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Preface 

This document reports on the methods and best practices for performing greyscale 
lithography using a Heidleburg direct-write laser (DWL) system owned and 
operated by the US Army Research Laboratory (ARL). The techniques involved 
are not specific to multilayer lead zirconate titanate (Pb(ZrxTi1-x)O3 (PZT)) stacks 
and can therefore be readily extended to any multilayer composite thin film.  This 
document was created with the expectation that fellow researchers will use it to 
achive similar photolithography results for their own microfabrication applications; 
therefore, its primary focus is the lithography process. The electrical characteristics 
of the PZT films are described in detail in Benoit et al.1 
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1. Introduction 

Micromachining techniques for wafer substrate processing are constantly pushing 
the limits of microfabrication technology. Photolithography, which enables transfer 
of such small designs, is traditionally known as a binary technique, since each area 
of the wafer is either completely protected from or completely exposed to the 
radiation source. Single layer thin film lead zirconate titanate (Pb(ZrxTi1-x)O3 

(PZT)) microelectromechanical systems (MEMS) have been shown to improve the 
performance of a wide range of sensors and actuators for robotics, RF devices, and 
power conversion.2 Using this process to transfer a staircase pattern to a wafer 
requires a photolithography step and an etch for each stair step.3  

More recently, the successful microfabrication of multilayer PZT and platinum (Pt) 
has prompted a requirement to electrically address individual metal layers or 
connect alternating layers to make bi-directional actuators, sensors, and capacitors. 
Smith et al. previously demonstrated  conceptual and experimental techniques to 
etch and access individual layers of metal and dielectric stacks with a single mask 
and ion-mill step.4 This approach relies on greyscale lithography to ion-mill  
low-aspect ratio ramps (Fig. 1a) or multilevel steps (Fig. 1b) into a multilayer stack 
of alternating non-conductive/conductive dielectric/metal materials. Once etched 
(Fig. 2), the wafer can be wet etched with a chemically preferential etchant that will 
clear the dielectric from the metal regions. This exposes the individual metal layers 
for subsequent connection with standard Au trace routing so that voltage may be 
applied to these layers (Fig. 3a). This greyscale transfer process was accomplished 
with a High Energy Beam Sensitive (HEBS) glass greyscale test mask5 in bare 
silicon (Si) wafers and in Si wafers with a 4-layer stack of PZT and Pt on Si 
substrates coated with 0.5 µm silicon dioxide. In both cases the scanning electron 
microscope (SEM) micrographs show clear evidence of pattern transfer of the 
discrete greyscale steps into the multilayer material (Fig. 3b). Since ion milling is 
a physical process, it extends to all metal/dielectric capacitive stacks. 
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Fig. 1 Ramped greyscale resist pattern in (a) fine gradation (256 levels) between gray level 
on a stack of alternating layers of metal and oxides and (b) stepped grey coarse gradations  
(7 levels) between level. Lighter color represents thinner resist. 

 

 

Fig. 2 Desired wafer profile after ion milling. (a) top and (b) side views of ramped profile 
from Fig. 1a, c) side view of ion-milled profile from Fig. 1b. 

Greyscale Pattern Greyscale Pattern 
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Fig. 3 Exposed metal layers. (a) Top and side view of ramped pattern with a notional 
interdigitated electrode multilayer stack and (b) SEMs of exposed metal layers in 4-layer  
0.25-um PZT/Pt stack from a single ion mill. The greyscale pattern in this case was generated 
using HEBS glass.  

While the HEBS glass is effective for implementing greyscale lithography, at 
approximately $2,000 per 4-inch mask plate, it is also quite costly. DWL greyscale 
(DWLG) lithography, an economical and flexible alternative for rapid device 
prototyping, is a microfabrication technique that uses a laser beam, modulating its 
intensity as it scans across the resist surface, leaving the photoresist partially 
exposed so that a proportional thickness remains after the resist is developed. This 
report presents a process for performing greyscale lithography on multilayer 
PZT/Pt/IrO2 wafers using a Heidelberg DWL 200. The DWL 200 has a theoretical 
range of 256 intensity (or grey) levels and a lateral resolution of 0.25 µm. Each grey 
level in the design corresponds to a specific thickness. This technique enables 
MEMS designers to create patterns in resist with a single lithography step that can 
be etched into the layer(s) below. The reduced number of processing steps 
dramatically decreases fabrication time and mitigates misalignment effects, 
enabling the rapid realization  of multilayer PZT MEMS devices. Access to the 
intermediate electrodes in these devices permits higher capacitance densities 
through parallel wiring, bidirectional actuation of movable devices, and increased 
control of physical displacement with applications in micromechanical logic and 
tunable RF circuits. 

2. Methods 

Multilayer PZT wafers were fabricated according to the process described by 
Sanchez et al.3  in order to achieve highly (001) textured films. Four-layer PZT 
stacks at thicknesses of either 0.25 µm or 0.50 µm per layer, with a bottom electrode 
of 320/1000-Å thick TiO2/Pt and intermediate and top electrodes of 500-Å thick 
IrO2 (Fig. 4), were deposited on Si substrates with 5000-Å thick thermal SiO2. 
Process development was performed with 6-inch Si wafers of (100) orientation, 
then adjusted using multilayer PZT wafers before final etching. 
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Fig. 4 Cross-sectional diagram of a multilayer PZT stack 

The wafers were coated with 2.75-µm Clariant AZ5214E photoresist using an  
EVG 120 automated resist processing system. A double-coat process (i.e., each 
photoresist spin performed at 1250 rotations per minute) was used to achieve the 
desired thickness. A Heidelberg DWL 200 with 5-mm write head in greyscale mode 
was used to pattern the photoresist, where grey level 0 was zero exposure and grey 
level 255 was full exposure. Some electrode features were designed to function as 
ramps that exposed the full thickness of the PZT stack; others were designed to 
expose only certain buried electrodes. After the exposure, the image was developed 
in AZ300MIF developer solution. To prepare for ion milling, the wafer was UV 
cured at 175 °C using an Axcelis UV photostabilizer to further harden the resist. 
(Because the photoresist thickness actually shrank approximately 0.2 µm after UV 
curing, the final maximum thickness was 2.55 µm.) This thickness was chosen so 
that each grey level would correspond to 10 nm of photoresist (255 grey levels × 
0.01 µm = 2.55 µm of photoresist). A 4wave Inc. 4W-PSIBE ion beam etch system 
was used for the single ion milling step. A secondary ion–mass spectrometer 
endpoint detection system stopped the ion milling process after exposing and 
removing the bottom Pt layer. Subsequently, the resist was removed with an O2 
plasma in a Metroline M4L Plasma Asher/Etcher. 

The primary methods used for analysis included visual examination with an optical 
microscope, scanning of electron microscopy (SEM) images, and stylus 
profilometry to evaluate the accuracy of the process when compared to the design. 
The development time and uniformity at the die and wafer levels were also 
monitored. To accelerate iterative design, only 6 die were written onto the wafer, 
distributed evenly around the center and from center to edge. This enabled short 
write times of 30 min while still providing uniformity and resolution data. 
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3. Results and Discussion 

3.1 Photoresist Rehydration 

Photoresist development times varied wildly after exposure, ranging from several 
minutes to over an hour, until the following standard resist rehydration process was 
consistently used. After coating, each wafer remained in ambient conditions in the 
cleanroom for over 12 h to enable rehydration of the resist. This increased 
uniformity across the wafer, as well as repeatability of results and development 
times between wafers. Placing the wafer in water prior to exposure had the same 
effect as no rehydration at all, likely because leaving the wafer in ambient 
conditions allows it to reach equilibrium with the humidity value in the room 
(typically 40% at 21 °C). Consistent with the results, literature suggests that the 
optimal rehydration state of the wafer is 45–50%, and Heidelberg Instruments 
recommends at least 12 h of rehydration in air before exposure.6 Rehydration values 
significantly above or below the ideal cause extended development times and poor 
uniformity.  

An experiment was conducted to decrease the rehydration time by submerging the 
entire wafer in water before and after exposure. The results (listed in Table 1) 
indicate that rehydration in water does not drastically reduce the development time, 
but 15 min of rehydration does optimize the uniformity of photoresist development 
(i.e., the time between clearing the first and field and last field) across the wafer. 

Table 1 Rehydration tests for development of photoresist exposed by DWGL 

Trial Rehydration 
before (min) 

Rehydration 
after (min) 

Development 
time (min:s) 

Time between 
first and last 
fields (min:s) 

None 0 0 6:57 1:02 
Before 15 0 5:42 0:14 
Both 15 15 5:38 0:23 
After 0 15 6:44 1:14 

Before 30 0 6:15 0:35 

3.2 Stripe Overlay 

The Heidelberg DWL 200 writes along the y-direction in stripes 200-µm wide 
(when using the 5-mm write head), causing visible “stripe lines” in partially and 
completely exposed regions positioned at the gaps between sequentially written 
stripes (Fig. 5). This problem was due to insufficient overlap between stripe lines, 
leaving lines of underexposed (and thus underdeveloped) resist. Overdeveloping 
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the resist could remove the stripe lines, but would wash out the highest (i.e., 
thinnest) grey levels. This issue was resolved by changing the focus and ramp 
settings in the tool. (Focus modifies the convergence point of the laser between two 
different stripes; ramp adjusts the exact width between stripes during exposure.) 
Initial trials had used the intensity, focus, and ramp settings that were set for mask 
writing mode, which was optimized for a 1-µm film of AZ1518 photoresist.7 

 

Fig. 5 Greyscale pattern after development, with visible stripe lines and chromatic changes 
in resist thickness 

To optimize the focus, the center fields of an 11 × 11 grid with one die per field 
were written, varying focus values in steps of 5 units from –20 to 60*, encompassing 
the initial value for mask writing mode of 0. After development, visual inspection 
revealed that a focus value of 20 neither underexposed nor overexposed the stripe 
edges. This process was repeated, varying the ramp value by 0.1 units from 362.65 
to 364.65 around the initial value of 363.65*. Unlike the focus value, high ramp 
values produced the image shown in Fig. 6a and low values produced that shown 
in Fig. 6c. The process was again repeated, varying the ramp value by 0.01 units 
from 363.55 to 363.70. The ramp value required adjustment after changing to a 
PZT substrate; the best values for Si and PZT were 363.92 and 363.60, respectively  
(Fig. 6b). Profilometry was used to determine that level 236 was the highest 
resolved grey level that was not washed away during development (Fig. 7).  

                                                
* Note: Heidelberg does not use units for these values. 
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Fig. 6 Optical images of exposures on PZT coated substrates with a) ramp = 363.55, b) 
ramp = 363.60, and c) ramp = 363.65. Since there are gaps in the resist at the stripe line in a) 
and c), b) is the optimal setting. 

 

 

Fig. 7 Staircase profile a) before focus and ramp optimization (overdeveloped to remove 
stripe lines) and b) after focus and ramp adjustment 

A linear chromatic aberration was still visible in the partially exposed areas of resist 
after focus and ramp optimization, and stylus profilometry verified that the stripe 
edges disrupted the pattern height by up to 100 nm (Fig. 8). Subsequent pattern 
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designs placed all electrode contact areas inside a single stripe line to avoid edge 
effects. 

  

Fig. 8 Profile of a ramp using 64 grey levels scanned in the horizontal direction with respect 
to the wafer flat. Even after optimization, discontinuities at stripe boundaries appear every 
200 µm.  

According to Heidelberg Instruments*, stripe lines can be diminished by using the 
n-over feature and scaling the laser intensity. The n-over feature offsets successive 
strips by a distance of 

 𝑊𝑊(𝑛𝑛−1)
𝑛𝑛

, (1) 

where W is the stripe width and n is the n-over value. For example, an  
n of 4 will overlap two 200-µm stripes by 150 µm, thus quadrupling the time to 
expose the same area on a wafer. This option was explored briefly with an 
n of 10. Though there were no stripe lines in completely exposed regions, 10 times 
the stripe lines were observed in partially exposed regions (Fig. 9). Because the 
amount of time the n-over feature added to each write was excessive, it was not 
investigated further.  

                                                
* Personal correspondence with Heidelberg. 



 

Approved for public release; distribution is unlimited.  
9 

 

Fig. 9 Photoresist exposure with n-over value of 10 

3.3 UV Cure 

A bake/UV cure step was used to harden the resist prior to milling with the ion 
beam. The resist coating spin speed was chosen to produce a height of 2.55 µm 
after curing, such that each grey level would correspond to a height change of  
10 nm, and all stylus profilometry was done after curing to ensure an accurate 
characterization of the resist profile. Bake temperature was also investigated  
(at 150 °C, 175 °C, 200 °C, and 220 °C), the outcome being that temperatures over  
175 °C caused delamination and flaking of the resist. Although this did not appear 
to affect the integrity of the photoresist, it did produce particles that affected the 
pattern on the wafer. Different baking temperatures could result in different etch 
rate selectivity, which was not investigated.  

3.4 Ion Milling 

After the greyscale process was optimized on  PZT substrates,  the wafers were 
etched by ion milling to a depth exceeding 1.25 µm (for design of the PZT stack 
with 0.25-µm layers) or 2.25 µm (for design of the PZT stack with 0.50-µm layers). 
Stylus profilometry determined that the lowest grey level that would be transferred 
into the substrate without remaining in the excess resist was 134 for the 1.25-µm 
stack and 78 for the 2.25-µm stack. This means that the usable range of grey levels 
that would be transferred into the substrate was not the theoretical 256, but only 
102 for the 1.25-µm stack or 158 for the 2.25-µm stack. The profilometry also 
revealed a slight selectivity in the etch rates of the substrate and the resist  
(Fig. 10). The ratio of PZT etch rate to resist was 1.5:1; i.e., the resist height had to 
be 1.5 times less than the desired height of the structure. This information was used 
to modify the design such that any feature that exposed an intermediate electrode 
layer was written with the experimentally determined grey level corresponding to 
the height position of that electrode in the stack. 
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Fig. 10 Optimized resist profiles showing cross-wafer variation of photoresist height and 
resolution of greyscale lithography process with Heidleburg DWL 200. Note that each grey 
level step is 20 µm wide; therefore, horizontal scale is not the same for each plot. 

3.5 Photoresist Roughness 

Exposing an entire 6-inch wafer took 4.5 h and the single-ion mill etch per wafer 
took between 2 and 4 h.  Though lengthier than an individual exposure and ion mill 
for the binary resist process, this is a significant time savings over the multi-mask, 
multi-etch process and precludes the potential for misalignment between layers. 
Roughness of grey levels in the resist was an issue, however. Traditional binary 
photolithography produces smooth, straight edges, while the greyscale exposure 
creates roughness in the photoresist as seen in the photoresist ramp in Fig. 11. This 
is a characteristic of the high-contrast nature of AZ5214 photoresist, which makes 
it extremely susceptible to minor variations in DWL laser intensity. In fact, as 
shown in Figs. 10 and 12, the stair patterns are not linear across the entire grey level 
spectrum. Roughly the upper 75 and lower 75 grey levels follow a nonlinear curve, 
which is very similar to the contrast curve of standard photoresist.8 The degree of 
non-linearity in future work might be reduced by using a lower contrast photoresist. 
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Fig. 11 SEM of photoresist ramp showing how resist is roughened after exposure. Grey level 
000 corresponds to zero exposure; grey level 255 is full exposure. 

 

 

Fig. 12 Staircase profiles of the a) resist before etch, b) etched resist and substrate before 
removing resist, and c) the substrate after etch (c). 

The exact surface profile of the photoresist is transferred into the substrate, which 
causes uncertainty during subsequent micromachining. A given resist step can have 
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as much as ±50 nm of surface roughness, while stylus profilometry (Fig. 10) reveals 
that resist height can vary over 100 nm across a wafer after development. These 
two errors combine to produce a final variation of possibly over 300 nm in resist 
thickness for a given photoresist level across a wafer. This poses a problem, because 
the buried electrodes used in this research are only 50 nm thick, while the  PZT 
films used in this work were 250 nm thick, leaving little room for error. In other 
words, if grey levels are not properly chosen, then it is possible to expose two 
successive electrodes by ion milling (Fig. 13). This can result in unwanted electrical 
shorting of those two electrodes during subsequent metallization. It is possible for 
lower contrast photoresist to reduce the sensitivity of the resist to small fluctuations 
in laser intensity and increase the resolution of the greyscale lithography process. 
However, another solution is to under-mill the structure, leaving PZT on top of the 
desired electrode, protecting it. The PZT can then be wet-etched away, leaving a 
pristine electrode (Fig. 14). 

 

Fig. 13 SEM showing regions where photoresist roughness has led to exposure of multiple 
electrodes in the same location. This can lead to electrical shorts later in the fabrication 
process. 
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Fig. 14 Ion milled staircase pattern in 0.5 µm (left) nd 0.25 µm (right) thick PZT layers. PZT 
remains over each electrode by targeting the grey level corresponding to just below the next 
electrode up in the stack. This protects the desired electrode from being ion milled, leaving 
PZT which can be removed with a quick wet etch. 

4. Conclusion 

This technical report demonstrates the successful use of greyscale lithography to 
transfer tiered and sloped structures into a PZT stack using a single ion mill etch, 
and should serve as a resource for the characterization of other resist thicknesses. 
The rehydration of the resist and the focus of the laser beam were the most 
important process variables, although the focus could not entirely alleviate the 
stripe line issues. Specific adjustments can be made to accommodate the error in 
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the lithography process, such as placing electrodes inside a single stripe line and 
using a longer ramp to create more distance between exposed electrodes. This 
decreases the likelihood of shorting a device when it makes contact with the 
electrodes in subsequent microprocessing steps, which could result from the uneven 
edges between grey levels. Stylus profilometry was the most important analysis 
tool because it measured the usable grey levels that neither washed out during 
development nor remained in the excess resist after etching. It also provided 
information on the selectivity of the ion mill, which was necessary for precision in 
design. 

Future work will create multilayer PZT devices using the greyscale lithography 
process and evaluate higher capacitance densities, bidirectional actuation, and 
increased control of physical displacement that are theoretically possible with this 
technique. Another application to investigate is the creation of tapered sidewalls for 
routing lithographically patterned signal lines over large step heights, as a potential 
replacement for air bridges. Although this process for the optimization of greyscale 
lithography must be repeated if any changes are made to the substrate identity or to 
the resist thickness, due to differences in reflection and absorbance of the laser 
beam. However, the successful application of this technique will significantly 
reduce the time, number of masks, and fabrication steps previously required to 
create multilayer PZT MEMS devices.  
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List of Symbols, Abbreviations, and Acronyms 

ARL US Army Research Laboratory 

CAD computer-aided design 

DWL direct write laser 

DWLG DWL greyscale 

HEBS high energy beam sensitive 

IrO2 iridium oxide  

MEMS microelectromechanical systems 

Pt platinum 

PZT lead zirconate titanate 

RF radio frequency 

SEM scanning electron microscope 

Si silicon 

UV ultraviolet 
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