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1. Introduction 

Author: Alexander Kott  

Since 2013, responding to a request from the Assistant Secretary of the Army for 
Acquisition, Logistics, and Technology (ASA[ALT]), the US Army Research 
Laboratory (ARL) has been conducting an annual series of meetings. The intent of 
these meetings is to explore novel scientific opportunities that may lead to 
providing the Army with an advantage in future conflicts. The temporal scope of 
these explorations is strategic in nature, with time horizon being on the order of 20 
to 30 years. The meetings pay particular attention to the identification of research 
gaps and barriers that may hinder the achievement of the potential novel 
capabilities; and of possible approaches of overcoming these gaps and barriers. 
These meetings are called the Army Science Planning and Strategy Meetings 
(ASPSMs).  

The annual series of ASPSMs have been highly influential in shaping the Army 
investments in science and technology. Numerous research efforts—in-house, 
collaborative, and extramural—have been initiated or revectored based on the 
insights developed within the ASPSMs. This report covers the findings and 
recommendations developed in 4 meetings held in the first half of fiscal year (FY) 
2018. 

As discussed in previous ASPSM reports, modern warfare unfolds in 3 realms: 

• physical, the domain of activities defined in space and time by the laws of 
physics; 

• societal (cultural and human), the domain of activities defined by the 
interaction of people and societies; and 

• informational, the domain of activities defined by thought and perception. 

Accordingly, 3 of the 4 meetings covered in this report focused directly on each of 
the 3 domains, as follows: 

• The meeting titled “Reasoning About and Interacting with the Physical 
World” focused on the physical realm; 

• The meeting “Sensing and Modeling Social Dynamics” focused on societal 
realm; and 

• The meeting “Learning and Reasoning in Complex Data Environment” 
focused on the informational realm. 
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The fourth meeting, “Uncertainty Quantification”, explored a meta-challenge that 
transcends all 3 realms: quantification of uncertainty that is inherent in our ability 
to understand and reason about the phenomena in all 3 realms. 

The meetings in this series were conducted in 1 or 2 days, either at the ARL 
headquarters in Adelphi, Maryland, or at the ARL-West location in Playa Vista, 
California. Each meeting brought together 30–40 topic experts, drawn by invitation 
only, primarily from academia and industry. Each meeting addressed such 
questions as, What capability can this area of science or technology deliver to the 
military 25 years from now? What technical hurdles exist that limit our ability to 
realize this capability? What are the fundamental scientific questions that underlie 
the area? What research does the Army need to support now to overcome these 
hurdles and enable the desired capability? The participants of the meetings were 
encouraged to offer a variety of perspectives, with emphasis on a long-term, broad 
view of the specific area and its trends. 

1.1 Highlights of Findings for Each Meeting 

The meeting titled “Reasoning About and Interacting with the Physical World” 
found, inter alia, the following: 

• The Army faces unique challenges in ground-based operations, which 
hinder and slow the adoption of autonomy into ground platforms. 
Navigation is dramatically more challenging in ground environments than 
in obstacle-free air and sea environments. Current and projected 
commercial technology will not reliably extend into new Army-relevant 
tactical environments and operations in dense urban areas, subterranean, 
and jungle environments.  

• The science of robotic physical interaction is not well developed, except in 
static fixed environments with infrastructure. Physical reasoning and the 
laws of physics are not yet captured in artificial intelligence (AI) suitable 
for sufficiently general purposes, and common-sense reasoning, going 
beyond physical reasoning, is not yet possible. 

• Online learning is limited to short time durations and is not well integrated 
with physics-based models or simulations. Physics-based simulations are 
highly scenario specific and not easily generalized or scaled. There is a lack 
of experiments and benchmarks in real-world environments. 
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The meeting titled “Sensing and Modeling Social Dynamics” found the following: 

• Social phenomena like violent protests, large-scale social influence, violent 
extremism, coalition formation, mass movement fragmentation, and sudden 
population (im)migration pose challenges for the Warfighter in the Army 
operational environment. However, current scientific foundations are 
lacking with respect to the capability to 1) objectively measure the 
transitions of large-scale collectives from one state (e.g., peaceful protest) 
to another state (e.g., violent mass protest); and 2) causally and predictively 
model these transitions across cultures.  

• New sensing capabilities such as geospatial sensors, biometrics, tracking of 
utility use, and multimedia data are enabling more objective ways to 
measure social action compared to traditional approaches such as 
observation and survey methods, which are often fraught with bias. There 
is an ever-growing array of opportunities to sense shifts at micro (individual 
and small-group) levels and macro (large-scale collective and population) 
levels. To date, however, there have been only relatively coarse attempts to 
integrate multiple types of sensors owing to vast temporal and spatial 
differences in their capabilities.  

• Complex modeling approaches and new statistical techniques are being 
developed that more accurately represent the distributions of large-scale 
action and the often punctuated shifts from one collective state to another. 
There is a growing recognition that collective-level action is often not 
normally distributed; and it often abruptly shifts from one state to another. 
Often it is the rare events/actions in a distribution of social dynamics that 
are of both the greatest interest and the greatest risk.  

• Research with greatest promise is that which moves away from traditional 
social science statistical approaches toward modeling approaches drawn 
from physics, natural sciences, and computer sciences that are emerging to 
capture complex crowd behavior. Yet, validation seemed missing from the 
normal research cycle. 

The key findings of the “Learning and Reasoning in Complex Data Environment” 
meeting include the following: 

• “Trust in AI” is a major technical gap identified in both focus areas explored 
in the meeting. This includes a number of open questions for research, 
including validation and verification (V&V) of algorithms (particularly 
adaptive or online learning), providing realistic expectations for AI, and 
learning individual preferences for cooperation and risk analysis. Loss of trust 
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in deployed AI will result in resistance to use in the field. Closely related to 
the question of trust is the continued validation of deployed adaptive AI 
algorithms on learned tasks and verification of expected behavior. 

• A significant number of existing data sets are available within Army 
organizations; these derive from field tests, laboratory tests, and deployed 
systems. A majority of the Army attendees at the ASPSMs provided lists of 
data sets that exist within their respective facilities. The challenge is that 
these data sets are not collated in central locations, often contain unlabeled 
data, are in many different formats, and are of unknown or limited quality 
and value. Whereas academia and industry rely heavily upon labeled, 
voluminous, clean data sets for learning, the Army faces a real gap in this 
area.  

• A major technical gap is seen in deploying AI at the edge—at the tactical 
locations where AI, computing, and communications have to reside. 
Sensors are proliferating on the battlefield while the ability of the network 
to transport this data to the point of need is not improving commensurately. 
Although always recognized as a challenge, the meeting re-emphasized the 
extent of the issue and the current growth in demand for deploying AI as 
close to the point of data collection as possible. 

The meeting titled “Uncertainty Quantification” yielded the following findings: 

• Incorporation of uncertainty quantification (UQ) practices into data 
collection will allow researchers to track the quality of these data (e.g., 
fidelity, resolution, limitations) and update the confidence/trust on decision 
making with additional data; UQ is necessary to address confidence in the 
machine learning from such data. UQ guides where additional data is 
necessary to increase the output certainty for artificial decision or 
prediction. It is an approach to detect anomalies in the data, possibly 
deceptive in nature, and also to track rare events that machine learning from 
transferred knowledge (prior trained data) would most likely neglect.  

• Tools have emerged that are used to evaluate specific designs, courses of 
action, and public danger. These include conditional value-at-risk (CVaR, 
also known as superquantile risk), distributionally robust (data-driven) 
optimization, risk quadrangle (risk-informed modeling), and capacity-based 
UQ. These methods are particularly well suited to problems for which a 
single objective can be readily quantified, the quantity of interest (QoI). 
Adaptation of these methodologies for anomaly detection leading to 
adversarial mitigation schemes and predicting low-probability/high-cost 
events is not trivial but is very promising. 
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• Recognizing the opportunities from physics-aware modeling-to-machine 
learning-to-decisions, a holistic framework for integrating uncertainty with 
risk that balances parameters such as information, knowledge, resources, 
and trust is necessary. This demands quantifiable metrics for uncertainty 
and risk representations that complement models of human–machine 
interaction, including trust. Continuous learning and evaluation of this 
framework’s uncertainty are necessary to account for information 
degradation, malicious information insertion, dense versus sparse 
information, and processing tradeoffs (overload/underload). 

1.2 Summary of Recommendations 

Based on the output of the meetings, the authors of this report developed the 
following recommendations: 

• A long-term integrated program of research should be undertaken to support 
a physical reasoning architecture that incorporates and balances the physical 
world and knowledge world constructs; learning that complements 
modeling and is incorporated into physical platforms and is self-guided and 
curious; abstractions that are scalable, can be shared across agents, and 
facilitate fast reasoning and action; general methods for characterizing 
families of affordances; and physical reasoning that is linked with the 
wisdom in the body. More on this in Section 2. 

• There is a need to develop a truly multidisciplinary integrated research 
program that equally engages computational sciences, social scientists, and 
computational scientists to advance analytics, but also avoid reinventing the 
wheel when it comes to social science theory and research. Its foci should 
include research on how different sensors at both micro and macro levels 
work cross-culturally and within technologies such as the “Internet of 
Things”, how different sensors are used, what factors drive users to different 
social sensing platforms, and on cultural interpretations of them, as well as 
the nature of tipping points and how they relate to institutional and cultural 
dynamics. More on this in Section 3. 

• An Army-led research program is needed that would provide a quantifiable 
V&V of adaptive, adversarially robust AI algorithms and communicate the 
AI-reasoned solutions to a Soldier with trust and understanding. The close 
interaction of humans and AI agents in stressful environments is uniquely 
characteristic of military application of AI. A focused effort is needed to 
capture and maintain data from across the Army to develop AI algorithms 
and software. This data must be in an accessible location for Army 



 

Approved for public release; distribution is unlimited.  
6 

collaboration and development efforts. Fundamental questions of suitability 
of data for training must be addressed; industry and much of the academic 
AI development are dependent upon labeled, voluminous, clean data sets 
for learning. Success in this effort will help bring in external collaborators 
through data sharing; generate synthetic data with transfer learning to the 
real world; and provide a central location for Army researchers to share 
common data and environments. More on this in Section 4. 

• Both opportunities and needs exist for initiating a substantial portfolio of 
efforts in UQ that focus on integration of Bayesian frameworks and 
generative adversarial networks for anomaly detection and nonlinear 
autoregressive schemes with dynamical systems theory for rejection of 
deception; combining risk measures and uncertainty sources by including 
uncertainty in the objective functions and constrains; comparing stochastic 
outputs using objective measures (e.g., superquantiles). More on this in 
Section 5. 

2. Reasoning About and Interacting with the Physical World 

Authors: Bryan Glaz, Brett Piekarski, and Brian M Sadler 

2.1 Vision 

The Army seeks to develop and deploy intelligent physical agents that will team 
with and assist Soldiers, manned combat vehicles, and other intelligent agents in 
complex operational conditions across the multidomain battlespace. These future 
systems will not only need to efficiently and autonomously move through diverse 
environments (dense urban, subterranean, jungle, etc.), they will be required to 
perform complex and adaptive missions in the face of contested and adversarial 
technologies. This teaming with Soldiers and next-generation ground and air 
systems will require machine intelligence that goes well beyond current standoff 
perception methods, state-awareness techniques, and emerging autonomous 
systems technologies, such as driverless cars. Intelligent agents will need to interact 
with the physical world to reason about and perform complex actions such as 
moving obstacles to aid navigation, manipulating objects to accomplish mission 
objectives such as a breach operation, physically interrogating structures and 
dynamic systems to improve perception, and physically interacting with Soldiers 
or other agents to achieve complex multi–degree of freedom collaborative actions 
such as jointly carrying an object through complex terrain.
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2.2 Objective and Scope 

The focus of this ASPSM was to explore and discuss the underpinning science 
needed for future intelligent systems that can reason about, interact with, and 
manipulate the physical world around them to achieve this vision for complex 
military-relevant actions in the future multidomain battlespace.  

The meeting brought together a unique mix of research leaders in AI and reasoning, 
autonomy, learning, robotics, and mechanics. The meeting was organized around 2 
focus areas: 

1) Reasoning about the physical world: Advances in AI, sensing, and 
perception are leading to enhanced understanding of autonomous reasoning 
as applied in robotics. This area considers the trends and future of reasoning 
about and manipulating the physical environment. 

2) Real-time learning and manipulating the environment: This area focuses on 
methods for learning and validating perceptions of the physical world 
through real-time manipulation of and interaction with objects, humans, 
other intelligent agents, and complex dynamic systems.  

2.3 Background 

Historically, research in autonomous systems has focused primarily on obstacle 
detection and avoidance through the use of topological maps when available, 
simultaneous localization and mapping (SLAM) that used depth sensors to generate 
local maps and navigate through them, or reactive strategies that used depth sensors 
or vision-based techniques, like optic flow, to detect and avoid obstacles while 
navigating to a goal. Relatively little work has considered reasoning about the 
physical properties of the obstacles or the environment. As such, prediction of 
future events has been limited to physics-based models and simulations that are 
environment-specific, not generalizable, and not robust to mobility. 

Recent advances in AI and machine learning (ML), especially based on learning 
from massive image data sets, have yielded progress on commercial driverless car 
navigation on marked roadways with GPS assistance. AI/ML is also leading to 
advances in unmanned aerial vehicle (UAV) navigation in known and unknown 
indoor/outdoor environments (especially for hovering vehicles such as quadrotors). 
However, significant challenges remain for vehicles traversing arbitrary and 
unknown terrain, and for physical reasoning and interaction generally. Current 
research seeks to go beyond big-data-driven learning, progressing to online 
learning, including learning through interaction with the environment. Approaches 
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are sought that combine control and AI/ML—for example, incorporating model 
predictive control, learning by demonstrated example, and learning by failure in 
realistic environments and against adversaries. 

Mechanics and manipulation research is also following similar trends, 
incorporating AI/ML and learning, for example, to improve grasping, and enable 
rapid retasking for manufacturing, reasoning about objects, and assisting during 
medical procedures. AI/ML methods are also being explored to reason about and 
predict physical events from video, predicting motion from applied force or gravity, 
and learning object dynamics and interactions with complex materials (e.g., the 
interaction of a robot leg with granular media to generate an efficient gait). 

Even with these significant advances, state-of-the-art techniques still fall far short 
of the general intelligent agent physical reasoning and interaction capabilities 
needed to interact with objects and environments, and the ability to make adaptive 
decisions in the course of a mission based on that reasoning. To address this, 
intuitive physics and commonsense reasoning are beginning to emerge to explore 
how humans infer physical properties of objects and predict the outcomes of 
dynamic events, with the goal of applying these to robotics. Progress to date is 
limited to specific niche areas such as taxonomic and temporal reasoning or physics 
in a fixed and repeatable setting.  

In a variety of future Army operational constructs involving robotic teammates, 
control theories and methodologies to enable reflexive adaptations to the 
environment need to be developed. An emerging school of thought is embodied 
intelligence, which is often closely linked with morphological computation/control. 
This field advocates for the seemingly obvious idea that a body’s morphology is 
critical to physical reasoning and adaptability (as opposed to the brain or central 
processor being responsible for all reasoning and adaptation no matter the 
embodiment). Although the basic idea is somewhat intuitive, theoretical and 
mathematical formalizations of this construct into robotic design and control 
methods are open and significant challenges. The value of pursuing advances in 
this field can be exemplified in the example of running on uneven terrain: the 
timescale does not allow continuous neural control. Instead, the body mechanics 
are coupled with reflexive control with much faster feedback, while neural higher 
reasoning works at a slower timescale. 

There is significant optimism with respect to the continuing advancement of AI and 
component technology for autonomous system navigation, reasoning and decision 
making, and manipulation of the environment. Technology convergence continues 
to unite networking, processing, sensing, and control onto portable devices and 
robotics. This follows general mass production trends in cellular networking, 
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robotic, and sensor technologies. However, the Army faces unique challenges in 
ground-based operations, which hinder and slow the adoption of autonomy into 
ground platforms. Current and projected commercial technology will not reliably 
extend into new Army-relevant tactical environments and operations in dense urban 
areas, subterranean, and jungle environments.  

2.4 Gaps and Recommendations 

Several observations, technical gaps, and recommendations came out of the 
ASPSM discussions and breakout sessions. Some general observations were the 
following: 

• Navigation is dramatically more challenging in ground environments than 
in obstacle-free air and sea environments. 

• The science of robotic physical interaction is not well developed, except in 
static fixed environments with infrastructure. 

• Physical reasoning and the laws of physics are not yet captured in general-
purpose AI.  

• Common-sense reasoning, going beyond physical reasoning, is not yet 
possible. 

• Reasoning about general manipulation is very immature, and manipulation 
on the move has not been achieved. 

• Control that incorporates perception and physical interaction is in early-
stage research. 

• Robotic physical partnering with humans is limited to fixed, repetitive tasks. 

• Ad hoc robotic tasking and human-robot dialog are in early-stage research. 

• Physics-based simulations are highly scenario-specific and not easily 
generalized or scaled. 

• Online learning is limited to short time durations and not is well integrated 
with physics-based models or simulations. 

• Experiments and benchmarks are needed in real-world environments. 

To try and capture what makes the Army problem challenging, the difficulty of 
autonomous physical reasoning and action was characterized to increase along the 
following axes of complexity, all of which can be at the extreme end of the scale for 
a relevant Army scenario: 



 

Approved for public release; distribution is unlimited.  
10 

• Context and environment 

• Task complexity  

• Task variety 

• Physical variety 

• Degree of human assistance and interaction 

• Operational tempo coupled to amount of prior knowledge, onboard versus 
offboard processing, and networking 

To advance the science of physical interaction, there are many broad issues that 
must be addressed from an interdisciplinary perspective, including the following: 

• Physical scene and context understanding 

• Reasoning about material properties and object physics 

• Dynamic physical interaction 

• Combining semantic and physical perception 

• Embodied introspection and lifelong learning 

• Physical agility and reactive control  

• Human‒robot communication and task sharing 

• Failure prediction, safety, and trust 

• Progressing from tool to teammate  

These broad research goals are not mutually exclusive and contain several critical 
Army elements that are unlikely to be addressed by commercial enterprise. Tactical 
application is reliant on heterogeneous architectures across Army platforms, 
networks, sensors, and processors. Distributed operation is essential and must be 
resilient to attack, mobility, and network failure.  

Based on the ASPSM discussions on the emerging research in AI/ML, intuitive 
physics and commonsense reasoning, and embodied intelligence for application to 
intelligent systems that can reason about and perform complex actions in Army-
relevant environments, it is recommended that long-term research be undertaken to 
support the following: 

• A physical reasoning architecture should incorporate and balance 
physical-world and knowledge-world constructs. Physics-based reasoning 
allows for mathematical frameworks and physical law models but is 
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domain-specific and difficult to generalize. Knowledge-world reasoning 
relies on logic and knowledge-based mining to provide semantic 
intelligence, which can be learned online and extended over many 
environments. An overall modular architecture is desired that incorporates 
both forms of reasoning to provide a general-purpose, physical-reasoning 
AI. 

• Learning should complement modeling. Data-driven learned 
representations such as deep learners (neural networks) are potentially very 
powerful but quickly become abstract and lose the connection with physical 
interpretability, whereas physical models may be easily interpreted and can 
significantly reduce learning time. Physical-reasoning architectures are 
needed that incorporate both, and that are modular to facilitate engineering 
development, testing, and validation. 

• Abstractions are needed that are scalable, can be shared across agents, and 
facilitate fast reasoning and action. These abstractions are needed to 
facilitate different levels of interaction, with different levels of fidelity and 
speed. Intuitive physics—reasoning based on physical modeling—may be 
learned, mathematically modeled, or a hybrid mixture of these. More 
generally, and a much more difficult long-range research direction, 
common-sense reasoning should be developed that spans physical and 
semantic abstractions. 

• General methods for characterizing families of affordances should be 
developed. An affordance is a relation between an object (or an 
environment) and an organism that, through a collection of stimuli, affords 
the opportunity for that organism to perform an action. For example, a knob 
affords twisting, and perhaps pushing, while a cord affords pulling. 
Methods for characterizing families of affordances and generalizations are 
needed. These should be linked with goal-driven behavior, learning, and 
rewards. 

• Learning should be incorporated into physical platforms that are self-
guided and curious. The context of the physical task plays an important role 
in cognition and physical reasoning. Agents should have the ability to 
explore and learn that mimics curiosity, incorporates frustration and self-
goals, links with perception and scene understanding, and combines 
physical and semantic reasoning.  

• Physical reasoning should be linked with the wisdom in the body. Animal 
studies reveal the links between physical reasoning and interaction that 
exploit the specific animal morphology, sensing, and intelligence. Robot 
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morphology, materials, and sensing should be combined with AI and 
reasoning in synergistic designs.  

• Control methods must seamlessly span fine to gross control, reflexive to 
carefully planned, and be tightly coupled with the platform physics. Control 
architectures must accommodate different timescales, contexts, and tasks. 
They must be adaptable to platform degradation and robust to a seemingly 
endless set of conditions in an operational environment. They also must be 
tunable with respect to risk, tempo, and multiagent teaming.  

• Human‒machine dialog should be developed to enable rapid learning and 
teaming. Natural-language processing and other forms of human‒machine 
dialog and communications should be developed to enable lifelong learning, 
task refinement, and seamless operations. This may include wearable 
sensors, gestures, and other unconventional methods. 

2.5 Some Key Research Questions 

1. How can learning methods (e.g., deep learning) be linked with physics-
based models to provide general physical-reasoning frameworks? 

2. How can families of affordances be generalized and formulated, and linked 
with goals and behaviors? 

3. How can we link perception, context, and goals? How to build a learning 
framework that spans these? What goes beyond current reinforcement-
learning paradigms? 

4. How to do perception that is driven by the needs of physical reasoning? 
What sensing modalities are needed? 

5. How to develop an analytical and design framework for commonsense 
reasoning that connects control and semantic learning? 

6. How to build a long-term learner that uses exploration, frustration, 
curiosity, and self-goals? 

7. What are appropriate metrics, benchmarks, and behaviors that can drive 
long-term physical reasoning research and development? 

2.6 Conclusions 

The Army has a unique set of challenges in robotics, autonomy, and physical 
interaction in complex operational environments. Long-term fundamental research 
is needed to address the critical issues outlined in this report, combining AI, 
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learning, physics-based and common-sense reasoning, embodied intelligence, and 
human‒machine teaming. Successful integration into physical agents will provide 
autonomous teammates that will transform future Army operations. 
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3. Sensing and Modeling Social Dynamics 

Authors: Lisa Troyer and Peter Khooshabehadeh 

3.1 Summary 

Social phenomena like violent protest, large-scale social influence, violent 
extremism, coalition formation, mass movement fragmentation, and sudden 
population (im)migration pose challenges for the Warfighter in the Army 
operational environment. Rarely can such large-scale dynamics be detected, much 
less predicted, through an aggregation of individual motivations, cognitions, and 
behaviors. Rather, these dynamics often reflect unexpected shifts that are not 
necessarily a response to majority tendencies. Moreover, they sometimes emerge 
slowly over time and sometimes suddenly erupt in surprising and even unimagined 
alterations of the status quo. Our inability to predict these transitions poses a threat 
to effective operations, and this inability reflects 2 challenges: accurately 
measuring and modeling social dynamics. Currently, we lack the capability to  
1) objectively measure the transitions of large-scale collectives from one state (e.g., 
peaceful protest) to another state (e.g., violent mass protest); and 2) causally and 
predictively model these transitions across cultures. These limitations have not only 
hampered Army operations, but they have also stymied the development of 
generalized theories of social dynamics. Yet, new approaches to measuring and 
modeling social dynamics, including new sensing technologies, statistical 
strategies, and complex computational models, are emerging with the potential to 
augment and in some cases supplant current approaches. For instance, new 
capabilities such as geospatial sensors, biometrics, tracking of utility use, and 
multimedia data are enabling more objective ways to measure social action 
compared to traditional approaches such as observation and survey methods, which 
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are often fraught with bias. Complex modeling approaches and new statistical 
techniques are being developed that more accurately represent the distributions of 
large-scale action and the often punctuated shifts from one collective state to 
another. This meeting investigated how these developments—in sensing and 
modeling dynamics—can be leveraged to improve the prediction of social trends 
and enable greater scientific understanding of the mechanisms and trajectory of 
how large-scale groups transition across social states.  

3.2 Objective 

The objective of this meeting was to improve the Army’s capacity to understand, 
model, and predict large-scale collective dynamics by charting a path forward for 
research to improve measurement and modeling of social dynamics. It focused on 
identifying new opportunities and challenges for sensing and modeling social 
dynamics that are emerging through biophysiological sensors (i.e., 
microbiometrics) and Big Data available from a range of sensors (e.g., social media, 
“Internet of Things”, utility usage, geospatial sources). In addition, the participants 
sought to identify new data management strategies to integrate different data 
sources that vary widely in temporal and spatial scales. That is, integrating different 
data sources is a challenge. Furthermore, participants discussed the range of 
emerging strategies to dynamically model complex social systems. To address this 
objective, participants tackled 3 challenge questions: 

• Challenge Question 1: What established and new technologies exist for 
sensing social dynamics, including more micro biophysiological sensors 
and more macro sensors (e.g., geospatial sensing, utility use, multimedia 
sensors) and to what degree of granularity can these sensors assess social 
dynamics (i.e., collective action) as opposed to human behavior (i.e., 
individual actions)? 

• Challenge Question 2: What are the limitations of existing sensing 
technologies for assessing social dynamics, including integrating different 
sources across cultures/regions? 

• Challenge Question 3: What are the challenges for modeling social 
dynamics; what strategies currently exist; what are their limitations; and 
what improvements are needed to enable validated predictive, causal 
models? How can operators use models of social dynamics to shape the 
current/future operating environment? 

Twenty-five attendees from academia, Army, Department of Defense, and the 
private sector participated in the meeting, through a series of keynote addresses, 
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summary overviews of the 3 challenge questions, breakout groups to address them 
and report back to the group their findings, and generalized discussion regarding a 
way ahead for the Army in terms of remaining opportunities and challenges. 

3.3 Opportunities 

The meeting began with a “fire-starter” talk and a keynote address, followed by a 
discussion of the current state of the art in social science research and the failure to 
discriminate between individual human behavior and social dynamics. The former 
focuses on individual cognitions, attitudes, and actions, while the latter depends on 
the complex and dynamic nature of how relationships change—how information 
channels among actors shift over time. Yet, the latter also depends on the different 
propensities of the individuals comprising the collective and how those change over 
time, which is itself conditioned on the nature of the collective. How to sense and 
predictively model those changes, or dynamics, is part of the difficulty that meeting 
participants addressed through the challenge questions. For each challenge 
question, a set of recommendations emerged from the discussions. 

3.3.1 Challenge Question 1 (Sensing Social Dynamics) 

The group concluded that there is an ever-growing array of opportunities to sense 
shifts at micro (individual and small-group) levels and macro (large-scale collective 
and population) level. At the micro level, the group identified existing technologies 
commonly used to more objectively measure individual behaviors: Galvanic skin 
response, heart/respiration rate, brain sensing (e.g., functional magnetic resonance 
imaging [fMRI], electroencephalography [EEG]), thermography, pupilometry, eye 
gaze, voice patterns, and epigenetics. Wearables and social badging technologies 
are also gaining attention, as they identify ways to track groups through time, space, 
environments, and social contacts. Wearables can also serve as “alert” systems in 
an “Internet of Things” environment. Several participants noted that the use of these 
technologies is being expanded from individual-level data collection sources to 
tracking dynamics in small and large collectives—for example, to track how brain 
activity changes among members of a group who are experiencing an external 
threat, such as discrimination or injustice. Another example is the capacity to track 
the diffusion of emotions, such as anger, throughout a collective using facial 
thermography. These attempts to sense collective dynamics, however, are still 
nascent but represent an opportunity to substantially advance abilities to obtain 
objective measures of social dynamics (as distinct from individual behavior), 
insofar as many of the biophysiological shifts that these technologies detect are 
extremely difficult for individuals to control. 
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At the macro level, a wide range of emergent technologies capable of capturing 
large-scale collective dynamics was identified. Among them are geospatial data, 
vehicle traffic data, computer visioning, utility use (e.g., water, electricity, cellular 
phone), financial data, and media analytics (to include both social media and print 
media)—all of which can detect very large and even population-level dynamics. 
These data are increasingly available at varying levels of granularity, depending on 
the region of the world.  

3.3.2 Recommendations for Challenge Question 1 

• There is a dearth of research on how these different sensors at both micro 
and macro levels work cross culturally. With respect to biophysiological 
sensing, there has been some cross-cultural research on “emotion work” 
demonstrating that certain types and levels of emotional responses are 
learned and may vary cross culturally. Generally, however, research 
suggests that this learning occurs at very early developmental stages 
(especially during brain development). Consequently, there is an 
opportunity through cross-cultural research to begin to pinpoint these 
differences. 

• Similar challenges with regard to macro-sensor availabilities and 
penetration of technologies such as “Internet of Things” exist. Research to 
baseline and then track these technologies within different cultures and 
regions is needed, alongside systematic research to understand their cultural 
significance. For instance, social media is used very differently in some 
cultures than others. Moreover, very recent research has discovered that 
adversarial groups often use social media to present and disseminate 
negative information as broadly as possible about a target individual or 
collective, whereas nonadversarial groups use social media to establish 
virtual communities and communicate with close friends and family with 
whom they interact. That is, social media is used by different groups vis-à-
vis their position in a complex social system. 

• A third challenge related to established and emerging sensing technologies 
involves issues of privacy and ethics. There has been little systematic 
research on whether using technologies such as those discussed in the 
meeting would have unintended adverse effects in terms of building 
alliances as a result of perceptions of privacy intrusions. Existing 
perceptions of the impact of using these sensing technologies to better 
understand social dynamics are largely anecdotal. As meeting participants 
noted, however, changes in the Common Rule (a process for determining 
whether a research study involving humans requires Institutional Review 
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Board [IRB] assessment to ensure ethical conduct of research) have relaxed 
requirements, such that many data sources that are publicly available no 
longer require IRB monitoring. Nonetheless, even with anonymization of 
data, researchers have demonstrated conditions under which integration of 
data from diverse sources can lead to exposure of personally identifiable 
information (PII). Many of the macro sensing technologies (especially 
social media, Internet of Things) represent ungoverned or semi-governed 
spaces and research on such spaces (e.g., if/how they evolve into formally 
governed spaces in a global world) is currently lacking. 

3.3.3 Challenge Question 2 (Integrating Data from Social Sensors) 

The discussion on cross-cultural challenges that arose with respect to challenge 
question 1 provided a good segue for challenge question 2. The group identified 2 
critical dimensions that need to be considered when it comes to data integration: 
temporal and spatial. With regard to temporal challenges, some sensors discussed 
operate at the scale of milliseconds when it comes to detecting change (e.g., brain 
scanning technologies), while others may reflect changes occurring at hourly or 
daily rates (such as vehicular traffic patterns). Regarding the spatial dimensions, 
experts in the group noted that how widely over physical space a sensor can detect 
changes varies. Geospatial technologies, for instance, are becoming increasingly 
malleable to detect both highly localized changes and very broad changes in 
landscape and population activities. To date, there have been only relatively coarse 
attempts to integrate multiple social sensors of the type discussed for challenge 
question 1, owing to these temporal and spatial differences in their capabilities. 
They seem limited to staying within the micro/biophysiological domain or the 
macro domain. For instance, studies using galvanic skin response in concert with 
heart/respiration rate and brain imaging to track such phenomena as the diffusion 
of threat perceptions across a group or development of cohesiveness have been 
conducted, but these are largely controlled experiments (and invasive). At the 
macro level, financial and utility data are commonly used together to index 
emergence of state fragility that places a government at risk of civic uprising. 
Integrations of, and rationales for, integrating biophysiological data and macro data 
may be limited.  

The group did identify a few possible empirical benefits of research on how to 
integrate different sensors across micro and macro domains if more effort was 
placed on data integration research, analytic strategies (see Section 3.4, Way(s) 
Forward), and visualization research. For example, such research programs might 
include research on how Warfighter wearables could be used to collect, analyze, 
and visualize data in their environments to detect risk environments (e.g., areas 
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where collectives are mobilizing against our forces based on macro data sensor 
inputs conveyed to the Warfighter once the challenges for sensing and modeling 
social dynamics noted in Sections 3.3.1 and 3.3.5 are addressed). The conclusion 
was that this should be an area to monitor through an Army social dynamics 
research agenda. 

3.3.4 Recommendations for Challenge Question 2 

• Clearly, the use of sensors varies widely regionally and culturally. For 
example, although Twitter is an often-sought source to detect social 
networks, diffusion of information, shifts in sentiments, and emerging 
conflicts, its penetration is problematic. Some countries ban or heavily 
control and monitor its use by citizens; others have their own systems that 
are more popular than Twitter (e.g., Russia’s Vk [VKontakte]). 
Consequently, basic research on the factors that drive users to different 
platforms is needed.  

• When it comes to macro sensors, regions vary dramatically in the extent to 
which data from those sensors are available. Yet, this may be an important 
source of data on large-scale social dynamics and the interface between 
institutional structures (e.g., economics and governance institutions). For 
instance, in some regions, water and electricity are state-controlled and even 
made unavailable at times. Participants with research experience in these 
regions noted that communities seemed to adapt to that control, changing 
daily activities in accordance with these control structures, with little impact 
on sociopolitical dynamics. Thus, a shift in such utility use in such cases 
would not necessarily signal an emergent change in the population. There 
is, however, research showing that when unavailability of such resources is 
abrupt and unexpected, it can lead to mass uprisings. The tipping points and 
how they relate to institutional and cultural dynamics are not known, 
suggesting the need for ongoing basic research in this domain. 

• While availability and penetration of different types of macro sensors and 
the data they produce varies considerably, the group felt that research on 
how different sensors are used and cultural interpretations of them was 
valuable because the availability and penetration would likely increase in 
the decades ahead. 

3.3.5 Challenge Question 3 (Modeling Social Dynamics) 

Challenge question 3 centered on overcoming the current state of the art related to 
how social dynamics are analyzed. Current tendencies are to use inferential 
statistics based on assumptions such as normal distributions of behavior (at both 
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individual and collective levels), independence of observations, and continuous 
evolution of collective states. As participants noted, collective-level action is often 
not normally distributed; and it is rarely independent. Randomized experiments at 
large-scale levels (e.g., crowd-sourced experiments) are just beginning to come 
about, but even then, addressing assumptions of independence are problematic or 
opaque. Additionally, collective action is not generally continuous. Collective 
action often abruptly shifts from one state to another (as when a group suddenly 
turns violent). Another point that the group focused on was the fact that most social 
and behavioral science research tends to focus on dramatic events (e.g., deviance, 
government overthrow, violent confrontation between groups, war). Recently, 
researchers have argued that scientists are over-sampling on variables of interest 
without considering the distribution of events. This may be partly because data on 
events such as peaceful protest are more difficult to obtain (i.e., they are not 
reported as frequently as dramatic events).  

On the other side of the coin, participants voiced the position that often it is the rare 
events/actions in a distribution of social dynamics that are of both the greatest 
interest and the greatest risk. Relevant to this is the phenomena sometimes referred 
to as “Normal Accidents”, which reflects complex interdependencies among social, 
natural, and physical systems that can lead to disastrous outcomes (e.g., airplane 
crashes, nuclear power plant failures, oil spills). More recently, emerging research 
has demonstrated that commodities markets (which tend to be very turbulent, with 
trading partners in a value chain frequently shifting even in the course of a day) can 
have extremely powerful effects on global sociopolitical dynamics. The point is 
that capacity to model long-chain, complex interdependencies may enable new 
predictive models of risk points in a complex social system that cascade and 
snowball, leading to unexpected dramatic outcomes. 

Related to this, on the one hand, participants in the meeting cited research that 
moves away from traditional social science statistical approaches toward modeling 
approaches drawn from physics, natural sciences, and computer sciences that are 
emerging to capture complex crowd behavior (e.g., assessing how fluid dynamics 
models may capture evolving social dynamics; models on swarming, flocking, 
herding from nonhuman social species might fit human social patterns; and 
mortality models from epidemiological research that treat social states as 
punctuated equilibria that persist or die). On the other hand, some participants noted 
that while these models may fit a particular data set, validation seemed missing 
from the normal research cycle. The concurrence was that analytic strategies exist 
but have not been widely adopted in the social sciences. Likewise, however, 
existing social theory and research are often not adequately attended to by 
computational scientists. 
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Another concern that the group discussed was the need for information to be 
conveyed more clearly so that operators and analysts could not only rapidly ingest 
it, but also make sense of it. This may be a somewhat applied concern, but it does 
require research on how operators work with data and data analytics related to 
complex systems, the cognitive processes they use, and how collective operational 
decisions are made. 

3.3.6 Recommendations for Challenge Question 3 

• There is an opportunity to develop truly integrated computational research 
programs that equally engage social scientists and computational scientists, 
so as to advance analytics but also avoid reinventing the wheel when it 
comes to social science theory and research. However, this opportunity is 
not without challenges. There are incentive structures that often discourage 
such interactions (such as requirements of publishing in one’s own 
disciplinary silo in tenure-track systems). Support for multidisciplinary 
integrated research teams may be a productive path forward. The 
Multidisciplinary University Research Initiative (MURI) program, and 
perhaps “mini-MURIs” that are MURI seedlings, could be effective. 

• Another avenue to promote truly multidisciplinary research would be to 
leverage the Open Campus model to bring disciplinarily diverse scientists 
together around specified challenge problems at ARL. This would most 
likely require a funding mechanism to enable their time/effort. 

• Developing stronger ties between data scientists and experts in cognition 
and decision making may enable better strategies to facilitate data/analytics 
ingestion by operators. 

3.4 Way(s) Forward 

The Army is the only agency that has developed an investment portfolio that 
balances micro-level technology development in biometrics (spanning cyber, 
engineering, physical, psychological, biological sciences) with macro-level social 
sciences and computational sciences. Moreover, the Army integrates basic and 
applied sciences through a combination of funding directed toward basic science 
research that draws on the intellectual capital vested in universities and funding that 
spurs commercial-academic-Army partnerships. This tripartite approach has 
positioned the Army to be the leader in the science of social dynamics. In the last 
session of the meeting, several suggestions were made to continue the synergy that 
developed in the meeting across a diverse group of scientists, agencies, and 
organizations. These included the following: 
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• Investigating the publication of an edited volume of a special journal edition 
that would collect expanded versions of overviews of topics/approaches/ 
challenges cited in this report. 

• Developing a MURI topic based on one or more of the challenges on which 
the meeting focused. 

• Participating in the Networking and Information Technology Research & 
Development (NITRD) Program of the National Science and Technology 
Council, which was established by the High-Performance Computing Act 
of 1991 to develop a framework for federal agency funding of IT research 
and development (R&D) as well as the Office of Science, Technology, and 
Policy under guidance and direction of the Executive Branch, including 
input on social computing (Military Services is a member agency of 
NITRD). 

• Proposing a cofunded mini-MURI seedling program to pilot test 
multidisciplinary approaches to the challenges described in this report. 

• Collaborating across academia, industry, and ARL to facilitate integration 
of intramural and extramural research project to address the challenges 
noted in this report. 

3.5 Conclusion 

National security risks are increasingly arising from social threats—that is, threats 
arising related to social action from group to large-scale cross-national collective 
adversarial efforts, which often take violent turns, put citizens’ lives at risk, and 
compromise global sociopolitical order. These social dynamics may result in 
undermining or destroying fundamental institutions that stabilize societies and 
facilitate democracy, including our political systems, kin systems, financial systems, 
religious systems, public health systems, and educational systems. National security 
threats that place our Warfighters in danger—both domestically and abroad—arise 
when adversaries disrupt democracy, capitalism, humanitarian operations, and 
citizen access to fundamental services. Using a variety of tactics, adversaries are 
increasingly exploiting vulnerabilities in financial markets, cyber systems, social 
media, political processes, and even R&D activities by focusing on the social factors 
that make the foundations of any society susceptible to chaos. The capacity to detect 
and prevent multifarious attempts to undermine social systems is critical to the Army 
mission by providing situational awareness and more effective operational and 
resource allocation decision-making. For over 100 years, the state of the art in social 
science research has relied on observational and self-report (survey) methods to 
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measure states and trends in large-scale collective attitudes and actions, as well as 
statistical models that defy social realities. Yet, these measurement methods and the 
models that use the measurements as data inputs are known to suffer from a high 
degree of bias, with relatively low predictive capacity. New technologies are 
emerging, however, to enable more objective and less intrusive capabilities to sense 
shifting social states (e.g., transitions from peaceful protest to violence; diffusion of 
social influence across a large collective). Moreover, new methods to model social 
dynamics, which treat social groups as complex systems as opposed to a simple 
aggregation of individual behaviors and actions, offer the promise of more accurate 
and predictive models. Still, challenges remain to be addressed that require new basic 
research approaches described in this report. 
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4.  Learning and Reasoning in Complex Data Environment 

Authors: Tien Pham, Brian Henz, and Purush Iyer  

4.1 Introduction 

The increased prominence of AI approaches over the past 25 years has been boosted 
in large part by the adoption of statistical and probabilistic methods, the availability 
of large amounts of data, and increased computer processing power. Over the past 
decade, the AI subfield of ML, which enables computers to learn from experience 
or examples, has demonstrated increasingly accurate results, causing much 
excitement about the near-term prospects of AI. While recent attention has been 
paid to the importance of statistical approaches such as deep learning, impactful AI 
advances have also been made in a wide variety of other areas, such as perception, 
natural language processing, formal logics, knowledge representations, robotics, 
control theory, cognitive system architectures, search and optimization techniques, 
and many others.1 
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4.2 Objectives, Scope, and Goals 

As numerous studies have made clear, the Department of Defense (DOD) must 
integrate AI and ML more effectively across operations to maintain advantages 
over increasingly capable adversaries and competitors.2  It is envisioned that future 
military operations will involve teams of highly dispersed Warfighters and robotic 
agents operating in distributed, dynamic, complex, cluttered environments. Most 
current research (and success) in AI and ML is done with extremely large 
collections of relatively clean, well-curated training/operational data, with little 
background noise. Army domains, on the other hand, present rapidly changing 
situations; noisy, incomplete, and potentially erroneous data; small numbers of 
samples for many important cases; and strong impacts of deceptive adversaries. 
Research on learning and reasoning with such data is not yet well motivated for 
commercial applications. The goal of this ASPSM workshop on Learning and 
Reasoning in Complex Data Environment is to understand the near- and far-term 
implications of the AI and ML capabilities and developments within the 
challenging context of operating at the tactical edge. 

ASPSM topics include but are not limited to the following: 

• Adversarial distributed ML  

• Robust inference and ML with conflicting sources 

• Adaptive online learning in real time 

• Adversarial reasoning integrating learned information  

• Resource-constrained adaptive computing for AI and ML 

4.3 Focus Areas and Discussions 

The meeting focused on 2 specific questions: 

1) What are the key AI and ML technical gaps that ARL needs to address with 
respect to the Army’s complex data environment? 

2) What are the key user requirements and use cases with available relevant 
data sets?
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4.4 Focus Area 1: What Are the Key AI and ML Technical Gaps 
that ARL Needs to Address with Respect to the Army’s 
Complex Data Environment? 

Discussions during this breakout session identified multiple research gaps that ARL 
must address while maintaining reasonable expectations of outcomes, while 
drawing distinctions with the research interests of the computer science industry. 
The gaps identified are contained within 4 themes, namely, Trust in Human‒Agent 
Teaming (HAT); Continuous Learning; Common-Sense Reasoning; and the 
Tradeoffs between Information-Poor Data and a Plethora of Sensors, and Impact 
on ML Approaches. Deemed important, the gaps provide topics for collaboration 
between academia and ARL through ARL’s Open Campus initiative. 

4.4.1 Trust in Human‒Agent Teaming (HAT) 

The vision of the future Army of 2035 as presented through the ARL AI/ML 
Essential Research Area (ERA) campaign leads portrays autonomous agents 
(robots) working in collaboration with Soldiers. Given this scenario, the panel 
discussed the main issue guiding interaction between a robot and a human handler 
as being one of trust, the ability to share each other’s mental models, and 
management of limitations (physical and cognitive) given the limited bandwidth in 
exchanging information between the two. Of course, the problems are exacerbated 
when a group of human beings interacts with a group of robots/autonomous agents. 
Specific issues include brittleness in current ML-based approaches, as well as the 
effect of adversarial actions; indeed, insider threats and cybersecurity issues 
complicate interactions in human–agent teams especially under the fast tempo of 
actions in a theater of operation. The panel also considered the lessons that can be 
learned, generalized, and applied to HAT, including how canine units train and 
operate, how mental models are built, and how limitations are accounted for. Apart 
from these technical questions, the panel opined that ethical questions in a human–
agent team need to be addressed, too; for example, the common question that is 
currently being posed in deploying autonomous vehicles is assignation of blame in 
the event of an accident. At the end of the day, all of the interactions assumed here 
between members of a HAT are predicated on the assumption that both humans and 
machines have access to their internal state, which they can communicate to other 
entities. 

4.4.2 Continuous Learning  

Explainable AI is the current buzzword—in which the goal is to explain the actions 
of an ML algorithm in terms of overall functionality of an implementation—and is 
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definitely a holy grail at this point. While explainable AI is interesting in and of 
itself, it will likely be a critical component of continuous learning, where a robot 
(or an autonomous system) can learn from a human and its experiences in a 
continuous manner. Soldier after-action reports are written to drive the decision 
making, to learn about the adversary, and to devise tactics and strategies. If AI 
components will be part of a HAT, then it is obvious that continuous learning will 
have to play a part in developing robust AI systems of the future. Indeed, 
explanations can help with the learning process (in human–child or apprentice–
master relationships) and help the learner develop a causal model/mental model to 
explain observations.  

There are several questions that need to be answered. A primary question is how to 
formulate and address agent-centered teaching/learning. Lessons learned from the 
failure of massive open online courses and the prohibitively expensive small class 
sizes in human learning (in K‒12 education) suggest that trying to teach an 
autonomous agent new skills (based on an analysis of its capabilities at any point 
in time) would be a challenging technical problem, and likely an expensive problem 
to solve. However, it will be necessary if continuous learning needs to be 
successful. The earlier reference to the relationship between a dog and its handler 
is germane here; will a robot need to be trained by a Soldier so that they can adjust 
to each other’s idiosyncrasies? If so, what are the ramifications of 
“particularization” to interactions in a group setting? A second foundational 
question that was discussed by the panelists was the role that generalization from 
examples, or domain adaptation, could play in continuous learning. In particular, 
the panelists wondered if domain adaptation could be made unobtrusive and 
continuous. Current methods of domain adaptation are in their infancy, but there is 
hope that implementations of Bayesian learning, if done in a low-cost, incremental 
manner, could lay the foundation for true continuous domain adaptation. There are 
at least 2 examples of never-ending learning being tried right now: the Never-
Ending Language Learning at Carnegie Mellon University and the RoboBrain 
project at Stanford. In some sense, these experiments can be considered as brute-
force approaches, making invention of a science of continuous learning necessary. 
However, learning implies the communication of ideas, which implies the need for 
a language to express thoughts and ideas (or concepts in a robot’s internals). 
Clearly, therefore, there is a need for continuous generation of ontology 
characterizing new concepts for continuous learning to succeed—a great challenge 
in and of itself.
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4.4.3 Common-Sense Reasoning 

Children do not solve partial differential equations to predict trajectories in a 
number of occasions: skip steps to climb, throw a ball, catch a ball, or tip over the 
cookie jar on a high shelf. Similarly, children bond with their grandparents without 
any instructions, or learn to say “thank you” or “please” with minimal instructions. 
There is, of course, a plethora of social science theories and principles that explain 
human behavior, but none of them have computational content. Principles such as 
path of least resistance or temporal continuity in parsing stories are used to explain 
a behavior post-facto. Similar invariants can be stated in explaining dynamics or 
motion (for an example, see the study of predatory behavior of brown bats using 
sonar beams by PS Krishnaprasad at the University of Maryland*). However, 
synthesizing such behavior from ground zero is a lot harder. But that is precisely 
what autonomous systems of the future need to be capable of doing, without 
explicating high-dimensional representations of the world around them and 
complicated algorithms acting on those representations. While there are attempts at 
formalizing common-sense reasoning, the area is still in its infancy. A potentially 
lucrative approach could be to generalize Kahneman and Tversky’s work, for 
instance, to derive computational principles that could be the basis for quick 
reasoning by autonomous systems. 

4.4.4 Tradeoffs between Information-Poor Data and Plethora of 
Sensors, and Impact on ML Approaches 

While this topic was a hodgepodge of ideas, all discussions centered on the current 
popularization of deep learning. While it is clear that convolutional neural networks 
(CNNs) work like a charm in certain specific applications, the use of CNNs in 
situations where there is a lot of nonsensical data, or less meaningful data, as in 
military settings, is an open question. In particular, the panel discussed whether it 
is possible to build sensor models into CNNs. Furthermore, the panel opined that 
the flip question of whether CNNs can be built into a network of sensors is also 
worth pursuing. The latter is especially important if we wish to have reasoning at 
the edge, in the sensor fabric, so that the need for communicating huge amounts of 
data to a central server is reduced. An additional point made was that, in spite of 
the success of CNNs, inference mechanisms in current use are too slow—on the 
order of 30 frames per second on multicore hardware. Being able to process bursty 
data on a sensor fabric would definitely be challenging. In particular, processing 
rates of 100 frames per second would indeed revolutionize the use of CNNs at the 
edge. 

                                                 
* https://isr.umd.edu/~krishna/images/bats_in_pursuit_3348.pdf. 
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Assuming sensor fabrics are targeted for research on ML, which falls squarely into 
the domain of ARL’s efforts in the Internet of Battlefield Things (IoBT), the central 
question would be how nodes of an IoBT network can start with a model and learn 
from data, in a self-aware manner. Importantly, it was argued that confidence-based 
learning, and correlation among sensors, could be used to build robustness against 
attacks from adversaries during the learning process. Finally, it was argued that 
learning needs to be calibrated to be both smooth and slow to avoid data poisoning 
adversarial attacks.  

A final holy grail-style challenge was raised at the meeting: Can learning be 
parameterized so that it can be used in a “plug and play” manner? Indeed, this lofty 
goal would require that typical ML applications be robust, over-provisioned (such 
as the human immune system), self-aware, capable of carrying out self-repair, and 
so on. 

4.4.5 What Must ARL Do to Address These Gaps?  

Silicon Valley companies such as Twitter, Facebook, and Google have access to 
voluminous data that they guard zealously. However, when they do need help, they 
release versions of the data and set up challenge problems for the academic 
community to participate in. Could ARL, using its Open Campus initiative, create 
such a framework? Clearly, ARL is privy to data that has national security 
implications. But it does have the chance to bring people and algorithms in, and test 
their data on new ideas and new approaches. Making this happen in a consistent 
way that meets the constraints of the US Government and rules that academics play 
by could have a positive impact on DOD’s capabilities in the essential areas of AI 
and ML. 

4.5 Focus Area 2: What Are the Key User Requirements and Use 
Cases with Available Relevant Data Sets? Gaps and 
Recommendations? 

4.5.1 Complexity of Data for the Army; Collection, Storage, Processing, 
Analysis and Understanding 

One of the primary gaps identified by the attendees was the lack of relevant Army 
data sets for training AI and ML algorithms. Possible causes of this gap were 
identified as access control, knowing the location, true lack of data, and lack of 
useful data. One suggestion that was voiced multiple times was the relevancy of 
available data, so while the Army has a number of data sets, these are either not 
applicable or uncollated/labeled and oftentimes both. A possible solution to this is 
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to develop a capability to collate these data sets and make them available to a wider 
user base. Some potential sources of existing data were identified: 

• Night Vision and Intelligence Center of Excellence (ICoE) with availability 
on the Defense Systems Information Analysis Center (DSIAC) (formerly 
the Military Sensing Information Analysis Center [SENSIAC]). 

• US Army Aviation and Missile Research, Development and Engineering 
Center (AMRDEC) data sets include data on missile and target acquisition, 
Mission Command Battle Laboratory, Leavenworth, Kansas: 

o Issues include variations in signatures collected given various 
scenarios. 

o IBM Watson attempts to learn doctrine from tactics, understanding 
critical information, and the utility of trained AI at the tactical level. 

• US Army Training and Doctrine Command (TRADOC), G2 data includes 
multiple scenarios, and some data archives: 

o Issues include need for subject-matter expert input and feedback for 
training sensors at the edge, online learning to identify “zero day” 
attacks, incremental learning, and DOD-specific scenarios. 

4.5.2 Goals for the AI and ML in Complex Environments 

A number of goals were identified by participants in this panel that will provide the 
Army with useful deployable AI capabilities: 

1) Focus on lower echelon. 

2) Help manage forces; attempt to capture the wisdom of the commander. 

3) Recognize, act as filter for commander.  

4) Reduce operator workload. 

5) Teach with humans for learning new environments. 

6) Learn by instruction. 

7) Intelligence, surveillance, and reconnaissance (ISR) synchronization. 

8) Situational development—tracking classifying targets, etc.  

9) Support targeting—human in loop, battle damage assessment. 

10) Situational understanding—learn patterns, identify missing pieces, and so 
on. 
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11) Intelligence Preparation of Battlefield (IPB) update threat models, support 
wargaming. 

12) Operational resource management—very important at the Tactical 
Operations Center level as fuel and water are the biggest problems in the 
Army (Communications-Electronics Research, Development and 
Engineering Center [CERDEC]) 

This list is not exhaustive but can be summarized as a need to support the lower 
echelon by providing useful information to reduce cognitive load, with systems that 
learn over time from the operator (gain wisdom). One of the difficulties, or 
advantages, of adaptive AI, is that over time this AI becomes subjective and more 
tailored to the individual user’s preferences and risk tolerance. 

4.5.3 Utility of Simulations and Synthetic Data 

Current efforts have not been successful due to accuracy of simulations, unrealistic 
simulated battles, and limited fidelity of real clutter. Most successes of generated 
or synthetic data currently are through perturbation of real imagery. Use of 
simulations in a tactical environment to provide back-of-the-envelope calculations 
for analysis is viewed as a potential advantage for planning. 

4.5.4 How Do We Validate That Systems Are Improving? 

Much of the currently deployed ML does not adapt or learn on the fly. One open 
question is how do we objectively measure if a decision is correct? Some 
applications will require this type of adaptivity, including network security where 
a static model may not identify a zero-day attack. What is the best way of adapting 
(i.e., using a sliding window to only learn from recent observations, to continuously 
incorporate new observations, or something in between using some plasticity in 
learning)? 

4.5.5 How Do You Learn at the Edge? 

There is not a significant amount of active research in industry or academia focused 
on learning with limited storage space, connectivity, power, and other physical 
constraints. Industry is working under the assumption of full connectivity and is 
focused on a cloud-based platform. The Army must consider hardware, software, 
and algorithms that are resource aware. There should also be an emphasis on 
approximation and accuracy. For example, to compete against near-peer 
competitors, we need fast and accurate automatic target recognition.
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4.5.6 Reasoning About Adversary’s Intent 

An existing gap is the ability to perform planning and reasoning in a simulation 
environment. We do not have models of emergent behaviors, enemy behaviors are 
different than ours, and every theater is different (e.g., Korea vs. European Union). 
The Army needs the ability to provide context and reasoning; for example, social 
media can be used to partially provide this picture, including movement of 
equipment and random cyberattacks. 

4.5.7 Other Challenges 

• Robustness to surprise 

o Enemy tactics, techniques, and procedures (TTPs) and perceived 
enemy intent 

o Emergent behaviors 

o National Geospatial-Intelligence Agency 

o Enemy does not follow traditional phases 

• Gray zone scenarios 

o Info, cyber, kinetic/terrorist attack 

o Causal exploitation 

• Multidomain battle 

o Limited fuel for autonomy 

o Reduced signature 

4.6 Highlights and Identified Gaps 

This meeting, through presentations and discussions with Army, industry, and 
academic subject matter experts, identified 3 technical gaps that ARL must address 
for the Army to achieve and maintain a tactical offset over adversaries through 
2035. These gaps are refinements of the AI and ML ERA gaps but also provide the 
basis for developing concrete efforts to address these gaps. Following these 
highlights, recommendations are provided to address the 3 gaps identified in both 
focus area discussions as follows: 

• The first technical gap identified in both focus areas is that of trust in the 
deployed algorithms. This question of trust in AI deals with finding answers 
to a number of open questions for research including V&V of algorithms 



 

Approved for public release; distribution is unlimited.  
31 

(particularly adaptive or online learning), providing realistic expectations 
for AI, and learning individual preferences for cooperation and risk 
analysis. Particularly highlighted by Army experts is the fact that loss of 
trust in deployed AI will result in resistance to use in the field. Closely 
related to this question of trust is the continued validation of deployed 
adaptive AI algorithms on learned tasks and verification of expected 
behavior. 

• During this meeting it was recognized that many Army data sets exist from 
field tests, laboratory tests, and deployed systems. Most all of the Army 
attendees provided lists of data sets that exist within their respective 
facilities. The challenge is that these data sets are not collated in central 
locations, often contain unlabeled data, are in many different formats, and 
are of unknown or limited quality and value. Whereas academia and 
industry rely heavily upon labeled, voluminous, clean data sets for learning, 
the Army faces a real gap in this area.  

• Highlighted by most all Army attendees is the real gap in deploying AI due 
to the locality of AI, computing, and communications. This is viewed by 
many attendees as a developing gap as sensors are proliferating on the 
battlefield while the ability of the network to transport this data to the point 
of need is not improving commensurately. Prior to this meeting, this was a 
known gap, but the extent of the issue and the current growth in demand for 
pushing AI to as close to the point of collection as possible were a surprise. 

4.7 Recommendation(s) 

• ARL must develop an internally led program that provides a quantifiable 
V&V of adaptive AI algorithms and communicates the AI reasoned 
solutions to a Soldier with trust and understanding. This program will cross 
the AI and ML and the HAT ERAs. The close interaction of humans and AI 
agents in stressful environments is a unique defense application of AI and 
must be led by the Army. 

• ARL, and the Army at large, should provide resources, and ARL must lead 
the effort to capture and maintain data from across the Army as it is required 
to develop future AI algorithms and software. These data must be in an 
accessible location for Army collaboration and development efforts. It is 
also clear that for the Army to be successful in developing deployable AI, 
we must address the question of appropriate data for training; industry and 
much of the academic AI development is dependent upon these labeled, 
voluminous, clean data sets for learning. Success in this effort will lead to 
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pathways to addressing Army gaps through bringing in external 
collaborators, through data sharing; generating synthetic data with transfer 
learning to the real world; and providing a central location for Army 
researchers to share common data and environments. 

• Finally, any developed programs must consider from the beginning how 
their outcomes are affected or viable in an adversarial environment. 
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5. Uncertainty Quantification 

Authors: Ernest SC Chin, MaryAnn Fields, Jaroslaw Knap, and Brian Jalaian 

5.1 Introduction 

With the increasingly dynamic, complex, and volatile contested operational 
environment, there exists a critical need to acquire and process operational 
information at the “speed of fight” to facilitate robust decisions for the course of 
action. Understanding and integrating UQ to account for variabilities within an 
ensemble of rapidly advancing and maturing edge computing, physical and social 
models, ML, and augmented autonomy will empower superior decision aids for 
Soldier adaptability at the changing speed of fight.  
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In the following sections, we discuss 3 topics focused on UQ future readiness for 
capabilities in 1) offensive–defensive adversarial disruptions, 2) robust design, and 
3) achievability at the tactical edge. These topics culminate and converge to a set 
of research recommendations toward addressing risk and trust by means of UQ for 
robust decisions in unforeseen future battlefield scenario: 

1) Offensive–defensive adversarial disruptions: Can and how shall UQ be 
employed and incorporated into active learning to deal with sparse, 
dynamic, incomplete data and information for adversarial detection, 
mitigation, and preemptive actions? 

This topic is rooted in the research strategy to achieve tactical battlefield 
superiority with Soldier-augmented decision capability, relevant to Army’s 
needs in i) Asymmetric Vision and Decide Faster, ii) Training and 
Extrapolation, and iii) Cognitive Augmentation. This capability is 
envisioned as near-real-time abilities to a) collect, b) learn and analyze,  
c) reason, and d) infer from heterogeneous (multiple types of) data. UQ is 
crucial to these processes: 

a) To Collect:  Heterogeneous data continuously collected from various 
types of sensing devices and human intelligence are often sparse, 
spatially and temporally distributed, and incomplete. Incorporation of 
UQ practices into near-real-time data collection will allow machine- 
tracking the quality of these data (e.g., fidelity, resolution, limitations) 
and updating the confidence/trust level for augmented decision on-
demand. 

b) To Learn and Analyze:  Data analytics and ML methodologies are the 
key to understand, model, and predict from collected data. UQ is 
necessary to address confidence in the machine learning from its output. 
It guides where additional data are necessary to increase the output 
certainty for artificial decision or prediction. It is an approach to detect 
anomalies in the data, possibly deceptive in nature, and also to track rare 
events that ML from transferred knowledge (prior trained data) would 
most likely neglect. This is critical to Soldier agility and adaptability as 
it allows combatants to anticipate the unknown and mitigate disruptive 
situations. 

c) To Reason:  Reasoning often derives from attaining trust on the basis of 
cumulative simulations, mathematical causality, and statistical-
probabilistic analysis that converge to a set of conclusions for optimal 
situational outcomes. This constitutes the heart of UQ such that 
cumulative uncertainty will converge toward trust. 
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d) To Infer:  Inference is the final step to abstract and tailor outcomes from 
reasoning. Outcomes include robust options on courses of action in 
high-tempo operational environments. When communicated within the 
context of trust from UQ, this will augment and unburden combatant 
time-of-fight decisions to victory.  

Though the goals and expectations of UQ in the described scenario appear 
systematic, the technical approach and methodology to computationally 
apply, implement, and track uncertainties are quite formidable. Among 
these UQ challenges include the following: 

a. How to develop/extend/adapt fundamental mathematical/statistical 
theories to have UQ for machine learning and artificial reasoning 
models, which generate accurate UQ measures in addition to merely an 
output state, measure, or prediction.  

b. How to best organize and track fidelity of data from distributed and 
heterogeneous sources (e.g., hierarchical or ad hoc). 

c. How to evaluate the components of the system/situation and the overall 
system/situational independent and dependent variables, hypotheses, 
and objective function. 

d. Which parts of these computational tasks and decisions are best 
accomplished by machines and which by humans? 

e. How and when to best communicate UQ-derived outcomes, propagating 
up and down between elements of the distributed system (human, 
agents, sensors, system).  

In conclusion, UQ must be incorporated at every level of data processing 
and machine learning to move from the physical data to actionable 
information to augment human decision. It is not clear that current UQ 
methodologies and approaches are suitable and can be employed through 
the data-to-decision process. The following section discuss insights from 
UQ advances in multiscale, multidisciplinary modeling that can address 
these challenges. 

2) Robust design: Can and how UQ be utilized to assess risk and robustness 
(with respect to uncertainty, adversarial actions, incomplete information, 
and low-probability and high-cost events) associated with a course of 
action/decision? 

Advances in UQ applied through statistics and probability theory have made 
a significant impact spanning from the finance market to the nuclear 
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industry. The tools are used to evaluate specific designs, courses of action, 
and public danger. These include CVaR (also known as superquantile risk), 
distributionally robust (data-driven) optimization, risk quadrangle (risk-
informed modeling), and capacity-based UQ. These methods are 
particularly well-suited to problems for which a single objective can be 
readily quantified, QoI. Adapting these methodologies for anomaly 
detection leading to adversarial mitigation schemes and predicting low-
probability/high-costs events is not trivial but is very promising (relevant to 
the Army’s need for resilient command, control, communications, 
computers, intelligence, surveillance, and reconnaissance [C4ISR]-risk-
adaptive optimization/anomaly detection).  

Recent advances through a strategy in abstraction and surrogate modeling 
of multiscale complex systems have demonstrated methodologies to 
overcome computational cost time from research to development. The 
emergence of stochastic modeling for risk-informed design is paving the 
way for a new generation of beyond novel materials to improve the 
survivability and decrease the weight associated with our combat vehicles.  

These computational advances in multiscale modeling and UQ are 
opportunities for inclusion, adaptation, and optimization with risk and trust 
algorithms for a set of reasonable courses of actions or decisions (risk-
adaptive optimization). This is crucial to unforeseen scenarios, where 
objectives are not readily quantifiable. Robust human-augmented decisions 
can be the difference between victory and tragedy. Trust and the ability to 
articulate and communicate uncertainty relative to an acceptable level of 
risk are the keys to these human endeavors. 

In conclusion, UQ is pervasive and foundational from finance to 
engineering industry for decades. Recent advances in multiscale modeling 
and computational sciences stimulated a new paradigm for discovery and 
design of complex systems. Advancing UQ in concert with risk and trust 
will elevate and accelerate capabilities for robust decisions. Attaining the 
capability to articulate situational awareness, robust courses of action, trust, 
and other relevant information in a manner to unburden the Soldier’s 
command and control will be UQ’s biggest impact.  

3) Achievability at the tactical edge: What new methodologies are needed to 
allow UQ-based risk analysis and efficient/effective communication of risk 
to humans for decisions executed on the battlefield with limited edge 
computing capabilities, and heterogeneous, dynamic, and sparse 
computational resources? 
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Within the context of tactical edge today or the far future, any capability 
will be resource limited. This includes size, weight, power, computation, 
and time. In the previous discussions, the opportunities to apply UQ to 
enhance and enable an unprecedented level of the Soldier’s augmented 
ability to adapt and win the unknown battles are evident. This capability is 
envisioned at the tactical edge only through co-development of hardware 
and software for speed-to-action on the battlefield.  

Recognizing the opportunities from physics-aware modeling-to-machine 
learning-to-decisions, a holistic framework for integrating uncertainty with 
risk that balances parameters such as information, knowledge, resources, 
and trust is necessary. This demands quantifiable metrics for uncertainty 
and risk representations that complement models of human‒machine 
interaction, including trust. Continuous learning and evaluation of this 
framework’s uncertainty is necessary to account for information 
degradation, malicious information insertion, dense versus sparse 
information, and processing tradeoffs (overload/underload).  

Finally, given the recent trends in evolving architecture space 
heterogeneous :FPGA+GPU+CPU+…etc., a new class of constrained 
computational problems that include building models, optimization and 
learning, performance-accuracy tradeoffs, and human–agent messaging that 
converges toward a hierarchy of decision making is needed. Architectural 
design needs to align with such hierarchy for speed and power efficiency, 
learning from the training environment prior to the battlefield. Conversely, 
a systematic process of evaluating and optimizing architecture capabilities 
depending on resource constraints will provide a dynamic and adaptive 
capability for all scenarios (relevant to the Army’s need for Close Combat 
Capabilities ‒ Hierarchy of Decision Making to match Architectural 
Resources ‒ AI Understanding Humans). A key challenge to enabling 
support for Warfighters interacting with these systems is organic tools and 
methods in this framework that assist humans in understanding and shaping 
the policies, values, and preferences assumed by automated systems. The 
technology gap awaiting for discovery is the mechanism to interface and 
communicate computational outcomes within the context of the operational 
environment for human decisions. This will support new kinds of human–
unmanned autonomous system collaboration with mixed-initiative 
interaction and augmented human cognition capabilities. 

In conclusion, having augmented decision tools at the tactical edge requires 
the co-development of hardware and software optimized to implement 
capability needs and adaptive to austere-resource constraint environments 
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without compromising speed. A novel framework is necessary to 
complement machine and human differentiation of trust, risk, and data. 

5.2 Recommendations 

In summary, UQ is pervasive across numerous engineering and human sciences 
domains. Advances and implementation of UQ in a number of far future Army 
science and technology needs include the following: 

• Asymmetric Vision and Decide Faster ‒ Training and Extrapolation ‒ 
Cognitive Augmentation 

• Resilient C4ISR ‒ Risk ‒ Adaptive Optimization/Anomaly Detection 

• Close Combat Capabilities ‒ Hierarchy of Decision Making to match 
Architectural Resources ‒ AI Understanding Humans 

• Materials by design and on-demand to lower combatant risk with improved 
survivability and decreased weight burden associated with our combat 
vehicles ‒ Risk Informed Design ‒ Stochastic Modeling  

The following are strategic recommendations to harness the strength of UQ for 
Army priorities: 

1. Capture low-hanging fruit; adapt, modify, and integrate into data analytics 
and information research:  

a. Combine Bayesian frameworks and generative adversarial networks 
(GANs) for anomaly detection. 

b. Apply nonlinear autoregressive schemes on multifidelity data in 
combination with dynamical systems theory (tracking manifolds) 
for robust inference or classification, avoiding deceptive data. 

2. Develop self-optimizing framework UQ compatible with data/model-to-
decision:  

a. Combine risk measures and uncertainty sources by including 
uncertainty in the objective functions and constrains, both for 
physical and information systems. 

b. Compare stochastic outputs using objective measures (e.g., 
superquantiles).  
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3. Develop methodologies that are suitable for continual co-design of 
hardware and software, and are adaptive to the needs of implementing and 
communicating UQ-enhanced Soldier-augmented decision. 

5.3 Topic Participants 

• Topic 1: Machine learning enabling (agility and adaptability) 

• Topic 2: Advances in physical and social models (fidelity and 
predictability)  
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5.4 Problem, Barriers, and Approaches 

The following table summarizes much of the workshop discussions by organizing 
them as problems of multidomain battle, with corresponding technical limitations 
and barriers, and the possible UQ-based approaches to overcoming those 
limitations and barriers.  

Relevance to multidomain 
battle 

Limitations and 
barriers 

Possible UQ approaches to overcome 
limitations and barriers 

Asymmetric vision and 
decide faster (agility and 
adaptability) 

Speed from transferring 
expertise and data-to-
decision 

Training and extrapolation (limited 
resources) from different environment 

• Dinky, dirty little data Communicate and 
propagate uncertainty up 
and down syst. 

Continuum of superquantilies; adapt risk 
preference base on Soldier state 

Resilient C4ISR networks 
(fidelity and predictability) 

Robustness; adversarial; 
risk-to-course of action 

Risk-adaptive design/optimization; 
physical model -> anomaly detection 

• Dinky, dirty little data Predicting low-
probability/high-cost 
events 

Buffer probabilities to quantify tail weight 
and probability; set-based (multimodel)-
estimate bounds on prob.; information-
theoretic methods 

Close combat capabilities 
(battle-speed relevant) 

Spine for continuous 
information (knowledge, 
trust, risk, degradation, 
malicious info., etc.) 
analytics 

Edge computing - hierarchy of decision 
making and need to match architectural 
resources to hierarchy 

• Local (tactical) 
assessment and 
decision 

Distributed system 
optimization 

Physics-aware statistical models; Bayesian 
neural networks 

Future modernization -
design 

Robustness Risk-informed design: eval. components and 
system (ind. and dep vari., hypotheses, obj. 
func., simu.); stochastic modeling 
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5.5 Agenda 

The workshop was organized along the following agenda. 

Time Event Topic lead 
0800–0900 Registration (and continental breakfast)  

0900–0910 Welcome/introduction and purpose of the meeting Dr Kott (via Phone) 
0910–0930 (Overview of the Army multi-domain battle/UQ challenges) Mr Michael A Meneghini 
0930–0945 UQ technical context Dr Tien Pham 

0945–1000 UQ Topic 1: Future readiness for adversarial detection, 
mitigation and preemptive actions 

Dr Brian Jalaian 
Dr Patrick Langley 

1000–1010 Break  

1010–1025 UQ Topic 2: Future readiness for robust decision & design Dr J Knap 
Dr George Karniadakis 

1025–1040 UQ Topic 3: Future readiness at the tactical edge Dr Mary Anne Fields 
Dr Emre Neftci 

1040–1100 Breakout session guidance  

1100–1130 Breakout sessions (intro, frame of reference, development of 
discussion points) Session facilitators 

1130–1230 Group lunch  

1230–1500 Concurrent breakout sessions (discussion, conclusions, 
recommendations, etc.) Session facilitators 

1500–1515 Break  

1515–1600 Brief out: Topic 1 – Outcomes in priority Dr Patrick Langley 
1600–1615 Brief out: Topic 2 – Outcomes in priority Dr George Karniadakis 
1615–1630 Brief out: Topic 3 – Outcomes in priority Dr Emre Neftci 
1630–1700 Discussion/summary Dr Chin/Knap 
1700 Meeting adjourned … 
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List of Symbols, Abbreviations, and Acronyms 

AI artificial intelligence 

AMRDEC US Army Aviation and Missile Research, Development and 
Engineering Center 

ARL US Army Research Laboratory 

ARO Army Research Office 

ASA(ALT) Assistant Secretary of the Army for Acquisition, Logistics, and 
Technology 

ASPSM Army Science Planning and Strategy Meeting 

C4ISR command, control, communications, computers, intelligence, 
surveillance, and reconnaissance  

CERDEC Communications-Electronics Research, Development and 
Engineering Center 

CISD Computational and Information Sciences Directorate 

CNN convolutional neural network 

CPU central processing unit 

CVaR conditional value-at-risk 

DARPA Defense Advanced Research Projects Agency  

DASA(RT) Deputy Assistant Secretary for Research and Technology 

DHS Department of Homeland Security  

DOD Department of Defense 

DSIAC Defense Systems Information Analysis Center 

EEG electroencephalography 

ERA Essential Research Area 

ERDC Engineer Research and Development Center  

fMRI functional magnetic resonance imaging 

FPGA field-programmable gate array 

GAN generative adversarial network 
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GPS global positioning satellite 

GPU graphics processing unit 

HAT human–agent teaming 

I2WD Intelligence and Information Warfare Directorate  

ICoE Intelligence Center of Excellence 

IoBT the Internet of Battlefield Things 

IPB Intelligence Preparation of Battlefield 

IRB Institutional Review Board  

ISR Intelligence, surveillance, and reconnaissance 

IT information technology 

ML machine learning  

MURI Multidisciplinary University Research Initiative 

NITRD Networking and Information Technology Research and 
Development 

NVESD Night Vision and Electronic Sensors Directorate 

PII personally identifiable information 

QoI quantity of interest 

R&D research and development 

SEDD Sensors and Electron Devices Directorate  

SENSIAC Sensing Information Analysis Center 

SLAM simultaneous localization and mapping 

TTPs tactics, techniques, and procedures 

U university 

UAV unmanned aerial vehicle 

UCR University of California, Riverside  

UQ Uncertainty Quantification 

VTD Vehicle Technology Directorate 
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V&V validation and verification 

WMRD Weapons and Materials Research Directorate 
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