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Abstract—Neuromorphic computing systems seek to 
emulate biological neural functionality emulated in either 
software or electrical hardware.  A key function for such 
systems is their ability to learn and adapt. In the human 
brain, such learning and adaptation is achieved via 
modulation of synaptic connections between different 
neurons. Memristors (implemented as resistive random 
access memory or ReRAM) have great potential to 
provide synaptic functionality for neuromorphic chip 
architectures. Under an AFRL-sponsored program, we 
have developed a unique memristor-CMOS hybrid 
system for implementing a dynamic adaptive neural 
network array, also known as mrDANNA. Most recently, 
our effort has moved from a software-based emulator, to 
FPGA implementation, and finally to the design, tapeout, 
and fabrication of this unique, adaptive approach to 
neuromorphic computing.   
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I. PROJECT DESCRIPTION 

Memristors, which can be implemented as resistive random 
access memory (RRAM) are a novel form of non-volatile 
memory expected to replace a variety of current memory 
technologies and enabling the design of new circuit 
architectures [1, 2]. Investigations of ReRAM as a storage 
technology have shown a combination of high storage density 
with fast access and write speeds. Recently, the endurance 
and reliability of ReRAM cells have reached the level at 
which they are competing with commercially available Flash 
memory and CMOS technologies, making ReRAM a viable 
candidate for data storage and novel logic and security 
architectures.  To this end, we have demonstrated a 
vertically-integrated process flow for fabrication of hybrid 
CMOS logic and ReRAM [3, 4]. 

Our memristive neural network array (mrDANNA) is based 
on the Neuroscience-Inspired Dynamic Architecture (NIDA), 

developed by researchers at the University of Tennessee, 
Knoxville (UTK) as an approach to applying neuromorphic 
principles to a wide variety of applications. Key features of 
the NIDA architecture include: 1) a spiky representation of 
data, 2) the ability for the system to adapt during run-time, 
and 3) a synaptic representation including delay distance as 
well as weight information. The inclusion of delay distance 
(i.e. a programmable delay between pre- and post-synaptic 
neurons) is expected to be of particular benefit in the 
processing of spatio-temporal data. The structure and 
simplicity of the NIDA architectural model has recently been 
leveraged in the development of a Dynamic Adaptive Neural 
Network Array (DANNA) [5], an efficient digital system 
constructed from a basic element that can be configured to 
represent either a neuron or a synapse. Unique characteristics 
of the NIDA/DANNA approach over other neuromorphic or 
neuroscience-inspired systems include: a simplified neuron 
model, a higher functionality synapse model, real-time 
dynamic adaptability, configurability for the overall 
neuromorphic structure (e.g. number of neurons, number of 
synapses and connections), and scalability for element 
performance and system capacity. The 
NIDA/DANNA/mrDANNA models also fit into a integrated 
hardware/software application development stack for 
demonstration, testing and benchmarking.  Current 
benchmarks include static classification, time-series 
classification and real-time control applications [6]. 

Under support from the Air Force Research Laboratory, we 
have pursued the next generation of the NIDA/DANNA 
approach, implementing synaptic connections in array with 
hafnium oxide memristive devices (HfOx ReRAM) [7]. 
Recent work on this project has resulted in the generation of 
multiple version of mrDANNA “neurons”, a fully digital 
DANNA circuit design, and implementation of these designs 
into a 65nm CMOS / ReRAM at the SUNY Polytechnic 
Institute’s 300mm research foundry. This work builds on our 
existing efforts in developing a hybrid memristor-CMOS 
process flow (using a 300mm wafer platform) and developing 
multi-level resistive switching performance, which can be 
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 Fig. 1.   Schematic of the memristive dynamic neural network array 
(mrDANNA), which includes memristor-CMOS hybrid neural 
network components, a fully-digital DANNA, a 512x512 
addressable ReRAM (memristor) block, memristive reservoir 
computing circuits, and a wide array of individual ReRAM and 
transistor-ReRAM test circuits.  

 
leveraged for setting multiple synaptic levels for our neural 

network arrays [3, 8]. We have fully taped out a reticle set for 
fabricating a full digital DANNA array, multiple mrDANNA 
test arrays, and individual neurons of differing types and 
configurations (digital, mixed analog/digital).  

II. MRDANNA CIRCUIT DESIGN 

Each mrDANNA core consists of several memristive 
synapses and a single analog CMOS neuron. Inspired by 
biological synapses, we have modeled the synapses so that 
they are capable of representing multilevel synaptic weights. 
The memristors’ non-volatility and capability for a high 
integration density within back-end-of-the-line metallization 
layers makes them an ideal storage element to be used in the 
synapse. For the mrDANNA design, a twin memristive 
synapse architecture is used to implement both positive and 
negative weights. Two memristive ReRAM devices are 
connected in the opposite polarity as shown in Figure 2 (left 
graphic) where the blue and red represent ReRAM devices 
with opposing polarity. This allows the use of ReRAM 
devices with an asymmetric switching behavior, such as HfO2 
based ReRAM devices developed at SUNY Polytechnic 
Institute. Each time there is a pre-synaptic fire, the neuron 
accumulates the weighted current from the synapses 
connected to it and compares it to a given threshold. As soon 
as the accumulated voltage crosses the set threshold voltage, 
the neuron generates a post-synaptic fire and resets to the 
initial condition for the next available pre-synaptic fires. 

 
Fig. 2. Block diagram of the mrDANNA system, showing a single 
core on the left and the array network on the right. 

III. RESERVOIR COMPUTING CIRCUITS 

One of the alternate computing models being tested using this 
process is reservoir computing. In this mode of computing, 
inputs are applied to a large, dynamical system which can 
develop complex, time-dependent responses from simple 
inputs. The purpose of this ‘reservoir’ is to generate a unique 
internal state based on the inputs which have been applied to 
it. The state of the reservoir as a whole can then be examined 
by a simple output stage (such as a perceptron) to carry out 
tasks such as classification of the original inputs. Only this 
output stage must be trained to improve performance on a 
task, as long as the reservoir can act in a sufficiently complex 
manner. 

We have implemented a mixed analog/digital circuit to 
implement reservoir computing, included with the other 
designs on the mask set. In this design, a one-dimensional 
cellular automata (CA) evolving in time is used to create a 
reservoir. CA are simple, cellular structures which change 
their behavior based on the past state of themselves and their 
neighbors. However, they develop very complex behaviors, 
and have even been shown as suitable substrates for universal 
computation [9]. The output layer examining the state of the 
reservoir is a memristive support-vector machine (SVM), 
linking the state of each cell to a memristor in a parallel read-
out array. Each memristor can be individually addressed and 
programmed, allowing the weights of the SVM to be trained. 
This allows unique resistance states to be achieved for 
different reservoir states. The reservoir and SVM together 
create a full circuit for reservoir computing, the cellular 
memristive-output reservoir (CMOR). This design is a 
hardware implementation of a novel concept which has thus 
far only been demonstrated in software [10].  

IV. ADDITIONAL CIRCUITS 

In addition to the DANNA circuits, a number of other designs 
and features have been included in the taped-out mask set, as 
this integrated memristor/CMOS process provides a test-bed 
for a number of novel circuits and computing models. Large 
blocks of ReRAM memory (up to 512x512 cells) have been 
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included to demonstrate large-scale use of memristors as a 
storage element. A wide variety of test structures, for both 
CMOS and the integrated memristors, are also included 
(Table 1). 

TABLE I.  CIRCUIT ELEMENTS, MEMRISTIVE DEMONSTRATION 
CIRCUITS, AND FULL NEUROMORPHIC CIRCUITS IMPLEMENTED ON THE SUNY 
POLY / UT-KNOXVILLE MRDANNA DEVELOPMENT CHIP.   

ID Count/Die Circuit 
1 1 512x512 1T1R array  (262,144x 100x100nm2) w/ 

decoder (9 bit/ 9 word lines) 
2 1 512x512 1T1R array (262,144x 100x100nm2) w/ 

decoder (9 bit/ 9 word lines) and ESD contact pads 
3 4 8x8 1T1R array (100x100nm2) w/o decoder  
4 16 12x12 1R array (100x100nm2)  
5 18 2x2 form and cut 1R structures 
6 2 ReRAM time-delay PUF 

(http://ieeexplore.ieee.org/document/7484314/) 
7 1 CMOR (Cellular Memristive Output Reservoir – 

reservoir computing circ.) 
8 1 Full digital DANNA array (UT-Knoxville / Dean) 
9 Multiple mrDANNA “neurons” (various types/configurations) 
10 100 1T1R (100x100nm2) rVt NFET 2mA VCM w/ ESD 

contact pads 
11 100 1T1R (100x100nm2) rVt NFET 2mA VCM w/o ESD 

contact pads 
12 100 1T1R (100x100nm2) dgx NFET 2mA VCM w/o ESD 

contact pads 
13 100 1T1R (100x100nm2) dgx NFET 2mA VCM w/ ESD 

contact pads 
14 100 1T1R (100x100nm2) rVt NFET 2mA ECM w/ ESD 

contact pads 
15 100 1T1R (100x100nm2) rVt NFET 2mA ECM w/o ESD 

contact pads 
16 100 1T1R (100x100nm2) dgx NFET 2mA ECM w/o ESD 

contact pads 
17 100 1T1R (100x100nm2) dgx NFET 2mA ECM w/ ESD 

contact pads 
18 48 RF 1T1R (100x100nm2) dgx NFET 2mA VCM w/o 

ESD contact pads 
19 16 1T1R (100x100nm2) capacitive structures (10fF – 

50pF) 
20 80 1T1R on-chip pulse creation (1ns – 20ps)  
21 24 Configurable XOR with pull down/up ReRAM 

(100x100nm2) 
22 8 1T dgxfet NFET 500uA test structure 
23 8 1T dgxfet NFET 1mA test structure 
24 8 1T dgxfet NFET 2mA test structure 
25 8 1T dgxfet PFET 500uA test structure 
26 8 1T dgxfet PFET 1mA test structure 
27 8 1T dgxfet PFET 2mA test structure 
28 8 1T rVt NFET 500uA test structure 
29 8 1T rVt NFET 1mA test structure 
30 8 1T rVt NFET 2mA test structure 
31 8 1T rVt PFET 500uA test structure 
32 8 1T rVt PFET 1mA test structure 
33 8 1T rVt PFET 2mA test structure 
34 1 Metal-Insulator-Metal capacitive test structures 

 

 

V. CONCLUSIONS 

Leveraging our past work in developing a combined 
CMOS/memristor process, we have designed a variety of 
approaches to neuromorphic computing and other novel 
circuits on a single mask-set. This demonstration chip will be 
used to demonstrate all-digital implementation of 
neuromorphic circuits that have emerged from original 
NIDA/DANNA efforts at UT-Knoxville, as well as novel 
hybrid memristor/CMOS neurons and small neuromorphic 
circuit blocks which are the result of collaborative efforts 
between UT-Knoxville and SUNY Polytechnic Institute. The 
resulting chips from this effort will be a valuable test vehicle 
for demonstrating low-power, highly dynamic neuromorphic 
circuits.  
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