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ABSTRACT

Due to the emergence of powerful global terrorist organizations such as Al Qaeda
and ISIS over the last 15 years, social network analysis is increasingly leveraged by the
Department of Defense to develop strategies to combat criminal and terrorist organizations.
Understanding and correctly classifying networks improves our ability to destroy criminal
and terrorist networks because we can leverage existing literature that identifies the optimal
strategy for dismantling these networks based on their network structure. However, these
strategies typically assume complete information about the underlying network. Due to the
limited ability of an analyst to process all of the available data, our inability to detect all
members of these networks, and the efforts of criminal organizations to hide their activities
and structure, analysts must classify these networks and develop strategies to combat them
with missing information. This thesis analyzes the performance of a variety of network
statistics in the context of incomplete information by leveraging simulation to remove
nodes and edges from networks and evaluating the effect this missing information has on
our ability to accurately classify the underlying structure of the network. We provide
recommendations to intelligence analysts about which statistics provide the most
information, conditions under which it is reasonable to assert a classification, and a
framework for the evaluation of network statistics for the purposes of classifying network

graphs under incomplete information.
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EXECUTIVE SUMMARY

A. BACKGROUND AND MOTIVATION

While September 11, 2001 (9/11) is known to many as a watershed for warfare in
the modern era, even prior to the 9/11 attacks, Arquilla and Ronfeldt (2001) asserted in
their publication Networks and Netwars that the nature of modern warfare has evolved to
that of a lower intensity war against criminals and terrorists in a network-based,
organizational structure instead of full intensity conflicts by state actors as featured in
World War | and World War Il. Recent military actions throughout the world seem to
validate Arquilla and Ronfeldt’s assertion. In this environment, the role and value of social
network analysis in fighting terrorism (Ressler 2006), cyber crime (Yip 2008), as well as

other networked criminal activities (Sparrow 1991) has been steadily increasing.

Network analysis is the science of “using mathematical properties inherent in the
graphical structure to seek and uncover differing patterns in the network to determine the
conditions under which the networks operate and may best be exploited” (Hopkins 2010).
Many researchers agree that characterizing graphs to a high level of accuracy is an essential
goal for security forces whose end-state is to curb criminal activity (Cinar et al. 2017).
Understanding and correctly classifying the network allows us to effectively disrupt,
destabilize or destroy these networks, and graph statistics not only allow us to classify these

networks but also measure the effectiveness of destabilization strategies (Hopkins 2010).

One of the biggest problems with current approaches to network analysis in real-
world practice is that most applications assume complete information (Carley et al. 2003).
As Sparrow (1991) notes, “criminal network data is also inevitably incomplete; i.e., some
existent links or nodes will be unobserved or unrecorded. Little research has been done on
the effects of incomplete information on apparent structure” (p. 262). Analysts with
incomplete information may incorrectly classify the network and hence recommend the
use of a strategy meant for a one network type on another, which would not only be

ineffective but a waste of resources. Inevitably, most intelligence collection will be based

XiX



on incomplete information, but there is little published work on the effects of incomplete
information on network analysis (Sparrow 1991).

B. RESEARCH OBJECTIVES

This thesis addresses this gap in the existing literature by considering the following
research questions in the context of missing information (i.e., hidden edges and
vertices):

1. Which network statistics provide the most predictive power in classifying
the network type?

2. What is the effect of changing the (a) edge density, (b) size (number of
vertices) of the original network, (c) proportion of information loss, and
(d) type of information loss (edges or vertices), (e) network type (Erdos-
Renyi [ER], Small World [SW] or Barabasi-Albert [BA]) on the ability to
classify a graph type correctly?

3. Can we establish a framework through which we can learn (1) and (2) for
any combination of network statistics?

The key objectives of this thesis are twofold: (1) to make a recommendation to
intelligence analysts as to the conditions under which it is reasonable to classify networks
with incomplete information, and (2) to produce a methodology that will allow researchers
to assess the performance and robustness of any graph statistic for network classification
as information about the network is lost.

C. METHODOLOGY

The methodology we use to answer these research questions is illustrated in Figure

E-1 and summarized as follows:

1. Simulation and Descriptive Analysis (Simulation): We develop a
simulation model that randomly removes edges or vertices (i.e., represents
information loss) on different sizes and types of graphs and record the
resulting behavior of graph statistics as information is lost; this provides
the opportunity to observe the effect of information loss on individual
statistics.

2. Generation of Data for Machine Learning (Design of Experiments): We
use a space-filling Design of Experiments (DOE) to create training and
test datasets that represent networks exhibiting a variety of sizes (i.e.,

XX



number of vertices), edge densities, number of nodes, and other
parameters and then use the simulation model to build all of the needed
design points.

Machine Learning for Network Classification (Machine Learning Model):
We use Classification and Regression Trees (CART) (Breiman et al. 1984)
and Random Forest (RF) classification models (Breiman 2001) to build
machine learning models from the training dataset that describe the
contribution of various statistics for accurate classification of networks
and test the performance of these models on the out-of-sample test dataset.

Analysis of Results (Analysis of Results): We use logistic regression
(Agresti 2012) and CART models to analyze the effect of many different
situational factors (i.e., simulation parameters) on our ability to accurately
distinguish between the three networks types commonly encountered in

intelligence analysis applications.

Figure E-1.  Overview of Methodology

‘ (4) Analysis of Results
Profile Plots
(2) Design Of Parameters of Situation
Experiments >
(DOE)
;F““““““"“““"} Observed
| Training | Statistics (3) Machine Classification
(1) Simulation |  e—— 1 Dataset | Learning Model Performance
| Tost | Observed l
1 I Statisti ; ;
| Dataset | —_— Classification

This figure illustrates our methodology. In step 1, we develop a simulation model to
randomly remove nodes and edges (i.e., simulate information loss) from a variety of
networks and record the resulting effect on graph statistics. In step 2, we use a space-filling
NOLH DOE to design training and test datasets that represent networks under a variety of
conditions and then use the simulation model to build all of the needed design points, all
of which are networks in which some information has been lost. In step 3, we use the
training data set to build machine learning models for classifying networks based on
observed graph statistics. In step 4, we use logistic regression (illustrated with profile plots)
to analyze the effect of the many studied factors on our ability to accurately classify the
design points in the test dataset based on their observed graph statistics.

Detailed profile plots are in Figure E-3.
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Figure E-2 provides an illustration for how the simulation model functions. The
simulation model begins by creating an ER, SW, or BA network with the network
parameters in the second column available for specification. Then, the simulation model
iteratively and randomly removes either links or edges until a specified amount of
information has been removed from the network. The result of this process is an obscured
network (i.e., a network with missing information), representing the view of the true
network that an intelligence analyst might see in the real world. A variety of graph statistics
are calculated at each step in the removal process, providing the opportunity to observe
how information loss affects these statistics. The key finding of this observational analysis
is that no single statistic always distinguishes between the three graph types under the
studied conditions of information loss. This finding motivates the use of machine learning
models to combine the information from multiple observed statistics to improve our ability

to classify with incomplete information.

Figure E-2.  Illustration of Simulating Missing Information
Graph Network Imitial Obscuring Obscured Observed
Type Parameters Graph (link/node Graph Statistics
removal)
- Graph Type - MAlean Disrance
(ER/SW/BA)
B g . Iransitivity
- Size of Starting . L s * . ®
Graph T e = Hy = - Edge Density
e - —_ s -
ER Edge Density m ' e Assortativity
- Proportion of - Kullback-Liebler
Removals
Kemoval Type
(edge/vertex) ape L
ate 9. w? e . : -
SW e, —_— DS
col cted o -
(SW graph) -
. P
pre
att il
(BA graph) - @ -
BA ” 9:; n® 5
aeg 2 - P ¥
gﬂw:, BR,
[

Ground Truth

Real World (Observed)

This figure outlines the process of simulating missing information. Looking at the figure
from left to right, we first generate initial graphs of each of the three graph types based on
different network parameters such as size, edge density, etc. Based on a specified
proportion of removal and removal type (edge/vertex), the initial graph becomes obscured.
Statistics of the obscured graph are observed and recorded, and used later to assert a
classification of the graph.
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C. RESULTS

This section summarizes the most significant research results obtained in answering

each of the three research questions posed in the introduction.

1. Which network statistics provide the most predictive power in classifying
the network type?

e We find that no single statistic is sufficient to distinguish between
these three types of graphs under conditions of incomplete
information. Rather, even the simplest CART model requires more
than one statistic to help to classify the network. Moreover, we
observe that ensemble machine learning methods such as RF
models provide even more predictive power by combining models
leveraging all of the available graph statistics.

2. What is the effect of changing the edge density of the original network (p),
size (number of vertices) of the original network (n), proportion of
information loss (rhat), and type of information loss (edges vs. vertices),
and network type (ER, SW or BA) on the ability to classify a graph type
correctly?

e This analysis indicates that the proportion of removals (i.e.,
amount of missing information) is the most significant factor in
classification performance, followed by type of missing
information (edge vs. vertex) and network type. The most
significant finding is that the ability to accurately classify
networks declines precipitously once more than 80% of the
information about the network is missing (as illustrated in the
left-most panel in the figure). Figure E-3 provides a simple
illustration depicting the general shape of the studied effects from
the logistic regression analysis, with movement towards the top of
the figure indicating improvement in classification performance.
Factors within the bold box were statistically significant effects.
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Figure E-3.  Prediction Profiler for Graph Characteristics in
Classifying Networks
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This figure outlines the relationship between factor levels and classification performance
as found in logistic regression analysis is outlined. Factors which are statistically
significant are outlined in the bold box. For those with a positive slope (network size, edge
density, number of neighbors within which two vertices are connected), increasing factor
levels increases the probability of correct classification. A high proportion of removals,
having a SW graph or hidden edges increases the probability that the graph is misclassified.

3. Can we establish a framework by which we can learn (1) and (2) for any
combination of network statistics?

e This thesis provides a framework for evaluating the contribution of
various network statistics on our ability to classify graphs. To date,
research in this area has focused on analyzing the performance of
individual network statistics for classifying networks. While this
thesis finds that an ensemble of statistics can classify a network
with high accuracy using RF models, it also establishes a general
framework with which any new statistic can be evaluated for its
utility in classifying networks (in comparison to its peers) under
conditions of incomplete information.

D. APPLICATION FOR INTELLIGENCE ANALYSIS

Figure E-4 provides a detailed view of the effect of information loss on our ability
to classify network graphs with both CART and RF models. The amount of information
missing has the most significant effect on our ability distinguish between these three
network types commonly encountered in intelligence analysis. This graph provides several
key insights for applications of network analysis in the intelligence domain. First, only
about 20% of the information about a network is needed in order to achieve better than
90% accuracy in network classification. This means that we do not need to spend resources
to completely map a network in order to accurately classify it.
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Second, the significant performance improvement of the RF ensemble machine
learning model in this study over the use of simple thresholds based on individual statistics
suggests that this approach should be directly fielded for counter-network applications in
the DoD. The classification models developed as part of this thesis, trained on a wide
variety of synthetically generated networks, should provide significantly improved
classification performance in practice over the current methods used, which use single

statistics and assume a complete mapping of the network.

Figure E-4. Classification Accuracy vis-a-vis Information Loss

Network Classification Accuracy at Various Levels of Information Loss
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This figure shows both the CART (red line) and RF (blue line) have classification accuracy
that dips after information loss is beyond 80%. The RF model performs better than the
CART model for all levels of information loss, but a key finding is that at 80% information
loss, the CART has 79.74% of accuracy while the RF model has 91.025% accuracy.

This research also suggests that, unless we can be reasonably sure that we have
sufficient information, we should be very cautious about proposing specific strategies for the
dismantling of threat networks based on network classifications conducted on small samples
of larger (and mostly unobserved) networks. The widespread practice of asserting a network
classification based on a single statistic such as degree distribution calculated on a small
observed sample of a much larger (but mostly unobserved) network is unlikely to result in
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accurate network classification and therefore effective strategies. Rather, a reasonable
standard would require that we (1) believe we have observed at least 20% of the network, (2)
have reason to believe the network is one of the three types studied in this thesis (or we have
replicated this framework for additional network types), and (3) we have developed a

classification model whose performance for the desired application is known and validated.
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l. INTRODUCTION

A. BACKGROUND

While September 11, 2001 (9/11) is known to many as a watershed for warfare in
the modern era, even prior to the 9/11 attacks, Arquilla and Ronfeldt (2001) asserted in
their publication Networks and Netwars that the nature of modern warfare has evolved to
that of a lower intensity war against criminals and terrorists in a network-based,
organizational structure instead of full intensity conflicts by state actors as featured in WWI
and WWII. Recent military actions throughout the world seem to validate Arquilla and
Ronfeldt’s assertion. In this environment, the role and value of social network analysis in
fighting terrorism (Ressler 2006), cyber crime (Yip 2008), as well as other networked

criminal activities (Sparrow 1991) has been steadily increasing.

Network analysis is the science of “using mathematical properties inherent in the
graphical structure to seek and uncover differing patterns in the network to determine the
conditions under which the networks operate and may best be exploited” (Hopkins 2010).
Many researchers agree that characterizing graphs to a high level of accuracy is an essential
goal for security forces whose end-state is to curb criminal activity (Cinar et al. 2017).
Understanding and correctly classifying the network allows us to effectively disrupt,
destabilize or destroy these networks, and graph statistics not only allow us to classify these
networks but also measure the effectiveness of destabilization strategies (Hopkins 2010).
For instance, Barabasi-Albert (BA) networks are most vulnerable to targeted attacks on
key vertices (nodes) (Hopkins 2010). Graph statistics, such as degree distribution, mean
distance and transitivity are often used distinguish one graph type from another (Hopkins
2010).

A key to network analysis is a true and accurate mapping of the network
(Huddleston et al. 2016). In the intelligence community, this mapping of the network is
often done manually by analysts who build up a network through an iterative process as
illustrated in Figure 1. Referencing Figure 1, this process involves studying the

relationships of initial subject of interest (“Query”), selecting nodes and relationships that



will be explored for further study (“Collapse™), and further study of these selected entities
(“Expand”) (Huddleston et al. 2016). In real world practice, due to the limited time and
resources of any analyst, this focus on only a small subset of the entities and relationships
in the data inevitably results in the mapping of only a very small subset of the actual
network. In the example given in Figure 1, when an analyst collapses focus onto only three
of 40 possible nodes in the initial query, they immediately eliminate consideration of over

90% of the network represented in the available data.

Figure 1. How a Network Was Mapped Out with Information on an
Initial Subject of Interest. Source: Huddleston et al. (2016).

Query Collapse Expand

Resnlting Fffect

More than 92% of
leads are unexplored

This figure illustrates how intelligence analysts will never have complete information on
networks. With an initial subject of interest, they “Query” all his links and relationships.
They “Collapse” the network, narrowing it down to three to four nodes to continue their
mapping as they are unable to explore all leads based on the resources they have. Next,
they “Expand” and find out the “friends of friends” of the initial subject of interest to map
the rest of the network. This process is done iteratively. However, more than 92% of the
leads are unexplored due to analyst’s inability to follow up on all leads (Huddleston et al.
2016).

One of the biggest problems with current approaches in interpreting network
statistics is that most of them assume complete information (Carley et al. 2003). According
to Sparrow (1991), “criminal network data is also inevitably incomplete; i.e., some existent
links or nodes will be unobserved or unrecorded. Little research has been done on the

effects of incomplete information on apparent structure” ( p. 262).
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As illustrated above, intelligence information is often incomplete and much of the
network is undiscovered (Huddleston et al. 2016). Analysts with incomplete information
may incorrectly classify the network and hence recommend the use of a strategy meant for
a one network type on another, which would not only be ineffective but also a waste of
resources. Most intelligence collection will inevitably be based on incomplete information,
but there is scarce work on the effects on incomplete information on network analysis
(Sparrow 1991).

B. OBJECTIVES AND APPROACH

The key question for this thesis is: How robust to missing information are
inferences about networks based on graph statistics? The fundamental research questions
that this thesis will seek to answer is as follows. In the context of missing information

(i.e., an incomplete mapping):

1) Which network statistics provide the most predictive power in
classifying the network type?

(2 What is the effect of changing the following parameters on the ability
to classify a graph type correctly?

e edge density

e size (number of vertices) of the original network
e proportion of information loss, and

e type of information loss (edges or vertices), and

e network type (Erdos-Renyi [ER], Small World [SW], or Barabasi-
Albert [BA])

3) Can we establish a framework through which we can learn (1) and (2)
for any network statistic?

We address these research questions through the following methodological steps:

e Simulation and Descriptive Analysis (Simulation): We develop a
simulation model that randomly removes edges or vertices (i.e.,
represents information loss) on different sizes and types of graphs
and record the resulting behavior of graph statistics as information

3



is lost; this provides the opportunity to observe the effect of
information loss on individual statistics.

e Generation of Data for Machine Learning (Design of
Experiments): We use a space-filling Design of Experiments
(DOE) to create training and test datasets that represent networks
exhibiting a variety of sizes (i.e., number of vertices), edge
densities, number of nodes, and other parameters and then use the
simulation model to build all of the needed design points.

e Machine Learning for Network Classification (Machine Learning
Model): We use Classification and Regression Trees (CART)
(Breiman et al. 1984) and Random Forest (RF) classification
models (Breiman 2001) to build machine learning models from the
training dataset that describe the contribution of various statistics
for accurate classification of networks and test the performance of
these models on the out-of-sample test dataset.

e Analysis of Results (Analysis of Results): We use logistic
regression and CART models to analyze the effect of many
different situational factors (i.e., simulation parameters) on our
ability to accurately distinguish between the three networks types
commonly encountered in intelligence analysis applications.

This research provides two significant and immediately applicable results: (1) it
provides recommendations to intelligence analysts as to the threshold with which to trust
different statistics under the condition of incomplete information, and (2) it provides a

framework for evaluating the utility of network statistic for network classification.

C. SCOPE/LIMITATIONS

This thesis focuses on evaluating the performance of graph statistics for network
classification, leaving consideration of node centrality measures under the loss of
information for future work. We remove edges and vertices randomly to investigate the
individual effects of their removal, recognizing that in reality both edges and vertices may
be missing and biases may be systematic rather than random. We limit analysis and
classification of networks to ER, SW and BA networks, as they largely characterize
criminal and terrorist networks (elaborated in Chapter I11) and are easily produced using

open source software.



D. STRUCTURE OF THESIS

The remainder of this thesis is organized as follows. Chapter 11 (Literature Review)
reviews the work done so far involving network statistics and shows a lack of investigative
work done on network statistics taking into account a loss of information. Chapter 111
(Model Formulation) introduces key equations and outlines the descriptive and predictive
portions of the model including assumptions and methodology. Chapter 1V (Analysis of
Results) outlines the key results and discusses their validity, while Chapter V (Conclusion)

highlights key findings and recommended future work.
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Il. LITERATURE REVIEW

A. THE IMPORTANCE OF NETWORK ANALYSIS

Until recent years, a large proportion of network classification was done in the field
of chemical and biological data (Zhu et al. 2011). Even though it was acknowledged that
there was potential usefulness of network classification in social network analysis, (Zhu et
al. 2011) asserted that they were not aware of “focused study on this problem.”

The events of 9/11 drove home a strong point about the dangers of networked
criminal organizations, and there was increasing amounts of work done to study network
properties and their meaning for counter-network operations (Ressler 2006). Many
researchers now agree that characterizing networks to a high level of accuracy is an
essential goal for security forces whose end-state is to curb criminal activity (Cinar et al.
2017).

B. WHY GRAPH STATISTICS ARE IMPORTANT TO NETWORK
CLASSIFICATION

Network classification lends important insight as to how best to conduct counter-
network operations (Hopkins 2010). For instance, Barabasi-Albert (BA) scale-free
networks “are vulnerable to targeted attacks on highly connected nodes” (Faloutsos 2008),
whereas Small-World (SW) networks are vulnerable to attacks on edges between key
clusters or the key clusters themselves (Hopkins 2010). Network statistics like degree
distribution, mean distance and transitivity are widely used to define and distinguish these
networks (Hopkins 2010). For example, BA networks have a scale-free degree distribution,
while ER networks have a Poisson degree distribution, and SW networks have a binomial
degree distribution (Costa et al. 2005). In addition, SW networks are known to have a high
transitivity and low mean distance (Xu and Chen 2008). Covert terrorist networks such as
Al-Qaeda have been classified as SW networks, whereas dark networks or the World Wide
Web (WWW) are BA networks (Xu and Chen 2008). By correctly classifying these

networks, counter-network operations can be effectively planned in ways that minimize



the use of resources by focusing on the nodes whose removal will be most damaging to the
overall health of the network.

Besides classifying networks, graph statistics are also useful in that they provide
some insight in the environment in which these networks operate, as well as assist in
measuring the effectiveness of destabilization strategies (Carley et al. 2003). For example,
networks with high clustering coefficients and low mean distance are highly efficient and
can connect with other members through few mediators (Hopkins 2010). Networks with
positive assortativity indicate that members are connected to others with the same
characteristics (Hopkins 2010). The Al-Qaeda network is known to have positive
assortativity, with “high-degree nodes...cluster[ing] together as core groups, a
phenomenon evident in the ... network in which bin Laden and his closest cohorts form the
core of the network and issue commands to other parts of the network” (Xu and Chen
2008). Furthermore, a high clustering coefficient is indicative that the mechanism for
recruitment of new members is through a mutual friend, or transitive linking (Friemel
2011), while a high edge density would mean that the network is not easily fragmentable
(Hopkins 2010). A change in the edge density, mean distance or degree distribution could
indicate a measure of effectiveness in the destabilization strategy for these networks
(Carley et al. 2003).

C. HOW NETWORKS ARE MAPPED

Before network analysis can commence, however, work has to be done in order to
map out the network. This begins with initial subjects of interest (vertices), such as a known
member of a terrorist organization (Huddleston et al. 2016). After studying connections
(edges) that the subjects of interest have, more subjects (vertices) are added and a more
comprehensive picture of the network is formed (Satell 2013). Not all the leads on new
subjects can be explored, so a subset is chosen and a further investigation on their
connections is done (Huddleston et al. 2016). Because intelligence analysts are unable to
explore all leads and have to narrow their focus on some, there is almost always a problem
of incomplete information. This lack of an ability to map the entire network is also

illustrated in a recent study on counter-threat finance intelligence that noted the analysis
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was constrained to only the financial data available from Suspicious Activity Reports
(SARs) rather than the full records of financial transactions involving the parties of interest
(Huddleston et al. 2016). In the intelligence field, new vertices (people) are mapped in the
network only when the corresponding link (relationship) is found in some way through

surveillance activities or available data sources.

D. THE PROBLEM OF INCOMPLETE INFORMATION

While the importance of network analysis and graph statistics in the use of
classification of networks has gained recognition and importance in recent years, most of
these studies implicitly assume complete information. Carley and Kim (2008) looked into
interpretation of graph statistics in comparison to random graphs and approximate a
distribution of these statistics. Recently, Cinar et al. (2017) computed network statistics for
a number of terrorist networks such as the 9/11 Hijackers associates, the Jemaah Islamiyah
Koschade and the Islamic State in Irag and Syria (ISIS), to give an indication on various

operating conditions of these networks such as density, mean distance and closeness.

In evaluating the effectiveness of destabilization strategies for terrorist networks,
Carley et al. (2003) recognized that one of the most crucial problems is that in spite of the
large amounts of information on such networks, most of such information is often
incomplete. A large proportion of leads are unexplored (as shown in Figure 1) due to the
limited ability of any analyst to process all the available data (Huddleston et al. 2016). In
addition, criminals tend to make a concerted effort to erase all traces of illicit relationships

and keep a low profile to avoid detection (Hopkins 2010).

While this shows that information about edges in networks is highly likely to be
flawed, the same can be said about information about vertices. Determination of vertex
(node) centrality (i.e., the most important person in a network), for criminal networks may
be the result of who is known most completely rather than who is the most important person
structurally in the actual but unobserved network (Sparrow 1991). Hence, analysts may fall
into the trap of focusing on the person they have the most information on even if he may
not be the ring-leader of the network (Sparrow 1991). Similarly, for classifying networks,

analysts with incomplete information may misclassify a network and as a result
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recommend the use of a strategy meant for a different type of network, which would not
only be ineffective but also a waste of resources. Most intelligence collection is inevitably
based on incomplete information, but there is little work on the effects on incomplete

information on network analysis (Sparrow 1991).

Thus, there is a need to develop tools to evaluate terrorist network destabilization
strategies in the context of incomplete information. Sparrow (1991) had similar thoughts
on criminal networked organizations, asserting “little research has been done on the effects
of incomplete information on apparent structure” (p. 262). Sparrow also acknowledged that
while there had been some research on the issues involved in statistical inference from
networks with incomplete information, (e.g., the 1981 study by Friedkin on the effect of
sampling of random edges on the structural properties of networks), he argues that biases

in the real world brought about by investigative procedures do not follow a random pattern.

10



1. MODEL FORMULATION

A. INTRODUCTION TO NETWORK ANALYSIS AND GRAPH
STATISTICS

In this section, we present definitions of terms and variables as well as explain why
they are of interest to social network analysts.
1. General Terms
We adopt definitions of terms and variables from Rodrigue and Ducruet (2017) and
explain why they are of interest to social network analysts.
1) Vertex (Node)

A vertex is “a terminal point or an intersection point in a graph” (Rodrigue and
Ducruet 2017). In Figure 2, these are represented by blue circles. In the context of a social

network, vertices represent people.

Figure 2. Network with Vertices (circles in blue) and Edges (black links).
Source: (Kell 2006).

/ Vertex

» Edge

2 Edge (Link or Arc)

An edge is “a link between two vertices” (Rodrigue and Ducruet 2017). In Figure
2, these are represented by black lines. For instance, in the context of a social network, an

edge represents a relationship between people.

11



3) Graph

A graph is a “collection of vertices (nodes) connected by edges” (Rodrigue and
Ducruet 2017). In Figure 2, the graph is the entire diagram containing both nodes and

edges.

4) Network

A network is a graph with information (attributes) (Ahuja et al. 1993). Social
networks are comprised of people (nodes), relationship (edges), and specific attribute

information such as type of relationship, age of person, etc.

Note that “node” and “vertex”; “edge” and “link” are synonyms. For this thesis, we
use the terms “vertex,” “edge,” and “network” throughout. We use the term “graph” when
it comes to computational and mathematical aspects, and the term “network” with regard

to (intelligence) application aspects.

2. Network Types
Social networks are typically best approximated by one of three network types
(Barabasi 2015):
e Erdos-Renyi (ER) random network
e Small-World (SW) network
e Barabasi-Albert (BA) network

Each of these networks types is described in depth in the following sections.

a. Erdos-Renyi (ER) Random Network

The Erdos-Renyi network is a random network that starts with a number of
disconnected vertices and is constructed, while avoiding self-connections, by adding edges
randomly with a given probability p (Costa et al. 2005). ER networks are characterized by
a low mean average distance, low clustering coefficient, and a Poisson degree distribution
(Hopkins 2010).

12



b. Small World (SW) Network

The small-world model originated with the “observation that most real-world
graphs seem to have a low average distance between nodes...but have high clustering
coefficients” (Watts and Strogatz 1998). This characterizes many real-world networks,
including social networks, where only a small number of friends separate two people from
knowing each other. A common saying to describe this is “6 degrees of separation [6
acquaintances] separate any two people.” The small world model starts with a D-
dimensional square lattice and connections are re-wired to reduce the overall mean distance
(Watts and Strogatz 1998). The degree distribution of a SW network is binomial (Cinar et
al. 2017). According to Alderson (2008), “the small-world model has been used to
represent many types of social networks, including collaboration ... trust networks ... and
community structure” (p.1053). Given that the SW network is characterized by clusters
with weak ties, the SW network is vulnerable to disruption and fragmentation through

attacks on key clusters or edges between them (Hopkins 2010).

C. Barabasi-Albert (BA) Network

Barabasi-Albert (BA) networks are also known as scale-free networks because their
degree distribution follows a power law; hence, a large proportion of vertices have a small
number of connections, while a small proportion of vertices have a large number of
connections (Costa et al. 2005). In addition, the BA network is generated with preferential
attachment; that is vertices with more existing edges are more likely to have additional
edge(s) added in each time step (Faloutsos 2008). The BA network is resistant to random
losses, yet in the context of counter-network operations vulnerable to targeted attacks on

highly connected vertices (Faloutsos 2008).

According to Faloutsos (2008), whilst the BA model characterizes some real-world
networks with its preferential attachment model, one must be careful with regard to its
application to real world networks. First, the exponent of the power-law of the degree
distribution is 3, but there is a proportion of real world networks do not have this property
(Faloutsos 2008). Next, he suggests that the BA model has a constant average degree,

“however, the average degree of some graphs ... actually increases over time according to
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a Densification Power Law.” Nevertheless, it is still useful for real world networks with its
properties.

3. Graph Statistics
The following network statistics are often used to describe and classify the topology
of a network:
e edge density
e mean distance
e transitivity
e assortativity
e degree distribution
e Kullback-Leibler (KL) divergence
e Hellinger distance statistic

Each of these statistics is discussed in detail in the following sections.

a. Edge Density: The Probability of Connection between Vertices

The edge density, or the probability of connection between vertices of network is
defined as the ratio of the number of edges to the number of possible edges (Rodrigue and

Ducruet 2017). It is defined as follows:

Number of edges )

Edge Density =
J d Number of possible edges

N

9 j where N is the number of vertices.

where the number of possible edges is equal to (

Networks with low density are easily fragmented, whereas networks with high density are

resistant to fragmentation (Cinar et al. 2017).
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b. Mean Distance

The mean distance of a network is the average path length of a network between
nodes (Rodrigue and Ducruet 2017). This statistic indicates how far apart two nodes are on

average (Costa et al. 2005). The mean distance of a network L is defined as:

1
Le Zm;d(\/ﬁ\/j) y )

The mean distance of a network is computed using a summation of all the distances

between vertices, (where d(V,,V,) is the distance between vertex i and vertex j, ignoring

self-connections) normalized by the total number of vertices (Costa et al. 2005). For this
thesis, this statistic is computed only for connected portions of the network and
unconnected portions of the network are ignored, mimicking the scenario in the intelligence
analysis of networks in which unconnected entities and/or communities are not mapped to
studied networks because their relationship to the network is unknown. In attempting to
disrupt terrorist networks, one of the goals is often to increase the mean distance to make
operations more difficult for the network. ER and SW networks are known to have low

mean distances (Hopkins 2010).

C. Transitivity

The transitivity, or clustering coefficient C of a graph, measures the probability that
the adjacent vertices of a vertex is connected (Rodrigue and Ducruet 2017), i.e., it measures
the extent to which connections are defined by mutual friends, or the probability that
connected triangles appear in a given network (Hopkins 2010). It is evaluated by dividing
three times the number of fully connected triples (i.e., triangles in the graph) with the
number of triples (Costa et al. 2005), specifically

3 * Number of fully connected triples
Number of triples '

C (3)

This is also a way to gauge the connectedness of a network. Terrorist networks with

high transitivity are of concern to intelligence analysts as this signifies a highly connected
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network. It also indicates that the recruitment mechanism for this network is through
mutual friends (Ebel et al. 2003).

d. Assortativity

On assortativity, Hopkins (2010) cites Xu and Chen (2008), “in positively
assortative networks, high-degree nodes tend to cluster together as core groups, a
phenomenon evident in the ... network in which bin Laden and his closest cohorts form

the core of the network and issue commands to other parts of the network.”

Assortativity indicates a preference or an inclination for a vertex in a network to
attach itself to other vertices which have similarities (such as nodes with high degree

connecting to other vertices) (Hopkins 2010). Assortativity (A) is defined as:

Zij(eij _qiqj)
A=l 4)
O-q
A is computed by taking the summation of the difference between the joint

probability distribution e, of the remaining degrees of vertex i and j and the product of the
distribution of remaining degrees of vertex i (g;) and vertex j (q, ), over all possible
combinations of vertices i and j, divided by o7, the squared of the standard deviation in

distribution of the remaining degrees (Noldus and Mieghem 2014). Social networks tend
to have positive assortativity (Hopkins 2010). SW and BA networks are also known to have
an assortativity value of zero (Costa et al. 2005).

e. Degree Distribution

The degree of a vertex represents the number of edges (relationships) that a vertex
has with other vertices (Cinar et al. 2017). The degree distribution is a vector whose first
element specifies the proportion of nodes with zero connections; second element specifies
the proportion of vertices with one connection; etc.(Costa et al. 2005). Degree distributions
give an indication on the proportion of people in a social network who are highly
connected; as well as the proportion of people with few or no connections (Hopkins 2010).
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This statistic is one of the distinguishing features between the ER, SW and BA networks:
the degree distribution of a BA network is scale-free; the degree distribution of an ER
network is Poisson, and the degree distributions of a SW network is binomial (Hopkins

2010). The mathematical definitions follow.

The theoretical degree distribution of an Erdos-Renyi (ER) network, where P (k)

is the probability a randomly selected vertex has degree k, is as follows:

e—<k> < k >k
P(k) =g ®)

where the average vertex degree for the network, < k > = p(N —1) with p, the probability

of connection between two random vertices and N, the number of all vertices in the graph
(Costa et al. 2005).

The theoretical degree distribution of a Small World (SW) network, where P (k)
is the probability a randomly selected vertex has degree Kk, is as follows:

min(k—x,x) R k—rc—i .
rw="5 ([ e —((kpf,)(_i)!e” , ©)

where « represents the number of neighbors of each vertex in the initial regular network
(Costa et al. 2005).

The theoretical degree distribution of a Barabasi-Albert (BA) network, where
P (k) is the probability that a randomly selected vertex has degree k, is as follows (Costa

et al. 2005):

P(k)~k™ . (7)
f. Kullback-Leibler (KL) Divergence

The Kullback-Leibler divergence measures the distance between two probability
distributions (Kullback and Leibler 1951). For two discrete probability distributions P and
Q, the Kullback-Leibler divergence is defined as the expected logarithmic difference

between probability distributions P and Q (Kullback and Leibler 1951):
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D (P11Q)=-3 P log 2.} o

In this computation, note that if any element of the probability distribution P(i),
where P(i) is the probability for a state i in the distribution P, is equal to 0, this implies

that Q(i)= 0, where Q(i) is the probability for a state i in the distribution Q, and no

increment will be made to the current sum total in the Kullback-Leibler divergence statistic.

g. Hellinger Distance Statistic

The Hellinger distance statistic (Hellinger 1909) is used to quantify similarity
between two probability distributions. With two discrete probability distributions P and Q,
the Hellinger Distance Statistic is defined as follows:

1-> PG (©)

j=1
where P; is the probability for a state j in the probability distribution P, and Q; is the

probability for a state j in the distribution Q. This distance is used to quantify similarity
between two probability distributions (Hellinger 1909).

B. METHODOLOGY OVERVIEW

The methodology we use to answer these research questions is illustrated in Figure

3 and summarized as follows:

e Simulation and Descriptive Analysis (Simulation): We develop a
simulation model that randomly removes edges or vertices (i.e., represents
information loss) on different sizes and types of graphs and record the
resulting behavior of graph statistics as information is lost; this provides
the opportunity to observe the effect of information loss on individual
statistics.

e Generation of Data for Machine Learning (Design of Experiments): We
use a space-filling Design of Experiments (DOE) to create training and
test datasets that represent networks exhibiting a variety of sizes (i.e.,
number of vertices), edge densities, number of nodes, and other
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parameters and then use the simulation model to build all of the needed
design points.

e Machine Learning for Network Classification (Machine Learning Model):
We use Classification and Regression Trees (CART) (Breiman et al. 1984)
and Random Forest (RF) classification models (Breiman 2001) to build
machine learning models from the training dataset that describe the
contribution of various statistics for accurate classification of networks
and test the performance of these models on the out-of-sample test dataset.

e Analysis of Results (Analysis of Results): We use logistic regression and
CART models to analyze the effect of many different situational factors
(i.e., simulation parameters) on our ability to accurately distinguish
between the three networks types commonly encountered in intelligence
analysis applications.

Figure 3. Overview of Methodology

| (4) Analysis of Results
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This figure illustrates our methodology. In step 1, we develop a simulation model to
randomly remove nodes and edges (i.e., simulate information loss) from a variety of
networks and record the resulting effect on graph statistics. In step 2, we use a space-filling
NOLH DOE to design training and test datasets that represent networks under a variety of
conditions and then use the simulation model to build all of the needed design points, all
of which are networks in which some information has been lost. In step 3, we use the
training data set to build machine learning models for classifying networks based on
observed graph statistics. In step 4, we use logistic regression (illustrated with profile plots)
to analyze the effect of the many studied factors on our ability to accurately classify the
design points in the test dataset based on their observed graph statistics. See Figure 12 for
detailed profile plots.
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C. DESCRIPTIVE ANALYSIS OF STATISTICS UNDER A LOSS OF
INFORMATION USING SIMULATION

This thesis considers the behavior of the various statistics that are typically used in
classifying networks and/or of interest in social network analysis under conditions of
incomplete information. In order to establish the behavior of these statistics under such
conditions, we simulate different levels (0-80%) of missing information by randomly
removing an increasing proportion of nodes and edges and computing network statistics at
each point of removal. We then compare the network statistics among the three network
types and check if they converged or remained distinct. We use distance measures to
compare the observed data with theoretical degree distributions of the three network types
in order to find out if there is any level of incomplete information at which the observed
network resembles another network type. Further elaboration is provided in Figure 4.

Figure 4. Simulation of Information Loss
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As the figure shows, the process of simulating missing information is outlined. Looking at the
figure from left to right, we first generate initial graphs of each of the three graph types based
on different network parameters such as size, edge density, etc. Based on a specified proportion
of removal and removal type (edge/vertex), the initial graph becomes obscured. Statistics of the
obscured graph are observed and recorded, and used later to assert a classification of the graph.
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1. Graph Generation

We use the R package igraph (Csardi and Nepusz T 2006) to generate and

manipulate networks in our study.

We use the function erdos.renyi.game() to generate ER graphs. This
function takes the following arguments as input: number of nodes and, edge density. It
produces output in the form of a graph object with characteristics as specified in the input

arguments.

We use the function sample_smallworld() to generate SW graphs. This
function takes the following arguments as input: number of dimensions, number of nodes,
edge density, whether loop edges are allowed in generated graph (default = FALSE) and
whether multiple edges are allowed in generated graph (default = FALSE). It produces

output in the form of a graph object with characteristics as specified in the input arguments.

We use the function sample_pa() to generate BA graphs. This function takes
the following arguments as input: number of nodes, power of preferential attachment
(default = 1.2), number of edges added in each time step (default = NULL), distribution of
edges added in each time step (default = NULL), numeric vector of number of edges added
in each time step (default = FALSE), “attractiveness” of vertices with no adjacent edges
(default = 1), whether to create a directed graph (default = FALSE), algorithm to use for
graph generation, and starting graph (for the preferential attachment model). It produces

output in the form of a graph object with characteristics as specified in the input arguments.

2. Removal of Edges and Vertices

In order to monitor the robustness of statistics for classifying graphs under
incomplete information, we delete edges and vertices from the starting networks as
specified in Table 1. We set the proportion of removals from 0-80% to investigate how the
statistics behave under increasing removals. Referencing the edge or vertex list, depending
on whichever is specified by the user, we iteratively and randomly delete an increasing

number of unique edges or vertices until we obtain a specified proportion of removals.
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As implemented in R’s igraph package (Csardi and Nepusz T 2006), a deletion
of an edge results in one less edge, while a deletion of a vertex results in the deletion of all
corresponding edges connected to that vertex (see Figure 5). This is a fair approximation
to real-life effects of incomplete information. If an edge (relationship) is not known, it will
not exist. If a vertex (person) is not known, his/her corresponding edges (relationships with
others) are also not known. Similarly, when studying the effects of destroying networks, if
a vertex (e.g., a person in the terrorist network) is destroyed, the relationships with that
vertex cease to matter and hence cease to exist, while if an edge is destroyed (e.g., a
relationship), that edge will no longer exist.

Figure 5. Edge and Vertex Deletion. Adapted from (Kell 2006).

Edge
Deletion

Vertex
Deletion

_—

This figure outlines the process of edge and vertex deletion. In particular, an edge deletion
results in that particular edge being removed or hidden, and represents a relationship that
we do not know about. A vertex deletion results in the vertex and all its links being removed
or hidden, and represents a person, and by extension, his relationships, that we do not know
about.

In simulation of removals, we step through the deletion process n times in order to
achieve the user specified percentage of removals. For example, referencing Figure 6, the
user specified percentage of removals was 15%. With an initial edge list containing 20

edges, over n= 2 steps, a total of three edges were deleted. After each step, the graph is
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stored temporarily and the graph statistics (mean distance, edge density, assortativity,

degree distribution, transitivity) are archived in a list (and eventually plotted).

Figure 6. Sample Sequence of Edge Deletions. Adapted from (Kell 2006).

Original graph: 20 edges  Step One: One edge removal Step Two: Two edge removals  Final graph: 17 edges

This figure illustrates the process with which edges are removed. In the first step, one edge
is removed. In the second step, two edges are removed. This process continues until the
specified proportion of removals is achieved.

3. Graph Statistics Analysis

In this section, we will discuss how (1) we plot all the network statistics from the
three networks on one panel to determine if they converge and how (2) we compute

distance measures between the observed and theoretical degree distributions.

a. Network Statistics

Figure 7 illustrates the effect on the mean distance statistic of removing up to 80%
of the information from the three types of graph for a given situation. As can be seen in
this figure, the values for mean distance between the three graph types overlap for high
values of information loss, indicating that mean distance cannot be used to distinguish
between these three types of graphs in this scenario. Note also that this figure plots 100
replicates of the removal of information from a defined starting point for each graph. Tables

1 and 2 elaborate on the replication procedure.
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Figure 7. Plotting Mean Distance Under Information Loss of 80%
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Each plotted line in this figure records a change in the mean distance statistic from 0-80%
removals of edges, over 10 independent replicates of the information removal procedure
applied to 10 graphs generated for the defined starting point. This provides a total of 100
plotted lines that depict both the variance of the statistic over the simulated scenario and
the general effect of information loss on the statistics. As can be seen in this figure, the
values for mean distance between the three graph types overlap for some values of
information loss, indicating that mean distance cannot always be used to distinguish
between these three types of graphs.

Table 1.  Framework of Analysis of Graphs for Descriptive Modeling
Graph Deletion No. of Iterations/
Type Type Graphs Graph
ER, Edge 10 10
SW,
BA Vertex 10 10
Edge 10 10
Vertex 10 10
Edge 10 10
Vertex 10 10

As described in this table, for each of the three graph types, edges or
vertices were deleted, with 10 random starting graphs generated, over
10 iterations per graph, over a step size of n.

Table 1 provides an overview of the replication procedure employed for plotting
the performance of graph statistics. For each considered scenario (see Table 2 below) we
generate 10 unique graphs of each type and simulate the random removal of information
10 times on each graph, providing 100 replicates (i.e. 100 plotted lines). This provides the
opportunity to observe the variance in the statistic in a given scenario. In Figure 7 it can be
observed that the mean distance statistic has little variance and behaves similarly for the
ER and SW graphs, but the BA graph demonstrates much higher variance as information

is removed.
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Table 2 summarizes the domain of consideration for scenarios during the
descriptive analysis. As can be seen in the table, we varied graph type, graph starting size
(i.e., the number of nodes before we begin removing information via simulation), and edge
density. We then applied the simulation procedure discussed above to remove both edges

and vertices and plotted the results (full results available in Appendix A).

Table 2. Domain of Consideration for Starting Graphs Generated for Descriptive
Analysis of the Effects of Information Loss on Graph Statistics

Graph Size of starting Edge Density
Type graph
p=0.1
=0.2
100 o
nodes p=".
p=04
p=05
ER, p=0.1
SW, p=0.2
500 —
BA nodes p=03
p=04
p=05
p=0.1
p=0.2
1000 ~03
nodes p=".
p=04
p=05

Figure 8 displays all of the statistics among the three different graphs (ER, SW,
BA) for a given scenario in one panel with the same axes in order to make a comparison
as to whether the statistics will eventually overlap (take on the same value), thus making
classification difficult, or will remain distinct, with increasing proportion of removals. For
example, in Figure 8, mean distance, transitivity, edge density and assortativity are plotted
on the same axes between ER, SW and BA graphs. Plots for all of the scenarios considered

in Table 2 are available in Appendix A.
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Figure 8. Plotting Different Statistics with Varying Proportions of Incomplete
Information for ER, SW and BA Graphs
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This figure shows that the mean distance statistics for this scenario (edge removals, starting graph: 100
nodes, 10 iterations, 10 graphs, edge density = 0.2) overlaps at various levels of information loss between
the three different types of graphs as edges are removed. This indicates that this statistic cannot always
be used to differentiate between the three types of network as information (edges in this case) is removed.
As can be seen above, and by thoroughly reviewing the results provided in Appendix A, there is no single
statistic that provides the ability to always differentiate between the three types of graph as information
about the network is lost.

b. Distance Measures

In terms of distance measures, in order to determine which type of network the
observed degree distribution resembles, we use distance measures to compare the observed
degree distribution with the theoretical degree distribution of the networks at increasing

proportions of removal. In order to do this, we store the observed degree distribution at
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different proportions of removal. For the theoretical degree distributions, we put observed
statistics (such as current size of vertex list and the observed graph edge density) into the
theoretical degree distribution of the ER, SW and BA networks as outlined in equations
(5), (6) and (7) respectively, in order to compute a “goodness-of-fit test” with those

distributions.

Then, we compute the Kullback-Leibler Divergence (Equation 8) and the Hellinger
Statistic (Equation 9) on the observed and theoretical degree distributions at increasing
proportions of removal of edges and vertices to determine if the distributions looked similar
or distinct. From the results, we will be able to determine if degree distributions of the
different graph types can be clearly distinguished. If the distance measure is small between
two different graph types, we may conclude that these graphs might be mistaken for each
other and may not appear distinct. In Figure 9, it can be seen that both the Kullback-Leibler
and Hellinger distance statistics for BA observed degree distribution, i.e. BA(O) and SW
theoretical degree distribution, i.e., SW(T) get closer to 0 with a larger proportions of
vertex removals. This means that as information is lost, it becomes increasingly difficult to
distinguish between the degree distributions of both graph types. Identifying the thresholds
at which this confusion in classification of graph type is one of the key goals for this thesis.
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Figure 9.

Plotting Kullback-Leibler (red) and Hellinger (blue) Distance Measures
for Observed (O) and Theoretical (T) Degree Distributions of all Three
Network Types as Vertices Are Removed
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In the center panel of this figure, looking at the plots from left to right for the observed BA
graph, both the Kullback-Leibler and Hellinger distance statistic are close to O for the
various levels of information loss. This means that the degree distributions of the observed
BA graph look similar to that of the theoretical ER and SW degree distributions, making it
difficult to distinguish between the three graph types under information loss.

4, Development of Datasets for Predictive Analysis Using a Design of
Experiments (DOE)

After establishing the behavior of the various statistics under the conditions of
information loss using igraph defaults, we generate a representative sample of graphs
under different proportions of information loss and calculate their observed statistics. Thus,
we broaden the scope to include a greater variety of SW and BA graphs. We included cases
for SW graphs with varying number of neighbors within which vertices are connected
(from one to ten, where six is the standard for social networks, hence the term “six degrees
of separation). For BA graphs, we vary settings in its preferential attachment model,
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namely the power of preferential attachment from one to three, and the number of
additional edges added to highly connected nodes in each time step, also ranging from one
to three. We apply a space-filling Design of Experiments (DOE) to generate the training
and test datasets. This DOE provides a space-filling combination of factors that serves as
a representative sample of graphs in the domain of consideration. One replication of the

DOE table forms the training set; the second replication forms the test set.
The Design of Experiments (DOE) covers the following domain space:

e edge density (Continuous Factor), withrangep=0.1top =0.5

e size (number of nodes) of the original graph (Continuous Factor),
with a range of 100 to 1000

e proportion of information loss (Continuous Factor), with range 0.1
t0 0.8

e number of neighbors within which the vertices will be connected in
the SW graph (Continuous Factor), with range 1 to 10

e number of additional edges added in each time step (Continuous
Factor) to the BA graph in its preferential attachment model, with
range 1to 3

e power of preferential attachment for BA graph (Continuous
Factor), with range 1 to 3

e type of information loss (Categorical Factor), with factor levels
edge or vertex

e graph type (Categorical Factor), with factor levels ER, SW or BA

The Nearly Orthogonal Balanced (NOB) design is often recommended for handling
models with both discrete/categorical and continuous variables (Vieira et al. 2013).
However, because we only have two categorical factors (graph type and deletion type), we
used a cross design of the Nearly Orthogonal Latin Hypercube (NOLH) (Cioppa and Lucas
2007) for continuous factors and all the enumerations of the categorical factors. This
approach provides a more space-filling design than the NOB because NOB does not
guarantee that every combination of categorical factors is taken into account. For all the
continuous factors, we choose the 33 level NOLH (Cioppa and Lucas 2007) at two stacks.

This provides a good combination of being space-filling (covering new points) as well as
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replications (covering the same point). The space-filling design of the continuous factors
are indicated in Figure 10. The design points are provided in Appendix B.

Figure 10. Design A: Space filling design for Continuous Factors at 33
level NOLH at Two Stacks and Two Replications
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In this figure, the dots on the diagram represent the points of sampling of the various
factors. The dots are space-filling and within the range and number of decimal places
specified, the factors are sampled at many levels. For example, in the bottom row, power
of preferential attachment (Power) is sampled at levels 1 to 3, for network size (Nodes) at
levels 100 to 1000 (bottom row first column), edge density at levels 0.1 to 0.5 (bottom
row second column), Proportion of Removals (Removal) at levels 0.1 to 0.8, number of
neighbors within which SW graph is connection (Neighbors) at levels 1 to 10 and number
of edges added in each time step for BA graph (No. of Edges) at levels 1 to 3. This is
applied for all continuous factors to ensure they are sampled at space-filling levels.
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Given that we only have two categorical factors, we enumerated all possibilities.
Table 3 shows the various levels of the two categorical factors and Table 4 shows the

crossed design (i.e., all enumerations of categorical factors).

Table 3.  Categorical Factors

Deletion Type Graph Type
Edge ER
Vertex SW
BA

This table provides the two categorical factors in the Design of Experiments and their
factor levels. For Deletion Type, either edge or vertex can be deleted. For Graph
Type, either ER, SW or BA graphs can be generated.

Table 4.  Design B: Crossed Design (All Enumerations of) Categorical Factors

Crossed Design
Edge, ER
Vertex, ER
Edge, SW
Vertex, SW
Edge, BA
Vertex, BA
This table provides the crossed design of all enumerations of categorical factors.
For ER graphs, they can either be paired with an edge or a vertex deletion: hence
the possibilities are (Edge, ER), (Vertex, ER). The same can be said for SW and

BA graphs. This gives all enumerations of the categorical factors, which when

crossed with the NOLH, provides a more space-filling design than that of the
NOB.

We cross Design A (Continuous Factors) with Design B (Categorical Factors) to

get Design C. Table 5 shows a sample of Design C. For the full Design of Experiments,
see Appendix B.
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Table 5.

Design C: Crossed Design of Continuous Factors and
Categorical Factors

Size of Edge Proportion No. of No. of edges Power of Removal Graph Type
Starting Density of Removals Neighbors added in preferential Type (edge/ (ER/SW/
Graph (0.1t0 0.8) (0.1-0.8) within which each time attachment vertex) BA)
(Nodes) vertices are step (1to3)
(100-1000) connected (1 to 3) for for BA
(1 to 10) BA graph graph
for SW
Graph)
103 0.1 0.23 1 10 1 Edge ER
407 0.5 0.14 6 9 2 Vertex SW
609 0.8 0.67 7 8 3 Edge BA

This table shows a sample of the various network parameters with which the initial graphs will be generated,
and obscured (either edge/vertex) to the specified proportion. The complete DOE is in Appendix B. For each
line (every design point, graph statistics are computed and recorded. This data will later be used in graph

classification.

Based on this DOE, for each design point (every line in the Table in Appendix B),

we computed the following statistics.

mean distance

e edge density
e transitivity

e assortativity

KL statistic with theoretical ER degree distribution

KL statistic with theoretical SW degree distribution

KL statistic with theoretical BA degree distribution

H statistic with theoretical ER degree distribution

H statistic with theoretical SW degree distribution

H statistic with theoretical BA degree distribution

One replication of the crossed NOLH design formed my training set and the second

replication formed my test set.

32



D. PREDICTIVE ANALYSIS USING MACHINE LEARNING METHODS

We leverage the Classification and Regression Trees (CART) (Breiman et al. 1984)
and Random Forest (RF) (Breiman 2001) machine learning algorithms to build models for
classification of observed networks. The CART model provides simple and easily
interpreted rules for classifications and can be used to generate a simple ranking of variable
importance (i.e., which statistics are the most important in classification). The RF model,
which often provides a lower misclassification rate and higher predictive power, is used to
understand how well we can predict (i.e., classify) networks in practice when less
interpretable but more powerful machine learning methods are employed. We also leverage
logistic regression modeling for the analysis of results which will be discussed further in
the next section. A short description of each of these methodological approaches is

provided here.

1. CART

Huddleston and Brown (2018) note that the Classification and Regression Tree
(CART) algorithm provides highly interpretable models that illustrate the interaction
between predictor variables in an easily understood format. However, this algorithm’s
predictive performance is typically not as good as less interpretable machine learning
models such as those developed using the Random Forest (RF) or Adaboost algorithms
(Huddleston and Brown 2018). CART models were used for two applications in this thesis.
We used a CART model to develop a classifier that asserts one of three types of graphs
(ER, SW, or BA) when presented with a set of statistics describing a network. This model
was developed using the training set and the performance of the model evaluated on the

test dataset.

2. Random Forest (RF)

Typically, the RF method, which grows many trees, provides better predictive
power than CART. It classifies new objects by running the input data through many
classification trees and consolidating the number of “votes” for a particular classification
(Huddleston and Brown 2018). An RF model is thus a large ensemble of many (perhaps

hundreds) different models and thus is much less interpretable. In this thesis, RF model
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will be used to understand how well we can predict (i.e., classify) networks in practice, as
well as determine the level of information loss with which good (>90% accuracy)

classification of networks can still take place.

E. RELATING DOE FACTORS TO CLASSIFICATION PERFORMANCE

The last step in this analysis uses both logistic regression and CART models to
relate classification performance (i.e., the ability to accurately classify an obscured
network) to the various factors considered in the design of experiments table. Due to the
nearly orthogonal design used for the DOE, we can develop models that use classification
performance (i.e., correct or incorrect classification of a DOE design point in the test
dataset) as the response (dependent) variable of a regression analysis with the parameters
specified in the DOE table as the predictor (independent) variables. We employ both
logistic regression and CART models for this purpose.

Logistic regression models are used to predict a response variable that is categorical
from continuous and categorical predictors (Agresti 2012). Logistic regression provides a
means for both visually and statistically capturing the effect of parameters varied in the
simulation such as percentage of information lost/hidden, the different graph types, the
edge density (p), etc. We also employ CART models to perform the same task because
CART models classify using thresholds of the predictor variables rather than mapping
continuous relationships as logistic regression models do. Both modeling approaches
provide the opportunity to study the effect of the various DOE factors on classifier
performance and identify the scenarios in which it is reasonable to assert a classification
for a network in real-world practice. The results of this analysis are discussed in depth in

the next section.
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IV. ANALYSIS OF RESULTS

This chapter summarizes the key results. An exhaustive set of diagrams of results
with the parameters listed in Table 2 are written in Appendix A. In this section, we
summarize the key observations derived from both the descriptive and predictive analysis.
The three most significant results of this analysis are:

e As information on edges is lost (>80%), it becomes more difficult
to distinguish between ER and SW graphs.

e As information on vertices is lost (>80%), it becomes more
difficult to distinguish between BA and SW graphs.

e |If at least 20% of the information about the network is available,
RF can classify a network with >90% accuracy.

A DESCRIPTIVE ANALYSIS
1. Stability of Graph Statistics for Classification of Graphs

In Chapter I1, we outline some characteristics of three network models. For instance,
ER and SW networks have small mean distances, but between ER and SW networks with
comparable size, SW networks would have a higher transitivity. BA networks are also
characterized by a scale-free degree distribution, while ER networks have a Poisson degree

distribution and SW networks have a binomial degree distribution (Costa et al. 2005).

With descriptive modeling under the environment of incomplete information, we find
that the above-mentioned characteristics for classification between ER and SW holds true
for low edge density (p = 0.1) of starting graphs. However, as p increases to 0.5, the
transitivity of ER graphs increased and we find that ER graphs have a higher transitivity than
SW graphs. A high proportion of edge removals (> 80%) show both the transitivity and edge
density for ER and SW graphs converging. This observation is also supported by simulation
results that with increasing edge removals and as p increases to 0.5, the KL statistic converges
to O for the observed and theoretical degree distributions of the ER and SW graphs. In other
words, as information on edges is lost (>80%) and as the starting edge density in the graph
increases, it becomes more difficult to distinguish between ER and SW graphs. Increasing

the starting graph’s edge density would make the ER graphs denser, hence they appear to be
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more like SW graphs, which are characterized by high clustering coefficients. For BA and
SW graphs under vertex removals, their observed statistics (transitivity, edge density and
assortativity) remain constant and equal despite information loss. In addition, there is little
difference between the KL statistics for the observed and theoretical degree distributions for
BA and SW graphs as the proportion of vertex removals increase. In other words, as
information on vertices is lost (> 80%), it becomes more difficult to distinguish between
BA and SW graphs.

2. Comparison of the Effects of Edge vs. Vertex Removals

The key difference between edge and vertex removals is their effect on the edge
density. These change behaviors of statistics that are dependent on edge density. In particular,
referencing equation (3), with edge removals, the number of edges, which is the numerator

of the edge density (p), decreases, while the number of vertices N, and hence the denominator

N
of p, which is the maximum possible number of edges [ 5 J remains the same. As a result,

with edge removals the observed p decreases. This affects statistics such as the mean distance
calculation. With a decreased edge density, mean distance for ER graphs increases. In
Appendix C, (Yoshida 2018) explicitly computes the mean distance for ER graphs and shows
that the mean distance for an ER graph converges almost surely; hence the simulation results
match and motivate the mathematical proof developed.

Vertex removal produces different results. Both the numerator and denominator
decrease proportionately with vertex removal because when vertices all of their
corresponding edges are removed as well. Hence, with vertex removals, the edge density
remains constant. One can prove that the vertex removals would not change the mean
distance if we consider the ER model. In fact, we can prove that the mean distance for an ER
graph remains the same almost surely via vertex removal and we can explicitly compute the

mean distance for the ER model.
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3. General Behavior of Statistics under Information Loss
a. Mean Distance

Mean distance measures respond slightly differently for edge and vertex removals,
and also according to the graph type. For edge removals, the edge density (p) decreases,
hence the mean distance increases for both the ER and SW graph. For vertex removals, p
remains constant, hence the mean distance remains constant for both ER and SW. For BA
graphs, as the edges are removed, and vertices become singletons, they are removed from
the mean distance computation. In this case, the general relationship is the same for both
edge and vertex removal because the BA network is not affected by the value of p. Instead it
is affected by the power of preferential attachment. There were also possible confusions in
magnitude of the statistics and this would mean that graphs might possibly be confused with
each other. For instance, an ER network with many edge removals would have the same

magnitude of mean distance as a BA network.

b. Transitivity

With edge removals, transitivity decreases for all networks except BA, and for vertex
removals, the number remains constant. With a higher starting edge density p, this statistic
starts out higher with the magnitude p. An ER and SW network with a large proportion

(~80%) of edge removals would have the same magnitude of transitivity.

C. Edge Density

With edge removals, the edge density decreases for all networks except BA (which
does not depend on the edge density), and for vertex removals, the edge density remains
constant. This is because vertex removals remove the vertices and corresponding edges in a
set, hence the edge density remains constant. With a higher starting edge density p, this
statistic starts out higher with the magnitude p. An ER graph and SW graph with a large

proportion (~80%) of edge removals often have the same magnitude of density.

d. Assortativity

This statistic remains at the same magnitude despite incomplete information and

changes in the starting graph’s edge density.
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e. Kullback-Leibler (KL) Divergence vs. Hellinger Distance Statistic

For both KL divergence and the Hellinger Distance statistic, if the observed data is
from the same graph type as the theoretical distribution, the distance values are close to 0
(i.e. ER(O) and ER(T), SW(O) and SW(T), BA(O) and BA(T).

However, the KL divergence had higher magnitudes as a distance statistic compared
to the Hellinger Distance statistic because it is computed using the logarithm of one element
of the degree distribution over the other, which could inflate the distance measures for values

of elements of degree distributions near 0.

B. PREDICTIVE MODELING

Next, we use the training set to develop two models using Classification and
Regression Tree (CART) Breiman et al. (1984) and Random Forest (RF) Breiman (2001).
The main findings are as follows:

e Up to approximately 80% information loss, the three graphs could
be classified with >90% accuracy (79.74% for CART and 91.25%
for RF). This means that intelligence analysts only require ~20%

of the network to assert an accurate network classification when
machine learning methods are employed.

e Mean distance, the Hellinger distance statistic, transitivity and
edge density are the top four network statistics in terms of variable
importance in classifying the network type.

e Proportion of removal (i.e., percentage of information loss),
deletion type (nodes or edges) and graph type (ER, SW, and BA)
are the top three situational factors that affected the ability to
accurately classify networks.

1. Rules/Thresholds of Observed Graph Statistics that Guide the
Classification of the Three Networks

From the CART model using network statistics for classification, as indicated in both
Figure 11 and Table 6, we find the following to be true about classification of networks. First,
the SW networks are the most difficult to accurately classify. If the network has an observed
edge density > 0.061 and an observed mean distance < 2.1, they can be classified as SW

graphs. If the network has an observed edge density < 0.061 and an observed mean distance
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> 8.3, they can also be classified as SW networks. However, if they have an observed edge
density < 0.061 an observed Hellinger distance statistic with the theoretical ER model <0.13,
they can also be classified as SW networks. For ER networks, if the observed edge density
> 0.061 and an observed mean distance >2.1, they can be classified as ER networks. For BA
networks, if they have an observed edge density < 0.061 and observed mean distance < 8.3,
they can be classified as BA networks.

Figure 11. CART Model Using Graph Statistics for Network Classification
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For classification of networks, this figure outlines that edge density (p) of the network is the first differentiating
factor. Similar to the results from the descriptive analysis, a high edge density (p) can lead to misclassification
between the ER and SW graphs. They are later differentiated by mean distance threshold of 2.1. Similar to
results from descriptive analysis, BA and SW graphs are in danger of being misclassified. They are later
differentiated by mean distance threshold of 8.3 with 97% accuracy for BA graphs and 100% accuracy for
SW graphs. They can also be differentiated with 97% accuracy with the Hellinger distance statistic fitted with
an ER graph.
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Table 6.  Findings from CART (Network Statistics) on
Classification of Graphs

Graph Type Edge Density/ Prob. of Mean Distance Hellinger statistic with
conn. between vertices theoretical ER model
ER > 0.061 >2.1 N.A
> 0.061 <21 N.A
SW <0.061 > 8.3 N.A
<0.061 N.A <0.13
BA <0.061 <83 N.A

The table shows that if the network has an observed edge density > 0.061 and an observed mean distance
< 2.1, they can be classified as SW graphs. If the network has an observed edge density < 0.061 and an
observed mean distance > 8.3, they can also be classified as SW networks. However, if they have an
observed edge density < 0.061 an observed Hellinger distance statistic with the theoretical ER model <
0.13, they can also be classified as SW networks. For ER networks, if the observed edge density > 0.061
and an observed mean distance >2.1, they can be classified as ER networks. For BA networks, if they
have an observed edge density < 0.061 and observed mean distance < 8.3, they can be classified as BA
networks.

Table 7 provides a summary of the variable importance for the different statistics
employed by the CART model. The mean distance, Hellinger distance statistic, transitivity
and edge density are the top four network statistics in terms of variable importance in
classifying the network type as detailed in Table 7. Note that this machine learning
approach provides a “competition” for a given network statistic and thus a means for
evaluating the effectiveness of newly developed network statistics for classification of
networks under real-world conditions (i.e., with missing information). Any newly
developed statistic can be inserted into this analysis and its effectiveness evaluated against

that of its “peers” based upon its contributions to the ability to classify under this context.
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Table 7. Variable Importance from CART (Network Statistics)

SIN Variable Score
1. Mean Distance 18
2. Transitivity 12
3. Hellinger Statistic with theoretical ER degree distribution 10
4, Edge Density 10
5. Assortativity 9
6. Kullback-Leibler statistic with theoretical ER degree distribution 8
7. Hellinger Statistic with theoretical BA degree distribution 8
8. Kullback-Leibler statistic with theoretical BA degree distribution 7
9. Kullback-Leibler statistic with theoretical SW degree distribution 5
10. | Hellinger Statistic with theoretical SW degree distribution 1

From the CART (Network Statistics), the mean distance, transitivity, Hellinger statistic with
theoretical ER degree distribution, as well as the edge density are the top four in terms of
importance in classifying the network.

2. Effects of Changing Network Parameters on Classification Accuracy

Figure 12 illustrates the effects that the studied network characteristics have on the
ability to accurately classify networks derived through logistic regression modeling. This
figure depicts the general shape of the effect, with a positive slope from left to right in
Figure 12 indicating improvement in classification performance as network parameter
values increase. For example, as the starting network size increases, our ability to classify
networks improves. The same can be said edge density (prob) and number of neighbors
(neigh) within which two vertices are connected in a SW network: as they increase, our
ability to classify networks correctly improves. Factors within the bold box in Figure 12
were statistically significant effects (as identified through results of a logistic regression in
Figure 13), which provides the summary of the logistic regression model used to analyze
these effects. As seen in Figure 13, the p-values for the edge density (prob), size of starting
network (nodes), and number of neighbors within which two vertices are connected in a
SW network (neigh) are low as indicated in Figure 13, thus we reject the null hypothesis
that they are not statistically significant in favor of the hypothesis that they are significant.
The edge density (prob), size of starting network (nodes), and number of neighbors within
which two vertices are connected in a SW network (neigh) have a significant effect on our
ability to classify networks correctly.
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Figure 12. Prediction Profiler for Network Parameters in Classifying Networks

anMada3e X & = B .- SEIERER e
=] a5 = a T o Zn L=, = AONFEER oo o oto

]

Froportion o HNeswaork Type Typa of Hize of starting Edgze Density  Mumber of Mumber of Power of
remaval (eraph type) mfomation loss etwork {prabk) Meighbors Edszes added in preferential
(rhat) (deletion type) (nodes) withie which each time step attachment for
twa vertices are for B A network B A network
conmnected for =) {poma)
W netvork
(medzhy

The figure outlines the relationship between factor levels and classification performance as found in
logistic regression analysis. Factors which are statistically significant are highlighted in the bold box. For
those with a positive slope (network size, edge density, number of neighbors within which two vertices are
connected), increasing factor levels increases the probability of correct classification. A high proportion of
removals, having a SW graph or hidden edges increases the probability that the graph is misclassified.

Conversely, parameters with a negative slope such as proportion of removals
(>80%) indicate that as proportion of removals increase, (or as network type is SW), our
ability to classify networks accurately worsens. The p-values of the proportion of removals
(rhat) and the network type (graph type) are low as indicated in Figure 13. Thus, we reject
the null hypothesis that they are not statistically significant in favor of the hypothesis that
they are significant factors. Therefore, we can conclude that the proportion of removals

and network type have a significant effect on our ability to classify networks correctly.

Both the number of edges added in each time step for the BA network (em) as well
as the power of preferential attachment for the BA network (pow) have p-values greater
than the significance level which we set to .05. Though both have a slightly negative slope,
these factors are not statistically significant and hence we can assert they have a negligible

effect on our ability to classify networks correctly.
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Figure 13. Parameter Estimates and Effect Likelihood Ratio
Test Results for Network Parameters in Classifying Networks
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In the figure, the edge density (prob), proportion of removals (rhat), starting network size (nodes), type of
removal (deletiontype), graph type (graphtype) and number of neighbors (neigh) within which two vertices
are connected (SW graph) have p values less the significance level (which we set to 0.05), hence we reject the
null hypothesis that they are not statistically significant and consider them statistically significant network

parameter.

Both the CART and logistic regression on network parameters indicated that the

proportion of removals, type of missing information (edge vs. vertex) and starting network

type are the top three parameters in classifying networks correctly. The detailed results are

in Table 8 and the full CART analysis can be found in Appendix C.

Table 8.  Variable Importance from CART (Network Parameters)

SIN Variable Score
1. Proportion of Removals 34
2. Deletion Type (Nodes vs. Edges) 25
3. Starting Network Type (ER, SW, BA) 16
4. Edge Density 12
5. No. of Neighbors (SW graph) 6
6. No. of nodes of starting graph 4
7. Power of preferential attachment (BA graph) 2
8. No. of Edges added in each time step (BA graph) 1

As outlined in this table, from the CART (Network Parameters), the proportion of removals,
deletion type and graph type are the top three in terms of importance in classifying the

network.

3. Classification Accuracy vs. Information Loss

Once the CART and RF models had been generated, we extend the DOE design to

generate additional scenarios in order to better estimate the effect of information loss on

our ability to classify. We conduct full designs at additional points of information loss in
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order to further quantify the effect of information loss (this had the effect of “smoothing
the curve” of the estimated effect). Additional design points are created at information
losses of 40%, 70%, 75%, 80%, 85%, 90% and 95% respectively. Figure 14 illustrates the

relationship between network classification accuracy via-a-vis information loss.

We find that the classification accuracy remained relatively stable up to about 80%
information loss before it dropped sharply, as per the results in Figure 12 for parameter
proportion of removals. This finding has a significant impact for intelligence analysts. In

particular, it tells us that we do not need to spend resources attempting to map the entire

network in order for us to be able to assert an accurate network classification. In fact,

only about 20% of the network is required to give us a classification of >90% accuracy.

Figure 14. Network Classification vis-a-vis Information Loss
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In the figure, both the CART (red line) and RF (blue line) have classification accuracy that dips after
information loss is beyond 80%. The RF model performs better than the CART model for all levels of
information loss, but a key finding is that at 80% information loss, the CART has 79.74% of accuracy
while the RF model has 91.025% accuracy.
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V. CONCLUSION

A. ANSWERS TO RESEARCH QUESTIONS

The fundamental research questions that this thesis had sought to answer were as

follows. In the context of missing information (i.e., an incomplete network mapping):

1. Which network statistic gives the highest predictive power in classifying
the network type?

From the findings of the thesis, the statistic with the highest
predictive power in classifying the network type is mean distance.
However, no one statistic is sufficient to distinguish between
these three network types when information loss is considered.
Even the simplest CART model requires more than one statistic to
help to classify the network, hence there is significant benefit in
using machine learning methods such as random forest to form
ensembles for classification.

2. What is the effect of changing the following parameters on the ability to
classify a graph type correctly?

edge density of the original network (p)

size (number of vertices) of the original network (nodes)
proportion of information loss (rhat)

type of information loss (deletion type)

network type (graph type)

The most significant finding is that the ability to accurately
classify networks declines precipitously once more than 80% of
the information about the network is missing. Figure 15
summarizes the general shape of the effects, with movement
towards the top of the figures indicating improvement in
classification performance. Factors within the bold box were
statistically significant effects. Both the CART and logistic
regression models indicate that the proportion of removals (i.e.,
amount of missing information), type of missing information (edge
vs. vertex) and true network type are the most significant factors
affecting network classification.
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Figure 15. Prediction Profiler for Graph Characteristics in
Classifying Networks
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The figure outlines the relationship between factor levels and classification performance as found in
logistic regression analysis. Factors which are statistically significant are highlighted in the bold box.
For those with a positive slope (network size, edge density, number of neighbors within which two
vertices are connected), increasing factor levels increases the probability of correct classification. A
high proportion of removal, SW graph or hidden edge, increases the probability that the graph is
misclassified.

3. Can we establish a framework through which we can learn (1) and (2) for
any network statistic?

e This thesis provides a framework for the evaluation of the
contribution of various network statistics on our ability to classify
graphs. To date, research in this area has focused on analyzing the
performance of individual network statistics for classifying
networks. While this thesis has found that an ensemble of statistics
can classify a network with high accuracy using RF, it has also
established a framework by which any new statistic can be
evaluated for its utility to classify networks under conditions of
incomplete information. In particular, we develop a framework to
generate a space-filling set of graph statistics under real-world
conditions of information loss that can be used to generate both
training and test sets to develop predictive models and simple rules
for classification. These models provide a means to assert the
relative importance of network statistics under various levels of
information loss based on their contribution of predictive power
within these ensemble models.
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B. APPLICATIONS FOR INTELLIGENCE ANALYSIS
a. Importance of Edges

Traditionally, the intelligence community regards information on vertices more
highly than that of edges because vertices traditionally represent people or organizations
that serve as the starting seed with which it builds information on networks. However, this
thesis has brought out the importance of edges for classification. Besides the fact that we
can only discover new vertices through existing edges, and knowledge of the network
grows one edge at a time, this thesis illustrates how hidden edges can lead to a mis-
estimation of the edge density, p, making the graph look vastly different, and possibly
leading to a misclassification of the network type. For the purpose of classifying networks
in order to develop strategies for the destruction of networks, understanding the way the
network is connected is more important than mapping out all the entities in the network.

b. Classification of Graphs under Information Loss

Figure 16 provides a detailed view of the effect of information loss on our ability
to classify network graphs with both CART and RF models. The amount of information
missing is the most significant effect of our ability to distinguish between these three
network types commonly encountered in intelligence analysis. This graph provides several
key insights for applications of network analysis in the intelligence domain. First, only
about 20% of the information about a network is needed in order to achieve better than
90% accuracy in network classification. This means that we do not need to spend resources

to completely map a network in order to accurately classify it.

Second, the significant performance improvement of the RF ensemble machine
learning model in this study over the use of simple thresholds based on individual statistics
suggests that this approach should be directly fielded for counter-network applications in
the DoD. The classification models developed as part of this thesis, trained on a wide
variety of synthetically generated networks, should provide significantly improved
classification performance in practice over the current methods used, which use single

statistics and assume a complete mapping of the network.
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Figure 16. Network Classification vis-a-vis Information Loss

Network Classification Accuracy at Various Levels of Information Loss
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In the figure, both the CART (red line) and RF (blue line) have classification accuracy that dips after
information loss is beyond 80%. The RF model performs better than the CART model for all levels of
information loss, but a key finding is that at 80% information loss, the CART has 79.74% of accuracy while
the RF model has 91.025% accuracy.

This research also suggests that, unless we can be reasonably sure that we have
sufficient information, we should be very cautious about proposing specific strategies for
the dismantling of threat networks based on network classifications conducted on small
samples of larger (and mostly unobserved) networks. The widespread practice of asserting
a network classification based on a single statistic such as degree distribution calculated on
a small observed sample of a much larger (but mostly unobserved) network is unlikely to
result in accurate network classification and therefore effective strategies. Rather, a
reasonable standard would require that we (1) believe we have observed at least 20% of
the network, (2) have reason to believe the network is one of the three types studied in this
thesis (or we have replicated this framework for additional network types), and (3) we have
developed a classification model whose performance for the desired application is known

and validated.
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C. FUTURE WORK

This thesis provides a foundation for future work on network analysis in the
environment of incomplete information. In particular, it examines how a random removal
of nodes and edges affected network statistics. In future work, analysis on the effect on
vertex (node) centrality measures would be helpful in helping the intelligence community
understand how they can interpret such measures in light of incomplete information. In
addition, while the thesis simulates incomplete information through the random removal
of vertices and edges starting from a complete network, work can be done to examine the
effect on statistics of random addition of nodes and edges, mimicking the network mapping
process that intelligence analysts do. Combinatory losses of vertices and edges should also
be examined, as well as finding methods to quantify and model a non-random (systematic)
loss of information due to systematic bias. The effect of extra nodes and edges (false
positives in intelligence collection) as well as investigating network statistics taking into
account direction should also be explored. Finally, an exploration can also be done on how
well we can classify known networks mapped with a simulated Query-Expand-Collapse

process.
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Figure 50. KL and H Statistic: Edge Removals, Starting Graph: 100 Nodes, 10 Iterations, 10 Graphs, p = 0.4
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APPENDIX B. RESULTS FROM PREDICTIVE MODELING

Figure 76. Design of Experiments
SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)

1 1000 0.1 0.41 3 3 2 edge ER

2 1000 0.1 0.41 3 3 2 vertex ER

3 1000 0.1 0.41 3 3 2 edge SW

4 1000 0.1 0.41 3 3 2 vertex SW

5 1000 0.1 0.41 3 3 2 edge BA

6 1000 0.1 0.41 3 3 2 vertex BA

7 916 0.5 0.19 4 2 1 edge ER

8 916 0.5 0.19 4 2 1 vertex ER

9 916 0.5 0.19 4 2 1 edge SW
10 916 0.5 0.19 4 2 1 vertex SW
11 916 0.5 0.19 4 2 1 edge BA
12 916 0.5 0.19 4 2 1 vertex BA
13 888 0.3 0.73 2 1 2 edge ER
14 888 0.3 0.73 2 1 2 vertex ER
15 888 0.3 0.73 2 1 2 edge SW
16 888 0.3 0.73 2 1 2 vertex SW
17 888 0.3 0.73 2 1 2 edge BA
18 888 0.3 0.73 2 1 2 vertex BA
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
19 606 0.5 0.8 5 3 1 edge ER
20 606 0.5 0.8 5 3 1 vertex ER
21 606 0.5 0.8 5 3 1 edge SW
22 606 0.5 0.8 5 3 1 vertex SW
23 606 0.5 0.8 5 3 1 edge BA
24 606 0.5 0.8 5 3 1 vertex BA
25 944 0.1 0.43 3 2 2 edge ER
26 944 0.1 0.43 3 2 2 vertex ER
27 944 0.1 0.43 3 2 2 edge SW
28 944 0.1 0.43 3 2 2 vertex SW
29 944 0.1 0.43 3 2 2 edge BA
30 944 0.1 0.43 3 2 2 vertex BA
31 972 0.5 0.32 4 2 1 edge ER
32 972 0.5 0.32 4 2 1 vertex ER
33 972 0.5 0.32 4 2 1 edge SW
34 972 0.5 0.32 4 2 1 vertex SW
35 972 0.5 0.32 4 2 1 edge BA
36 972 0.5 0.32 4 2 1 vertex BA
37 719 0.3 0.78 3 1 2 edge ER
38 719 0.3 0.78 3 1 2 vertex ER
39 719 0.3 0.78 3 1 2 edge SW
40 719 0.3 0.78 3 1 2 vertex SW
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
41 719 0.3 0.78 3 1 2 edge BA
42 719 0.3 0.78 3 1 2 vertex BA
43 578 0.4 0.76 4 3 2 edge ER
44 578 0.4 0.76 4 3 2 vertex ER
45 578 0.4 0.76 4 3 2 edge SW
46 578 0.4 0.76 4 3 2 vertex SW
47 578 0.4 0.76 4 3 2 edge BA
48 578 0.4 0.76 4 3 2 vertex BA
49 691 0.2 0.25 6 2 2 edge ER
50 691 0.2 0.25 6 2 2 vertex ER
51 691 0.2 0.25 6 2 2 edge SW
52 691 0.2 0.25 6 2 2 vertex SW
53 691 0.2 0.25 6 2 2 edge BA
54 691 0.2 0.25 6 2 2 vertex BA
55 775 0.4 0.3 7 1 2 edge ER
56 775 0.4 0.3 7 1 2 vertex ER
57 775 0.4 0.3 7 1 2 edge SW
58 775 0.4 0.3 7 1 2 vertex SW
59 775 0.4 0.3 7 1 2 edge BA
60 775 0.4 0.3 7 1 2 vertex BA
61 747 0.2 0.63 10 2 1 edge ER
62 747 0.2 0.63 10 2 1 vertex ER
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
63 747 0.2 0.63 10 2 1 edge SW
64 747 0.2 0.63 10 2 1 vertex SW
65 747 0.2 0.63 10 2 1 edge BA
66 747 0.2 0.63 10 2 1 vertex BA
67 803 0.4 0.56 9 3 3 edge ER
68 803 0.4 0.56 9 3 3 vertex ER
69 803 0.4 0.56 9 3 3 edge SW
70 803 0.4 0.56 9 3 3 vertex SW
71 803 0.4 0.56 9 3 3 edge BA
72 803 0.4 0.56 9 3 3 vertex BA
73 634 0.2 0.23 6 2 1 edge ER
74 634 0.2 0.23 6 2 1 vertex ER
75 634 0.2 0.23 6 2 1 edge SW
76 634 0.2 0.23 6 2 1 vertex SW
77 634 0.2 0.23 6 2 1 edge BA
78 634 0.2 0.23 6 2 1 vertex BA
79 859 0.3 0.36 9 1 2 edge ER
80 859 0.3 0.36 9 1 2 vertex ER
81 859 0.3 0.36 9 1 2 edge SW
82 859 0.3 0.36 9 1 2 vertex SW
83 859 0.3 0.36 9 1 2 edge BA
84 859 0.3 0.36 9 1 2 vertex BA
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
85 663 0.2 0.69 9 2 1 edge ER
86 663 0.2 0.69 9 2 1 vertex ER
87 663 0.2 0.69 9 2 1 edge SW
88 663 0.2 0.69 9 2 1 vertex SW
89 663 0.2 0.69 9 2 1 edge BA
90 663 0.2 0.69 9 2 1 vertex BA
91 831 0.4 0.52 10 3 3 edge ER
92 831 0.4 0.52 10 3 3 vertex ER
93 831 0.4 0.52 10 3 3 edge SW
94 831 0.4 0.52 10 3 3 vertex SW
95 831 0.4 0.52 10 3 3 edge BA
96 831 0.4 0.52 10 3 3 vertex BA
97 550 0.3 0.45 6 2 2 edge ER
98 550 0.3 0.45 6 2 2 vertex ER
99 550 0.3 0.45 6 2 2 edge SW
100 550 0.3 0.45 6 2 2 vertex SW
101 550 0.3 0.45 6 2 2 edge BA
102 550 0.3 0.45 6 2 2 vertex BA
103 100 0.5 0.49 8 1 2 edge ER
104 100 0.5 0.49 8 1 2 vertex ER
105 100 0.5 0.49 8 1 2 edge SW
106 100 0.5 0.49 8 1 2 vertex SW
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
107 100 0.5 0.49 8 1 2 edge BA
108 100 0.5 0.49 8 1 2 vertex BA
109 184 0.1 0.71 7 2 3 edge ER
110 184 0.1 0.71 7 2 3 vertex ER
111 184 0.1 0.71 7 2 3 edge SW
112 184 0.1 0.71 7 2 3 vertex SW
113 184 0.1 0.71 7 2 3 edge BA
114 184 0.1 0.71 7 2 3 vertex BA
115 213 0.3 0.17 9 3 2 edge ER
116 213 0.3 0.17 9 3 2 vertex ER
117 213 0.3 0.17 9 3 2 edge SW
118 213 0.3 0.17 9 3 2 vertex SW
119 213 0.3 0.17 9 3 2 edge BA
120 213 0.3 0.17 9 3 2 vertex BA
121 494 0.2 0.1 6 1 3 edge ER
122 494 0.2 0.1 6 1 3 vertex ER
123 494 0.2 0.1 6 1 3 edge SW
124 494 0.2 0.1 6 1 3 vertex SW
125 494 0.2 0.1 6 1 3 edge BA
126 494 0.2 0.1 6 1 3 vertex BA
127 156 0.5 0.47 8 2 2 edge ER
128 156 0.5 0.47 8 2 2 vertex ER
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
129 156 0.5 0.47 8 2 2 edge SW
130 156 0.5 0.47 8 2 2 vertex SW
131 156 0.5 0.47 8 2 2 edge BA
132 156 0.5 0.47 8 2 2 vertex BA
133 128 0.1 0.58 7 2 3 edge ER
134 128 0.1 0.58 7 2 3 vertex ER
135 128 0.1 0.58 7 2 3 edge SW
136 128 0.1 0.58 7 2 3 vertex SW
137 128 0.1 0.58 7 2 3 edge BA
138 128 0.1 0.58 7 2 3 vertex BA
139 381 0.3 0.12 8 3 2 edge ER
140 381 0.3 0.12 8 3 2 vertex ER
141 381 0.3 0.12 8 3 2 edge SW
142 381 0.3 0.12 8 3 2 vertex SW
143 381 0.3 0.12 8 3 2 edge BA
144 381 0.3 0.12 8 3 2 vertex BA
145 522 0.2 0.14 7 1 3 edge ER
146 522 0.2 0.14 7 1 3 vertex ER
147 522 0.2 0.14 7 1 3 edge SW
148 522 0.2 0.14 7 1 3 vertex SW
149 522 0.2 0.14 7 1 3 edge BA
150 522 0.2 0.14 7 1 3 vertex BA
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
151 409 0.4 0.65 5 2 2 edge ER
152 409 0.4 0.65 5 2 2 vertex ER
153 409 0.4 0.65 5 2 2 edge SW
154 409 0.4 0.65 5 2 2 vertex SW
155 409 0.4 0.65 5 2 2 edge BA
156 409 0.4 0.65 5 2 2 vertex BA
157 325 0.2 0.6 4 3 2 edge ER
158 325 0.2 0.6 4 3 2 vertex ER
159 325 0.2 0.6 4 3 2 edge SW
160 325 0.2 0.6 4 3 2 vertex SW
161 325 0.2 0.6 4 3 2 edge BA
162 325 0.2 0.6 4 3 2 vertex BA
163 353 0.4 0.28 1 2 3 edge ER
164 353 0.4 0.28 1 2 3 vertex ER
165 353 0.4 0.28 1 2 3 edge SW
166 353 0.4 0.28 1 2 3 vertex SW
167 353 0.4 0.28 1 2 3 edge BA
168 353 0.4 0.28 1 2 3 vertex BA
169 297 0.2 0.34 2 2 1 edge ER
170 297 0.2 0.34 2 2 1 vertex ER
171 297 0.2 0.34 2 2 1 edge SW
172 297 0.2 0.34 2 2 1 vertex SW
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
173 297 0.2 0.34 2 2 1 edge BA
174 297 0.2 0.34 2 2 1 vertex BA
175 466 0.4 0.67 5 2 3 edge ER
176 466 0.4 0.67 5 2 3 vertex ER
177 466 0.4 0.67 5 2 3 edge Sw
178 466 0.4 0.67 5 2 3 vertex SW
179 466 0.4 0.67 5 2 3 edge BA
180 466 0.4 0.67 5 2 3 vertex BA
181 241 0.3 0.54 2 3 2 edge ER
182 241 0.3 0.54 2 3 2 vertex ER
183 241 0.3 0.54 2 3 2 edge SwW
184 241 0.3 0.54 2 3 2 vertex Sw
185 241 0.3 0.54 2 3 2 edge BA
186 241 0.3 0.54 2 3 2 vertex BA
187 438 0.4 0.21 2 2 3 edge ER
188 438 0.4 0.21 2 2 3 vertex ER
189 438 0.4 0.21 2 2 3 edge Sw
190 438 0.4 0.21 2 2 3 vertex SW
191 438 0.4 0.21 2 2 3 edge BA
192 438 0.4 0.21 2 2 3 vertex BA
193 269 0.3 0.38 1 1 1 edge ER
194 269 0.3 0.38 1 1 1 vertex ER
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
195 269 0.3 0.38 1 1 1 edge Sw
196 269 0.3 0.38 1 1 1 vertex SW
197 269 0.3 0.38 1 1 1 edge BA
198 269 0.3 0.38 1 1 1 vertex BA
199 184 0.3 0.23 9 2 2 edge ER
200 184 0.3 0.23 9 2 2 vertex ER
201 184 0.3 0.23 9 2 2 edge SW
202 184 0.3 0.23 9 2 2 vertex Sw
203 184 0.3 0.23 9 2 2 edge BA
204 184 0.3 0.23 9 2 2 vertex BA
205 1000 0.2 0.36 5 1 3 edge ER
206 1000 0.2 0.36 5 1 3 vertex ER
207 1000 0.2 0.36 5 1 3 edge Sw
208 1000 0.2 0.36 5 1 3 vertex SW
209 1000 0.2 0.36 5 1 3 edge BA
210 1000 0.2 0.36 5 1 3 vertex BA
211 494 0.5 0.21 1 2 2 edge ER
212 494 0.5 0.21 1 2 2 vertex ER
213 494 0.5 0.21 1 2 2 edge SW
214 494 0.5 0.21 1 2 2 vertex Sw
215 494 0.5 0.21 1 2 2 edge BA
216 494 0.5 0.21 1 2 2 vertex BA
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
217 888 0.5 0.38 9 1 3 edge ER
218 888 0.5 0.38 9 1 3 vertex ER
219 888 0.5 0.38 9 1 3 edge SW
220 888 0.5 0.38 9 1 3 vertex SW
221 888 0.5 0.38 9 1 3 edge BA
222 888 0.5 0.38 9 1 3 vertex BA
223 128 0.3 0.25 7 2 2 edge ER
224 128 0.3 0.25 7 2 2 vertex ER
225 128 0.3 0.25 7 2 2 edge SW
226 128 0.3 0.25 7 2 2 vertex SW
227 128 0.3 0.25 7 2 2 edge BA
228 128 0.3 0.25 7 2 2 vertex BA
229 944 0.2 0.3 5 1 1 edge ER
230 944 0.2 0.3 5 1 1 vertex ER
231 944 0.2 0.3 5 1 1 edge SW
232 944 0.2 0.3 5 1 1 vertex SW
233 944 0.2 0.3 5 1 1 edge BA
234 944 0.2 0.3 5 1 1 vertex BA
235 522 0.5 0.28 1 2 2 edge ER
236 522 0.5 0.28 1 2 2 vertex ER
237 522 0.5 0.28 1 2 2 edge SW
238 522 0.5 0.28 1 2 2 vertex SW
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
239 522 0.5 0.28 1 2 2 edge BA
240 522 0.5 0.28 1 2 2 vertex BA
241 719 0.5 0.34 9 2 1 edge ER
242 719 0.5 0.34 9 2 1 vertex ER
243 719 0.5 0.34 9 2 1 edge Sw
244 719 0.5 0.34 9 2 1 vertex SW
245 719 0.5 0.34 9 2 1 edge BA
246 719 0.5 0.34 9 2 1 vertex BA
247 325 0.2 0.47 7 2 1 edge ER
248 325 0.2 0.47 7 2 1 vertex ER
249 325 0.2 0.47 7 2 1 edge SwW
250 325 0.2 0.47 7 2 1 vertex Sw
251 325 0.2 0.47 7 2 1 edge BA
252 325 0.2 0.47 7 2 1 vertex BA
253 691 0.2 0.58 3 2 1 edge ER
254 691 0.2 0.58 3 2 1 vertex ER
255 691 0.2 0.58 3 2 1 edge Sw
256 691 0.2 0.58 3 2 1 vertex SW
257 691 0.2 0.58 3 2 1 edge BA
258 691 0.2 0.58 3 2 1 vertex BA
259 297 0.4 0.78 4 1 1 edge ER
260 297 0.4 0.78 4 1 1 vertex ER
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
261 297 0.4 0.78 4 1 1 edge Sw
262 297 0.4 0.78 4 1 1 vertex SW
263 297 0.4 0.78 4 1 1 edge BA
264 297 0.4 0.78 4 1 1 vertex BA
265 747 0.4 0.76 8 3 2 edge ER
266 747 0.4 0.76 8 3 2 vertex ER
267 747 0.4 0.76 8 3 2 edge SW
268 747 0.4 0.76 8 3 2 vertex Sw
269 747 0.4 0.76 8 3 2 edge BA
270 747 0.4 0.76 8 3 2 vertex BA
271 241 0.2 0.49 6 1 3 edge ER
272 241 0.2 0.49 6 1 3 vertex ER
273 241 0.2 0.49 6 1 3 edge Sw
274 241 0.2 0.49 6 1 3 vertex SW
275 241 0.2 0.49 6 1 3 edge BA
276 241 0.2 0.49 6 1 3 vertex BA
277 634 0.3 0.71 2 2 3 edge ER
278 634 0.3 0.71 2 2 3 vertex ER
279 634 0.3 0.71 2 2 3 edge SW
280 634 0.3 0.71 2 2 3 vertex Sw
281 634 0.3 0.71 2 2 3 edge BA
282 634 0.3 0.71 2 2 3 vertex BA
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
283 269 0.4 0.73 4 1 2 edge ER
284 269 0.4 0.73 4 1 2 vertex ER
285 269 0.4 0.73 4 1 2 edge SW
286 269 0.4 0.73 4 1 2 vertex SW
287 269 0.4 0.73 4 1 2 edge BA
288 269 0.4 0.73 4 1 2 vertex BA
289 663 0.3 0.8 8 3 2 edge ER
290 663 0.3 0.8 8 3 2 vertex ER
291 663 0.3 0.8 8 3 2 edge SW
292 663 0.3 0.8 8 3 2 vertex SW
293 663 0.3 0.8 8 3 2 edge BA
294 663 0.3 0.8 8 3 2 vertex BA
295 916 0.3 0.67 2 2 2 edge ER
296 916 0.3 0.67 2 2 2 vertex ER
297 916 0.3 0.67 2 2 2 edge SW
298 916 0.3 0.67 2 2 2 vertex SW
299 916 0.3 0.67 2 2 2 edge BA
300 916 0.3 0.67 2 2 2 vertex BA
301 100 0.5 0.54 6 3 2 edge ER
302 100 0.5 0.54 6 3 2 vertex ER
303 100 0.5 0.54 6 3 2 edge SW
304 100 0.5 0.54 6 3 2 vertex SW
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
305 100 0.5 0.54 6 3 2 edge BA
306 100 0.5 0.54 6 3 2 vertex BA
307 606 0.1 0.69 10 2 2 edge ER
308 606 0.1 0.69 10 2 2 vertex ER
309 606 0.1 0.69 10 2 2 edge SW
310 606 0.1 0.69 10 2 2 vertex SW
311 606 0.1 0.69 10 2 2 edge BA
312 606 0.1 0.69 10 2 2 vertex BA
313 213 0.1 0.52 2 3 1 edge ER
314 213 0.1 0.52 2 3 1 vertex ER
315 213 0.1 0.52 2 3 1 edge SW
316 213 0.1 0.52 2 3 1 vertex SW
317 213 0.1 0.52 2 3 1 edge BA
318 213 0.1 0.52 2 3 1 vertex BA
319 972 0.3 0.65 4 2 2 edge ER
320 972 0.3 0.65 4 2 2 vertex ER
321 972 0.3 0.65 4 2 2 edge SW
322 972 0.3 0.65 4 2 2 vertex SW
323 972 0.3 0.65 4 2 2 edge BA
324 972 0.3 0.65 4 2 2 vertex BA
325 156 0.4 0.6 6 3 3 edge ER
326 156 0.4 0.6 6 3 3 vertex ER
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
327 156 0.4 0.6 6 3 3 edge Sw
328 156 0.4 0.6 6 3 3 vertex SW
329 156 0.4 0.6 6 3 3 edge BA
330 156 0.4 0.6 6 3 3 vertex BA
331 578 0.1 0.63 10 2 2 edge ER
332 578 0.1 0.63 10 2 2 vertex ER
333 578 0.1 0.63 10 2 2 edge SW
334 578 0.1 0.63 10 2 2 vertex Sw
335 578 0.1 0.63 10 2 2 edge BA
336 578 0.1 0.63 10 2 2 vertex BA
337 381 0.1 0.56 2 3 3 edge ER
338 381 0.1 0.56 2 3 3 vertex ER
339 381 0.1 0.56 2 3 3 edge Sw
340 381 0.1 0.56 2 3 3 vertex SW
341 381 0.1 0.56 2 3 3 edge BA
342 381 0.1 0.56 2 3 3 vertex BA
343 775 0.4 0.43 4 2 3 edge ER
344 775 0.4 0.43 4 2 3 vertex ER
345 775 0.4 0.43 4 2 3 edge SW
346 775 0.4 0.43 4 2 3 vertex Sw
347 775 0.4 0.43 4 2 3 edge BA
348 775 0.4 0.43 4 2 3 vertex BA
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
349 409 0.4 0.32 8 2 3 edge ER
350 409 0.4 0.32 8 2 3 vertex ER
351 409 0.4 0.32 8 2 3 edge SW
352 409 0.4 0.32 8 2 3 vertex SW
353 409 0.4 0.32 8 2 3 edge BA
354 409 0.4 0.32 8 2 3 vertex BA
355 803 0.2 0.12 7 3 3 edge ER
356 803 0.2 0.12 7 3 3 vertex ER
357 803 0.2 0.12 7 3 3 edge SW
358 803 0.2 0.12 7 3 3 vertex SW
359 803 0.2 0.12 7 3 3 edge BA
360 803 0.2 0.12 7 3 3 vertex BA
361 353 0.2 0.14 3 1 2 edge ER
362 353 0.2 0.14 3 1 2 vertex ER
363 353 0.2 0.14 3 1 2 edge SW
364 353 0.2 0.14 3 1 2 vertex SW
365 353 0.2 0.14 3 1 2 edge BA
366 353 0.2 0.14 3 1 2 vertex BA
367 859 0.4 0.41 5 3 1 edge ER
368 859 0.4 0.41 5 3 1 vertex ER
369 859 0.4 0.41 5 3 1 edge SW
370 859 0.4 0.41 5 3 1 vertex SW
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SIN Number Edge Proportion of No. of neighbors No. of Edges Power of Pref. Deletion Type Graph Type
of nodes | Density Removal within which added in each Attachment
vertices are time step (BA Graph)
connected (SW
Graph)
371 859 0.4 0.41 5 3 1 edge BA
372 859 0.4 0.41 5 3 1 vertex BA
373 466 0.4 0.19 9 2 1 edge ER
374 466 0.4 0.19 9 2 1 vertex ER
375 466 0.4 0.19 9 2 1 edge SW
376 466 0.4 0.19 9 2 1 vertex SW
377 466 0.4 0.19 9 2 1 edge BA
378 466 0.4 0.19 9 2 1 vertex BA
379 831 0.2 0.17 7 3 2 edge ER
380 831 0.2 0.17 7 3 2 vertex ER
381 831 0.2 0.17 7 3 2 edge SW
382 831 0.2 0.17 7 3 2 vertex SW
383 831 0.2 0.17 7 3 2 edge BA
384 831 0.2 0.17 7 3 2 vertex BA
385 438 0.3 0.1 3 1 2 edge ER
386 438 0.3 0.1 3 1 2 vertex ER
387 438 0.3 0.1 3 1 2 edge SW
388 438 0.3 0.1 3 1 2 vertex SW
389 438 0.3 0.1 3 1 2 edge BA
390 438 0.3 0.1 3 1 2 vertex BA
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APPENDIX C. ANALYSIS OF RESULTS FROM DESCRIPTIVE
MODELING

Note: This appendix is a partial reproduction of the work by Ruriko Yoshida on Average
Distance between Nodes in a Random Graph (2018), an unpublished working paper at the
time this thesis is published. Its results support the findings in the results from the
descriptive analysis in Chapter 4 on mean distance in ER graphs under conditions of
information loss.

(1)  Average Distance between Nodes in a Random Graph by Ruriko
Yoshida (2018)

Suppose we have a random graph G, =(N,, E;)where N, is the set of nodes
(vertices) N, ={1,...,n} and a set of edges E,. Let G be a graph with N, and the edge set
E, < E, such that i many edges are randomly (uniformly) deleted. Let G" be a graph with

the node set N, N, and edge set E, < E, such that i many nodes are randomly

(uniformly) deleted and also edges adjacent to the deleted nodes. Without loss of

generality, let N, ={1,...,(N —i)}. We assume here G, =(N,, E,) is generated by the ER

model.
Properties:
The main ingredient of the proof for our theorem is from (Chung and Lu 2002).

Suppose we have a degree distribution.

W= (Wy, W, ..., W,)

will be the expected degree of the node i.

2
Let d = 2%
Ziwi

, that is, the second order average degree of nodes.
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Definition:

The volume of a subset of nodes S c N inagraph G =(N,E) is defined as

Vol (S) = deg(v)

vesS

where deg(v) is the degree of a node v.

Let Vol, (S)=>_wf and Vol, (G) = > wf

ieS ieN
Definition:

The expected degree sequence w for a graph G is called strongly sparse if G satisfies the

following:

The second order average degree d satisfies the condition

0 < log(d) << log(n)

The average expected degree is strictly greater than 1+ & for some positive value ¢ which

is independent of the number of nodes nin G.

Note that if G is generated under the ER model with p < 1 then it is admissible.

Theorem 1: (Theorem 1 in (Chung and Lu [2002])

For a random graph G with admissible expected degree sequence (w,,...,w,), the average

distance is almost surely (1+o(1))(log(n)/log(d)) .

Proposition 1. The expected degree of each node for a graph G = (N, E) with n
nodes generated under Erdos-Renyi model with p, p €[0,1] isp-(n—1).

Proof. If p =1, then G is the complete graph with n nodes. This means that the
degree of each node is (n —1). If p < 1, then the probability to be an edge between a

node i €N to another node j =i is p. Therefore, since there are (n-1) possible j =i,

the average degree of the node i is p(n - 1). QED.
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Theorem 2. If a graph G = (N, E) with n nodes generated under Erdos-Renyi model

with p €(0,1), then the average distance is almost surely (1 + o(1))(log(n)/log(p - (n
—1))).
Proof. Using Proposition 4, the expected degree sequence has wj=p-(n —1) for i

€ N. Then we have d = p - (n —1). Using Theorem 3, since w is admissible, we are
done.

Corollary 1. Suppose a graph G, =(N,,E,) with n nodes generated under Erdos-
Renyi model with p € (0,1). If i << n, then the average distance for a graph G" is

almost surely

@+o@)(og(n—1i)/log(p.(n—1-1)))
Proof. It is immediately proven by Theorem 2. QED.

Theorem 3. Suppose a graph G, = (N,, E,) with n nodes generated under Erdos-Renyi

model with p € (0, 1). The average distance for a graph GF is almost surely
(1+o(1)(log(n) / log(p.(n—1)))

where |6=|Ei|/(gj :

Proof. The number of all possible edges for G to have is (g] We can estimate the

probability of being an edge between anode i € N, and anode j=iis p :|Ei|/(gj
This converges to the true parameter almost surely by the strong law of large

numbers since each edges are independent and identically distributed (iid). Therefore,
applying Theorem 1 and Proposition 1, we have the result. QED.
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APPENDIX D. ANALYSIS OF RESULTS FROM PREDICTIVE MODELING

Figure 77. Results from CART model on Network Parameters on Classification of Networks
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