement of the RF ensemble machine 

learning model in this study over the use of simple thresholds based on individual statistics 

suggests that this approach should be directly fielded for counter-network applications in 

the DoD. The classification models developed as part of this thesis, trained on a wide 

variety of synthetically generated networks, should provide significantly improved 

classification performance in practice over the current methods used, which use single 

statistics and assume a complete mapping of the network. 

Figure E-4. Classification Accuracy vis-à-vis Information Loss 

 
This figure shows both the CART (red line) and RF (blue line) have classification accuracy 
that dips after information loss is beyond 80%. The RF model performs better than the 
CART model for all levels of information loss, but a key finding is that at 80% information 
loss, the CART has 79.74% of accuracy while the RF model has 91.025% accuracy. 

This research also suggests that, unless we can be reasonably sure that we have 

sufficient information, we should be very cautious about proposing specific strategies for the 

dismantling of threat networks based on network classifications conducted on small samples 

of larger (and mostly unobserved) networks. The widespread practice of asserting a network 

classification based on a single statistic such as degree distribution calculated on a small 

observed sample of a much larger (but mostly unobserved) network is unlikely to result in 
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accurate network classification and therefore effective strategies. Rather, a reasonable 

standard would require that we (1) believe we have observed at least 20% of the network, (2) 

have reason to believe the network is one of the three types studied in this thesis (or we have 

replicated this framework for additional network types), and (3) we have developed a 

classification model whose performance for the desired application is known and validated.  
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I. INTRODUCTION 

A. BACKGROUND 

While September 11, 2001 (9/11) is known to many as a watershed for warfare in 

the modern era, even prior to the 9/11 attacks, Arquilla and Ronfeldt (2001) asserted in 

their publication Networks and Netwars that the nature of modern warfare has evolved to 

that of a lower intensity war against criminals and terrorists in a network-based, 

organizational structure instead of full intensity conflicts by state actors as featured in WWI 

and WWII. Recent military actions throughout the world seem to validate Arquilla and 

Ronfeldt’s assertion. In this environment, the role and value of social network analysis in 

fighting terrorism (Ressler 2006), cyber crime (Yip 2008), as well as other networked 

criminal activities (Sparrow 1991) has been steadily increasing. 

Network analysis is the science of “using mathematical properties inherent in the 

graphical structure to seek and uncover differing patterns in the network to determine the 

conditions under which the networks operate and may best be exploited” (Hopkins 2010). 

Many researchers agree that characterizing graphs to a high level of accuracy is an essential 

goal for security forces whose end-state is to curb criminal activity (Cinar et al. 2017). 

Understanding and correctly classifying the network allows us to effectively disrupt, 

destabilize or destroy these networks, and graph statistics not only allow us to classify these 

networks but also measure the effectiveness of destabilization strategies (Hopkins 2010). 

For instance, Barabasi-Albert (BA) networks are most vulnerable to targeted attacks on 

key vertices (nodes) (Hopkins 2010). Graph statistics, such as degree distribution, mean 

distance and transitivity are often used distinguish one graph type from another (Hopkins 

2010). 

A key to network analysis is a true and accurate mapping of the network 

(Huddleston et al. 2016). In the intelligence community, this mapping of the network is 

often done manually by analysts who build up a network through an iterative process as 

illustrated in Figure 1. Referencing Figure 1, this process involves studying the 

relationships of initial subject of interest (“Query”), selecting nodes and relationships that 
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will be explored for further study (“Collapse”), and further study of these selected entities 

(“Expand”) (Huddleston et al. 2016). In real world practice, due to the limited time and 

resources of any analyst, this focus on only a small subset of the entities and relationships 

in the data inevitably results in the mapping of only a very small subset of the actual 

network. In the example given in Figure 1, when an analyst collapses focus onto only three 

of 40 possible nodes in the initial query, they immediately eliminate consideration of over 

90% of the network represented in the available data.  

Figure 1.  How a Network Was Mapped Out with Information on an 
Initial Subject of Interest. Source: Huddleston et al. (2016). 

 
This figure illustrates how intelligence analysts will never have complete information on 
networks. With an initial subject of interest, they “Query” all his links and relationships. 
They “Collapse” the network, narrowing it down to three to four nodes to continue their 
mapping as they are unable to explore all leads based on the resources they have. Next, 
they “Expand” and find out the “friends of friends” of the initial subject of interest to map 
the rest of the network. This process is done iteratively. However, more than 92% of the 
leads are unexplored due to analyst’s inability to follow up on all leads (Huddleston et al. 
2016). 

One of the biggest problems with current approaches in interpreting network 

statistics is that most of them assume complete information (Carley et al. 2003). According 

to Sparrow (1991), “criminal network data is also inevitably incomplete; i.e., some existent 

links or nodes will be unobserved or unrecorded. Little research has been done on the 

effects of incomplete information on apparent structure” ( p. 262).  
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As illustrated above, intelligence information is often incomplete and much of the 

network is undiscovered (Huddleston et al. 2016). Analysts with incomplete information 

may incorrectly classify the network and hence recommend the use of a strategy meant for 

a one network type on another, which would not only be ineffective but also a waste of 

resources. Most intelligence collection will inevitably be based on incomplete information, 

but there is scarce work on the effects on incomplete information on network analysis 

(Sparrow 1991).  

B. OBJECTIVES AND APPROACH 

The key question for this thesis is: How robust to missing information are 

inferences about networks based on graph statistics? The fundamental research questions 

that this thesis will seek to answer is as follows. In the context of missing information 

(i.e., an incomplete mapping): 

(1) Which network statistics provide the most predictive power in 
classifying the network type? 

(2) What is the effect of changing the following parameters on the ability 
to classify a graph type correctly? 

• edge density 

• size (number of vertices) of the original network 

• proportion of information loss, and  

• type of information loss (edges or vertices), and  

• network type (Erdos-Renyi [ER], Small World [SW], or Barabasi-
Albert [BA]) 

(3) Can we establish a framework through which we can learn (1) and (2) 
for any network statistic? 

We address these research questions through the following methodological steps: 

• Simulation and Descriptive Analysis (Simulation): We develop a 
simulation model that randomly removes edges or vertices (i.e., 
represents information loss) on different sizes and types of graphs 
and record the resulting behavior of graph statistics as information 
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is lost; this provides the opportunity to observe the effect of 
information loss on individual statistics.  

• Generation of Data for Machine Learning (Design of 
Experiments): We use a space-filling Design of Experiments 
(DOE) to create training and test datasets that represent networks 
exhibiting a variety of sizes (i.e., number of vertices), edge 
densities, number of nodes, and other parameters and then use the 
simulation model to build all of the needed design points. 

• Machine Learning for Network Classification (Machine Learning 
Model): We use Classification and Regression Trees (CART) 
(Breiman et al. 1984) and Random Forest (RF) classification 
models (Breiman 2001) to build machine learning models from the 
training dataset that describe the contribution of various statistics 
for accurate classification of networks and test the performance of 
these models on the out-of-sample test dataset.  

• Analysis of Results (Analysis of Results): We use logistic 
regression and CART models to analyze the effect of many 
different situational factors (i.e., simulation parameters) on our 
ability to accurately distinguish between the three networks types 
commonly encountered in intelligence analysis applications.  

This research provides two significant and immediately applicable results: (1) it 

provides recommendations to intelligence analysts as to the threshold with which to trust 

different statistics under the condition of incomplete information, and (2) it provides a 

framework for evaluating the utility of network statistic for network classification. 

C. SCOPE/LIMITATIONS 

This thesis focuses on evaluating the performance of graph statistics for network 

classification, leaving consideration of node centrality measures under the loss of 

information for future work. We remove edges and vertices randomly to investigate the 

individual effects of their removal, recognizing that in reality both edges and vertices may 

be missing and biases may be systematic rather than random. We limit analysis and 

classification of networks to ER, SW and BA networks, as they largely characterize 

criminal and terrorist networks (elaborated in Chapter III) and are easily produced using 

open source software.  
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D. STRUCTURE OF THESIS 

The remainder of this thesis is organized as follows. Chapter II (Literature Review) 

reviews the work done so far involving network statistics and shows a lack of investigative 

work done on network statistics taking into account a loss of information. Chapter III 

(Model Formulation) introduces key equations and outlines the descriptive and predictive 

portions of the model including assumptions and methodology. Chapter IV (Analysis of 

Results) outlines the key results and discusses their validity, while Chapter V (Conclusion) 

highlights key findings and recommended future work. 
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II. LITERATURE REVIEW 

A. THE IMPORTANCE OF NETWORK ANALYSIS 

Until recent years, a large proportion of network classification was done in the field 

of chemical and biological data (Zhu et al. 2011). Even though it was acknowledged that 

there was potential usefulness of network classification in social network analysis, (Zhu et 

al. 2011) asserted that they were not aware of “focused study on this problem.”  

The events of 9/11 drove home a strong point about the dangers of networked 

criminal organizations, and there was increasing amounts of work done to study network 

properties and their meaning for counter-network operations (Ressler 2006). Many 

researchers now agree that characterizing networks to a high level of accuracy is an 

essential goal for security forces whose end-state is to curb criminal activity (Cinar et al. 

2017).  

B. WHY GRAPH STATISTICS ARE IMPORTANT TO NETWORK 
CLASSIFICATION  

Network classification lends important insight as to how best to conduct counter-

network operations (Hopkins 2010). For instance, Barabasi-Albert (BA) scale-free 

networks “are vulnerable to targeted attacks on highly connected nodes” (Faloutsos 2008), 

whereas Small-World (SW) networks are vulnerable to attacks on edges between key 

clusters or the key clusters themselves (Hopkins 2010). Network statistics like degree 

distribution, mean distance and transitivity are widely used to define and distinguish these 

networks (Hopkins 2010). For example, BA networks have a scale-free degree distribution, 

while ER networks have a Poisson degree distribution, and SW networks have a binomial 

degree distribution (Costa et al. 2005). In addition, SW networks are known to have a high 

transitivity and low mean distance (Xu and Chen 2008). Covert terrorist networks such as 

Al-Qaeda have been classified as SW networks, whereas dark networks or the World Wide 

Web (WWW) are BA networks (Xu and Chen 2008). By correctly classifying these 

networks, counter-network operations can be effectively planned in ways that minimize 
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the use of resources by focusing on the nodes whose removal will be most damaging to the 

overall health of the network.  

Besides classifying networks, graph statistics are also useful in that they provide 

some insight in the environment in which these networks operate, as well as assist in 

measuring the effectiveness of destabilization strategies (Carley et al. 2003). For example, 

networks with high clustering coefficients and low mean distance are highly efficient and 

can connect with other members through few mediators (Hopkins 2010). Networks with 

positive assortativity indicate that members are connected to others with the same 

characteristics (Hopkins 2010). The Al-Qaeda network is known to have positive 

assortativity, with “high-degree nodes…cluster[ing] together as core groups, a 

phenomenon evident in the ... network in which bin Laden and his closest cohorts form the 

core of the network and issue commands to other parts of the network” (Xu and Chen 

2008). Furthermore, a high clustering coefficient is indicative that the mechanism for 

recruitment of new members is through a mutual friend, or transitive linking (Friemel 

2011), while a high edge density would mean that the network is not easily fragmentable 

(Hopkins 2010). A change in the edge density, mean distance or degree distribution could 

indicate a measure of effectiveness in the destabilization strategy for these networks 

(Carley et al. 2003).  

C. HOW NETWORKS ARE MAPPED  

Before network analysis can commence, however, work has to be done in order to 

map out the network. This begins with initial subjects of interest (vertices), such as a known 

member of a terrorist organization (Huddleston et al. 2016). After studying connections 

(edges) that the subjects of interest have, more subjects (vertices) are added and a more 

comprehensive picture of the network is formed (Satell 2013). Not all the leads on new 

subjects can be explored, so a subset is chosen and a further investigation on their 

connections is done (Huddleston et al. 2016). Because intelligence analysts are unable to 

explore all leads and have to narrow their focus on some, there is almost always a problem 

of incomplete information. This lack of an ability to map the entire network is also 

illustrated in a recent study on counter-threat finance intelligence that noted the analysis 
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was constrained to only the financial data available from Suspicious Activity Reports 

(SARs) rather than the full records of financial transactions involving the parties of interest 

(Huddleston et al. 2016). In the intelligence field, new vertices (people) are mapped in the 

network only when the corresponding link (relationship) is found in some way through 

surveillance activities or available data sources. 

D. THE PROBLEM OF INCOMPLETE INFORMATION 

While the importance of network analysis and graph statistics in the use of 

classification of networks has gained recognition and importance in recent years, most of 

these studies implicitly assume complete information. Carley and Kim (2008) looked into 

interpretation of graph statistics in comparison to random graphs and approximate a 

distribution of these statistics. Recently, Cinar et al. (2017) computed network statistics for 

a number of terrorist networks such as the 9/11 Hijackers associates, the Jemaah Islamiyah 

Koschade and the Islamic State in Iraq and Syria (ISIS), to give an indication on various 

operating conditions of these networks such as density, mean distance and closeness.  

In evaluating the effectiveness of destabilization strategies for terrorist networks, 

Carley et al. (2003) recognized that one of the most crucial problems is that in spite of the 

large amounts of information on such networks, most of such information is often 

incomplete. A large proportion of leads are unexplored (as shown in Figure 1) due to the 

limited ability of any analyst to process all the available data (Huddleston et al. 2016). In 

addition, criminals tend to make a concerted effort to erase all traces of illicit relationships 

and keep a low profile to avoid detection (Hopkins 2010).  

While this shows that information about edges in networks is highly likely to be 

flawed, the same can be said about information about vertices. Determination of vertex 

(node) centrality (i.e., the most important person in a network), for criminal networks may 

be the result of who is known most completely rather than who is the most important person 

structurally in the actual but unobserved network (Sparrow 1991). Hence, analysts may fall 

into the trap of focusing on the person they have the most information on even if he may 

not be the ring-leader of the network (Sparrow 1991). Similarly, for classifying networks, 

analysts with incomplete information may misclassify a network and as a result 
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recommend the use of a strategy meant for a different type of network, which would not 

only be ineffective but also a waste of resources. Most intelligence collection is inevitably 

based on incomplete information, but there is little work on the effects on incomplete 

information on network analysis (Sparrow 1991).  

Thus, there is a need to develop tools to evaluate terrorist network destabilization 

strategies in the context of incomplete information. Sparrow (1991) had similar thoughts 

on criminal networked organizations, asserting “little research has been done on the effects 

of incomplete information on apparent structure” (p. 262). Sparrow also acknowledged that 

while there had been some research on the issues involved in statistical inference from 

networks with incomplete information, (e.g., the 1981 study by Friedkin on the effect of 

sampling of random edges on the structural properties of networks), he argues that biases 

in the real world brought about by investigative procedures do not follow a random pattern. 

 



 11 

III. MODEL FORMULATION 

A. INTRODUCTION TO NETWORK ANALYSIS AND GRAPH 
STATISTICS 

In this section, we present definitions of terms and variables as well as explain why 

they are of interest to social network analysts. 

1. General Terms 

We adopt definitions of terms and variables from Rodrigue and Ducruet (2017) and 

explain why they are of interest to social network analysts. 

(1) Vertex (Node) 

A vertex is “a terminal point or an intersection point in a graph” (Rodrigue and 

Ducruet 2017). In Figure 2, these are represented by blue circles. In the context of a social 

network, vertices represent people. 

Figure 2.  Network with Vertices (circles in blue) and Edges (black links). 
Source: (Kell 2006). 

 

 

(2) Edge (Link or Arc) 

An edge is “a link between two vertices” (Rodrigue and Ducruet 2017). In Figure 

2, these are represented by black lines. For instance, in the context of a social network, an 

edge represents a relationship between people. 
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(3) Graph  

A graph is a “collection of vertices (nodes) connected by edges” (Rodrigue and 

Ducruet 2017). In Figure 2, the graph is the entire diagram containing both nodes and 

edges. 

(4) Network 

A network is a graph with information (attributes) (Ahuja et al. 1993). Social 

networks are comprised of people (nodes), relationship (edges), and specific attribute 

information such as type of relationship, age of person, etc.  

Note that “node” and “vertex”; “edge” and “link” are synonyms. For this thesis, we 

use the terms “vertex,” “edge,” and “network” throughout. We use the term “graph” when 

it comes to computational and mathematical aspects, and the term “network” with regard 

to (intelligence) application aspects. 

2. Network Types 

Social networks are typically best approximated by one of three network types 

(Barabasi 2015): 

• Erdos-Renyi (ER) random network 

• Small-World (SW) network 

• Barabasi-Albert (BA) network  

Each of these networks types is described in depth in the following sections.  

a. Erdos-Renyi (ER) Random Network 

The Erdos-Renyi network is a random network that starts with a number of 

disconnected vertices and is constructed, while avoiding self-connections, by adding edges 

randomly with a given probability p (Costa et al. 2005). ER networks are characterized by 

a low mean average distance, low clustering coefficient, and a Poisson degree distribution 

(Hopkins 2010).  



 13 

b. Small World (SW) Network 

The small-world model originated with the “observation that most real-world 

graphs seem to have a low average distance between nodes…but have high clustering 

coefficients” (Watts and Strogatz 1998). This characterizes many real-world networks, 

including social networks, where only a small number of friends separate two people from 

knowing each other. A common saying to describe this is “6 degrees of separation [6 

acquaintances] separate any two people.” The small world model starts with a D-

dimensional square lattice and connections are re-wired to reduce the overall mean distance 

(Watts and Strogatz 1998). The degree distribution of a SW network is binomial (Cinar et 

al. 2017). According to Alderson (2008), “the small-world model has been used to 

represent many types of social networks, including collaboration … trust networks … and 

community structure” (p.1053). Given that the SW network is characterized by clusters 

with weak ties, the SW network is vulnerable to disruption and fragmentation through 

attacks on key clusters or edges between them (Hopkins 2010). 

c. Barabasi-Albert (BA) Network 

Barabasi-Albert (BA) networks are also known as scale-free networks because their 

degree distribution follows a power law; hence, a large proportion of vertices have a small 

number of connections, while a small proportion of vertices have a large number of 

connections (Costa et al. 2005). In addition, the BA network is generated with preferential 

attachment; that is vertices with more existing edges are more likely to have additional 

edge(s) added in each time step (Faloutsos 2008). The BA network is resistant to random 

losses, yet in the context of counter-network operations vulnerable to targeted attacks on 

highly connected vertices (Faloutsos 2008). 

According to Faloutsos (2008), whilst the BA model characterizes some real-world 

networks with its preferential attachment model, one must be careful with regard to its 

application to real world networks. First, the exponent of the power-law of the degree 

distribution is 3, but there is a proportion of real world networks do not have this property 

(Faloutsos 2008). Next, he suggests that the BA model has a constant average degree, 

“however, the average degree of some graphs … actually increases over time according to 
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a Densification Power Law.” Nevertheless, it is still useful for real world networks with its 

properties. 

3. Graph Statistics 

The following network statistics are often used to describe and classify the topology 

of a network:  

• edge density 

• mean distance 

• transitivity 

• assortativity 

• degree distribution 

• Kullback-Leibler (KL) divergence 

• Hellinger distance statistic 

Each of these statistics is discussed in detail in the following sections. 

a. Edge Density: The Probability of Connection between Vertices 

The edge density, or the probability of connection between vertices of network is 

defined as the ratio of the number of edges to the number of possible edges (Rodrigue and 

Ducruet 2017). It is defined as follows:  

       
   

Number of edgesEdge Density
Number of possible edges

=  , (1) 

where the number of possible edges is equal to 
2
N 

 
 

, where N is the number of vertices. 

Networks with low density are easily fragmented, whereas networks with high density are 

resistant to fragmentation (Cinar et al. 2017).  
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b. Mean Distance 

The mean distance of a network is the average path length of a network between 

nodes (Rodrigue and Ducruet 2017). This statistic indicates how far apart two nodes are on 

average (Costa et al. 2005). The mean distance of a network GL  is defined as: 

 1 ( , )
( 1)G i j

i j
L d V V

N N ≠

=
− ∑  . (2) 

The mean distance of a network is computed using a summation of all the distances 

between vertices, (where ( , )i jd V V is the distance between vertex i and vertex j, ignoring 

self-connections) normalized by the total number of vertices (Costa et al. 2005). For this 

thesis, this statistic is computed only for connected portions of the network and 

unconnected portions of the network are ignored, mimicking the scenario in the intelligence 

analysis of networks in which unconnected entities and/or communities are not mapped to 

studied networks because their relationship to the network is unknown. In attempting to 

disrupt terrorist networks, one of the goals is often to increase the mean distance to make 

operations more difficult for the network. ER and SW networks are known to have low 

mean distances (Hopkins 2010).  

c. Transitivity 

The transitivity, or clustering coefficient C of a graph, measures the probability that 

the adjacent vertices of a vertex is connected (Rodrigue and Ducruet 2017), i.e., it measures 

the extent to which connections are defined by mutual friends, or the probability that 

connected triangles appear in a given network (Hopkins 2010). It is evaluated by dividing 

three times the number of fully connected triples (i.e., triangles in the graph) with the 

number of triples (Costa et al. 2005), specifically 

 3 *       
  

Number of fully connected triplesC
Number of triples

=  . (3) 

This is also a way to gauge the connectedness of a network. Terrorist networks with 

high transitivity are of concern to intelligence analysts as this signifies a highly connected 
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network. It also indicates that the recruitment mechanism for this network is through 

mutual friends (Ebel et al. 2003). 

d. Assortativity 

On assortativity, Hopkins (2010) cites Xu and Chen (2008), “in positively 

assortative networks, high-degree nodes tend to cluster together as core groups, a 

phenomenon evident in the … network in which bin Laden and his closest cohorts form 

the core of the network and issue commands to other parts of the network.”  

Assortativity indicates a preference or an inclination for a vertex in a network to 

attach itself to other vertices which have similarities (such as nodes with high degree 

connecting to other vertices) (Hopkins 2010). Assortativity (A) is defined as: 

 ,
2

( )ij i j
i j

q

ij e q q
A

σ

−
=
∑

 . (4) 

A is computed by taking the summation of the difference between the joint 

probability distribution ije of the remaining degrees of vertex i and j and the product of the 

distribution of remaining degrees of vertex i ( iq ) and vertex j ( jq ), over all possible 

combinations of vertices i and j, divided by 2
qσ , the squared of the standard deviation in 

distribution of the remaining degrees (Noldus and Mieghem 2014). Social networks tend 

to have positive assortativity (Hopkins 2010). SW and BA networks are also known to have 

an assortativity value of zero (Costa et al. 2005). 

e. Degree Distribution 

The degree of a vertex represents the number of edges (relationships) that a vertex 

has with other vertices (Cinar et al. 2017). The degree distribution is a vector whose first 

element specifies the proportion of nodes with zero connections; second element specifies 

the proportion of vertices with one connection; etc.(Costa et al. 2005). Degree distributions 

give an indication on the proportion of people in a social network who are highly 

connected; as well as the proportion of people with few or no connections (Hopkins 2010). 
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This statistic is one of the distinguishing features between the ER, SW and BA networks: 

the degree distribution of a BA network is scale-free; the degree distribution of an ER 

network is Poisson, and the degree distributions of a SW network is binomial (Hopkins 

2010). The mathematical definitions follow. 

The theoretical degree distribution of an Erdos-Renyi (ER) network, where ( )P k  

is the probability a randomly selected vertex has degree k, is as follows: 

 e( )
!

k k

k kP
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−< > < >
=  , (5) 

where the average vertex degree for the network, k< >  = ( 1)p N − ,with p, the probability 

of connection between two random vertices and N, the number of all vertices in the graph 

(Costa et al. 2005). 

The theoretical degree distribution of a Small World (SW) network, where ( )P k  

is the probability a randomly selected vertex has degree k, is as follows: 
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where κ represents the number of neighbors of each vertex in the initial regular network 

(Costa et al. 2005).  

The theoretical degree distribution of a Barabasi-Albert (BA) network, where 

( )P k  is the probability that a randomly selected vertex has degree k, is as follows (Costa 

et al. 2005): 

 3( ) ~P k k −  . (7) 

f. Kullback-Leibler (KL) Divergence 

The Kullback-Leibler divergence measures the distance between two probability 

distributions (Kullback and Leibler 1951). For two discrete probability distributions P and 

Q, the Kullback-Leibler divergence is defined as the expected logarithmic difference 

between probability distributions P and Q (Kullback and Leibler 1951): 
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In this computation, note that if any element of the probability distribution ( )P i , 

where ( )P i  is the probability for a state i in the distribution P, is equal to 0, this implies 

that ( )Q i = 0, where ( )Q i  is the probability for a state i in the distribution Q, and no 

increment will be made to the current sum total in the Kullback-Leibler divergence statistic. 

g. Hellinger Distance Statistic  

The Hellinger distance statistic (Hellinger 1909) is used to quantify similarity 

between two probability distributions. With two discrete probability distributions P and Q, 

the Hellinger Distance Statistic is defined as follows: 

 
1

1
n

j j
j

P Q
=

−∑  , (9) 

where jP  is the probability for a state j in the probability distribution P, and jQ  is the 

probability for a state j in the distribution Q. This distance is used to quantify similarity 

between two probability distributions (Hellinger 1909). 

B. METHODOLOGY OVERVIEW 

The methodology we use to answer these research questions is illustrated in Figure 

3 and summarized as follows: 

• Simulation and Descriptive Analysis (Simulation): We develop a 
simulation model that randomly removes edges or vertices (i.e., represents 
information loss) on different sizes and types of graphs and record the 
resulting behavior of graph statistics as information is lost; this provides 
the opportunity to observe the effect of information loss on individual 
statistics.  

• Generation of Data for Machine Learning (Design of Experiments): We 
use a space-filling Design of Experiments (DOE) to create training and 
test datasets that represent networks exhibiting a variety of sizes (i.e., 
number of vertices), edge densities, number of nodes, and other 



 19 

parameters and then use the simulation model to build all of the needed 
design points. 

• Machine Learning for Network Classification (Machine Learning Model): 
We use Classification and Regression Trees (CART) (Breiman et al. 1984) 
and Random Forest (RF) classification models (Breiman 2001) to build 
machine learning models from the training dataset that describe the 
contribution of various statistics for accurate classification of networks 
and test the performance of these models on the out-of-sample test dataset.  

• Analysis of Results (Analysis of Results): We use logistic regression and 
CART models to analyze the effect of many different situational factors 
(i.e., simulation parameters) on our ability to accurately distinguish 
between the three networks types commonly encountered in intelligence 
analysis applications.  

Figure 3.  Overview of Methodology 

 
This figure illustrates our methodology. In step 1, we develop a simulation model to 
randomly remove nodes and edges (i.e., simulate information loss) from a variety of 
networks and record the resulting effect on graph statistics. In step 2, we use a space-filling 
NOLH DOE to design training and test datasets that represent networks under a variety of 
conditions and then use the simulation model to build all of the needed design points, all 
of which are networks in which some information has been lost. In step 3, we use the 
training data set to build machine learning models for classifying networks based on 
observed graph statistics. In step 4, we use logistic regression (illustrated with profile plots) 
to analyze the effect of the many studied factors on our ability to accurately classify the 
design points in the test dataset based on their observed graph statistics. See Figure 12 for 
detailed profile plots. 
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C. DESCRIPTIVE ANALYSIS OF STATISTICS UNDER A LOSS OF 
INFORMATION USING SIMULATION 

This thesis considers the behavior of the various statistics that are typically used in 

classifying networks and/or of interest in social network analysis under conditions of 

incomplete information. In order to establish the behavior of these statistics under such 

conditions, we simulate different levels (0-80%) of missing information by randomly 

removing an increasing proportion of nodes and edges and computing network statistics at 

each point of removal. We then compare the network statistics among the three network 

types and check if they converged or remained distinct. We use distance measures to 

compare the observed data with theoretical degree distributions of the three network types 

in order to find out if there is any level of incomplete information at which the observed 

network resembles another network type. Further elaboration is provided in Figure 4. 

Figure 4.  Simulation of Information Loss 

 
As the figure shows, the process of simulating missing information is outlined. Looking at the 
figure from left to right, we first generate initial graphs of each of the three graph types based 
on different network parameters such as size, edge density, etc. Based on a specified proportion 
of removal and removal type (edge/vertex), the initial graph becomes obscured. Statistics of the 
obscured graph are observed and recorded, and used later to assert a classification of the graph.  
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1. Graph Generation 

We use the R package igraph (Csardi and Nepusz T 2006) to generate and 

manipulate networks in our study.  

We use the function erdos.renyi.game() to generate ER graphs. This 

function takes the following arguments as input: number of nodes and, edge density. It 

produces output in the form of a graph object with characteristics as specified in the input 

arguments.  

We use the function sample_smallworld() to generate SW graphs. This 

function takes the following arguments as input: number of dimensions, number of nodes, 

edge density, whether loop edges are allowed in generated graph (default = FALSE) and 

whether multiple edges are allowed in generated graph (default = FALSE). It produces 

output in the form of a graph object with characteristics as specified in the input arguments.  

We use the function sample_pa() to generate BA graphs. This function takes 

the following arguments as input: number of nodes, power of preferential attachment 

(default = 1.2), number of edges added in each time step (default = NULL), distribution of 

edges added in each time step (default = NULL), numeric vector of number of edges added 

in each time step (default = FALSE), “attractiveness” of vertices with no adjacent edges 

(default = 1), whether to create a directed graph (default = FALSE), algorithm to use for 

graph generation, and starting graph (for the preferential attachment model). It produces 

output in the form of a graph object with characteristics as specified in the input arguments.  

2. Removal of Edges and Vertices 

In order to monitor the robustness of statistics for classifying graphs under 

incomplete information, we delete edges and vertices from the starting networks as 

specified in Table 1. We set the proportion of removals from 0–80% to investigate how the 

statistics behave under increasing removals. Referencing the edge or vertex list, depending 

on whichever is specified by the user, we iteratively and randomly delete an increasing 

number of unique edges or vertices until we obtain a specified proportion of removals.  
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As implemented in R’s igraph package (Csardi and Nepusz T 2006), a deletion 

of an edge results in one less edge, while a deletion of a vertex results in the deletion of all 

corresponding edges connected to that vertex (see Figure 5). This is a fair approximation 

to real-life effects of incomplete information. If an edge (relationship) is not known, it will 

not exist. If a vertex (person) is not known, his/her corresponding edges (relationships with 

others) are also not known. Similarly, when studying the effects of destroying networks, if 

a vertex (e.g., a person in the terrorist network) is destroyed, the relationships with that 

vertex cease to matter and hence cease to exist, while if an edge is destroyed (e.g., a 

relationship), that edge will no longer exist. 

Figure 5.  Edge and Vertex Deletion. Adapted from (Kell 2006). 

 
This figure outlines the process of edge and vertex deletion. In particular, an edge deletion 
results in that particular edge being removed or hidden, and represents a relationship that 
we do not know about. A vertex deletion results in the vertex and all its links being removed 
or hidden, and represents a person, and by extension, his relationships, that we do not know 
about. 

In simulation of removals, we step through the deletion process n  times in order to 

achieve the user specified percentage of removals. For example, referencing Figure 6, the 

user specified percentage of removals was 15%. With an initial edge list containing 20 

edges, over n = 2 steps, a total of three edges were deleted. After each step, the graph is 
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stored temporarily and the graph statistics (mean distance, edge density, assortativity, 

degree distribution, transitivity) are archived in a list (and eventually plotted).  

Figure 6.  Sample Sequence of Edge Deletions. Adapted from (Kell 2006). 

 
This figure illustrates the process with which edges are removed. In the first step, one edge 
is removed. In the second step, two edges are removed. This process continues until the 
specified proportion of removals is achieved. 

3. Graph Statistics Analysis  

In this section, we will discuss how (1) we plot all the network statistics from the 

three networks on one panel to determine if they converge and how (2) we compute 

distance measures between the observed and theoretical degree distributions. 

a. Network Statistics 

Figure 7 illustrates the effect on the mean distance statistic of removing up to 80% 

of the information from the three types of graph for a given situation. As can be seen in 

this figure, the values for mean distance between the three graph types overlap for high 

values of information loss, indicating that mean distance cannot be used to distinguish 

between these three types of graphs in this scenario. Note also that this figure plots 100 

replicates of the removal of information from a defined starting point for each graph. Tables 

1 and 2 elaborate on the replication procedure. 
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Figure 7.  Plotting Mean Distance Under Information Loss of 80% 

 
Each plotted line in this figure records a change in the mean distance statistic from 0–80% 
removals of edges, over 10 independent replicates of the information removal procedure 
applied to 10 graphs generated for the defined starting point. This provides a total of 100 
plotted lines that depict both the variance of the statistic over the simulated scenario and 
the general effect of information loss on the statistics. As can be seen in this figure, the 
values for mean distance between the three graph types overlap for some values of 
information loss, indicating that mean distance cannot always be used to distinguish 
between these three types of graphs. 

Table 1.   Framework of Analysis of Graphs for Descriptive Modeling 

Graph 
Type 

Deletion 
Type 

No. of 
Graphs 

Iterations/ 
Graph 

ER, 
SW, 
BA 

Edge 10 10 

Vertex 10 10 

Edge 10 10 

Vertex 10 10 

Edge 10 10 

Vertex 10 10 

As described in this table, for each of the three graph types, edges or 
vertices were deleted, with 10 random starting graphs generated, over 
10 iterations per graph, over a step size of n.  

Table 1 provides an overview of the replication procedure employed for plotting 

the performance of graph statistics. For each considered scenario (see Table 2 below) we 

generate 10 unique graphs of each type and simulate the random removal of information 

10 times on each graph, providing 100 replicates (i.e. 100 plotted lines). This provides the 

opportunity to observe the variance in the statistic in a given scenario. In Figure 7 it can be 

observed that the mean distance statistic has little variance and behaves similarly for the 

ER and SW graphs, but the BA graph demonstrates much higher variance as information 

is removed.  
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Table 2 summarizes the domain of consideration for scenarios during the 

descriptive analysis. As can be seen in the table, we varied graph type, graph starting size 

(i.e., the number of nodes before we begin removing information via simulation), and edge 

density. We then applied the simulation procedure discussed above to remove both edges 

and vertices and plotted the results (full results available in Appendix A). 

Table 2.   Domain of Consideration for Starting Graphs Generated for Descriptive 
Analysis of the Effects of Information Loss on Graph Statistics  

Graph 
Type 

Size of starting 
graph 

Edge Density 

 
 
 
 
 

 
ER, 
SW, 
BA 

100 
nodes 

p = 0.1 
p = 0.2 
p = 0.3 
p = 0.4 
p = 0.5 

500 
nodes 

p = 0.1 
p = 0.2 
p = 0.3 
p = 0.4 
p = 0.5 

1000 
nodes 

p = 0.1 
p = 0.2 
p = 0.3 
p = 0.4 
p = 0.5 

 

Figure 8 displays all of the statistics among the three different graphs (ER, SW, 

BA) for a given scenario in one panel with the same axes in order to make a comparison 

as to whether the statistics will eventually overlap (take on the same value), thus making 

classification difficult, or will remain distinct, with increasing proportion of removals. For 

example, in Figure 8, mean distance, transitivity, edge density and assortativity are plotted 

on the same axes between ER, SW and BA graphs. Plots for all of the scenarios considered 

in Table 2 are available in Appendix A. 
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Figure 8.  Plotting Different Statistics with Varying Proportions of Incomplete 
Information for ER, SW and BA Graphs 

 
This figure shows that the mean distance statistics for this scenario (edge removals, starting graph: 100 
nodes, 10 iterations, 10 graphs, edge density = 0.2) overlaps at various levels of information loss between 
the three different types of graphs as edges are removed. This indicates that this statistic cannot always 
be used to differentiate between the three types of network as information (edges in this case) is removed. 
As can be seen above, and by thoroughly reviewing the results provided in Appendix A, there is no single 
statistic that provides the ability to always differentiate between the three types of graph as information 
about the network is lost. 

b. Distance Measures 

In terms of distance measures, in order to determine which type of network the 

observed degree distribution resembles, we use distance measures to compare the observed 

degree distribution with the theoretical degree distribution of the networks at increasing 

proportions of removal. In order to do this, we store the observed degree distribution at 
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different proportions of removal. For the theoretical degree distributions, we put observed 

statistics (such as current size of vertex list and the observed graph edge density) into the 

theoretical degree distribution of the ER, SW and BA networks as outlined in equations 

(5), (6) and (7) respectively, in order to compute a “goodness-of-fit test” with those 

distributions. 

Then, we compute the Kullback-Leibler Divergence (Equation 8) and the Hellinger 

Statistic (Equation 9) on the observed and theoretical degree distributions at increasing 

proportions of removal of edges and vertices to determine if the distributions looked similar 

or distinct. From the results, we will be able to determine if degree distributions of the 

different graph types can be clearly distinguished. If the distance measure is small between 

two different graph types, we may conclude that these graphs might be mistaken for each 

other and may not appear distinct. In Figure 9, it can be seen that both the Kullback-Leibler 

and Hellinger distance statistics for BA observed degree distribution, i.e. BA(O) and SW 

theoretical degree distribution, i.e., SW(T) get closer to 0 with a larger proportions of 

vertex removals. This means that as information is lost, it becomes increasingly difficult to 

distinguish between the degree distributions of both graph types. Identifying the thresholds 

at which this confusion in classification of graph type is one of the key goals for this thesis.  
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Figure 9.  Plotting Kullback-Leibler (red) and Hellinger (blue) Distance Measures 
for Observed (O) and Theoretical (T) Degree Distributions of all Three 

Network Types as Vertices Are Removed 

 
In the center panel of this figure, looking at the plots from left to right for the observed BA 
graph, both the Kullback-Leibler and Hellinger distance statistic are close to 0 for the 
various levels of information loss. This means that the degree distributions of the observed 
BA graph look similar to that of the theoretical ER and SW degree distributions, making it 
difficult to distinguish between the three graph types under information loss. 

4. Development of Datasets for Predictive Analysis Using a Design of 
Experiments (DOE) 

After establishing the behavior of the various statistics under the conditions of 

information loss using igraph defaults, we generate a representative sample of graphs 

under different proportions of information loss and calculate their observed statistics. Thus, 

we broaden the scope to include a greater variety of SW and BA graphs. We included cases 

for SW graphs with varying number of neighbors within which vertices are connected 

(from one to ten, where six is the standard for social networks, hence the term “six degrees 

of separation). For BA graphs, we vary settings in its preferential attachment model, 
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namely the power of preferential attachment from one to three, and the number of 

additional edges added to highly connected nodes in each time step, also ranging from one 

to three. We apply a space-filling Design of Experiments (DOE) to generate the training 

and test datasets. This DOE provides a space-filling combination of factors that serves as 

a representative sample of graphs in the domain of consideration. One replication of the 

DOE table forms the training set; the second replication forms the test set. 

The Design of Experiments (DOE) covers the following domain space:  

• edge density (Continuous Factor), with range p = 0.1 to p = 0.5 

• size (number of nodes) of the original graph (Continuous Factor), 
with a range of 100 to 1000 

• proportion of information loss (Continuous Factor), with range 0.1 
to 0.8 

• number of neighbors within which the vertices will be connected in 
the SW graph (Continuous Factor), with range 1 to 10 

• number of additional edges added in each time step (Continuous 
Factor) to the BA graph in its preferential attachment model, with 
range 1 to 3 

• power of preferential attachment for BA graph (Continuous 
Factor), with range 1 to 3 

• type of information loss (Categorical Factor), with factor levels 
edge or vertex 

• graph type (Categorical Factor), with factor levels ER, SW or BA 

The Nearly Orthogonal Balanced (NOB) design is often recommended for handling 

models with both discrete/categorical and continuous variables (Vieira et al. 2013). 

However, because we only have two categorical factors (graph type and deletion type), we 

used a cross design of the Nearly Orthogonal Latin Hypercube (NOLH) (Cioppa and Lucas 

2007) for continuous factors and all the enumerations of the categorical factors. This 

approach provides a more space-filling design than the NOB because NOB does not 

guarantee that every combination of categorical factors is taken into account. For all the 

continuous factors, we choose the 33 level NOLH (Cioppa and Lucas 2007) at two stacks. 

This provides a good combination of being space-filling (covering new points) as well as 
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replications (covering the same point). The space-filling design of the continuous factors 

are indicated in Figure 10. The design points are provided in Appendix B. 

Figure 10.  Design A: Space filling design for Continuous Factors at 33 
level NOLH at Two Stacks and Two Replications 

 
In this figure, the dots on the diagram represent the points of sampling of the various 
factors. The dots are space-filling and within the range and number of decimal places 
specified, the factors are sampled at many levels. For example, in the bottom row, power 
of preferential attachment (Power) is sampled at levels 1 to 3, for network size (Nodes) at 
levels 100 to 1000 (bottom row first column), edge density at levels 0.1 to 0.5 (bottom 
row second column), Proportion of Removals (Removal) at levels 0.1 to 0.8, number of 
neighbors within which SW graph is connection (Neighbors) at levels 1 to 10 and number 
of edges added in each time step for BA graph (No. of Edges) at levels 1 to 3. This is 
applied for all continuous factors to ensure they are sampled at space-filling levels. 
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Given that we only have two categorical factors, we enumerated all possibilities. 

Table 3 shows the various levels of the two categorical factors and Table 4 shows the 

crossed design (i.e., all enumerations of categorical factors). 

Table 3.   Categorical Factors 

Deletion Type Graph Type 
Edge ER 

Vertex SW 
 BA 

This table provides the two categorical factors in the Design of Experiments and their 
factor levels. For Deletion Type, either edge or vertex can be deleted. For Graph 
Type, either ER, SW or BA graphs can be generated. 

Table 4.   Design B: Crossed Design (All Enumerations of) Categorical Factors 

Crossed Design 
Edge, ER 

Vertex, ER 
Edge, SW 

Vertex, SW 
Edge, BA 

Vertex, BA 
This table provides the crossed design of all enumerations of categorical factors. 
For ER graphs, they can either be paired with an edge or a vertex deletion: hence 
the possibilities are (Edge, ER), (Vertex, ER). The same can be said for SW and 
BA graphs. This gives all enumerations of the categorical factors, which when 
crossed with the NOLH, provides a more space-filling design than that of the 
NOB. 

We cross Design A (Continuous Factors) with Design B (Categorical Factors) to 

get Design C. Table 5 shows a sample of Design C. For the full Design of Experiments, 

see Appendix B. 
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Table 5.   Design C: Crossed Design of Continuous Factors and 
Categorical Factors 

This table shows a sample of the various network parameters with which the initial graphs will be generated, 
and obscured (either edge/vertex) to the specified proportion. The complete DOE is in Appendix B. For each 
line (every design point, graph statistics are computed and recorded. This data will later be used in graph 
classification.  

Based on this DOE, for each design point (every line in the Table in Appendix B), 

we computed the following statistics.  

• mean distance 

• edge density 

• transitivity 

• assortativity 

• KL statistic with theoretical ER degree distribution 

• KL statistic with theoretical SW degree distribution 

• KL statistic with theoretical BA degree distribution 

• H statistic with theoretical ER degree distribution 

• H statistic with theoretical SW degree distribution 

• H statistic with theoretical BA degree distribution 

One replication of the crossed NOLH design formed my training set and the second 

replication formed my test set. 

 

Size of 
Starting 
Graph 
(Nodes) 

(100-1000) 

Edge 
Density 

(0.1 to 0.8) 

Proportion 
of Removals 

(0.1-0.8) 

No. of 
Neighbors 

within which 
vertices are 
connected 
(1 to 10) 
for SW 
Graph) 

No. of edges 
added in 
each time 

step 
(1 to 3) for 
BA graph 

Power of 
preferential 
attachment  

(1 to 3) 
for BA 
graph 

Removal 
Type (edge/

vertex) 

Graph Type 
(ER/SW/

BA) 

103 0.1 0.23 1 10 1 Edge ER 
407 0.5 0.14 6 9 2 Vertex SW 
609 0.8 0.67 7 8 3 Edge BA 
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D. PREDICTIVE ANALYSIS USING MACHINE LEARNING METHODS 

We leverage the Classification and Regression Trees (CART) (Breiman et al. 1984) 

and Random Forest (RF) (Breiman 2001) machine learning algorithms to build models for 

classification of observed networks. The CART model provides simple and easily 

interpreted rules for classifications and can be used to generate a simple ranking of variable 

importance (i.e., which statistics are the most important in classification). The RF model, 

which often provides a lower misclassification rate and higher predictive power, is used to 

understand how well we can predict (i.e., classify) networks in practice when less 

interpretable but more powerful machine learning methods are employed. We also leverage 

logistic regression modeling for the analysis of results which will be discussed further in 

the next section. A short description of each of these methodological approaches is 

provided here. 

1. CART 

Huddleston and Brown (2018) note that the Classification and Regression Tree 

(CART) algorithm provides highly interpretable models that illustrate the interaction 

between predictor variables in an easily understood format. However, this algorithm’s 

predictive performance is typically not as good as less interpretable machine learning 

models such as those developed using the Random Forest (RF) or Adaboost algorithms 

(Huddleston and Brown 2018). CART models were used for two applications in this thesis. 

We used a CART model to develop a classifier that asserts one of three types of graphs 

(ER, SW, or BA) when presented with a set of statistics describing a network. This model 

was developed using the training set and the performance of the model evaluated on the 

test dataset.  

2. Random Forest (RF) 

Typically, the RF method, which grows many trees, provides better predictive 

power than CART. It classifies new objects by running the input data through many 

classification trees and consolidating the number of “votes” for a particular classification 

(Huddleston and Brown 2018). An RF model is thus a large ensemble of many (perhaps 

hundreds) different models and thus is much less interpretable. In this thesis, RF model 
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will be used to understand how well we can predict (i.e., classify) networks in practice, as 

well as determine the level of information loss with which good (>90% accuracy) 

classification of networks can still take place.  

E. RELATING DOE FACTORS TO CLASSIFICATION PERFORMANCE 

The last step in this analysis uses both logistic regression and CART models to 

relate classification performance (i.e., the ability to accurately classify an obscured 

network) to the various factors considered in the design of experiments table. Due to the 

nearly orthogonal design used for the DOE, we can develop models that use classification 

performance (i.e., correct or incorrect classification of a DOE design point in the test 

dataset) as the response (dependent) variable of a regression analysis with the parameters 

specified in the DOE table as the predictor (independent) variables. We employ both 

logistic regression and CART models for this purpose.  

Logistic regression models are used to predict a response variable that is categorical 

from continuous and categorical predictors (Agresti 2012). Logistic regression provides a 

means for both visually and statistically capturing the effect of parameters varied in the 

simulation such as percentage of information lost/hidden, the different graph types, the 

edge density (p), etc. We also employ CART models to perform the same task because 

CART models classify using thresholds of the predictor variables rather than mapping 

continuous relationships as logistic regression models do. Both modeling approaches 

provide the opportunity to study the effect of the various DOE factors on classifier 

performance and identify the scenarios in which it is reasonable to assert a classification 

for a network in real-world practice. The results of this analysis are discussed in depth in 

the next section. 
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IV. ANALYSIS OF RESULTS 

This chapter summarizes the key results. An exhaustive set of diagrams of results 

with the parameters listed in Table 2 are written in Appendix A. In this section, we 

summarize the key observations derived from both the descriptive and predictive analysis. 

The three most significant results of this analysis are: 

• As information on edges is lost (>80%), it becomes more difficult 
to distinguish between ER and SW graphs. 

• As information on vertices is lost (>80%), it becomes more 
difficult to distinguish between BA and SW graphs. 

• If at least 20% of the information about the network is available, 
RF can classify a network with >90% accuracy. 

A. DESCRIPTIVE ANALYSIS 

1. Stability of Graph Statistics for Classification of Graphs 

In Chapter II, we outline some characteristics of three network models. For instance, 

ER and SW networks have small mean distances, but between ER and SW networks with 

comparable size, SW networks would have a higher transitivity. BA networks are also 

characterized by a scale-free degree distribution, while ER networks have a Poisson degree 

distribution and SW networks have a binomial degree distribution (Costa et al. 2005). 

With descriptive modeling under the environment of incomplete information, we find 

that the above-mentioned characteristics for classification between ER and SW holds true 

for low edge density (p = 0.1) of starting graphs. However, as p increases to 0.5, the 

transitivity of ER graphs increased and we find that ER graphs have a higher transitivity than 

SW graphs. A high proportion of edge removals (> 80%) show both the transitivity and edge 

density for ER and SW graphs converging. This observation is also supported by simulation 

results that with increasing edge removals and as p increases to 0.5, the KL statistic converges 

to 0 for the observed and theoretical degree distributions of the ER and SW graphs. In other 

words, as information on edges is lost (>80%) and as the starting edge density in the graph 

increases, it becomes more difficult to distinguish between ER and SW graphs. Increasing 

the starting graph’s edge density would make the ER graphs denser, hence they appear to be 



 36 

more like SW graphs, which are characterized by high clustering coefficients. For BA and 

SW graphs under vertex removals, their observed statistics (transitivity, edge density and 

assortativity) remain constant and equal despite information loss. In addition, there is little 

difference between the KL statistics for the observed and theoretical degree distributions for 

BA and SW graphs as the proportion of vertex removals increase. In other words, as 

information on vertices is lost (> 80%), it becomes more difficult to distinguish between 

BA and SW graphs. 

2. Comparison of the Effects of Edge vs. Vertex Removals 

The key difference between edge and vertex removals is their effect on the edge 

density. These change behaviors of statistics that are dependent on edge density. In particular, 

referencing equation (3), with edge removals, the number of edges, which is the numerator 

of the edge density (p), decreases, while the number of vertices N, and hence the denominator 

of p, which is the maximum possible number of edges 
2
N 

 
 

, remains the same. As a result, 

with edge removals the observed p decreases. This affects statistics such as the mean distance 

calculation. With a decreased edge density, mean distance for ER graphs increases. In 

Appendix C, (Yoshida 2018) explicitly computes the mean distance for ER graphs and shows 

that the mean distance for an ER graph converges almost surely; hence the simulation results 

match and motivate the mathematical proof developed. 

Vertex removal produces different results. Both the numerator and denominator 

decrease proportionately with vertex removal because when vertices all of their 

corresponding edges are removed as well. Hence, with vertex removals, the edge density 

remains constant. One can prove that the vertex removals would not change the mean 

distance if we consider the ER model. In fact, we can prove that the mean distance for an ER 

graph remains the same almost surely via vertex removal and we can explicitly compute the 

mean distance for the ER model. 
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3. General Behavior of Statistics under Information Loss 

a. Mean Distance 

Mean distance measures respond slightly differently for edge and vertex removals, 

and also according to the graph type. For edge removals, the edge density (p) decreases, 

hence the mean distance increases for both the ER and SW graph. For vertex removals, p 

remains constant, hence the mean distance remains constant for both ER and SW. For BA 

graphs, as the edges are removed, and vertices become singletons, they are removed from 

the mean distance computation. In this case, the general relationship is the same for both 

edge and vertex removal because the BA network is not affected by the value of p. Instead it 

is affected by the power of preferential attachment. There were also possible confusions in 

magnitude of the statistics and this would mean that graphs might possibly be confused with 

each other. For instance, an ER network with many edge removals would have the same 

magnitude of mean distance as a BA network. 

b. Transitivity 

With edge removals, transitivity decreases for all networks except BA, and for vertex 

removals, the number remains constant. With a higher starting edge density p, this statistic 

starts out higher with the magnitude p. An ER and SW network with a large proportion 

(~80%) of edge removals would have the same magnitude of transitivity. 

c. Edge Density 

With edge removals, the edge density decreases for all networks except BA (which 

does not depend on the edge density), and for vertex removals, the edge density remains 

constant. This is because vertex removals remove the vertices and corresponding edges in a 

set, hence the edge density remains constant. With a higher starting edge density p, this 

statistic starts out higher with the magnitude p. An ER graph and SW graph with a large 

proportion (~80%) of edge removals often have the same magnitude of density. 

d. Assortativity 

This statistic remains at the same magnitude despite incomplete information and 

changes in the starting graph’s edge density. 
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e. Kullback-Leibler (KL) Divergence vs. Hellinger Distance Statistic 

For both KL divergence and the Hellinger Distance statistic, if the observed data is 

from the same graph type as the theoretical distribution, the distance values are close to 0 

(i.e. ER(O) and ER(T), SW(O) and SW(T), BA(O) and BA(T). 

However, the KL divergence had higher magnitudes as a distance statistic compared 

to the Hellinger Distance statistic because it is computed using the logarithm of one element 

of the degree distribution over the other, which could inflate the distance measures for values 

of elements of degree distributions near 0. 

B. PREDICTIVE MODELING 

Next, we use the training set to develop two models using Classification and 

Regression Tree (CART) Breiman et al. (1984) and Random Forest (RF) Breiman (2001). 

The main findings are as follows:  

• Up to approximately 80% information loss, the three graphs could 
be classified with >90% accuracy (79.74% for CART and 91.25% 
for RF). This means that intelligence analysts only require ~20% 
of the network to assert an accurate network classification when 
machine learning methods are employed. 

• Mean distance, the Hellinger distance statistic, transitivity and 
edge density are the top four network statistics in terms of variable 
importance in classifying the network type. 

• Proportion of removal (i.e., percentage of information loss), 
deletion type (nodes or edges) and graph type (ER, SW, and BA) 
are the top three situational factors that affected the ability to 
accurately classify networks. 

1. Rules/Thresholds of Observed Graph Statistics that Guide the 
Classification of the Three Networks 

From the CART model using network statistics for classification, as indicated in both 

Figure 11 and Table 6, we find the following to be true about classification of networks. First, 

the SW networks are the most difficult to accurately classify. If the network has an observed 

edge density > 0.061 and an observed mean distance < 2.1, they can be classified as SW 

graphs. If the network has an observed edge density < 0.061 and an observed mean distance 
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> 8.3, they can also be classified as SW networks. However, if they have an observed edge 

density < 0.061 an observed Hellinger distance statistic with the theoretical ER model < 0.13, 

they can also be classified as SW networks. For ER networks, if the observed edge density 

> 0.061 and an observed mean distance >2.1, they can be classified as ER networks. For BA 

networks, if they have an observed edge density < 0.061 and observed mean distance < 8.3, 

they can be classified as BA networks.  

Figure 11.  CART Model Using Graph Statistics for Network Classification  

 
For classification of networks, this figure outlines that edge density (p) of the network is the first differentiating 
factor. Similar to the results from the descriptive analysis, a high edge density (p) can lead to misclassification 
between the ER and SW graphs. They are later differentiated by mean distance threshold of 2.1. Similar to 
results from descriptive analysis, BA and SW graphs are in danger of being misclassified. They are later 
differentiated by mean distance threshold of 8.3 with 97% accuracy for BA graphs and 100% accuracy for 
SW graphs. They can also be differentiated with 97% accuracy with the Hellinger distance statistic fitted with 
an ER graph. 
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Table 6.   Findings from CART (Network Statistics) on 
Classification of Graphs 

Graph Type Edge Density/ Prob. of 
conn. between vertices 

Mean Distance Hellinger statistic with 
theoretical ER model 

ER > 0.061 > 2.1 N.A 

 

SW 

> 0.061 < 2.1 N.A 

< 0.061 > 8.3 N.A 

< 0.061 N.A < 0.13 

BA < 0.061 < 8.3 N.A 
The table shows that if the network has an observed edge density > 0.061 and an observed mean distance 
< 2.1, they can be classified as SW graphs. If the network has an observed edge density < 0.061 and an 
observed mean distance > 8.3, they can also be classified as SW networks. However, if they have an 
observed edge density < 0.061 an observed Hellinger distance statistic with the theoretical ER model < 
0.13, they can also be classified as SW networks. For ER networks, if the observed edge density > 0.061 
and an observed mean distance >2.1, they can be classified as ER networks. For BA networks, if they 
have an observed edge density < 0.061 and observed mean distance < 8.3, they can be classified as BA 
networks.  

Table 7 provides a summary of the variable importance for the different statistics 

employed by the CART model. The mean distance, Hellinger distance statistic, transitivity 

and edge density are the top four network statistics in terms of variable importance in 

classifying the network type as detailed in Table 7. Note that this machine learning 

approach provides a “competition” for a given network statistic and thus a means for 

evaluating the effectiveness of newly developed network statistics for classification of 

networks under real-world conditions (i.e., with missing information). Any newly 

developed statistic can be inserted into this analysis and its effectiveness evaluated against 

that of its “peers” based upon its contributions to the ability to classify under this context. 

  



 41 

Table 7.   Variable Importance from CART (Network Statistics) 

S/N Variable Score 
1. Mean Distance 18 
2. Transitivity 12 
3. Hellinger Statistic with theoretical ER degree distribution  10 
4. Edge Density 10 
5. Assortativity 9 
6. Kullback-Leibler statistic with theoretical ER degree distribution 8 
7. Hellinger Statistic with theoretical BA degree distribution 8 
8. Kullback-Leibler statistic with theoretical BA degree distribution 7 
9. Kullback-Leibler statistic with theoretical SW degree distribution 5 
10. Hellinger Statistic with theoretical SW degree distribution 1 

From the CART (Network Statistics), the mean distance, transitivity, Hellinger statistic with 
theoretical ER degree distribution, as well as the edge density are the top four in terms of 
importance in classifying the network. 

2. Effects of Changing Network Parameters on Classification Accuracy 

Figure 12 illustrates the effects that the studied network characteristics have on the 

ability to accurately classify networks derived through logistic regression modeling. This 

figure depicts the general shape of the effect, with a positive slope from left to right in 

Figure 12 indicating improvement in classification performance as network parameter 

values increase. For example, as the starting network size increases, our ability to classify 

networks improves. The same can be said edge density (prob) and number of neighbors 

(neigh) within which two vertices are connected in a SW network: as they increase, our 

ability to classify networks correctly improves. Factors within the bold box in Figure 12 

were statistically significant effects (as identified through results of a logistic regression in 

Figure 13), which provides the summary of the logistic regression model used to analyze 

these effects. As seen in Figure 13, the p-values for the edge density (prob), size of starting 

network (nodes), and number of neighbors within which two vertices are connected in a 

SW network (neigh) are low as indicated in Figure 13, thus we reject the null hypothesis 

that they are not statistically significant in favor of the hypothesis that they are significant. 

The edge density (prob), size of starting network (nodes), and number of neighbors within 

which two vertices are connected in a SW network (neigh) have a significant effect on our 

ability to classify networks correctly. 
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Figure 12.  Prediction Profiler for Network Parameters in Classifying Networks 

 
The figure outlines the relationship between factor levels and classification performance as found in 
logistic regression analysis. Factors which are statistically significant are highlighted in the bold box. For 
those with a positive slope (network size, edge density, number of neighbors within which two vertices are 
connected), increasing factor levels increases the probability of correct classification. A high proportion of 
removals, having a SW graph or hidden edges increases the probability that the graph is misclassified. 

Conversely, parameters with a negative slope such as proportion of removals 

(>80%) indicate that as proportion of removals increase, (or as network type is SW), our 

ability to classify networks accurately worsens. The p-values of the proportion of removals 

(rhat) and the network type (graph type) are low as indicated in Figure 13. Thus, we reject 

the null hypothesis that they are not statistically significant in favor of the hypothesis that 

they are significant factors. Therefore, we can conclude that the proportion of removals 

and network type have a significant effect on our ability to classify networks correctly. 

Both the number of edges added in each time step for the BA network (em) as well 

as the power of preferential attachment for the BA network (pow) have p-values greater 

than the significance level which we set to .05. Though both have a slightly negative slope, 

these factors are not statistically significant and hence we can assert they have a negligible 

effect on our ability to classify networks correctly. 
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Figure 13.  Parameter Estimates and Effect Likelihood Ratio 
Test Results for Network Parameters in Classifying Networks 

 
In the figure, the edge density (prob), proportion of removals (rhat), starting network size (nodes), type of 
removal (deletiontype), graph type (graphtype) and number of neighbors (neigh) within which two vertices 
are connected (SW graph) have p values less the significance level (which we set to 0.05), hence we reject the 
null hypothesis that they are not statistically significant and consider them statistically significant network 
parameter. 

Both the CART and logistic regression on network parameters indicated that the 

proportion of removals, type of missing information (edge vs. vertex) and starting network 

type are the top three parameters in classifying networks correctly. The detailed results are 

in Table 8 and the full CART analysis can be found in Appendix C.  

Table 8.   Variable Importance from CART (Network Parameters) 

S/N Variable Score 
1. Proportion of Removals 34 
2. Deletion Type (Nodes vs. Edges) 25 
3. Starting Network Type (ER, SW, BA) 16 
4. Edge Density 12 
5. No. of Neighbors (SW graph) 6 
6. No. of nodes of starting graph 4 
7. Power of preferential attachment (BA graph) 2 
8. No. of Edges added in each time step (BA graph) 1 

As outlined in this table, from the CART (Network Parameters), the proportion of removals, 
deletion type and graph type are the top three in terms of importance in classifying the 
network. 

3. Classification Accuracy vs. Information Loss 

Once the CART and RF models had been generated, we extend the DOE design to 

generate additional scenarios in order to better estimate the effect of information loss on 

our ability to classify. We conduct full designs at additional points of information loss in 
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order to further quantify the effect of information loss (this had the effect of “smoothing 

the curve” of the estimated effect). Additional design points are created at information 

losses of 40%, 70%, 75%, 80%, 85%, 90% and 95% respectively. Figure 14 illustrates the 

relationship between network classification accuracy via-a-vis information loss. 

We find that the classification accuracy remained relatively stable up to about 80% 

information loss before it dropped sharply, as per the results in Figure 12 for parameter 

proportion of removals. This finding has a significant impact for intelligence analysts. In 

particular, it tells us that we do not need to spend resources attempting to map the entire 

network in order for us to be able to assert an accurate network classification. In fact, 

only about 20% of the network is required to give us a classification of >90% accuracy.  

Figure 14.  Network Classification vis-à-vis Information Loss 

 
In the figure, both the CART (red line) and RF (blue line) have classification accuracy that dips after 
information loss is beyond 80%. The RF model performs better than the CART model for all levels of 
information loss, but a key finding is that at 80% information loss, the CART has 79.74% of accuracy 
while the RF model has 91.025% accuracy. 
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V. CONCLUSION 

A. ANSWERS TO RESEARCH QUESTIONS 

The fundamental research questions that this thesis had sought to answer were as 

follows. In the context of missing information (i.e., an incomplete network mapping):  

1. Which network statistic gives the highest predictive power in classifying 
the network type?  

• From the findings of the thesis, the statistic with the highest 
predictive power in classifying the network type is mean distance. 
However, no one statistic is sufficient to distinguish between 
these three network types when information loss is considered. 
Even the simplest CART model requires more than one statistic to 
help to classify the network, hence there is significant benefit in 
using machine learning methods such as random forest to form 
ensembles for classification. 

2. What is the effect of changing the following parameters on the ability to 
classify a graph type correctly? 

• edge density of the original network (p) 

• size (number of vertices) of the original network (nodes) 

• proportion of information loss (rhat) 

• type of information loss (deletion type) 

• network type (graph type)  

 

• The most significant finding is that the ability to accurately 
classify networks declines precipitously once more than 80% of 
the information about the network is missing. Figure 15 
summarizes the general shape of the effects, with movement 
towards the top of the figures indicating improvement in 
classification performance. Factors within the bold box were 
statistically significant effects. Both the CART and logistic 
regression models indicate that the proportion of removals (i.e., 
amount of missing information), type of missing information (edge 
vs. vertex) and true network type are the most significant factors 
affecting network classification.   
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Figure 15.  Prediction Profiler for Graph Characteristics in 
Classifying Networks 

 
The figure outlines the relationship between factor levels and classification performance as found in 
logistic regression analysis. Factors which are statistically significant are highlighted in the bold box. 
For those with a positive slope (network size, edge density, number of neighbors within which two 
vertices are connected), increasing factor levels increases the probability of correct classification. A 
high proportion of removal, SW graph or hidden edge, increases the probability that the graph is 
misclassified. 

3. Can we establish a framework through which we can learn (1) and (2) for 
any network statistic? 

• This thesis provides a framework for the evaluation of the 
contribution of various network statistics on our ability to classify 
graphs. To date, research in this area has focused on analyzing the 
performance of individual network statistics for classifying 
networks. While this thesis has found that an ensemble of statistics 
can classify a network with high accuracy using RF, it has also 
established a framework by which any new statistic can be 
evaluated for its utility to classify networks under conditions of 
incomplete information. In particular, we develop a framework to 
generate a space-filling set of graph statistics under real-world 
conditions of information loss that can be used to generate both 
training and test sets to develop predictive models and simple rules 
for classification. These models provide a means to assert the 
relative importance of network statistics under various levels of 
information loss based on their contribution of predictive power 
within these ensemble models.  
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B. APPLICATIONS FOR INTELLIGENCE ANALYSIS 

a. Importance of Edges 

Traditionally, the intelligence community regards information on vertices more 

highly than that of edges because vertices traditionally represent people or organizations 

that serve as the starting seed with which it builds information on networks. However, this 

thesis has brought out the importance of edges for classification. Besides the fact that we 

can only discover new vertices through existing edges, and knowledge of the network 

grows one edge at a time, this thesis illustrates how hidden edges can lead to a mis-

estimation of the edge density, p, making the graph look vastly different, and possibly 

leading to a misclassification of the network type. For the purpose of classifying networks 

in order to develop strategies for the destruction of networks, understanding the way the 

network is connected is more important than mapping out all the entities in the network. 

b. Classification of Graphs under Information Loss 

Figure 16 provides a detailed view of the effect of information loss on our ability 

to classify network graphs with both CART and RF models. The amount of information 

missing is the most significant effect of our ability to distinguish between these three 

network types commonly encountered in intelligence analysis. This graph provides several 

key insights for applications of network analysis in the intelligence domain. First, only 

about 20% of the information about a network is needed in order to achieve better than 

90% accuracy in network classification. This means that we do not need to spend resources 

to completely map a network in order to accurately classify it.  

Second, the significant performance improvement of the RF ensemble machine 

learning model in this study over the use of simple thresholds based on individual statistics 

suggests that this approach should be directly fielded for counter-network applications in 

the DoD. The classification models developed as part of this thesis, trained on a wide 

variety of synthetically generated networks, should provide significantly improved 

classification performance in practice over the current methods used, which use single 

statistics and assume a complete mapping of the network. 
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Figure 16.  Network Classification vis-à-vis Information Loss 

 
In the figure, both the CART (red line) and RF (blue line) have classification accuracy that dips after 
information loss is beyond 80%. The RF model performs better than the CART model for all levels of 
information loss, but a key finding is that at 80% information loss, the CART has 79.74% of accuracy while 
the RF model has 91.025% accuracy. 

This research also suggests that, unless we can be reasonably sure that we have 

sufficient information, we should be very cautious about proposing specific strategies for 

the dismantling of threat networks based on network classifications conducted on small 

samples of larger (and mostly unobserved) networks. The widespread practice of asserting 

a network classification based on a single statistic such as degree distribution calculated on 

a small observed sample of a much larger (but mostly unobserved) network is unlikely to 

result in accurate network classification and therefore effective strategies. Rather, a 

reasonable standard would require that we (1) believe we have observed at least 20% of 

the network, (2) have reason to believe the network is one of the three types studied in this 

thesis (or we have replicated this framework for additional network types), and (3) we have 

developed a classification model whose performance for the desired application is known 

and validated. 
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C. FUTURE WORK 

This thesis provides a foundation for future work on network analysis in the 

environment of incomplete information. In particular, it examines how a random removal 

of nodes and edges affected network statistics. In future work, analysis on the effect on 

vertex (node) centrality measures would be helpful in helping the intelligence community 

understand how they can interpret such measures in light of incomplete information. In 

addition, while the thesis simulates incomplete information through the random removal 

of vertices and edges starting from a complete network, work can be done to examine the 

effect on statistics of random addition of nodes and edges, mimicking the network mapping 

process that intelligence analysts do. Combinatory losses of vertices and edges should also 

be examined, as well as finding methods to quantify and model a non-random (systematic) 

loss of information due to systematic bias. The effect of extra nodes and edges (false 

positives in intelligence collection) as well as investigating network statistics taking into 

account direction should also be explored. Finally, an exploration can also be done on how 

well we can classify known networks mapped with a simulated Query-Expand-Collapse 

process. 
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APPENDIX A. RESULTS FROM DESCRIPTIVE MODELING 

Figure 17.  Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 18.  Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 19.   Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 20.  Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 21.  Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 22.  Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 23.  Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 24.  Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 25.  Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 26.  Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 27.  Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 28.  Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 29.  Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.3 

 



 64 

Figure 30.  Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 31.  Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 32.  Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 33.  Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 34.  Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 35.  Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 36.  Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 37.  Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 38.  Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 39.  Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 40.  Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 41.  Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 42.  Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 43.  Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 44.  Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 45.  Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 46.  Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 47.  KL and H Statistic: Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 48.  KL and H Statistic: Edge removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 49.  KL and H Statistic: Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 50.  KL and H Statistic: Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 51.  KL and H Statistic: Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.5 

 



 86 

Figure 52.  KL and H Statistic: Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 53.  KL and H Statistic: Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 54.  KL and H Statistic: Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 55.  KL and H Statistic: Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 56.  KL and H Statistic: Vertex Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 57.  KL and H Statistic: Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.1 

 
 



 92 

Figure 58.  KL and H Statistic: Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 59.  KL and H Statistic: Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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KL and H Statistic: Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 60.  KL and H Statistic: Edge Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 61.  KL and H Statistic: Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 62.  KL and H Statistic: Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 63.  KL and H Statistic: Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 64.  KL and H Statistic: Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 65.  KL and H Statistic: Vertex Removals, Starting Graph: 500 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 66.  KL and H Statistic: Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 67.  KL and H Statistic: Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 68.  KL and H Statistic: Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 69.  KL and H Statistic: Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 70.  KL and H Statistic: Edge Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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Figure 71.  KL and H Statistic: Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.1 
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Figure 72.  KL and H Statistic: Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.2 
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Figure 73.  KL and H Statistic: Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.3 
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Figure 74.  KL and H Statistic: Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.4 
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Figure 75.  KL and H Statistic: Vertex Removals, Starting Graph: 1000 Nodes, 10 Iterations, 10 Graphs, p = 0.5 
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APPENDIX B. RESULTS FROM PREDICTIVE MODELING 

Figure 76.  Design of Experiments 
S/N Number 

of nodes 
Edge 

Density 
Proportion of 

Removal 
No. of neighbors 

within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

1 1000 0.1 0.41 3 3 2 edge ER 
2 1000 0.1 0.41 3 3 2 vertex ER 
3 1000 0.1 0.41 3 3 2 edge SW 
4 1000 0.1 0.41 3 3 2 vertex SW 
5 1000 0.1 0.41 3 3 2 edge BA 
6 1000 0.1 0.41 3 3 2 vertex BA 
7 916 0.5 0.19 4 2 1 edge ER 
8 916 0.5 0.19 4 2 1 vertex ER 
9 916 0.5 0.19 4 2 1 edge SW 

10 916 0.5 0.19 4 2 1 vertex SW 
11 916 0.5 0.19 4 2 1 edge BA 
12 916 0.5 0.19 4 2 1 vertex BA 
13 888 0.3 0.73 2 1 2 edge ER 
14 888 0.3 0.73 2 1 2 vertex ER 
15 888 0.3 0.73 2 1 2 edge SW 
16 888 0.3 0.73 2 1 2 vertex SW 
17 888 0.3 0.73 2 1 2 edge BA 
18 888 0.3 0.73 2 1 2 vertex BA 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

19 606 0.5 0.8 5 3 1 edge ER 
20 606 0.5 0.8 5 3 1 vertex ER 
21 606 0.5 0.8 5 3 1 edge SW 
22 606 0.5 0.8 5 3 1 vertex SW 
23 606 0.5 0.8 5 3 1 edge BA 
24 606 0.5 0.8 5 3 1 vertex BA 
25 944 0.1 0.43 3 2 2 edge ER 
26 944 0.1 0.43 3 2 2 vertex ER 
27 944 0.1 0.43 3 2 2 edge SW 
28 944 0.1 0.43 3 2 2 vertex SW 
29 944 0.1 0.43 3 2 2 edge BA 
30 944 0.1 0.43 3 2 2 vertex BA 
31 972 0.5 0.32 4 2 1 edge ER 
32 972 0.5 0.32 4 2 1 vertex ER 
33 972 0.5 0.32 4 2 1 edge SW 
34 972 0.5 0.32 4 2 1 vertex SW 
35 972 0.5 0.32 4 2 1 edge BA 
36 972 0.5 0.32 4 2 1 vertex BA 
37 719 0.3 0.78 3 1 2 edge ER 
38 719 0.3 0.78 3 1 2 vertex ER 
39 719 0.3 0.78 3 1 2 edge SW 
40 719 0.3 0.78 3 1 2 vertex SW 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

41 719 0.3 0.78 3 1 2 edge BA 
42 719 0.3 0.78 3 1 2 vertex BA 
43 578 0.4 0.76 4 3 2 edge ER 
44 578 0.4 0.76 4 3 2 vertex ER 
45 578 0.4 0.76 4 3 2 edge SW 
46 578 0.4 0.76 4 3 2 vertex SW 
47 578 0.4 0.76 4 3 2 edge BA 
48 578 0.4 0.76 4 3 2 vertex BA 
49 691 0.2 0.25 6 2 2 edge ER 
50 691 0.2 0.25 6 2 2 vertex ER 
51 691 0.2 0.25 6 2 2 edge SW 
52 691 0.2 0.25 6 2 2 vertex SW 
53 691 0.2 0.25 6 2 2 edge BA 
54 691 0.2 0.25 6 2 2 vertex BA 
55 775 0.4 0.3 7 1 2 edge ER 
56 775 0.4 0.3 7 1 2 vertex ER 
57 775 0.4 0.3 7 1 2 edge SW 
58 775 0.4 0.3 7 1 2 vertex SW 
59 775 0.4 0.3 7 1 2 edge BA 
60 775 0.4 0.3 7 1 2 vertex BA 
61 747 0.2 0.63 10 2 1 edge ER 
62 747 0.2 0.63 10 2 1 vertex ER 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

63 747 0.2 0.63 10 2 1 edge SW 
64 747 0.2 0.63 10 2 1 vertex SW 
65 747 0.2 0.63 10 2 1 edge BA 
66 747 0.2 0.63 10 2 1 vertex BA 
67 803 0.4 0.56 9 3 3 edge ER 
68 803 0.4 0.56 9 3 3 vertex ER 
69 803 0.4 0.56 9 3 3 edge SW 
70 803 0.4 0.56 9 3 3 vertex SW 
71 803 0.4 0.56 9 3 3 edge BA 
72 803 0.4 0.56 9 3 3 vertex BA 
73 634 0.2 0.23 6 2 1 edge ER 
74 634 0.2 0.23 6 2 1 vertex ER 
75 634 0.2 0.23 6 2 1 edge SW 
76 634 0.2 0.23 6 2 1 vertex SW 
77 634 0.2 0.23 6 2 1 edge BA 
78 634 0.2 0.23 6 2 1 vertex BA 
79 859 0.3 0.36 9 1 2 edge ER 
80 859 0.3 0.36 9 1 2 vertex ER 
81 859 0.3 0.36 9 1 2 edge SW 
82 859 0.3 0.36 9 1 2 vertex SW 
83 859 0.3 0.36 9 1 2 edge BA 
84 859 0.3 0.36 9 1 2 vertex BA 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

85 663 0.2 0.69 9 2 1 edge ER 
86 663 0.2 0.69 9 2 1 vertex ER 
87 663 0.2 0.69 9 2 1 edge SW 
88 663 0.2 0.69 9 2 1 vertex SW 
89 663 0.2 0.69 9 2 1 edge BA 
90 663 0.2 0.69 9 2 1 vertex BA 
91 831 0.4 0.52 10 3 3 edge ER 
92 831 0.4 0.52 10 3 3 vertex ER 
93 831 0.4 0.52 10 3 3 edge SW 
94 831 0.4 0.52 10 3 3 vertex SW 
95 831 0.4 0.52 10 3 3 edge BA 
96 831 0.4 0.52 10 3 3 vertex BA 
97 550 0.3 0.45 6 2 2 edge ER 
98 550 0.3 0.45 6 2 2 vertex ER 
99 550 0.3 0.45 6 2 2 edge SW 
100 550 0.3 0.45 6 2 2 vertex SW 
101 550 0.3 0.45 6 2 2 edge BA 
102 550 0.3 0.45 6 2 2 vertex BA 
103 100 0.5 0.49 8 1 2 edge ER 
104 100 0.5 0.49 8 1 2 vertex ER 
105 100 0.5 0.49 8 1 2 edge SW 
106 100 0.5 0.49 8 1 2 vertex SW 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

107 100 0.5 0.49 8 1 2 edge BA 
108 100 0.5 0.49 8 1 2 vertex BA 
109 184 0.1 0.71 7 2 3 edge ER 
110 184 0.1 0.71 7 2 3 vertex ER 
111 184 0.1 0.71 7 2 3 edge SW 
112 184 0.1 0.71 7 2 3 vertex SW 
113 184 0.1 0.71 7 2 3 edge BA 
114 184 0.1 0.71 7 2 3 vertex BA 
115 213 0.3 0.17 9 3 2 edge ER 
116 213 0.3 0.17 9 3 2 vertex ER 
117 213 0.3 0.17 9 3 2 edge SW 
118 213 0.3 0.17 9 3 2 vertex SW 
119 213 0.3 0.17 9 3 2 edge BA 
120 213 0.3 0.17 9 3 2 vertex BA 
121 494 0.2 0.1 6 1 3 edge ER 
122 494 0.2 0.1 6 1 3 vertex ER 
123 494 0.2 0.1 6 1 3 edge SW 
124 494 0.2 0.1 6 1 3 vertex SW 
125 494 0.2 0.1 6 1 3 edge BA 
126 494 0.2 0.1 6 1 3 vertex BA 
127 156 0.5 0.47 8 2 2 edge ER 
128 156 0.5 0.47 8 2 2 vertex ER 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

129 156 0.5 0.47 8 2 2 edge SW 
130 156 0.5 0.47 8 2 2 vertex SW 
131 156 0.5 0.47 8 2 2 edge BA 
132 156 0.5 0.47 8 2 2 vertex BA 
133 128 0.1 0.58 7 2 3 edge ER 
134 128 0.1 0.58 7 2 3 vertex ER 
135 128 0.1 0.58 7 2 3 edge SW 
136 128 0.1 0.58 7 2 3 vertex SW 
137 128 0.1 0.58 7 2 3 edge BA 
138 128 0.1 0.58 7 2 3 vertex BA 
139 381 0.3 0.12 8 3 2 edge ER 
140 381 0.3 0.12 8 3 2 vertex ER 
141 381 0.3 0.12 8 3 2 edge SW 
142 381 0.3 0.12 8 3 2 vertex SW 
143 381 0.3 0.12 8 3 2 edge BA 
144 381 0.3 0.12 8 3 2 vertex BA 
145 522 0.2 0.14 7 1 3 edge ER 
146 522 0.2 0.14 7 1 3 vertex ER 
147 522 0.2 0.14 7 1 3 edge SW 
148 522 0.2 0.14 7 1 3 vertex SW 
149 522 0.2 0.14 7 1 3 edge BA 
150 522 0.2 0.14 7 1 3 vertex BA 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

151 409 0.4 0.65 5 2 2 edge ER 
152 409 0.4 0.65 5 2 2 vertex ER 
153 409 0.4 0.65 5 2 2 edge SW 
154 409 0.4 0.65 5 2 2 vertex SW 
155 409 0.4 0.65 5 2 2 edge BA 
156 409 0.4 0.65 5 2 2 vertex BA 
157 325 0.2 0.6 4 3 2 edge ER 
158 325 0.2 0.6 4 3 2 vertex ER 
159 325 0.2 0.6 4 3 2 edge SW 
160 325 0.2 0.6 4 3 2 vertex SW 
161 325 0.2 0.6 4 3 2 edge BA 
162 325 0.2 0.6 4 3 2 vertex BA 
163 353 0.4 0.28 1 2 3 edge ER 
164 353 0.4 0.28 1 2 3 vertex ER 
165 353 0.4 0.28 1 2 3 edge SW 
166 353 0.4 0.28 1 2 3 vertex SW 
167 353 0.4 0.28 1 2 3 edge BA 
168 353 0.4 0.28 1 2 3 vertex BA 
169 297 0.2 0.34 2 2 1 edge ER 
170 297 0.2 0.34 2 2 1 vertex ER 
171 297 0.2 0.34 2 2 1 edge SW 
172 297 0.2 0.34 2 2 1 vertex SW 



 119 

S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

173 297 0.2 0.34 2 2 1 edge BA 
174 297 0.2 0.34 2 2 1 vertex BA 
175 466 0.4 0.67 5 2 3 edge ER 
176 466 0.4 0.67 5 2 3 vertex ER 
177 466 0.4 0.67 5 2 3 edge SW 
178 466 0.4 0.67 5 2 3 vertex SW 
179 466 0.4 0.67 5 2 3 edge BA 
180 466 0.4 0.67 5 2 3 vertex BA 
181 241 0.3 0.54 2 3 2 edge ER 
182 241 0.3 0.54 2 3 2 vertex ER 
183 241 0.3 0.54 2 3 2 edge SW 
184 241 0.3 0.54 2 3 2 vertex SW 
185 241 0.3 0.54 2 3 2 edge BA 
186 241 0.3 0.54 2 3 2 vertex BA 
187 438 0.4 0.21 2 2 3 edge ER 
188 438 0.4 0.21 2 2 3 vertex ER 
189 438 0.4 0.21 2 2 3 edge SW 
190 438 0.4 0.21 2 2 3 vertex SW 
191 438 0.4 0.21 2 2 3 edge BA 
192 438 0.4 0.21 2 2 3 vertex BA 
193 269 0.3 0.38 1 1 1 edge ER 
194 269 0.3 0.38 1 1 1 vertex ER 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

195 269 0.3 0.38 1 1 1 edge SW 
196 269 0.3 0.38 1 1 1 vertex SW 
197 269 0.3 0.38 1 1 1 edge BA 
198 269 0.3 0.38 1 1 1 vertex BA 
199 184 0.3 0.23 9 2 2 edge ER 
200 184 0.3 0.23 9 2 2 vertex ER 
201 184 0.3 0.23 9 2 2 edge SW 
202 184 0.3 0.23 9 2 2 vertex SW 
203 184 0.3 0.23 9 2 2 edge BA 
204 184 0.3 0.23 9 2 2 vertex BA 
205 1000 0.2 0.36 5 1 3 edge ER 
206 1000 0.2 0.36 5 1 3 vertex ER 
207 1000 0.2 0.36 5 1 3 edge SW 
208 1000 0.2 0.36 5 1 3 vertex SW 
209 1000 0.2 0.36 5 1 3 edge BA 
210 1000 0.2 0.36 5 1 3 vertex BA 
211 494 0.5 0.21 1 2 2 edge ER 
212 494 0.5 0.21 1 2 2 vertex ER 
213 494 0.5 0.21 1 2 2 edge SW 
214 494 0.5 0.21 1 2 2 vertex SW 
215 494 0.5 0.21 1 2 2 edge BA 
216 494 0.5 0.21 1 2 2 vertex BA 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

217 888 0.5 0.38 9 1 3 edge ER 
218 888 0.5 0.38 9 1 3 vertex ER 
219 888 0.5 0.38 9 1 3 edge SW 
220 888 0.5 0.38 9 1 3 vertex SW 
221 888 0.5 0.38 9 1 3 edge BA 
222 888 0.5 0.38 9 1 3 vertex BA 
223 128 0.3 0.25 7 2 2 edge ER 
224 128 0.3 0.25 7 2 2 vertex ER 
225 128 0.3 0.25 7 2 2 edge SW 
226 128 0.3 0.25 7 2 2 vertex SW 
227 128 0.3 0.25 7 2 2 edge BA 
228 128 0.3 0.25 7 2 2 vertex BA 
229 944 0.2 0.3 5 1 1 edge ER 
230 944 0.2 0.3 5 1 1 vertex ER 
231 944 0.2 0.3 5 1 1 edge SW 
232 944 0.2 0.3 5 1 1 vertex SW 
233 944 0.2 0.3 5 1 1 edge BA 
234 944 0.2 0.3 5 1 1 vertex BA 
235 522 0.5 0.28 1 2 2 edge ER 
236 522 0.5 0.28 1 2 2 vertex ER 
237 522 0.5 0.28 1 2 2 edge SW 
238 522 0.5 0.28 1 2 2 vertex SW 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

239 522 0.5 0.28 1 2 2 edge BA 
240 522 0.5 0.28 1 2 2 vertex BA 
241 719 0.5 0.34 9 2 1 edge ER 
242 719 0.5 0.34 9 2 1 vertex ER 
243 719 0.5 0.34 9 2 1 edge SW 
244 719 0.5 0.34 9 2 1 vertex SW 
245 719 0.5 0.34 9 2 1 edge BA 
246 719 0.5 0.34 9 2 1 vertex BA 
247 325 0.2 0.47 7 2 1 edge ER 
248 325 0.2 0.47 7 2 1 vertex ER 
249 325 0.2 0.47 7 2 1 edge SW 
250 325 0.2 0.47 7 2 1 vertex SW 
251 325 0.2 0.47 7 2 1 edge BA 
252 325 0.2 0.47 7 2 1 vertex BA 
253 691 0.2 0.58 3 2 1 edge ER 
254 691 0.2 0.58 3 2 1 vertex ER 
255 691 0.2 0.58 3 2 1 edge SW 
256 691 0.2 0.58 3 2 1 vertex SW 
257 691 0.2 0.58 3 2 1 edge BA 
258 691 0.2 0.58 3 2 1 vertex BA 
259 297 0.4 0.78 4 1 1 edge ER 
260 297 0.4 0.78 4 1 1 vertex ER 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

261 297 0.4 0.78 4 1 1 edge SW 
262 297 0.4 0.78 4 1 1 vertex SW 
263 297 0.4 0.78 4 1 1 edge BA 
264 297 0.4 0.78 4 1 1 vertex BA 
265 747 0.4 0.76 8 3 2 edge ER 
266 747 0.4 0.76 8 3 2 vertex ER 
267 747 0.4 0.76 8 3 2 edge SW 
268 747 0.4 0.76 8 3 2 vertex SW 
269 747 0.4 0.76 8 3 2 edge BA 
270 747 0.4 0.76 8 3 2 vertex BA 
271 241 0.2 0.49 6 1 3 edge ER 
272 241 0.2 0.49 6 1 3 vertex ER 
273 241 0.2 0.49 6 1 3 edge SW 
274 241 0.2 0.49 6 1 3 vertex SW 
275 241 0.2 0.49 6 1 3 edge BA 
276 241 0.2 0.49 6 1 3 vertex BA 
277 634 0.3 0.71 2 2 3 edge ER 
278 634 0.3 0.71 2 2 3 vertex ER 
279 634 0.3 0.71 2 2 3 edge SW 
280 634 0.3 0.71 2 2 3 vertex SW 
281 634 0.3 0.71 2 2 3 edge BA 
282 634 0.3 0.71 2 2 3 vertex BA 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

283 269 0.4 0.73 4 1 2 edge ER 
284 269 0.4 0.73 4 1 2 vertex ER 
285 269 0.4 0.73 4 1 2 edge SW 
286 269 0.4 0.73 4 1 2 vertex SW 
287 269 0.4 0.73 4 1 2 edge BA 
288 269 0.4 0.73 4 1 2 vertex BA 
289 663 0.3 0.8 8 3 2 edge ER 
290 663 0.3 0.8 8 3 2 vertex ER 
291 663 0.3 0.8 8 3 2 edge SW 
292 663 0.3 0.8 8 3 2 vertex SW 
293 663 0.3 0.8 8 3 2 edge BA 
294 663 0.3 0.8 8 3 2 vertex BA 
295 916 0.3 0.67 2 2 2 edge ER 
296 916 0.3 0.67 2 2 2 vertex ER 
297 916 0.3 0.67 2 2 2 edge SW 
298 916 0.3 0.67 2 2 2 vertex SW 
299 916 0.3 0.67 2 2 2 edge BA 
300 916 0.3 0.67 2 2 2 vertex BA 
301 100 0.5 0.54 6 3 2 edge ER 
302 100 0.5 0.54 6 3 2 vertex ER 
303 100 0.5 0.54 6 3 2 edge SW 
304 100 0.5 0.54 6 3 2 vertex SW 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

305 100 0.5 0.54 6 3 2 edge BA 
306 100 0.5 0.54 6 3 2 vertex BA 
307 606 0.1 0.69 10 2 2 edge ER 
308 606 0.1 0.69 10 2 2 vertex ER 
309 606 0.1 0.69 10 2 2 edge SW 
310 606 0.1 0.69 10 2 2 vertex SW 
311 606 0.1 0.69 10 2 2 edge BA 
312 606 0.1 0.69 10 2 2 vertex BA 
313 213 0.1 0.52 2 3 1 edge ER 
314 213 0.1 0.52 2 3 1 vertex ER 
315 213 0.1 0.52 2 3 1 edge SW 
316 213 0.1 0.52 2 3 1 vertex SW 
317 213 0.1 0.52 2 3 1 edge BA 
318 213 0.1 0.52 2 3 1 vertex BA 
319 972 0.3 0.65 4 2 2 edge ER 
320 972 0.3 0.65 4 2 2 vertex ER 
321 972 0.3 0.65 4 2 2 edge SW 
322 972 0.3 0.65 4 2 2 vertex SW 
323 972 0.3 0.65 4 2 2 edge BA 
324 972 0.3 0.65 4 2 2 vertex BA 
325 156 0.4 0.6 6 3 3 edge ER 
326 156 0.4 0.6 6 3 3 vertex ER 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
added in each 

time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

327 156 0.4 0.6 6 3 3 edge SW 
328 156 0.4 0.6 6 3 3 vertex SW 
329 156 0.4 0.6 6 3 3 edge BA 
330 156 0.4 0.6 6 3 3 vertex BA 
331 578 0.1 0.63 10 2 2 edge ER 
332 578 0.1 0.63 10 2 2 vertex ER 
333 578 0.1 0.63 10 2 2 edge SW 
334 578 0.1 0.63 10 2 2 vertex SW 
335 578 0.1 0.63 10 2 2 edge BA 
336 578 0.1 0.63 10 2 2 vertex BA 
337 381 0.1 0.56 2 3 3 edge ER 
338 381 0.1 0.56 2 3 3 vertex ER 
339 381 0.1 0.56 2 3 3 edge SW 
340 381 0.1 0.56 2 3 3 vertex SW 
341 381 0.1 0.56 2 3 3 edge BA 
342 381 0.1 0.56 2 3 3 vertex BA 
343 775 0.4 0.43 4 2 3 edge ER 
344 775 0.4 0.43 4 2 3 vertex ER 
345 775 0.4 0.43 4 2 3 edge SW 
346 775 0.4 0.43 4 2 3 vertex SW 
347 775 0.4 0.43 4 2 3 edge BA 
348 775 0.4 0.43 4 2 3 vertex BA 
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S/N Number 
of nodes 

Edge 
Density 

Proportion of 
Removal 

No. of neighbors 
within which 
vertices are 

connected (SW 
Graph) 

No. of Edges 
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time step 

Power of Pref. 
Attachment 
(BA Graph) 

Deletion Type Graph Type 

349 409 0.4 0.32 8 2 3 edge ER 
350 409 0.4 0.32 8 2 3 vertex ER 
351 409 0.4 0.32 8 2 3 edge SW 
352 409 0.4 0.32 8 2 3 vertex SW 
353 409 0.4 0.32 8 2 3 edge BA 
354 409 0.4 0.32 8 2 3 vertex BA 
355 803 0.2 0.12 7 3 3 edge ER 
356 803 0.2 0.12 7 3 3 vertex ER 
357 803 0.2 0.12 7 3 3 edge SW 
358 803 0.2 0.12 7 3 3 vertex SW 
359 803 0.2 0.12 7 3 3 edge BA 
360 803 0.2 0.12 7 3 3 vertex BA 
361 353 0.2 0.14 3 1 2 edge ER 
362 353 0.2 0.14 3 1 2 vertex ER 
363 353 0.2 0.14 3 1 2 edge SW 
364 353 0.2 0.14 3 1 2 vertex SW 
365 353 0.2 0.14 3 1 2 edge BA 
366 353 0.2 0.14 3 1 2 vertex BA 
367 859 0.4 0.41 5 3 1 edge ER 
368 859 0.4 0.41 5 3 1 vertex ER 
369 859 0.4 0.41 5 3 1 edge SW 
370 859 0.4 0.41 5 3 1 vertex SW 
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Density 
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Removal 

No. of neighbors 
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Attachment 
(BA Graph) 

Deletion Type Graph Type 

371 859 0.4 0.41 5 3 1 edge BA 
372 859 0.4 0.41 5 3 1 vertex BA 
373 466 0.4 0.19 9 2 1 edge ER 
374 466 0.4 0.19 9 2 1 vertex ER 
375 466 0.4 0.19 9 2 1 edge SW 
376 466 0.4 0.19 9 2 1 vertex SW 
377 466 0.4 0.19 9 2 1 edge BA 
378 466 0.4 0.19 9 2 1 vertex BA 
379 831 0.2 0.17 7 3 2 edge ER 
380 831 0.2 0.17 7 3 2 vertex ER 
381 831 0.2 0.17 7 3 2 edge SW 
382 831 0.2 0.17 7 3 2 vertex SW 
383 831 0.2 0.17 7 3 2 edge BA 
384 831 0.2 0.17 7 3 2 vertex BA 
385 438 0.3 0.1 3 1 2 edge ER 
386 438 0.3 0.1 3 1 2 vertex ER 
387 438 0.3 0.1 3 1 2 edge SW 
388 438 0.3 0.1 3 1 2 vertex SW 
389 438 0.3 0.1 3 1 2 edge BA 
390 438 0.3 0.1 3 1 2 vertex BA 

 
 
 



 129 

APPENDIX C. ANALYSIS OF RESULTS FROM DESCRIPTIVE 
MODELING 

Note: This appendix is a partial reproduction of the work by Ruriko Yoshida on Average 
Distance between Nodes in a Random Graph (2018), an unpublished working paper at the 
time this thesis is published. Its results support the findings in the results from the 
descriptive analysis in Chapter 4 on mean distance in ER graphs under conditions of 
information loss. 

(1) Average Distance between Nodes in a Random Graph by Ruriko 
Yoshida (2018) 

Suppose we have a random graph 0 0 0( , )G N E= where 0N is the set of nodes 

(vertices) 0 {1,..., }N n=  and a set of edges 0E . Let E
iG  be a graph with 0N and the edge set 

0iE E⊂  such that i many edges are randomly (uniformly) deleted. Let N
iG  be a graph with 

the node set 0iN N⊂  and edge set 0iE E⊂  such that i many nodes are randomly 

(uniformly) deleted and also edges adjacent to the deleted nodes. Without loss of 

generality, let {1,..., ( )}iN N i= − . We assume here 0 0 0( , )G N E=  is generated by the ER 

model.  

Properties: 

The main ingredient of the proof for our theorem is from (Chung and Lu 2002). 

Suppose we have a degree distribution. 

0 1( , ,...., )nw w w w=   

will be the expected degree of the node i.  

Let 
2
ii

ii

w
d

w
= ∑
∑

 , that is, the second order average degree of nodes. 
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Definition: 

The volume of a subset of nodes S N⊂  in a graph ( , )G N E=  is defined as 

( ) deg( )
v S

Vol S v
∈

=∑   

where deg( )v  is the degree of a node v. 

Let ( ) k
k i

i S
Vol S w

∈

=∑  and ( ) k
k i

i N
Vol G w

∈

=∑    

Definition: 

The expected degree sequence w for a graph G  is called strongly sparse if G  satisfies the 

following: 

The second order average degree d satisfies the condition  

0 log( ) log( )d n< <<   

The average expected degree is strictly greater than 1 ε+  for some positive value ε  which 

is independent of the number of nodes n in G . 

Note that if G  is generated under the ER model with p < 1 then it is admissible.  

Theorem 1: (Theorem 1 in (Chung and Lu [2002]) 

For a random graph G  with admissible expected degree sequence 1( ,..., )nw w , the average 

distance is almost surely (1 (1))(log( ) / log( ))o n d+ .  

Proposition 1.  The expected degree of each node for a graph G = (N, E) with n 

nodes generated under Erdos-Renyi model with p, p ∈ [0, 1] is p · (n − 1). 

Proof. If p = 1, then G is the complete graph with n nodes. This means that the 

degree of each node is (n − 1). If p < 1, then the probability to be an edge between a 

node i ∈ N to another node j i≠  is p. Therefore, since there are (n-1) possible j i≠ , 

the average degree of the node i is p(n - 1). QED. 
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Theorem 2. If a graph G = (N, E) with n nodes generated under Erdos-Renyi model 

with p ∈ (0, 1), then the average distance is almost surely (1 + o(1))(log(n)/ log(p · (n 

− 1))). 

Proof. Using Proposition 4, the expected degree sequence has wi = p · (n − 1) for i 

∈ N . Then we have d = p · (n − 1). Using Theorem 3, since w is admissible, we are 

done. 

 

Corollary 1. Suppose a graph 0 0 0( , )G N E=  with n nodes generated under Erdos-

Renyi model with p ∈ (0, 1). If i << n, then the average distance for a graph N
iG  is 

almost surely  

 (1 (1))(log( ) / log( .( 1 )))o n i p n i+ − − −   

Proof. It is immediately proven by Theorem 2. QED. 

Theorem 3. Suppose a graph 0 0 0( , )G N E=  with n nodes generated under Erdos-Renyi 

model with p ∈ (0, 1). The average distance for a graph E
iG is almost surely   

 ˆ(1 (1))(log( ) / log( .( 1)))o n p n+ −   

where ˆ /
2i
np E  =  

 
 . 

Proof. The number of all possible edges for G  to have is 
2
n 

 
 

. We can estimate the 

probability of being an edge between a node 0i N∈  and a node j i≠  is ˆ /
2i
np E  =  

 
 

This converges to the true parameter almost surely by the strong law of large 

numbers since each edges are independent and identically distributed (iid). Therefore, 

applying Theorem 1 and Proposition 1, we have the result. QED. 
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APPENDIX D. ANALYSIS OF RESULTS FROM PREDICTIVE MODELING 

Figure 77.  Results from CART model on Network Parameters on Classification of Networks 
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