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We study the achievements of quantum circuits comprised of several one- and two-qubit gates.
Quantum process matrices are determined for the basic one- and two-qubit gate operations and
concatenated to yield the process matrix of the combined quantum circuit. Examples are given
of process matrices obtained by a Monte Carlo wavefunction analysis of Rydberg blockade gates
in neutral atoms. Our analysis is ideally suited to compare different implementations of the same
process. In particular, we show that the three-qubit Toffoli gate facilitated by the simultaneous
interaction between all atoms may be accomplished with higher fidelity than a concatenation of
one- and two-qubit gates.

I. INTRODUCTION

Since the first proposals were made to use quantum ef-
fects for computing purposes there has been a strong fo-
cus on how errors and imperfections may harm and even
prevent successful application of quantum computing. A
simple estimate suggests that if each single operation in
a computation entails an error with a probability p > 0
then the application of k operations will lead to a useful
outcome with a probability that decreases exponentially
∼ (1−p)k. Error correction codes have provided a way to
correct these errors up to a certain probability threshold,
thereby allowing scalable, fault-tolerant quantum com-
puting [1, 2].

The error occurring in a single computational step such
as a one- or two-qubit gate is often characterized by a sin-
gle number, typically related to the overlap between the
desired and actual output state, averaged over all input
states. However, there is no guarantee that such a num-
ber encapsulates the accumulation of errors in a quantum
circuit where the output state of one operation serves as
the input to the next. Errors may build up coherently,
so that error probabilities grow quadratically rather than
linearly with time, or so that they compensate each other,
cf., bang-bang control and composite pulses [3–5]. Thus,
a concatenation of two imperfect gates can lead to ei-
ther unusable results or a correcting mechanism. To the-
oretically characterize a complete quantum circuit is a
formidable task and is ultimately at odds with using a
physical system to solve computationally hard problems.
Still, a theoretical analysis of how errors propagate and
accumulate in small systems may guide efforts to pick
among different implementations of gates and assess op-
timal strategies for error correction.

In this article, we describe processes in a quantum sys-
tem by the so-called χ-matrices. In quantum computing
we aim to implement definite gate operations and pro-
cess matrices account for the effects of error, e.g., due
to dissipation and decoherence. It will be shown how
χ-matrices calculated once for one- and two-qubit gates
can be concatenated to characterize circuits built from
many of these gates. This will be exemplified in neutral
atom quantum computing where the Rydberg blockade

mechanism is used for two-qubit quantum gates [6, 7].
Circuits comprised of Rydberg mediated two-qubit gates
may be directly compared to alternative multi-qubit im-
plementations exploiting a single Rydberg atom’s ability
to simultaneously control a number of neighboring atoms.

The paper is organized as follows. In Sec. II, we review
the definition of χ-matrices and how they may be com-
puted with Monte Carlo wave function simulations. In
Sec. III, we describe how χ-matrices for simple processes
on few particles are concatenated to characterize large
quantum circuits. In Sec. IV, we introduce the Rydberg
blockade gate scheme for quantum computing with neu-
tral atoms. In Sec. V, we concatenate one- and two-qubit
gate χ-matrices in a neutral atom system to characterize
the circuit performing a Toffoli gate. This we compare to
a direct multi-atom Rydberg mediated implementation.
In Sec. VI, we conclude and present an outlook.

II. PROCESS MATRIX IDENTIFICATION

Consider the action of a quantum process that takes an
input density matrix ρ describing a physical system with
Hilbert space dimension D to an output density matrix.
Such a process is described as a completely-positive linear
map E : ρ → E(ρ), and by introducing a complete basis
of D2 operators {En} on the Hilbert space, E(ρ) can be
written [8]

E(ρ) =
∑
mn

χmnEmρE
†
n . (1)

The D2×D2 elements χmn constitute the process matrix
χ.

Many techniques now exist to experimentally deter-
mine χ. Standard quantum process tomography [8–10]
successfully reproduces χ by measuring all output states
via quantum state tomography [11, 12]. This has been
demonstrated in NMR [13, 14], optical [15, 16], and
atomic systems [17]. Alternately, χ may be obtained
making use of an ancillary system [18, 19] or avoiding
state tomography altogether through the use of suitable
“probe” systems [20–22].
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If the system is subject to known dissipation and deco-
herence mechanisms, the quantum system evolution may
be modeled theoretically and the process matrix be cal-
culated by solution of the quantum master equation. A
gate operation typically involves application of time de-
pendent laser pulses. Therefore, it is valuable to deter-
mine how losses and errors accumulate and contribute
to different types of errors in the output. Such detailed
studies may also serve to confirm the values of experi-
mental parameters [23, 24].

In a recent publication [25], we described how to char-
acterize a quantum controlled-phase gate subject to de-
cay and dephasing. Instead of simulating the evolution
of a complete set of D2 input states we gain access to all
elements of χ by evolving a single maximally entangled
pure state of the system and an idle ancilla system of the
same Hilbert space dimension [18]. The system is propa-
gated stochastically using the Monte Carlo wave function
method, which on average reproduces results of a master
equation evolution [26–28]. Process characterization us-
ing this approach has a number of advantages: First, for
large D, an adequate ensemble of wave functions is easier
to store and evolve than density matrices. Second, ob-
taining χ through the output state data from an ensemble
of wave functions is less costly, numerically, than from a
density matrix [25]. Third, the stochastic evolution con-
sists of a deterministic smooth evolution interrupted by
”quantum jumps”. Since useful quantum gates require
excellent fidelity, jumps are rare and a single determin-
istic ”no-jump” wave function suffices to provide a good
estimate and rigorous bound on the process matrices de-
scribing the evolution [25].

III. THE PROCESS MATRIX FOR A
QUANTUM CIRCUIT

Suppose the quantum circuit performing a computa-
tional task is composed of N physical units. The Hilbert
space of the entire system is then a tensor product of
N Hilbert spaces, each of dimension d. An implementa-
tion of a quantum process often requires using more than
just the qubit states. However, since the physical units
only process binary information we shall refer to them as
qubits, even if we exploit states from a space larger than
dimension 2. On each qubit Hilbert space we assume the
complete operator basis {eni}. By merely forming ten-
sor products of the basis operators, we obtain a complete
operator basis {En = en1 ⊗ . . .⊗ enN

} for the N qubits,
where the single index n represents all values of the set
n1, . . . nN .

If we assume that (i) process matrices χ correctly de-
scribe processes acting separately on one and two qubits
of the circuit, and (ii) the decay and dissipation is in-
dependent and uncorrelated on different particles and
at different times (no super-radiance or non-Markovian
effects) then the application of several one- and two-
qubit operations is exactly represented by an appropri-

χ(1)

χ(1) χ(2)

χ(2)

χ(1,2) χ(1,2)
(a) (b)

FIG. 1. Parallel and serial concatenation: Concatenation of
(a) processes acting simultaneously on different qubits, and
(b) processes acting sequentially on the same set of qubits.

Expressions for the resulting process matrices χ(1,2) are dis-
cussed in the text.

ate concatenation of the corresponding process matri-
ces. The operator tensor product structure provides a
convenient representation of the operators Em (E†n) in
Eq. (1) and enables a straighforward calculation of the
D2×D2 = d2N ×d2N dimensional process matrices χ for
multi-qubit processes.

A. Parallel concatenation

Suppose two subsystems are simultaneously subjected
to processes independent of each other. These processes
E(1) and E(2) may be described by the process matrices
χ(1) and χ(2) respectively, illustrated as two- and one-
qubit gates in Fig. 1(a). The combined three-qubit pro-
cess matrix χ(1,2) is simply the tensor product of the
independent χ matrices. Other systems may be present
but idle during the gate operation. They are acted on by
the identity operator in the process matrix tensor prod-
uct.

B. Serial concatenation

Most quantum algorithms make use of many computa-
tional steps, where the output of every step serves as the
input to the subsequent one. In Fig. 1(b) we illustrate
this situation for two consecutive three-qubit operations
E(1) and E(2) characterized by χ(1) and χ(2) respectively.
If the output E(1)(ρ) of the input density matrix ρ be-
comes the input of E(2), what is the resulting χ matrix?
Formally, the output of the sequential application of the
operations is given by

E(2)
(
E(1)(ρ)

)
=
∑
pq

χ(2)
pq Ep

(∑
mn

χ(1)
mnEmρE

†
n

)
E†q , (2)

Since the operators Er form a complete set, any prod-
uct EpEm can be expanded on these operators, that is,
EpEm =

∑
mp c

r
pmEr and E†nE

†
q =

∑
nq(c

s
qn)∗E†s . Equa-

tion (2) then becomes

E(2)
(
E(1)(ρ)

)
=
∑
rs

χ(1,2)
rs ErρE

†
s , (3)
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FIG. 2. The Toffoli gate: (a) The three-qubit Toffoli gate on
the left may be reproduced by a circuit of C-NOT, Hadamard
(H), T = exp(iπσz/8) and T † gates, shown to the right. (b)
The process matrix χ (left), characterizing the Toffoli gate
may be calculated by concatenation of one- and two-qubit
process matrices (right). The process matrices χC , χH , χT

and χT† characterize the C-NOT, Hadamard, T and T † gates
respectively. The “identity” process matrix χI indicates an
idle qubit.

where

χ(1,2)
rs =

∑
mn,pq

crpmχ
(1)
mnχ

(2)
pq (csqn)∗ . (4)

Note that although two consecutive processes may act on
different subsets of some multi-qubit system both oper-
ations may be reformulated to act on the entire system
through parallel concatenation.

It now becomes apparent that once the process matri-
ces of all contributing gates in a circuit have been com-
puted conclusively, we limit the cost of finding χ(1,2) and
thus of process matrices for larger quantum circuits. The
assessment of how errors accumulate becomes a function
of the width and depth of the quantum circuit.

C. Example: Toffoli gate

The Toffoli gate, or C2-NOT gate, performs a con-
trolled NOT operation on a target qubit based on the
state of two control qubits. The Toffoli gate may be im-
plemented as a sequence of six two-qubit C-NOT gates
and nine one-qubit Hadamard and T = exp(iπσz/8) and
T † phase gates, see Fig.2(a). The gate and its gener-
alization to higher numbers of control qubits (Ck-NOT)
have applications as sub-modules in different quantum
computing algorithms. Thus, it is relevant to determine
the process matrix for its implementation in realistic sys-
tems.

In the analysis of the Toffoli gate process matrix
we first simulated the propagation of quantum states
through the sequence of one- and two-qubit gates in the
full three-qubit Hilbert space. Such a calculation, e.g.
using Monte Carlo wave functions to include dissipation,
yields the full circuit process matrix χcir. Next, assuming
the independence of errors occurring on different qubits
and in different gates we apply the concatenation rules to
obtain the circuit’s process matrix χcat. Its repeated use

TABLE I. Physical parameters for our simulations based on
values discussed in Refs. [30, 31].

Experimental parameter Symbol Value

Detuning ∆/2π 2.0 GHz

Red Rabi frequency ΩR/2π 118 MHz

Blue Rabi frequency ΩB/2π 10 - 100 MHz

Rydberg blockade B/2π 20 MHz

Decay rate of |p〉 γp/2π 6.07 MHz

Decay rate of |r〉 γr/2π 0.53 kHz

Dephasing rate of |r〉 γd/2π 1.0 kHz

of the same C-NOT χ matrix (cf. Fig. 2(b)), which only
needs a single calculation on a two-qubit system, attests
to the advantage of the latter approach.

IV. RYDBERG BLOCKADE QUANTUM
GATES

A promising candidate for quantum computing in-
volves neutral atoms held at closely spaced sites in far-off-
resonance optical traps. The atoms may be individually
addressed with laser fields and excited into high lying
Rydberg states that feature strong, long distance dipole
and van der Waals forces that can be used to mediate
two-qubit interactions [6, 7, 29].

In Rubidium atoms, a convenient choice for the qubit
states are the hyperfine ground states |0〉 ≡ |5s1/2, F =
1,mF = 0〉 and |1〉 ≡ |5s1/2, F = 2,mF = 0〉. They
can be selectively excited to the Rydberg state |r〉 =
|97d5/2,mj = 5/2〉 by a two photon process using a 780-
nm (480-nm) laser field, tuned by an amount ∆ to the
red (blue) of the intermediate |p〉 ≡ |5p3/2, F = 3〉 state.
The Rabi frequency associated with the red (blue) de-
tuned laser is ΩR (ΩB), illustrated in Fig. 3(a). An atom
that achieves excitation to the Rydberg state shifts the
|r〉 state energy of all other atoms within the so-called
blockade radius by an amount B. Thus, one excited
atom can prevent the resonant excitation of its neigh-
boring atoms and this is the basis for effective quantum
gates between them.

Dephasing of the Rydberg level normally associated
with magnetic field noise and atomic motion is modeled
by the operator L̂γd =

√
γd(1− 2|r〉〈r|), where γd is the

dephasing rate and 1 is shorthand for the identity opera-
tor. Spontaneous decay from a state |y〉 to a lower lying
state |z〉 at a rate γy is modeled by the jump operator

L̂γy =
√
γy|z〉〈y|. The effects of both dissipation mecha-

nisms are simulated using the Monte Carlo wave function
method [25]. Characteristic parameters are summarized
in Table I.

Adiabatic elimination by the effective operator formal-
ism detailed in Ref. [32] provides a mechanism to decou-
ple the intermediate optically excited state and describe
the coherent and incoherent dynamics within the sub-
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FIG. 3. Simulation and characterization of the C-NOT gate:
(a) The red (lower) and blue (upper) laser fields drive |0〉,
via |p〉, into the Rydberg state |r〉 by two-photon absorption.
(b) Implementation of the C-NOT gate involves a sequence
of two-photon π-pulses: In pulse 1 the control atom makes
the transition |0〉 to |r〉. The target atom then makes the
transitions |0〉 ↔ |r〉 (pulse 2), |1〉 ↔ |r〉 (pulse 3) and finally
|0〉 ↔ |r〉 (pulse 4). In pulses 2-4 the target atom’s states |0〉
and |1〉 are swapped, but only if the control atom is not in |r〉.
Finally, in pulse 5 the control atom is driven from |r〉 back to
|0〉. (c) Trace distance (see text in Sec. IVA) between the ideal
C-NOT process matrix and the process matrix calculated for
the implementation shown in panel (b), with the parameters
listed in Table I. The trace distance is shown as a function of
the blue laser Rabi frequency ΩB .

space of |0〉, |1〉 and |r〉. The system is then described by
a Hamiltonian coupling a selected qubit state to |r〉 by
an effective Rabi frequency. The formalism also provides
an effective form for the operators describing decohering
processes [25].

A. Rydberg blockade C-NOT gate

In atomic quantum computing proposals single qubit
gates amount to fast, resonant transitions within single
atoms and can be made with high precision. Thus, for
the purpose of this study we assume that the χ matri-
ces associated with one-qubit gates are identical to the
desired ones. The two-qubit C-NOT gate depends on
finite interactions between excited state atoms, length-
ening gate time and making it prone to dissipation and
decoherence.

Figure 3(b) illustrates how a unitary C-NOT gate be-
tween two atoms can be implemented by a sequence
of five perfect π-pulses. First transferring the control
qubit’s population from |0c〉 to |rc〉 (pulse 1), then trans-
ferring the target qubit’s population between |0t〉 and
|1t〉 via the state |rt〉 (pulses 2-4) and finally returning
the control qubit’s population from |rc〉 to |0c〉 (pulse
5). If the control qubit initially populates the state |0c〉
the Rydberg blockade prevents any transfer during pulses
2-4. Thus, a NOT operation on the target qubit is condi-
tioned on the control qubit initially populating the state
|1c〉, defining it to be a C-NOT operation.

Monte Carlo wave functions were used to simulate the
five π-pulse implementation of the C-NOT gate (Fig. 3)
with the parameters of Table I. The performance of the
gate was investigated as a function of the blue laser Rabi
frequency ΩB . To provide a simple quantitative mea-

sure we applied the trace distance measure T (χsim, χid)
between the simulated and ideal process matrix, where

T (A,B) ≡ 1
2‖A − B‖tr and ‖C‖tr = Tr(

√
C†C) is the

trace norm. Note that this distance measure is less “for-
giving” than, for example, measures based on the trace
overlap [23]. In Fig. 3(c) we show trace distance between
a simulated C-NOT gate process matrix and the ideal,
unitary process matrix. At low values of ΩB the gate
experiences greater dephasing errors from population in
the Rydberg state, due to long gate times. At large ΩB
the blockade mechanism becomes inefficient. Thus, the
optimum Rabi frequency lies between these two regimes.

V. THE TOFFOLI GATE BY RYDBERG
BLOCKADE

We demonstrate the characterization of the Toffoli gate
resulting from simulation in Fig. 4. The process ma-
trix χcat of the Toffoli gate in the circuit implementation
(Fig. 2) may be obtained without further simulation by
a concatenation of the single qubit process matrices and
the C-NOT process matrix of Sec. IVA. Alternatively,
we may simulate the circuit implementation in the full
three-qubit Hilbert space to obtain χcir. In the simula-
tion of a Rydberg mediated gate, the characterization of
a single qubit has a Hilbert space dimension of d = 42,
which translates into a 46 problem for the three qubit
circuit characterization.

The top dashed (solid) curve in Fig. 4 illustrates trace
distance between the full circuit χcir (concatenated χcat)
process matrix to the ideal process matrix χid, plotted
as a function of ΩB . Each point in both curves is de-
termined by propagating 500 wave function trajectories.
The discrepancy between the two curves is due to χcat,
which makes use of the same simulated C-NOT process
matrix several times. Concatenating the process matri-
ces of the same C-NOT simulation also “concatenates”
the error associated with the simulation. The total error
grows (nonlinearly) with the number of gates. This is
demonstrated in Fig. 4, where the discrepancy between
the curves depends on ΩB . For lower values of ΩB , and
thus slower gate operation, gate error is dominated by
(non-unitary) processes such as dephasing. As correct
Monte Carlo wave function statistics are sensitive to non-
unitary errors, we find at small ΩB the relatively large
discrepancy between Tr(χcat, χid) and Tr(χcir, χid) to be
expected at slow gate speeds (see Ref. [33] for an analy-
sis of a similar situation). This is in contrast to results
at high values of ΩB , where gate error is unitary and
caused by an imperfect blockade. The discrepancy be-
tween Tr(χcat, χid) and Tr(χcir, χid) vanishes as ΩB in-
creases. We note that the Toffoli gate consists of six
C-NOT gates and the trace distance to the ideal gate is,
indeed, roughly six times the one shown in Fig. 3(c).

A Rydberg excited atom blocks excitation of any num-
ber of atoms within the Rydberg interaction blockade ra-
dius, which may be of order 10 µm. Thus, it is possible to
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FIG. 4. Trace distance between the process matrix χid for
the ideal Toffoli gate and the process matrices for Rydberg
interaction implementations subject to dissipation and deco-
herence. The results are shown as a function of the Rabi
frequency ΩB of the |p〉 → |r〉 (blue) laser coupling. The
dashed curve is obtained by simulating all three qubits as
they evolve under the sequence of gates in the Toffoli circuit
shown in Fig. 2(a). The top solid curve uses concatenation
of the one- and two-qubit process matrices to compute the
Toffoli circuit process matrix. The bottom (solid) curve re-
sults from simulating the multi-qubit implementation shown
in Fig. 5. In all calculations 500 Monte Carlo trajectories were
used with the parameters listed in Table I.

FIG. 5. Multi-qubit Rydberg blockade implementation of
a CkNOT gate. Each control atom is sequentially excited
from |0〉 to |r〉 in k π-pulses. Next, the target atom qubit
states are swapped as in Fig 3(b), via the Rydberg state |r〉
(conditioned on no control atom populating the state |r〉).
The control atoms are then returned to their original state in
reverse order. The trace distance between the process matrix
using this implementation for k = 2 and the ideal Toffoli gate
is shown as the lower curve in Fig. 4.

contain an entire qubit register within a single blockade
radius, allowing implementation of multi-qubit gate op-
erations which are faster than the circuit equivalent [34].
One such protocol is the Ck-NOT gate operation, illus-
trated in Fig. 5 [35].

For k = 2 the gate becomes the Toffoli gate and cal-
culation of the process matrix is only possible by solving

the master equation for the complete qubit register. In
this paper, simulation of the process, including the decay
and decoherence mechanisms detailed above, was carried
out using the Monte Carlo method. The trace distance
between the process matrix resulting from simulation and
the ideal process matrix is shown as the lower, black curve
in Fig. 4. Remarkably, the multi-qubit implementation,
with interactions allowed between all three atoms, per-
forms markedly better than the Toffoli circuit consisting
of one- and two-qubit operations. In comparison with the
C-NOT gate, the minimal trace distance here is approx-
imately 1.5 times larger. This is consistent with using
7 π-pulses rather than the 5 needed for a single C-NOT
gate.

VI. CONCLUSION

In conclusion, we have presented an efficient method to
compute the accumulation of errors in quantum circuits
comprised of several few-qubit gates. Assuming the inde-
pendence of errors over time and qubit register location
we have shown that a set of concatenation rules on the
appropriate few-qubit gate process matrices is enough to
reproduce the process matrix of the entire circuit. To
demonstrate the method’s efficiency at calculating pro-
cess matrices of large systems we considered the three-
qubit Toffoli gate. The Toffoli gate may be implemented
as a circuit of one- and two-qubit gates and simulations
show that the process matrix obtained via concatenation
is in good agreement with the result achieved by propa-
gation through the entire circuit.

Our theory allows comparison of different implementa-
tions of gates. In particular, we compared a multi-qubit
implementation of the Toffli gate with its one- and two-
qubit circuit implementation. For the parameters chosen,
the factor determining gate fidelity was the number of
laser π-pulses. More gates lead to a lower fidelity, with a
dependence that is almost linear. In this way, our analy-
sis provides the necessary information to choose between
different gate implementations. A theory of full error
correction may benefit significantly from knowledge of
the precise nature of errors incurred, potentially leading
to higher thresholds for errors that can be remedied by
appropriate error correction. The full process matrix,
which remains at our disposal, may be further applied
to optimally combine the Toffli gate with previous and
subsequent gate operations along the lines of NMR com-
posite pulses [4].
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