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1. Introduction
The inadequacies of current prosthetic technologies severely limit rehabilitative options for upper limb
amputees and contribute to the disability caused by upper limb loss. TMR presents new possibilities for control
of upper limb prostheses, and, building on this success, our team has developed innovative technologies to
address key remaining challenges in the design and control of advanced prosthetic systems. The overall
objective of this grant is to improve functional independence for individuals with transhumeral amputees, who
have had TMR using implantable MyoNodes. Our hypothesis is that chronic implants within reinnervated
muscle will provide stable EMG recordings that will allow intuitive, simultaneous control of 3 DOF prosthesis
system. Furthermore, we hypothesize that this technology will result in significant functional improvements for
users as measured through the ACMC, SHAP, clothespin relocation, Jebsen Hand task, and box-and-block
tasks.

Aim 1: Obtain a feasibility study investigational device exemption for the MyoNode system. 
Extensive preliminary work has already been conducted to develop and test the MyoNode prototype, with 
demonstration of successful wirelessly powered and telemetered data from a tissue depth of 10 cm in an animal 
model. All design files have been transferred to Cirtec Medical Systems to create final form factor devices 
under GMP and are working with Med Institute Inc., to obtain a feasibility Investigational Device Exemption 
(IDE) from the FDA. These activities are being coordinated by ZIPH Labs. The engineering, fabrication, and 
regulatory team has extensive experience in developing implantable medical devices, and preliminary 
engagements with the FDA have indicated that an Early Feasibility Study (EFS) IDE will be received within 18 
months. 

Aim 2: Assess the accuracy with which transhumeral amputees can control isolated and simultaneous 
movements of a three DOF myoelectric prosthesis utilizing the MyoNode system after successful TMR 
surgery. 

TMR has proven very useful for enhancing prosthesis control. However, to date, subjects have been limited 
to using surface EMG signals to control a prosthesis. Surface EMG is often corrupted by muscle cross-talk and 
instability in the skin-electrode interface necessitates frequent recalibration of controllers. We will recruit three 
individuals with transhumeral amputations and who have had TMR surgery. As our basic control platform, we 
will use natively innervated biceps and triceps to provide direct proportional control of the elbow, and we will 
try both direct control and pattern recognition of EMG from reinnervated muscles to control the wrist and hand. 
Subjects will complete 3-DOF Fitt’s Law virtual testing to measure throughput of discrete and simultaneous 
measurements. We will also measure subjects’ control of a physical prosthesis as they complete movements 
which require discrete and simultaneous movements. A commercially available prosthesis with an elbow, a 
wrist rotator, and a hand will be used in conjunction with commercially available pattern recognition software 
(Coapt LLC). The only variable will be the input signals; allowing us to compare performance using IM and/or 
surface EMG signals, and with data from other transhumeral TMR subjects using the pattern recognition 
controller with surface EMG (W81XWH 12-02-0072). 

Aim 3: Determine the ability of transhumeral amputees to successfully perform functional activities using a 
three DOF myoelectric prosthesis control by the MyoNode system and TMR. 

We hypothesize that the MyoNode implant system will improve control of the prosthesis, and that this will 
subsequently improve functional activities. We will measure functional performance prior to implantation and 
during training with the MyoNode system, using the SHAP, ACMC, a clothespin relocation task, the Jebsen 
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task, and the box and blocks task. We will also provide the subjects with a questionnaire for subjective feedback 
at the end of the study. 

In our original project plan, The MyoNode System was planned to be ready for implantation by March 2016, 
allowing for adequate time for FDA approval and to complete the three aims within the 4 year trial period. 
However, delays in project start date due to the contracting process has delayed our plan. Fortunately, we were 
able to complete significant technology development during the contracting delays as part of other ongoing 
work so that the overall project schedule impact should be minimized.  

2. Body
During the first year of the project, we completed final development and testing of the MyoNode external
powering coil. Prior work has resulted in a completed and fully functional implant meeting the specifications
required for this project.   The requirements for the coil are that it be capable of powering 8 MyoNodes
simultaneously with a form factor that can be incorporated into the socket of a transfemoral prosthesis.

We created a finite element model dimensioned to the 50% male humeral section of an arm (Fig 1). Next, we 
simulated a set of coil parameters and receiving power antennas that met the project specifications to verify that 
the power adequate power transmission could be achieved.  

Figure 1: The finite element model of the humeral section of arm, displaying arbitrarily placed MyoNode sensors. Shown in the bottom 
right is a MyNode chip with a scale indicator of 5 mm.  

Based on the results of the simulation, we determined that an anti-Helmholtz coil design could be used to power 
the device. A physically realizable antenna could be constructed by printing a coil on a flexible substrate and 
placed inside of the Myonode cylindrical package (Fig 2). 
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Figure 2: Illustration of the powered receiver coil geometry and placement within the MyoNode cylindrical package. 

 In the second project quarter, we will construct a physical model of the system and demonstrate full system 
functionality on a physical rather than simulation model.  

We next completed a modelling and simulation study to demonstrate the technical feasibility of the fully 
wirelessly powered system in the size and shape required to complete this study (Figures 3 and 4).   

Figure 3: Anti-Helmholtz Coil for wireless powering. 
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Figure 4: Illustration showing magnetic field lines relative to implant packaging. 

The device was tested using a modified MyoNode implant. This implant had the wireless powering system 
active, but did not include a data acquisition and transmission system. Rather, the transmitted power was used to 
light a light-emitting-diode (LED) that consumed the same amount of power that was budgeted for each 
MyoNode. When tested, we verified power was successfully delivered 8 MyoNode devices; however, there were 
two limitations 1) the powering coil was constructed from stiff wire, which would make it challenging embed 
within a socket and 2) the power transmission was sensitive to the orientation of the implant packing. This is 
primarily caused by the geometry of magnetic field lines relative to the power harvesting coil.  Consequently, a 
second model was constructed to address these concerns.  

The second physical model was constructed using amore malleable powering coil and was wrapped around the 
exterior of a diagnostic socket that was previously used as part of a fitting for a transhumeral amputee who had 
received targeted muscle reinnevation. The socket was filled with a ground-beef as a crude magnetic model 
what might be expected from tissue (Figure 5). 
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Figure 5: A diagnostic socket from a transhumeral amputee filled with ground beef and wrapped with the power telemetry coil. 

We also wished to power a fully functioning MyoNode device that included data acquisition and telemetry. 
Thus we used a device that was slightly larger than the device which will be used in the final form factor for this 
project, but restricted the coil to cylindrical form factor (Figure 6). The miniaturization of the components is in 
our scope of work and will be commencing next quarter. The device was placed in different locations with the 
cavity and wireless powering and transmission were verified using a base-bastion to receive the data, even when 
powered with a lower power source than was provided in the device specifications.  

Figure 6: Fully functioning device being powered with a coil geometry that fits within the project specifications. 

Based on these physical model testing, we are confident that the MyoNode device is operating as expected and 
will meet the needs of this project. 

Lastly, we have completed the technical developments required to successfully create the full MyoNode system 
and engaged our regulatory (Med Institute) and manufacturing partners (Cirtec Medical). The design is now in 
the process of being put under the design controls required to successfully acquire an Investigational Device 
Exemption. Project and engineering documents have now been created under the design control process for: the 
Communication Plan, Quality Plan, Risk Management Plan, User Needs Assessment, Development Plan, 
Engineering Specifications, Applicable Standards, Hazard Analysis and Design Verification Plan. Progression 
through these documents has led to a decision regarding the final prototype design, which has now been 
fabricated. This design package has been delivered to our manufacturing partners who are performing a Gap 
analysis to see what, if any, additional design controls need to be met to meet our user design needs document 
(Figure 7).  
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Fig 7: Block diagram of the implant portion of the MyoNode System 

Briefly, the design package is comprised of two components.  The first component is the implant which will be 
encased in a hermetically sealed and biocompatible package (Fig 7). Several refined prototypes have been 
fabricated and we are confident in both the powering technology and the data acquisition and telemetry aspects. 
The second component is the base-station which attaches to an external powering coil (Fig 8).  Again, we have 
fabricated several prototypes and verified proper functioning. We are now evaluating how much the physical 
size of the base-station may be optimized to allow for it to be easier to incorporate into the patient socket.  

 Fig 8: Block diagram of the base-station component of the MyoNode system.  
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3. Key Research Accomplishments
* Technical Project Kickoff Meeting between Med Institute, Cirtec Medical, RIC, and Purdue University
* Design package creation of final physical prototype of the Myonode implant and interim base-station design.
* Creation of design control documents in draft form.

4. Reportable Outcomes and Conclusions
For the first year, there were no reportable outcomes; however, we have made excellent progress toward
achieving our overall project goals.
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Current prosthetic technologies severely limit rehabilitative options for 
upper limb amputees and contribute to the disability caused by upper 
limb loss. Targeted muscle reinnervation (TMR) presents new 
possibilities and the overall objective of this grant is to improve 
functional independence for individuals with transhumeral amputees, 
who have had TMR using implantable MyoNodes. 

Study Aims
Aim 1: Investigational device exemption for the MyoNode system. 
Aim 2: Assess the accuracy and control of a 3 DOF myoelectric 
prosthesis utilizing the MyoNode system after TMR surgery.
Aim 3: Determine the ability of transhumeral amputees to 
successfully perform functional activities using a three DOF 
myoelectric prosthesis control by the MyoNode system and TMR.

Goals/Milestones 
FY16 Goals 
 Execute subaward agreements between institutions
 Technical Demonstration of MyoNode Technology

FY17 Goals
 Complete MyoNodes developmental work
 Obtain investigational device exemption (IDE) from the FDA

FY18-20 Goals
 Obtain institutional review board (IRB) approval
 Assess the accuracy of the MyoNodes system after TMR
 Perform functional test with the MyoNodes system
 Complete the final study report and publish findings

Budget Expenditure to Date: $2,028,196
Projected Expenditure: $2,622,160

Updated: 15 May 2017

Timeline and Cost

Accomplishments: Created design control documents for the MyoNode system and 
completed drafts of communication plan, user design needs, product specification, 
communication plan, risk management plan, and hazard traceability matrix. Also 
completed design package to transition to manufacturing partner for documentation 
gap analysis. 

Activities FY     16  17 18-20
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Obtain IDE from the FDA

Evaluate technology and publish findings
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