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INTRODUCTION  
 
Despite its importance for infectious disease diagnosis, the ability to rapidly identify the 
causative agent for infections remains an elusive goal. When a soldier enters a clinic with 
disease symptoms, the infectious agent is rarely known. This patient is then subjected to a 
battery of tests, often taking days to weeks for results, to narrow down the etiological 
agent. Whole genome sequencing for clinical diagnostics is emerging as the future of 
disease identification and management by providing a rapid and highly sensitive method of 
diagnosing and characterizing infection. The goal is to replace the battery of clinical tests 
with a single test—complete sequencing of the sample to identify pathogens likely 
responsible for disease. Next-Generation sequencing technologies have transformed our 
ability to rapidly generate sequence data. Samples from diseased individuals can now be 
taken, the microbial and host DNA in the sample sequenced, and the likely pathogens 
identified and characterized to streamline treatment. Despite this seemingly simple 
process, there are numerous obstacles to efficient and accurate identification of pathogens 
in clinical samples. Our research project did the following: 1) Rigorously tested DNA 
sequences using bioinformatics. Exhaustive testing of sequence data from experiments 
using patient samples is extremely costly and time consuming. By evaluating sequences 
from prior work or by using computer generated sequences (i.e. in silico), we could 
rigorously test the limits of this technology and statistically assess the outcomes in a 
manner that would not be possible through experimentation; 2) Determined specific 
genome targets for species identification. We also determined genome targets for select 
strains of clinical relevance and those containing known regions associated with drug 
resistance by compiling relevant data from internal resources and conducted an extensive 
literature search; 3) Determined genes present in all strains or pan-genome references of 
targets by identifying all genetic loci/targets present in all strains of the pathogen DNA and 
determined an appropriate statistical threshold for a match to the pan-genome; 4) Created 
mixtures of human and pathogen DNA by adding single pathogen DNA at varying 
quantities into human clinical samples and adding DNA samples of multiple pathogens into 
human clinical samples; 5) Sequenced DNA mixtures using Ion Torrent and Illumina 
platforms to determine the level of sensitivity and accuracy, using known mixtures of single 
and multiple pathogen experiments; and 6) Deep sequenced DNA from patient clinical 
samples using these sequencing techniques. These analyses provided a solid foundation 
for the further development of Next-Generation sequencing for clinical diagnostics and 
allowed us to develop a metagenomic pipeline for rapid and accurate identification of 
pathogens and other microbes in clinical samples. 
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BODY 
 
Overview of Tasks 
All tasks have been completed.  
 
In silico bioinformatic testing 
1. Create filters to remove reads of human DNA. Completed. 
2. Run human genome reads against pathogen reference sequences. Completed. 
3. Create mixtures of read data from prior human and pathogen sequencing projects. 
Mixtures will be created at a wide range of sequence quantities and genome coverage. 
Completed. 
 
Determine genome targets for Species ID, subtyping characterization, drug 
resistance 
4. Compiling relevant data from NAU and TGen, Completed. 
5. Comprehensive literature search with an emphasis on subtyping (e.g. determining 
particular lineages, clonal complexes, etc.) and finding targets for drug resistance 
characterization, Completed. 
6. Contact infectious disease experts, Completed. 
  
Create pan-genome references of targets  
7. Generate a reference pan-genome with sequences for all loci/targets. Completed. 
8. Determine appropriate statistical threshold for a match to the pan-genome. Completed. 
 
Create mixtures of human and pathogen DNA 
9. Spike single pathogen DNA at varying quantities into human clinical samples. 
Completed. 
10. Spike DNA samples of multiple pathogens into human clinical samples. Completed. 
 
Sequence DNA mixtures on Ion Torrent and Illumina platforms 
11. Determine level of sensitivity and accuracy using known mixtures of single and multiple 
pathogen experiments. Completed. 
 
Sequence patient clinical samples 
12. Compile all clinical samples then culture, extract and quantify DNA for all pathogens. 
Completed.  
13. Run deep coverage sequencing of clinical samples. Completed. 
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Project Overview 
The primary goal of our project was to develop a metagenomics pipeline for 
identification of pathogens in clinical samples. We have completed all tasks for this 
project, as outlined in the Overview of Tasks on the previous page. The completion of 
these tasks was essential for development and testing of this pipeline, MetaGenomic 
Explorer (MetaGeniE). But pipeline development and its evaluation are only part of the 
work we had planned. We received a no-cost extension to have sufficient time to 
complete the primary manuscript on the pipeline as well as apply our analyses to unique 
clinical cases where the pathogens causing disease were unknown or not confirmed 
using traditional methods. This Final Report summarizes all of the work we performed 
on the project and includes results from Annual Reports from Years 1 and 2 of the 
project all combined into a single document plus work that we completed during the six 
month no-cost extension period.  
 
Overview of MetaGeniE 
We initially provide an overview of the metagenomics pipeline we have designed since it is 
at the heart of our analyses. The overview is also provided to give context as to which 
analyses we conducted as part of evaluating pipeline performance that were specific to our 
Tasks from page 4.  
 
Motivation 
With the decreasing cost of next-generation sequencing, deep sequencing of 
metagenomes is an emerging field that provides unique opportunities to understand 
clinical samples. Among the primary translational goals of metagenomic sequencing of 
clinical samples is rapidly filtering out human reads to detect pathogens with high 
specificity and sensitivity. Metagenomes are inherently variable due to a number of distinct 
non-host populations in the samples, and their relative abundance, the size and 
architecture of genomes and factors such as tissue (human DNA versus pathogen DNA 
concentration) and sampling (localization) biases from patients. This variation in 
metagenomes manifests in sequencing datasets as low pathogen abundance, a high 
number of host reads, presence of close relatives and complex communities from multiple 
non-host community members. In addition to these challenges posed by the composition 
of metagenomes, high numbers of reads generated from high-throughput deep sequencing 
pose immense computational challenges. Accurate identification of pathogens is 
confounded by individual reads mapping to multiple different genomes due to gene 
similarity in different taxa present in community or close relative in reference database. 
Available global and local aligners also vary in sensitivity, specificity, speed of detection. 
The efficiency of detection in clinical samples can be estimated by the level of taxonomic 
resolution of the organisms. We have developed an efficient strategy that allows genetic 
characterization of pathogens with high accuracy, consistent with results from strain level 
SNP-genotyping and bacterial identification from laboratory culture and PCR assays.  
 
Background 
The metagenomic composition of microbial communities has typically been estimated with 
conserved gene amplicon sequencing (e.g., 16S rRNA for bacteria). More recently, whole 
genome sequencing (WGS) approaches have emerged as a powerful alternative that gives 
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a relatively unbiased and global representation of all members of the microbial community 
(Tringe and Rubin 2005, Tringe et al. 2005, Eisen 2007, Simon and Daniel 2011). With the 
advances in next-generation sequencing technology (Mardis 2008, Shendure and Ji 2008) 
and decreasing cost, it is possible to identify in clinical samples such features as all of the 
pathogen sequences within a metagenome (Kostic et al. 2011, Kostic et al. 2012, Kuroda 
et al. 2012). The next step is to go beyond species identification. WGS allows for higher 
resolution characterization of genomes within a sample for sub-species or strain 
identification, or genetic attributes (e.g., presence of antibiotic resistance markers) that can 
provide important insights for accurate clinical management for these patients. For clinical 
diagnostics, genus or even species-level identification may not be sufficient for proper 
clinical treatment. For example, a patient suffering from Staphylococcus aureus TCH1516 
(methicillin resistant strain) requires different treatment than a patient colonized by S. 
aureus Newman (methicillin sensitive strain).  

Next-generation sequencing technologies are improving rapidly, decreasing in cost and 
generating 100s of millions of reads per run. Different metagenomic analysis pipelines 
incorporate available aligners (local/global) in computational infrastructure such as cloud 
computing or high performance computing (HPC) to provide speed and scalability. Each of 
the current pipelines have advantages and disadvantages, with the typical issue of 
computational speed and scalability of high number of reads against reference database 
for accurate detection. For instance, PathSeq utilizes Amazon cloud computing to expand 
computational scalability but has associated overheads (Dimon et al. 2013). PathSeq, 
PARSES and MEGAN (Huson et al. 2007) characterize unknown reads (>1 million) with 
BLAST, however with the high number of metagenome reads, BLAST is not optimal given 
the high computational time required (Schmieder and Edwards 2011, Liu et al. 2013). 
IMSA does not discuss the scalability to large reference database and huge metagenome 
read files (Dimon et al. 2013), uses BLAST and invokes some processes like BLAT without 
parallelization. DeconSeq only removes host sequences and therefore does not have 
direct applicability for complex communities (Schmieder and Edwards 2011). 

Each metagenomic sequencing read, in theory, originates from a single genome. 
Assigning these high numbers of reads (especially 50-200 bp short reads) back to its 
genome of origin is problematic for multiple reasons including, a) the presence of 
overlapping/shared genomes from other organisms in the sample; b) the querying these 
reads against related genomes from publically available databases may result in a greater 
number of hits due to homology; and c) computational resources required to scan through 
huge reference databases. We have developed a pipeline designed for high performance 
computing (HPC) that manages sensitivity and specificity for detection of complex 
microbial samples and addresses all of the traditional limitations with many metagenomic 
analyses. The pipeline first builds all against all relations between read and reference 
database and then generate cumulative statistics from local and global alignment. The 
pipeline also incorporates features like comprehensive human read filtration and scalability 
to search large reference databases like microbial Refseq presently at ~19 GB. 
 
Final Design, Development and Optimization of MetaGeniE 
Computational Aspects 
The goal of clinical metagenomics is often to detect a signal for the major cause of 
infection amidst a veritable sea of host and non-host sequences. No two metagenomes 
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are identical and variation exists due to number of distinct populations in the community, 
the size and architecture of genomes and relative abundance of different microbes in 
the sampled community. Other factors that dictate variation in metagenomes are tissue 
(human DNA versus pathogen DNA concentration) and sampling (localization) biases. 
The variation in metagenomes makes it challenging to develop a “one size fits all” 
method, given the different needs of researchers. The characterization of community 
composition using microbial sequences can be approached at three taxonomic levels: 
genus, species and strain/genotype (Figure 1).  
 

 
Figure 1. Hierarchical architecture of genomes and its relationship with sequencing 
throughput. 
 
Usually the probability of sequencing strain or species-specific regions is less than 
genus-specific regions, given the hierarchical architecture of genome. Increasing 
sequencing throughput will allow better taxonomic resolution of any organism, 
especially the well-characterized or/and less divergent genus. For metagenome data, 
single reads may map to multiple organisms either due to conserved microbial genomic 
regions (e.g., genus specific genes) due to the presence of closely related organisms in 
the community being analyzed or in reference databases. Studies have shown 
metagenomic sequences share similar regions for even the simplest microbial 
communities. Assigning each read to all mapped genomes might be effective strategy 
as metagenome community can be considered to have no a priori knowledge about 
organism/community. The genus specific reads will map to higher number of organisms 
followed by reads specific to species and sub-species/strains. The organism with the 
highest shared (genus specific) regions, as well as unique regions, which generally 
belong to a species, and strain specific genes, will result in a higher % genome 
mapped. The taxonomic rank and the resolution for detection is proportional to 
sequencing throughput, richness of pathogen(s) in metagenome sampling and the 
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presence of genomic data from the community (target pathogens) or its close relative in 
the reference database. We benchmarked the sensitivity and specificity of the detection 
step of the pipeline by evaluating simulated read libraries through identification of 
correct pathogen and its %read recalled and genome coverage detected, correct % of 
host reads filtered and false detection of host and non-host reads as discussed in 
Section Human Filtration and Pathogen Detection. 
 
Implementation of MetaGeniE 
The MetaGenomic Explorer (MetaGeniE) is a distributed and scalable microbial 
discovery pipeline that consists of two modules: Read-Reduct and Patho-Detect. 
MetaGeniE is fully functional metagenomic pipeline that can be installed in Unix 
operating system and documentation for installation is available. The pipeline provides 
configuration file that allows user to set parameters and paths easily for required 
applications. The Metagenie is supported to run on cluster computing with user defined 
processors, memory usage and modules to run. Directions to set the options are 
available both in the documentation as well as command option provided. 
 
Design of Read Reduction Module of MetaGeniE 
The Read-Reduct module sequentially filters and reduces the low quality, redundant and 
human reads. In this first module, to reduce overall computational processing time and 
memory, faster analyses such as quality filtering and BWT alignment are performed initially 
using BWA (Li and Durbin 2009, 2010) or BOWTIE2 (Langmead 2010). Higher CPU and 
memory intensive features such as data compression and hash-based sensitive alignment 
using STAMPY (Lunter and Goodson 2011) are then utilized to further reduce the overall 
number of reads. Finally the remaining reads are aligned against the repeat database 
(Repbase, http://www.girinst.org/repbase/) and mapped repeat reads are removed. 
Benchmarking was performed from seven human datasets downloaded from SRA and one 
from simulated dataset and discussed in the first section of our tasks, In silico bioinformatic 
testing. 
 
Design of Pathogen Detection Module of MetaGeniE 
The second module of the pipeline, Patho-Detect, aligns the remaining reads after 
human filtration against known bacterial, fungal and viral sequences with BWT 
alignment followed with local aligner BLAT (Figure 2). MetaGeniE aggregates global 
and local (BLAT) alignments and generates cumulative report from both alignments for 
sensitive detection. Detection by read numbers is often not an accurate predictor due to 
repeat elements, close relatives in the metagenome and PCR amplification biases. 
Instead, MetaGeniE detects microbial presence by genomic reconstruction using 
percentage of the genome mapped and therefore largely overcomes these biases. 
Incorporating a larger NCBI RefSeq DB rather than using just a few selected complete 
genomes helps in resolution of pathogens to subspecies/strain level. RefSeq DB has 
doubled from 8.7 GB in Release 54 to 19 GB in Release 60 for bacteria. MetaGeniE can 
now handle multiple partitions of the reference database and so is scalable to large 
databases for better memory management. NCBI indexes and hashes allow faster 
extraction of millions of reads. Custom parsers allocate all reads to all mapped 
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genomes instead of SAMTools that map main hits only and therefore MetaGeniE limits 
underestimating pathogen detection in the metagenome.  

 
Figure 2.  The pathogen detection module of the pipeline. 
 
Features 
Scalability  
Incorporating a larger NCBI RefSeq database rather than using just a few selected 
complete genomes helps in closest resolution of identification to subspecies/strain level. 
RefSeq bacterial database has doubled from 8.7G in Release 54 to 19G in Release 60 
for bacteria and increasing in future. This results in increasing demand for 
computational memory to scale huge reference databases. 

 
Figure 3. Multithreaded input sequence file query the multiple partition reference 
database to address the scalability. 
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To address the issue of scalability with large reference databases, we designed the 
pipeline to handle multiple partitions of reference database for better memory 
management (Figure 3). Each smaller database partitions (~1GB) can be queried by 
multithreaded input files iteratively therefore reducing overall memory footprint. This 
querying of each input file fragment generates higher number of mapped-unmapped 
relationships against the partitioned database results per iteration that increases the 
computational time. To address this issue, the pipeline utilizes custom hash functions 
and indexing tool formatdb and fastacmd (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/) to 
allow faster extraction of millions of reads as an input to next reference database 
search.  
 
Normalized (%) Genome Coverage 
Pathogen detection by the total number of reads that hit/align to respective genome is 
not always an accurate predictor of presence of an organism due to repeat elements, 
close relatives in metagenome and PCR amplification. To overcome these biases, the 
pipeline detects microbial presence by genomic reconstruction i.e. %genome mapped 
for each organism from initial mixture of non-host DNA of metagenome. The pipeline 
first converts the local and global alignment output to common BED format. Genome 
coverage of each mapped organism is then calculated from the global and local 
alignments with BEDTOOLS (Quinlan and Hall, 2010). The total genome reconstructed 
for each mapped organism is the sum of genome coverage from global and local 
alignments for any metagenome. The normalized genome coverage (%genome 
coverage) is calculated as follows: 
Normalized  Genome  Cov.= !"#$%"  !"#.    !"  !"#$!  !"#$%&'%(!!"#$%"  !"#.    !"  !"#$%"  !"#$%&'%(

!"#$%  !"#$%"  !"#$
∗ 100  

The normalized genome coverage allows comparison of different organism with 
different genome size. It is helpful in representing the abundance of various organisms 
in metagenome for community analysis. 
 
Benchmark 
Bacterial Datasets: Simulated reads of length 100 bases were generated from 
respective reference genome as discussed in each section. Average Illumina 
sequencing error of 0.4% is incorporated in all the simulated bacterial reads. To study 
divergence and its effect on detection, additional variability of 0.1%, 0.2%, 0.5% and 1% 
is incorporated in each simulated bacterial library. All these steps utilized the same 
parameters as follows, BWA (default) and BLAT (80% identity). 
 
Pathogen Detection 
Metagenome datasets derived from clinical samples might have challenges like low 
abundance of pathogens, the complexity of community might vary from single infection 
(with only one dominant infection), multiple infections from close relative and complex 
community (example cystic fibrosis patients). The sequencing reads to be aligned 
against reference genome might have high divergence resulting from sequencing error 
or/and SNP mutations. We created simulated libraries based on these complexities of 
community to estimate the efficiency of pathogen detection. 
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Simple Community 
Metagenome sequences are often processed as a single genome alignment to a 
reference genome(s). In a single genome alignment, reads aligning to multiple loci to a 
reference genome are randomly assigned to a locus and SAMTools only parses these 
“main” hits. To compare this against our strategy to discern an organism among its 
close relatives with the all-against-all strategy between reads and reference genome, 
we utilized S. aureus TCH1516 to understand single infection, as Staphylococcus is 
well-characterized genus with high number of strains. This will allow us to test the 
specificity to detect correct organism not only among members of its own clade ST8-
MRSA-IVa/USA300 but large number of well-characterized genome of Staphylococcus 
in reference genome. Typically the genus specific regions of Staphylococcus will be 
assigned to all the members of this taxonomic rank. The reads that will further 
contribute to unique regions, which belong to its species (aureus), and strain specific 
genes (clonal complex 5), will result in highest % genome coverage of correct organism. 
The single alignment coverage is performed with BWA – SAMTools – BEDTools against 
multiple genome RefSeq dataset, Metagenome alignment is performed with human 
read reduction and pathogen detection of pipeline against RefSeq dataset. The results 
are compared with actual coverage detected with BWA – SAMTools – BEDTools 
against single genome of S. aureus TCH1516 genome (Table 1).  
 
Table 1. The comparison of percent genome coverage with increasing read number for 
the single genome alignment with metagenome alignment. * Genome coverage of top 
hit reported even if the organism detected is incorrect. 
 

 100 1K 10K 100K 250K 
Single Alignment Coverage 0.014* 0.059 0.62* 5.116 11.307 

MetaGenome Coverage 0.352 3.557 30.126 97.004 99.983 
Actual Coverage 0.348 3.427 29.494 96.955 99.982 

  
We were also able to detect S. aureus TCH1516 in all the test sets as top hit even with 
very low number of reads while single genome alignment is not able to report correct 
detection. We found that the single alignment underestimate the genome coverage 
compared with the results from our pipeline (Table 1). The coverage detected by our 
approach was nearly equal to the actual coverage detected (actual coverage is slightly 
lower than the coverage detected by our pipeline as actual coverage is calculated from 
only BWA alignment while the pipeline calculate coverage from both BWA and BLAT 
alignment).  

We also compared the effect on pathogen detection on number of reads, % genome 
coverage and read recall % with different features available for human filtration of the 
pipeline (Figure 4). Read recall % are the simulated reads that align back correctly to its 
reference genome after human filtration. As the read number increases, as expected 
genome coverage% also increases; approaching 99.9% at nearly 250K reads thus 
having coverage across the entire genome. 250K reads can be defined as approximate 
reads to reconstruct the entire genome of S. aureus TCH1516 from the metagenome.  
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Figure 4. Effect of human filtration on percent genome coverage and read recall 
percentage of pathogen detection. The legends of the figure are prefixed with the 
number of reads (.1K=100; 1K=1000; 10K=10000; 100K=100000; 1M=1000000) 
followed by mg_bw2 for only fast alignment feature of human read reduction; mg_dc for 
all features of human read reduction except data compression; mgall_bw2 for all 
features of human read reduction module) 

 
As more number of reads is sequenced (simulated), higher number of duplicate 

reads is also expected. Turning on data compression feature of human filtration of 
pipeline (*_mgall_bw2) to remove duplicates reduces the read recall% but has no effect 
on genome coverage% and detection of correct organism. The duplicate reads 
therefore do not add additional information and to manage computation scalability, 
removal of these duplicates is helpful. We also see that using all the human filtration 
steps of the pipeline (*_mgall-bw2) as compared to using just fast alignment 
(*_mg_bw2) or not utilizing data compression (*_mg_dc) does not lead to 
underestimation of %genome coverage for correct pathogen detection. 
 
Complex Community                 
The ability to detect community in complex clinical samples such as cystic fibrosis might 
be helpful in generating insight for proper clinical recourse. The shared regions are 
expected in even the simplest microbial communities. The simulated library will allow us 
to evaluate the impact on detection due to presence of multiple organisms in community 
that have different genome size. We designed a complex community of five bacteria 
that is detected in one of the cystic fibrosis clinical sample. Simulated reads is 
generated from reference genome of each of the five organisms and four libraries with 
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different read number (100, 1000, 10K, 100K per organism) is created.  In 
metagenomes, many organisms might not have any complete or incomplete entries in 
the reference genome database. To test the specificity of detection with unknown 
organism, V. dispar ATCC 17748 that is not present in bacterial reference genome 
(RefSeq Build 60) is added in this complex community. Querying a large reference 
database usually results in detection of multiple organisms within same genus due to 
overlapping homology. Therefore for detection of organism, we selected the highest 
mapped genome (top-hit) within the same genus. The correct detection is confirmed for 
all the organisms except for V. dispar ATCC 17748. The pipeline allows detection of 
correct organisms even in complex community.  

Different genera in complex community might share genomic regions. The 
robustness of detection can be measured by loss in sensitivity (genome coverage) of 
any organism in complex community versus single infection. We compared the 
%genome coverage of E. coli APEC O1 as single infection and in complex community. 
We found no difference and hence no loss in % genome coverage is reported and the 
E. coli APEC O1 in simple and complex community overlap completely (Figure 5). All 
against all relationship between the reads and reference database therefore allows us 
to detect any organism without any loss in sensitivity that might have shared genomic 
regions.  

 

 
Figure 5. Detection of genomes in complex community. Relationship between genome 
size and genome coverage with increasing sequencing reads. Effect of detection on E. 
coli APEC O1 in simple and complex community. 
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E. coli APEC O1 has highest genome hit among this community, the increase in read 
number have higher impact on the increase in genome coverage (Figure 5). For 
simulated reads of V. dispar ATCC 17748 that is true negative, V. parvula DSM 2008 
chromosome is detected as top hit with lower %genome coverage compared to other 
hits. We can infer that true calls may not always be possible, given the limited (albeit 
growing) nature of genomic databases and the resolution of detection might decrease.   
 
Co-infections 
We were able to accurately detect top hit per genus in complex community for known 
genomes in complex community as discussed above. However certain clinical samples 
might have pathogens from same species example S. aureus Newman and S. aureus 
TCH516. The S. aureus TCH1516 and S. aureus Newman belong to different clonal 
complex (CC8 & CC5) and resistant (MRSA) and sensitive to methicillin (MSSA) 
respectively. To test the specificity in these types of clinical samples, we created co-
infection libraries consisting of simulated reads from S. aureus Newman and S. aureus 
TCH1516 genomes. The presence of S. aureus Newman in co-infection library (true 
positive) is compared with detection in single infection library (false positive) that only 
has simulated reads from S. aureus TCH1516 genome (Figure 6-A).  

Any genome coverage% detected for S. aureus Newman in single infection library 
can be considered as false detection. The %genome coverage of S. aureus Newman 
(false call) is reported slightly less than its true presence in multiple-infection library, due 
to contribution of homologous reads from S. aureus TCH1516. However by top hit per 
genus, S. aureus Newman rank behind few other closely related genomes of S. aureus 
TCH1516 (CC5) in single infection library but is detected as top hit in co-infection library 
as shown in (Table 2).  
 

 
Figure 6. Comparison of detection of close relative in co-infection versus single 
infection. A. Comparison of %genome coverage of true detection in co-infection versus 
false detection of S. aureus Newman. B. Comparison of %genome coverage of S. 
aureus TCH1516 in co-infection versus simple infection. 
 

A co-infection library consist of reads from both S. aureus TCH1516 and S. aureus 
Newman. Due to the all reads mapped against all reference strategy, the shared 
homology between these two organisms results in higher % genome coverage of S. 
aureus TCH1516 in co-infection library then single-infection library (Figure 6-B). The S. 
aureus TCH1516 is detected as top hit per genus in single infection library and as one 
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of top hits with S. aureus Newman in co-infection library as represented in Table 2. We 
can infer that though detection as top hit per genus is correct in co-infection 
metagenome, however detection of co-infection is difficult and might require additional 
validation.  
 
Table 2. The rank of S. aureus Newman and S. aureus TCH1516 in single infection and 
co-infection library. FP: False Positive; TP: True Positive. 
 

 

Ranking of Sa. 
Newman Ranking of Sa. TCH1516 

Reads FP TP Single Inf (TP) Co-Inf (TP) 
.1K 5 1 1 2 
1K 4 1 1 3 

10K 5 1 1 3 
100K 5 1 1 2 

  
Diversity 
The metagenome reads might have artificial divergence due to sequencing error or 
variation incorporated due to selective mutation. The ability to assign these divergent 
reads back to its genome can allow the sensitivity for detection. Local alignment 
algorithms are considered to be more sensitive and accurate than global alignment 
algorithms. However, with the high number of metagenome reads, local aligner like 
BLAST is not optimal given the high computational time cost. Existing global aligners 
such as BWA, STAMPY, BOWTIE, BFAST, MAQ, NOVOALIGN, MOSAIK and SOAP2 
are preferred over local alignments given high volumes of metagenome sequences. 
However utilizing only global aligner might result in loss of detection of divergent reads. 
To incorporate these divergent reads for sensitive detection, we utilized BLAT that is 
~500 times faster than preexisting tools with comparable sensitivity.  

We designed the simulated reads from S. aureus TCH1516 genome with increasing 
divergence (See Benchmark above). To evaluate the sensitivity, reads that global 
aligner is unable to map but are aligned by local aligner (BLAT) are categorized as 
divergent reads. With increasing divergence, higher number of reads is not aligned by 
global aligner (Figure 7).  

The pipeline is able to incorporate these divergent reads through local alignment 
without decrease in the genome coverage for detection (Figure 7). In all the 25 
simulated test case (0%, 0.1%, 0.2%, 0.5% and 1% divergence for 100, 1K, 10K, 100K, 
250K reads), S. aureus TCH1516 is detected correctly in all except one, at 1% 
divergence with 100 reads. The limitation of detection for correct identification can 
therefore be seen at highest divergence with low number of reads. 
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Figure 7. Relationship between percent genome coverage and read recall percentage 
with incremental divergence. 
 
Analysis Overview 
Modifications to MetaGeniE including full automation, better workflow design, and fixes 
in scalability issues allowed us to rapidly and efficiently analyze 96 deep sequencing 
clinical samples from nine different projects (see clinical sequencing section below). 
This adds to analysis of over 5 billion sequence reads requiring 3 terabytes storage of 
sequence data. Nearly all of these datasets had a runtime of less than 24 hours and 
detected pathogens with high sensitivity and specificity as discussed in the analysis 
section. We think that further decreases in the computational runtime can be achieved 
by designing MetaGeniE with OpenMPI, a task we plan on initiating within the next year 
but is not required to be completed by the end of this current project. 
 
Read Reduction 
The first module of MetGeniE is Read-Reduction, a five-step process that removes low 
quality, redundant and human reads from sequence data (Figure 8A). The reads are 
iteratively mapped and only the unmapped reads remaining after each alignment step are 
processed as input to next step. The first step removal of low quality reads led to removal 
of ~40%-51% for 10 samples and ~31%-56% for the other 9 samples.  
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Figure 8. Iterative Reduction of the metagenome reads with Read-Reduct module of 
MetGeniE A. No whole genome amplification, B. Whole genome amplification reads 
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These low quality reads were observed to be much higher than other metagenomic 
samples that have been analyzed thus far.  
 

The filtered (remaining) reads with high quality were aligned against human reference 
genome with BWA (Figure 8B). We detail a subset of the total samples analyzed; ~95% for 
10 bacterial samples and ~97% for the 9 WGA samples aligned to human reference 
genome and were not considered for further analysis (i.e. removed from the analysis). The 
third data compression step resulted in removal of ~16%-32% of 10 samples and ~2.5%-
9% of the 9 WGA samples. The filtered reads are aligned against human reference 
genome with STAMPY, an aligner that is considered sensitive. The more sensitive 
alignment resulted in reduction of ~93%-98% of these remaining reads for all 19 samples. 
Finally the remaining reads were aligned against human repeat database with help of local 
aligner BLAT and ~1%-4% of the reads were removed. The total number of remaining 
reads left after five-stage filtering ranged from 12,200 reads to 48,862 reads (SD ± 10,934) 
for 10 bacterial samples. For the WGA samples, remaining reads ranged from 12,254  
reads to a maximum of 107,099 reads (SD ± 30,841). These remaining (filtered) reads 
were utilized for pathogen detection. 

To analyze the anomaly of high number of low quality reads, we performed quality 
summarization with FASTQC (Figure 9). The box-plot representation of the quality is 
generated separately for the reads that were discarded and the reads that passed the 
quality filter were used for further detection. These low quality reads were observed to 
be much higher than other metagenomic samples that have been analyzed so far. To 
analyze this anomaly, we performed quality summarization with FASTQC. The box-plot 
representation of the quality is generated separately for the reads that were discarded 
and the reads that passed the quality filter were used for further detection. 

 
 



 20 

 

 
Figure 9. Quality summary per position. A. Discarded reads in yellow. B. Remaining reads 
that were further utilized for detection. The discarded reads have low quality per position 
(<15 threshold) as compared to the filtered reads that have high quality (median quality 
>32). 
 
 
Detection of Bacteria 
MetGeniE detects the presence of microbes by performing fast local and global alignments 
with BWA and BLAT respectively against the bacterial Refseq database (Figure 10). 
Results were that ~1.2%-64.7% and ~1.3%-7.2% aligned with BWA and BLAT, 
respectively, against the Refseq database for the 10 samples. Results for the 9 WGA 
samples were that ~0.4%-42% and 0.5%-4% aligned with BWA and BLAT, respectively, 
against the Refseq database. The total number of reads that were unknown, i.e. 
undetected by MetGeniE, is less than ~0.05% for all 19 samples. 

MetaGeniE detects the bacterial presence by genome reconstruction by aggregating 
aligned reads (from Patho-Detect) of each individual genome. In each case, MetGeniE 
accurately identified each sample and its mixture to the correct species, except for B. 
pseudomallei being identified as B. mallei in one instance. This is understandable since B. 
mallei emerged as a clonal lineage from within B. pseudomallei so they share much of the 
genome composition with each other. Thus we have results indicating that at first pass, 
MetGeniE does quite well in species assignment in pure samples as well as mixed 
samples. MetGeniE detected one or more strains from different species in the mixture with 
different % genome. We observed that as the % genome gets <2%, the resolution for 
detection decreases and different strains (from same species) were difficult to discern. 
Different samples were mixed with different concentration of DNA for different species that 
is subjected to blind test. The accuracy of this approach is still being evaluated.  
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Figure 10. The bacterial identification with Patho-Detect module of MetGeniE. Figures are 
A. No whole genome amplification, B. Whole genome amplification reads 
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Details of Tasks and Task-specific Results 
 
In silico bioinformatic testing 
 

1. Create filters to remove reads of human DNA  
2. Run human genome reads against pathogen reference sequences  

 
Design of Human Read Reduction Module of MetaGeniE 
As detailed above, MetaGeniE is designed as distributed and scalable software to analyze 
millions of reads and query large reference databases and consists of two modules: Read-
Reduct and Patho-Detect. The Read-Reduct module sequentially filters and reduces the 
low quality, redundant and human reads (Figure 1). The low quality reads are filtered with 
the help of PRINSEQ. Human read filtration can be performed with the short read aligners, 
these are classified into Burrows-Wheeler Transform (BWT) and hash-based mappers. 
The BWT mappers such as BWA, SOAP2 and Bowtie are fast but considered less 
sensitive, while the hash-based aligners are slow but more accurate such as MAQ, 
ELAND, Novoalign and STAMPY. To reduce overall computational processing time and 
memory, faster analysis BWT aligner BWA or BOWTIE2 are utilized initially. Higher CPU 
and memory intensive features like data compression and hash-based sensitive alignment 
STAMPY are then utilized to further reduce the overall number of reads. 

 
 
Figure 1. The workflow of Human read reduction module the pipeline  
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Benchmark 
Human filtration is five step process and different steps (Table 1) are utilized to compare 
the sensitivity/specificity of detection of simulated reads, execution speed and memory 
usage.  
 
Table 1. Description of different steps of human filtration of pipeline utilized to compare 
sensitivity/specificity of detection and performance of runtime and computational resources 
of the simulated reads.  
 

  Quality Filter 
Fast 
Alignment 

Data 
Compression 

Sensitive 
Alignment Repeat DB 

mg_bw2  yes bowtie2 - - - 
mg_bwa yes bwa - - - 
mg_dc yes bwa - stampy yes 
mgall_bw2 yes bowtie2 Yes stampy yes 
mgall_bwa yes bwa Yes stampy yes 

 
To test the sensitivity of the efficiency of human filtration with Read-Reduct module, we 
utilized only human reads to test the sensitivity to remove human reads (Table 2). Seven 
whole genome sequencing of human datasets were downloaded from SRA 
(http://www.ncbi.nlm.nih.gov/sra/). We simulated 30 million reads from human reference 
genome build 37.2 (ftp://ftp.ncbi.nih.gov/genomes/H_sapiens) with GRINDER version 
0.5.3. These simulated human reads were 100 bases and were incorporated with total 
0.5% variability, 0.01% as expected human SNP frequency and 0.4% as the average 
sequencing error for Illumina reads. 
  
Table 2. Description of different human datasets for benchmarking human filtration. 
 

Name Read Numbers Source 
ERR191896 53.03 million SRA 
ERR218094 49.50 million SRA 
ERR237515 2.54 million SRA 
SRR032752 35.29 million SRA 
SRR033605 23.53 million SRA 
SRR054743 40.63 million SRA 
SRR054753 39.76 million SRA 
Simult_Hg19 30 million Simulated datasets 

 
All these steps utilized the same parameters as follows, BWA (default), BOWTIE2 (default 
with very sensitive mode), STAMPY (default), PHRED quality score > 15, minimum length 
>50, low complexity (dust) and BLAT (80% identity). 
 
Results 
The efficiency of human read filtration can be measured by total number of human reads 
removed from clinical samples. To test the effect on human read filtration with different 
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parameters, these eight databases were filtered against human reference genome (Hg19) 
with MetaGeniE. The mg_bwa  and mg_bw2 uses only BWA and Bowtie2 aligner only 
while mgall_bw2 and mgall_bwa uses all five steps of pipeline including fast alignment with 
BOWTIE2 and BWA respectively. We found that removing human reads with single aligner 
(mg_bwa/mg_bw2) might not be efficient in removing human reads. Utilizing all the 
features of the pipeline (mgall_bw2 and mgall_bwa) allowed higher filtration of human 
reads (Figure 2).  

 
Figure 2. Total numbers of reads remaining after human read reduction with different 
filtration parameters.  
 
The runtime of single step (mg_bwa/mg_bw2) is usually faster than running all steps of 
human filtration (mgall_bwa/mgall_bw2) (Figure 3). Keeping all constraints same, we found 
that BWA aligner runs faster than BOWTIE2 while BOWTIE is more sensitive than BWA as 
it aligns higher number of human reads (Figure 2). However the total number of reads 
removed by mgall_bw2 and mgall_bwa is nearly equal irrespective of whether BWA or 
BOWTIE2 aligner is used. 

Remaining human reads that were not filtered were aligned against the NCBI Refseq 
bacterial database. These human reads mapped to the bacterial database and as 
expected were higher for single step alignment (*_mg_bw2) that have higher number of 
human reads than comprehensive reduction with pipeline (*_mgall_bw2) (Figure 4). The 
unfiltered human reads not only map incorrectly to microbial datasets, but also contribute 
to overall runtime during pathogen detection. Removal of human reads with high specificity 
is advantageous for sensitive clinical interpretation. 
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Figure 3. Runtime for human read filtration with different aligner and filtration parameters 
(in minutes). 

 
Figure 4. Total numbers of reads aligning to bacterial database after human read filtration. 
The legends are prefixed with sample name (Simult-Hg19, ERR191896, ERR218094, 
ERR237515, SRR032752, SRR033605, SRR054743, SRR054753) followed by mg_bw2 
and mgall_bw2 that represent utilizing single aligner and multiple features of the pipeline. 
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Human DNA subtraction 
In addition to in silico removal of human DNA reads, we evaluated wet bench 
approaches to remove human DNA prior to library preparation as well. Our initial focus 
hybridization or enzymatic reduction of human DNA within a sample. As this will 
increase the number of subsequent sequence reads originating from non-human 
sources within the sample, this should increase the sensitivity of detecting and 
characterizing the microbial content of the sample. A number of commercially available 
kits that promise to selectively enrich bacterial DNA from blood cultures are available. 
Most rely on differential lysis of the blood cells with subsequent degradation of the 
human DNA while the bacterial cells remain intact, then the bacterial cells are lysed. 
One such kit from Molzyme® has been tested here at TGen North on past projects and 
was found to remove significant amounts of bacterial DNA as well as the human DNA, 
and so was deemed unsatisfactory. We first attempted the development of a lysis 
independent human DNA subtraction method that can be applied directly to DNA 
solutions. Starting with a method under development by researchers at Sandia National 
Labs for a microfluidics application,  subtraction probes are prepared by biotin labeling 
fragmented DNA, in this case human, which are then hybridized to a complex target 
sample. Human sequences in theory will hybridize to the biotin-labeled probes, and then 
be removed from the rest of the sample via streptavidin-labeled magnetic beads. 
Extensive development and evaluation indicated only minimal removal human DNA 
from mixed samples. As such, we decided to start working with a commercially available 
kit.  Metagenomic DNA extracted from (sample origins) of four Francisella tularensis 
clinical cases was quantified using the Nanodrop 1000 spectrophotometer. Based on 
these quantifications, 1-2 µg of total DNA was enriched for microbial DNA using the 
NEBNext Microbiome DNA Enrichment Kit (New England Biolabs, Ipswich, 
Massachusetts, USA) according to the supplied protocol. This protocol captures DNA 
with CpG methylation, which is prominent in eukaryotic DNA and rare in prokaryotic 
DNA, and removes it from the metagenomic sample, effectively enriching microbial 
DNA. 

Preliminary evaluation with quantitative PCR analysis of this subtraction protocol has 
resulted in up to 99% removal of human DNA alu qPCR assay target fragments. Upon post 
subtraction sequencing, we still see human reads present in the sequencing libraries, but 
their abundance is significantly reduced, providing for much more sensitive pathogen 
target discovery. This approach has broad applications beyond just clinical sequencing 
and includes such needs as removing host DNA from cell culturing work where microbial 
DNA needs to be separated from such vertebrate cell lines.  

While we started this work early in the first year of the project, optimal results were not 
achieved until the last quarter of our work where we were able to evaluate our methods 
using DNA from four Francisella tularensis clinical cases (FT1, FT2, FT6, FT13).  
  
Sequencing Library Preparation 
Both native and subtracted DNA samples were prepared for multiplexed Illumina 
sequencing using the KAPA Illumina series library preparation kit (Kapa Biosystems, 
Wilmington, Massachusetts, USA) with adapter and index primer oligos as described in 
Kozarewa and Turner (2011). Libraries were size-selected using the dual-SPRI scheme 
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described by Lundin et al. (2010) to achieve an average insert size of 700 bp. 
Sequencing was performed on an Illumina HiSeq 2000. 
 
Human Subtraction Protocol Analysis 
For the four F. tularensis samples, human DNA was subtracted using the CpG methylation 
protocol. We compared these four subtracted samples with the normal samples (Figure 5). 
We found that the subtracted human sequencing reduces the total percentage of human 
reads as against the normal sequencing from ~1% to ~6%.  
 

 
 
Figure 5. Comparison of subtracted human protocol sequencing versus normal 
sequencing. 
 
We also found that the total number of reads aligning to bacterial reads significantly 
increased by factor of ~5 to ~90 (Figure 6). Comparing the community between the 
subtracted human (host) sequencing and normal sequencing, microbial detection was 
quite different. For normal sequencing, we were able to detect Francisella tularensis as 
major component of infection, for these patients suffering from tularensis besides other 
organisms like Ralstonia picketti. However comparing the distribution of population with the 
human subtracted sequencing, top hits were Herbaspirillum seropedicae SmR1 for Sample 
1 and 2 and Cupriavidus metallidurans CH34 for Sample FT6 and FT13 (Table 3). 
Francisella tularensis is also detected but the genome coverage % was higher for two 
samples and lower for other two samples.  
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Figure 6. Comparison of bacterial read alignment of subtracted human protocol 
sequencing versus normal sequencing. 
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Table 3. Top metagenomic hits for microbial discovery based on genome coverage for four 
Francisella tularensis clinical cases (FT1, FT2, FT6, FT13). 
 

 

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Herbaspirillum_#_seropedicae_!_SmR1_{}_|gi|300309346|ref|NC_014323.1| 2870146 52.053 5513887
Collimonas_#_fungivorans_!_Ter331_{}_|gi|340785197|ref|NC_015856.1| 386377 7.449 5186898
Janthinobacterium_#_sp._!_CG3_{_JANGC3DRAFT1.1_}|gi|484156181|ref|NZ_KB467824.1| 267953 4.829 5549265
Delftia_#_acidovorans_!_SPHZ1_{}_|gi|160895450|ref|NC_010002.1| 220753 3.262 6767514
Ralstonia_#_eutropha_!_H16_{}_1_|gi|113866031|ref|NC_008313.1| 220577 5.444 4052032
Achromobacter_#_xylosoxidans_!_A8_{}_|gi|311103224|ref|NC_014640.1| 220474 3.144 7013095
Cupriavidus_#_necator_!_NZ1_{}_1|gi|339324158|ref|NC_015726.1| 212406 5.484 3872936
Ralstonia_#_solanacearum_!_CMR15_{}_|gi|523408232|ref|NC_017559.1| 206756 5.75 3596030
Delftia_#_sp._!_Cs1Z4_{}_|gi|333911667|ref|NC_015563.1| 204803 3.063 6685842
Cupriavidus_#_taiwanensis_!_LMG_{_19424_}1|gi|188590795|ref|NC_010528.1| 201059 5.884 3416911
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 200591 10.58 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002Z00|gi|156501369|ref|NC_009749.1| 200154 10.585 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 199713 10.544 1894157
Ralstonia_#_solanacearum_!_Po82_{}_|gi|386331671|ref|NC_017574.1| 197334 5.669 3481091
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 196393 10.36 1895727
Cupriavidus_#_metallidurans_!_CH34_{}_|gi|94308945|ref|NC_007973.1| 193310 4.921 3928089
Ralstonia_#_solanacearum_!_GMI1000_{}_|gi|17544719|ref|NC_003295.1| 192265 5.173 3716413
Ralstonia_#_solanacearum_!_IPO1609_{_|gi|207741818|ref|NW_002196569.1| 188862 5.599 3372855
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 188158 9.972 1886888
Ralstonia_#_solanacearum_!_CFBP2957_{}_|gi|300702374|ref|NC_014307.1| 184200 5.39 3417386

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 42495 2.241 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002Z00|gi|156501369|ref|NC_009749.1| 42254 2.235 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 42188 2.227 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 42162 2.224 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 40979 2.172 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 38223 1.942 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 35758 1.889 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 35758 1.889 1892775
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 35707 1.887 1892616
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 35707 1.887 1892744
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96Z3418|gi|134301169|ref|NC_009257.1| 35445 1.867 1898476
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 29870 1.577 1893886
Francisella_#_novicida_!_U112_{}_|gi|118496615|ref|NC_008601.1| 16928 0.886 1910031
Francisella_#_cf._!_novicida_{_Fx1_}|gi|385791932|ref|NC_017450.1| 15216 0.795 1913619
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.19|gi|254367826|ref|NZ_DS229056.1| 12257 2.205 555807
Streptomyces_#_griseoflavus_!_Tu4000_{_genomic_}1.1|gi|224581108|ref|NZ_GG657758.1| 8778 0.109 8047042
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC0331.4|gi|254370255|ref|NZ_DS264119.1| 8131 1.032 788151
Francisella_#_tularensis_!_subsp._{_novicida_}_FTE_FTE1|gi|224580220|ref|NZ_DS989818.1| 7110 0.837 849109
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.8|gi|254369615|ref|NZ_DS264140.1| 7070 2.139 330502
Francisella_#_novicida_!_FTG_{_FTG1_}|gi|224580234|ref|NZ_DS995363.1| 6286 0.893 703773

Subtracted,Human,Sequencing,(FT1)

Normal,Human,Sequencing,(FT1)



 30 

 
  

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Herbaspirillum_#_seropedicae_!_SmR1_{}_|gi|300309346|ref|NC_014323.1| 3039047 55.116 5513887
Collimonas_#_fungivorans_!_Ter331_{}_|gi|340785197|ref|NC_015856.1| 455636 8.784 5186898
Janthinobacterium_#_sp._!_CG3_{_JANGC3DRAFT1.1_}|gi|484156181|ref|NZ_KB467824.1| 316372 5.701 5549265
Ralstonia_#_eutropha_!_H16_{}_1_|gi|113866031|ref|NC_008313.1| 261011 6.441 4052032
Achromobacter_#_xylosoxidans_!_A8_{}_|gi|311103224|ref|NC_014640.1| 257003 3.665 7013095
Delftia_#_acidovorans_!_SPH\1_{}_|gi|160895450|ref|NC_010002.1| 252615 3.733 6767514
Cupriavidus_#_necator_!_N\1_{}_1|gi|339324158|ref|NC_015726.1| 247458 6.389 3872936
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 245618 12.955 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 245565 12.964 1894157
Ralstonia_#_solanacearum_!_CMR15_{}_|gi|523408232|ref|NC_017559.1| 243872 6.782 3596030
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002\00|gi|156501369|ref|NC_009749.1| 243843 12.896 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 242455 12.79 1895727
Cupriavidus_#_taiwanensis_!_LMG_{_19424_}1|gi|188590795|ref|NC_010528.1| 240282 7.032 3416911
Ralstonia_#_solanacearum_!_Po82_{}_|gi|386331671|ref|NC_017574.1| 236551 6.795 3481091
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 233405 12.37 1886888
Delftia_#_sp._!_Cs1\4_{}_|gi|333911667|ref|NC_015563.1| 232974 3.485 6685842
Ralstonia_#_solanacearum_!_GMI1000_{}_|gi|17544719|ref|NC_003295.1| 228347 6.144 3716413
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 224368 11.397 1968651
Ralstonia_#_solanacearum_!_IPO1609_{_|gi|207741818|ref|NW_002196569.1| 222563 6.599 3372855
Ralstonia_#_solanacearum_!_CFBP2957_{}_|gi|300702374|ref|NC_014307.1| 215864 6.317 3417386

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 72600 3.833 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002\00|gi|156501369|ref|NC_009749.1| 72361 3.827 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 71914 3.793 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 68360 3.606 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 65721 3.483 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 64022 3.252 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96\3418|gi|134301169|ref|NC_009257.1| 61612 3.245 1898476
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 61426 3.245 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 61174 3.232 1892616
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 61117 3.229 1892775
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 60940 3.22 1892744
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 51421 2.715 1893886
Francisella_#_novicida_!_U112_{}_|gi|118496615|ref|NC_008601.1| 29126 1.525 1910031
Francisella_#_cf._!_novicida_{_Fx1_}|gi|385791932|ref|NC_017450.1| 26557 1.388 1913619
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.19|gi|254367826|ref|NZ_DS229056.1| 22104 3.977 555807
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC0331.4|gi|254370255|ref|NZ_DS264119.1| 14356 1.821 788151
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.5|gi|254368696|ref|NZ_DS264137.1| 13465 2.759 488102
Francisella_#_tularensis_!_subsp._{_novicida_}_FTE_FTE1|gi|224580220|ref|NZ_DS989818.1| 12673 1.493 849109
Francisella_#_novicida_!_FTG_{_FTG1_}|gi|224580234|ref|NZ_DS995363.1| 11472 1.63 703773
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.6|gi|254369075|ref|NZ_DS264138.1| 10313 2.029 508365

Subtracted,Human,Sequencing,(FT2)

Normal,Human,Sequencing,(FT2)
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Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Cupriavidus_#_metallidurans_!_CH34_{}_|gi|94308945|ref|NC_007973.1| 2631037 66.98 3928089
Cupriavidus_#_metallidurans_!_CH34_{_megaplasmid_}|gi|291481467|ref|NC_007974.2| 1746897 67.707 2580084
Ralstonia_#_eutropha_!_H16_{}_1_|gi|113866031|ref|NC_008313.1| 194259 4.794 4052032
Cupriavidus_#_necator_!_NP1_{}_1|gi|339324158|ref|NC_015726.1| 192410 4.968 3872936
Cupriavidus_#_taiwanensis_!_LMG_{_19424_}1|gi|188590795|ref|NC_010528.1| 190485 5.575 3416911
Cupriavidus_#_metallidurans_!_CH34_{_plasmid_}_pMOL30|gi|56130627|ref|NC_006466.1| 184536 78.944 233755
Cupriavidus_#_metallidurans_!_CH34_{_plasmid_}_pMOL30|gi|291464753|ref|NC_007971.2| 184489 78.936 233720
Ralstonia_#_eutropha_!_JMP134_{}_1|gi|73539706|ref|NC_007347.1| 174988 4.597 3806533
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 166871 8.801 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 166321 8.781 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002P00|gi|156501369|ref|NC_009749.1| 165408 8.748 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 162954 8.596 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 151481 8.028 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 145410 7.386 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96P3418|gi|134301169|ref|NC_009257.1| 138407 7.29 1898476
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 138093 7.296 1892744
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 136778 7.227 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 136734 7.224 1892775
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 134359 7.094 1893886
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 96340 5.09 1892616

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 296764 15.652 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 295826 15.618 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002P00|gi|156501369|ref|NC_009749.1| 295286 15.616 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 293857 15.501 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 285104 15.11 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 276026 14.021 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96P3418|gi|134301169|ref|NC_009257.1| 264917 13.954 1898476
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 263190 13.897 1893886
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 262822 13.886 1892744
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 262607 13.875 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 262370 13.863 1892616
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 262370 13.862 1892775
Francisella_#_novicida_!_U112_{}_|gi|118496615|ref|NC_008601.1| 195963 10.26 1910031
Francisella_#_cf._!_novicida_{_Fx1_}|gi|385791932|ref|NC_017450.1| 183855 9.608 1913619
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.19|gi|254367826|ref|NZ_DS229056.1| 86791 15.615 555807
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC0331.4|gi|254370255|ref|NZ_DS264119.1| 82045 10.41 788151
Francisella_#_tularensis_!_subsp._{_novicida_}_FTE_FTE1|gi|224580220|ref|NZ_DS989818.1| 80740 9.509 849109
Francisella_#_novicida_!_FTG_{_FTG1_}|gi|224580234|ref|NZ_DS995363.1| 67747 9.626 703773
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.5|gi|254368696|ref|NZ_DS264137.1| 65767 13.474 488102
Francisella_#_cf._!_novicida_{_3523_}|gi|387823583|ref|NC_017449.1| 64634 3.323 1945310

Subtracted,Human,Sequencing,(FT6)

Normal,Human,Sequencing,(FT6)
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Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Cupriavidus_#_metallidurans_!_CH34_{}_|gi|94308945|ref|NC_007973.1| 3049075 77.622 3928089
Cupriavidus_#_metallidurans_!_CH34_{_megaplasmid_}|gi|291481467|ref|NC_007974.2| 2009785 77.896 2580084
Ralstonia_#_eutropha_!_H16_{}_1_|gi|113866031|ref|NC_008313.1| 271535 6.701 4052032
Cupriavidus_#_necator_!_NP1_{}_1|gi|339324158|ref|NC_015726.1| 260822 6.734 3872936
Cupriavidus_#_taiwanensis_!_LMG_{_19424_}1|gi|188590795|ref|NC_010528.1| 254368 7.444 3416911
Ralstonia_#_eutropha_!_JMP134_{}_1|gi|73539706|ref|NC_007347.1| 242231 6.364 3806533
Cupriavidus_#_metallidurans_!_CH34_{_plasmid_}_pMOL30|gi|56130627|ref|NC_006466.1| 197441 84.465 233755
Cupriavidus_#_metallidurans_!_CH34_{_plasmid_}_pMOL30|gi|291464753|ref|NC_007971.2| 197177 84.365 233720
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 132199 6.973 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002P00|gi|156501369|ref|NC_009749.1| 131543 6.957 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 131258 6.93 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 128893 6.799 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 122915 6.514 1886888
Ralstonia_#_solanacearum_!_CMR15_{}_|gi|523408232|ref|NC_017559.1| 121624 3.382 3596030
Ralstonia_#_solanacearum_!_Po82_{}_|gi|386331671|ref|NC_017574.1| 121071 3.478 3481091
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 113359 5.758 1968651
Ralstonia_#_solanacearum_!_PSI07_{}_|gi|300689714|ref|NC_014311.1| 113115 3.213 3520618
Ralstonia_#_solanacearum_!_CFBP2957_{}_|gi|300702374|ref|NC_014307.1| 113075 3.309 3417386
Ralstonia_#_solanacearum_!_GMI1000_{}_|gi|17544719|ref|NC_003295.1| 110070 2.962 3716413
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96P3418|gi|134301169|ref|NC_009257.1| 109645 5.775 1898476

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002P00|gi|156501369|ref|NC_009749.1| 140625 7.437 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 140169 7.393 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 139139 7.346 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 138832 7.323 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 132246 7.009 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 122280 6.211 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96P3418|gi|134301169|ref|NC_009257.1| 117989 6.215 1898476
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 115572 6.106 1892744
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 115405 6.097 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 115311 6.093 1892616
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 115311 6.092 1892775
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 115096 6.077 1893886
Francisella_#_novicida_!_U112_{}_|gi|118496615|ref|NC_008601.1| 63192 3.308 1910031
Francisella_#_cf._!_novicida_{_Fx1_}|gi|385791932|ref|NC_017450.1| 55336 2.892 1913619
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.19|gi|254367826|ref|NZ_DS229056.1| 41831 7.526 555807
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC0331.4|gi|254370255|ref|NZ_DS264119.1| 29337 3.722 788151
Francisella_#_tularensis_!_subsp._{_novicida_}_FTE_FTE1|gi|224580220|ref|NZ_DS989818.1| 27185 3.202 849109
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.5|gi|254368696|ref|NZ_DS264137.1| 23490 4.813 488102
Francisella_#_novicida_!_FTG_{_FTG1_}|gi|224580234|ref|NZ_DS995363.1| 23381 3.322 703773
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.13|gi|254367300|ref|NZ_DS229050.1| 21554 6.104 353090

Subtracted,Human,Sequencing,(FT13)

Normal,Human,Sequencing,(FT13)
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3. Create mixtures of read data from prior human and pathogen sequencing 
projects. Mixtures will be created at a wide range of sequence quantities and 
genome coverage. 

 
We used clinical samples from these types of patients due to the clinical data on infections 
already present plus the ability to assess different tissue types, including sputum, lymph 
nodes, and urine. We evaluated different sequence alignment applications and parameters 
to optimize detection of the pathogen reads in these complex clinical samples. Optimal 
aligners and parameters were then incorporated into the MetaGeniE application. An 
example of an alignment of a 1000 B. pseudomallei read mixture with one of the cystic 
fibrosis sequence data sets (50M reads) is shown in Figure 7. Reads aligning to the 
K96243 NCBI reference genome are shown. Note the dispersed alignment pattern across 
the genome. This would be the expected alignment pattern of an organism actually present 
in a sample at low levels, and is what is seen when viewing reads aligning to S. 
thermophilus and R. mucilaginosa in this particular sample.  
 

 
 
Figure 7. Lasergene Alignment of 50M cystic fibrosis throat swab Illumina PE 100bp 
sequence reads mixed with 1000 randomly sampled reads from a K96243 B. pseudomallei 
strain Illumina sequence data set to 2200 bacterial reference genomes, including the 
K96243 NCBI reference genome. 
 
Figure 8 shows alignment of the same sequence read data set to the NCBI Dyadobacter 
fermentans genome sequence. Note the isolated locations in the genome where reads are 
clustered. These are primarily highly conserved genes such as tRNA’s, rRNA genes and 
short sequence repeats. These aligned reads are sequences common to many different 
microbes and many are exchanged by lateral gene transfer so can be found in unrelated 
microbes. This type of alignment pattern would not be strong evidence of the presence of 
this organism in the sample. On chromosome one of two of the B. mallei sequences reads 
aligned to two 50 bp locations in the genomes, both of which were highly conserved tRNA 
genes. Tables 4-6 show the numbers of reads aligning to various B. mallei and B. 
pseudomallei genomes (closely related species, in fact B. mallei emerged as a clone from 
within B. pseudomallei) when 100 and 1000 B. pseudomallei K96243 reads are mixed with 
the clinical sample sequence reads. The low ratio of input reads aligning to the B. 
pseudomallei genomes likely indicates suboptimal alignment parameters. 
 
Table 4. Results from early analyses where no B. pseudomallei reads were added to 
sample sequences. 
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   # reads 
aligning NCBI ACC# Organism 
107804 NC_006449.1 StreptococcusthermophilusCNRZ1066chromosome,completegenome 
99381 NC_013715.1 RothiamucilaginosaDY-18,completegenome 
97812 NC_003454.1 Fusobacteriumnucleatumsubsp.nucleatumATCC25586chromosome,completegenome 
58276 NC_013853.1 StreptococcusmitisB6,completegenome 
55579 NC_013520.1 VeillonellaparvulaDSM2008,completegenome 
49071 NC_014370.1 PrevotellamelaninogenicaATCC25845chromosomechromosomeI,completesequence 
35815 NC_009785.1 Streptococcusgordoniistr.Challissubstr.CH1,completegenome 
30123 NC_014371.1 PrevotellamelaninogenicaATCC25845chromosomechromosomeII,completesequence 
26592 NC_013162.1 CapnocytophagaochraceaDSM7271,completegenome 
25684 NC_013798.1 StreptococcusgallolyticusUCN34,completegenome 
24781 NC_009009.1 StreptococcussanguinisSK36,completegenome 
19190 NC_009796.1 Campylobacterconcisus13826plasmidpCCON16,completesequence 
18931 NC_007146.2 Haemophilusinfluenzae86-028NP,completegenome 
17991 NC_013192.1 LeptotrichiabuccalisDSM1135,completegenome 
15789 NC_010120.1 Neisseriameningitidis053442,completegenome 
12410 NC_014498.1 Streptococcuspneumoniae670-6Bchromosome,completegenome 
11941 NC_002946.2 NeisseriagonorrhoeaeFA1090,completegenome 
11796 NC_012471.1 Streptococcusequisubsp.equi4047,completegenome 
11751 NC_009802.1 Campylobacterconcisus13826,completegenome 
9925 NC_003383.1 ListeriainnocuaClip11262plasmidpLI100,completesequence 
9454 NC_013895.1 Clostridialesgenomosp.BVAB3str.UPII9-5chromosome,completegenome 
7528 NC_002951.2 Staphylococcusaureussubsp.aureusCOL,completegenome 
7473 NC_004669.1 EnterococcusfaecalisV583plasmidpTEF1,completesequence 
5793 NC_012778.1 EubacteriumeligensATCC27750,completegenome 
5452 NC_013721.1 Gardnerellavaginalis409-05chromosome,completegenome 
5147 NC_012923.1 StreptococcussuisBM407plasmidpBM407,completesequence 
5028 NC_009089.1 Clostridiumdifficile630,completegenome 
      
1 NC_006348.1 BurkholderiamalleiATCC23344chromosome1,completesequence 
1 NC_006349.2 BurkholderiamalleiATCC23344chromosome2,completesequence 
248* NC_008836.1 BurkholderiamalleiNCTC10229chromosomeI,completesequence 
393* NC_009080.1 BurkholderiamalleiNCTC10247chromosomeI,completegenome 
2 NC_009076.1 Burkholderiapseudomallei1106achromosomeI,completegenome 
5 NC_009078.1 Burkholderiapseudomallei1106achromosomeII,completegenome 
2 NC_007434.1 Burkholderiapseudomallei1710bchromosomeI,completesequence 
2 NC_007435.1 Burkholderiapseudomallei1710bchromosomeII,completesequence 
5 NC_009074.1 Burkholderiapseudomallei668chromosomeI,completegenome 
2 NC_012695.1 BurkholderiapseudomalleiMSHR346chromosomeI,completegenome 
*Vast majority of reads aligning to the B. mallei genomes are found in a single 50bp location in the 
genome 
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Table 5. Results from analysis where 100 B. pseudomallei reads were added to 
sequence reads from CF clinical sample reads. 

  
 

# reads 
aligning NCBI ACC# Organism 

3 NC_006348.1 BurkholderiamalleiATCC23344chromosome1,completesequence 
5 NC_006349.2 BurkholderiamalleiATCC23344chromosome2,completesequence 

251 NC_008836.1 BurkholderiamalleiNCTC10229chromosomeI,completesequence 
1 NC_008835.1 BurkholderiamalleiNCTC10229chromosomeII,completesequence 

417 NC_009080.1 BurkholderiamalleiNCTC10247chromosomeI,completegenome 
3 NC_009079.1 BurkholderiamalleiNCTC10247chromosomeII,completegenome 
1 NC_008785.1 BurkholderiamalleiSAVP1chromosomeI,completegenome 
1 NC_008784.1 BurkholderiamalleiSAVP1chromosomeII,completegenome 
8 NC_009076.1 Burkholderiapseudomallei1106achromosomeI,completegenome 
7 NC_009078.1 Burkholderiapseudomallei1106achromosomeII,completegenome 

11 NC_007434.1 Burkholderiapseudomallei1710bchromosomeI,completesequence 
2 NC_007435.1 Burkholderiapseudomallei1710bchromosomeII,completesequence 
4 NC_009074.1 Burkholderiapseudomallei668chromosomeI,completegenome 
6 NC_009075.1 Burkholderiapseudomallei668chromosomeII,completegenome 

14 NC_006350.1 BurkholderiapseudomalleiK96243chromosome1,completesequence 
14 NC_006351.1 BurkholderiapseudomalleiK96243chromosome2,completesequence 

3 NC_012695.1 BurkholderiapseudomalleiMSHR346chromosomeI,completegenome 
 
Table 6. Results from analysis where 1000 B. pseudomallei reads were added to 
sequence reads from CF clinical sample reads. 
 
# reads 
aligning NCBI ACC# Organism 

74 NC_006348.1 Burkholderia mallei ATCC 23344 chromosome 1, complete sequence 
33 NC_006349.2 Burkholderia mallei ATCC 23344 chromosome 2, complete sequence 
79 NC_009076.1 Burkholderia pseudomallei 1106a chromosome I, complete genome 
42 NC_009078.1 Burkholderia pseudomallei 1106a chromosome II, complete genome 
91 NC_007434.1 Burkholderia pseudomallei 1710b chromosome I, complete sequence 
49 NC_007435.1 Burkholderia pseudomallei 1710b chromosome II, complete sequence 
64 NC_009074.1 Burkholderia pseudomallei 668 chromosome I, complete genome 
52 NC_009075.1 Burkholderia pseudomallei 668 chromosome II, complete genome 

177 NC_006350.1 Burkholderia pseudomallei K96243 chromosome 1, complete sequence 
139 NC_006351.1 Burkholderia pseudomallei K96243 chromosome 2, complete sequence 

59 NC_012695.1 Burkholderia pseudomallei MSHR346 chromosome I, complete genome 
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Figure 8. Lasergene Alignment of 50M cystic fibrosis throat swab Illumina PE 100bp 
sequence reads to 2200 bacterial reference genomes. Location within the genome of 
reads aligning to the NCBI Dyadobacter fermentans reference genome is shown. 
 
 
Analysis of GAIIx and HiSeq Mixtures 
We analyzed 14 samples from mixtures places on the GAIIx and 35 samples from mixtures 
placed on the HiSeq; 9 samples on the HiSeq were also run with whole genome amplified 
material. The initial number of reads for 14 GAIIx samples ranged from 6.38 million reads 
to 57.5 million reads (mean 25.0 million, SD ± 11.8 million). The initial number of reads for 
35 HiSeq samples ranged from 70.8 million reads to 105.9 million reads (mean 53.1 
million, SD ± 24.4 million). The other 9 whole genome amplified samples ranged from 31.3 
million to 105.9 million (SD ± 27.9 million).  
 
Table 7. Results of sequencing with mixture and insert size variation, read statistics, 
sequencing platform, and type of run for Illumina instruments. 
 

Sample # total reads platform Run type 
DNA Mixture1_220bp* 34,872,808 HiSeq 100bpX2 
DNA Mixture2_220bp 85,222,206 HiSeq 100bpX2 
DNA Mixture3_220bp 67,146,924 HiSeq 100bpX2 
DNA Mixture4_220bp 53,407,900 HiSeq 100bpX2 
DNA Mixture5_220bp 45,209,146 HiSeq 100bpX2 
DNA Mixture6_220bp 51,643,986 HiSeq 100bpX2 
DNA Mixture7_220bp 55,998,636 HiSeq 100bpX2 
DNA Mixture8_220bp 54,377,232 HiSeq 100bpX2 
DNA Mixture9_220bp 41,804,982 HiSeq 100bpX2 
DNA Mixture10_220bp 22,434,026 HiSeq 100bpX2 
DNA Mixture11_220bp 23,179,078 HiSeq 100bpX2 
DNA Mixture1-WGA_220bp** 33,791,610 HiSeq 100bpX2 
DNA Mixture2-WGA_220bp 31,259,728 HiSeq 100bpX2 
DNA Mixture3-WGA_220bp 77,460,036 HiSeq 100bpX2 
DNA Mixture4-WGA_220bp 92,243,524 HiSeq 100bpX2 
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DNA Mixture5-WGA_220bp 40,840,362 HiSeq 100bpX2 
DNA Mixture6-WGA_220bp 62,553,118 HiSeq 100bpX2 
DNA Mixture7-WGA_220bp 51,846,948 HiSeq 100bpX2 
DNA Mixture8-WGA_220bp 51,929,548 HiSeq 100bpX2 
DNA Mixture9-WGA_220bp 47,806,890 HiSeq 100bpX2 
DNA Mixture10-WGA_220bp 105,901,040 HiSeq 100bpX2 
DNA Mixture11-WGA_220bp 90,600,348 HiSeq 100bpX2 
YP-Blood repA-10e3_220bp*** 30,454,020 HiSeq 100bpX2 
YP-Blood repB-10e3_220bp 7,082,796 HiSeq 100bpX2 
YP-Blood repC-10e3_220bp 69,589,268 HiSeq 100bpX2 
YP-Blood repA-10e4_220bp 18,720,472 HiSeq 100bpX2 
YP-Blood repB-10e4_220bp 46,880,850 HiSeq 100bpX2 
YP-Blood repC-10e4_220bp 73,344,980 HiSeq 100bpX2 
YP-Blood repA-10e7_220bp 77,696,268 HiSeq 100bpX2 
YP-Blood repB-10e7_220bp 71,446,862 HiSeq 100bpX2 
YP-Blood repC-10e7_220bp 20,101,380 HiSeq 100bpX2 
YP-Blood repA-NTC_220bp 17,686,296 HiSeq 100bpX2 
YP-Blood repB-NTC_220bp 64,977,842 HiSeq 100bpX2 
YP-Blood repC-NTC_220bp 48,477,286 HiSeq 100bpX2 
YP-Blood repA-NTC_600bp 27,659,534 GAIIx 100bpX2 
YP-Blood repA-10e3_600bp 12,450,630 GAIIx 100bpX2 
YP-Blood repA-10e4_600bp 22,147,300 GAIIx 100bpX2 
YP-Blood repA-10e7_600bp 17,812,372 GAIIx 100bpX2 
YP-Blood repA-NTC_220bp 28,401,622 GAIIx 100bpX2 
YP-Blood repA-10e3_220bp 32,686,456 GAIIx 100bpX2 
YP-Blood repA-10e4_220bp 30,348,982 GAIIx 100bpX2 
YP-Blood repA-10e7_220bp 20,342,338 GAIIx 100bpX2 
YP-Sputum TGN6576-NTC_220bp 88,936,920 HiSeq 100bpX2 
YP-Sputum TGN6376-10e4_220bp 25,812,050 GAIIx 100bpX2 
YP-Sputum TGN6376-10e7_220bp 57,500,138 GAIIx 100bpX2 
YP-Sputum TGN6376_10e3_600bp 6,382,980 GAIIx 100bpX2 
YP-Sputum TGN6376_10e3_220bp 17,661,352 GAIIx 100bpX2 
YP-Sputum TGN6376_10e7_220bp 21,705,452 GAIIx 100bpX2 
YP-Sputum TGN6376_10e7_600bp 29,781,930 GAIIx 100bpX2 
* 220bp and 600bp refer to the targeted library fragment size. 
** WGA indicates that the sample DNA was subjected to Whole Genome 
Amplification prior to library preparation. 
*** The Y. pestis-human blood mixtures were prepared in triplicate at 
different bacterial loads, the sputum mixtures only one sample/bacterial 
load. 
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Determine genome targets for Species ID, subtyping characterization, drug 
resistance 
 

4. Compiling relevant data from NAU and TGen  
 
Compiled in-house on MGGen’s bio617 and bio653 servers. Our approach is listed in 
Tasks 5 and 7 and consists largely of data from phylogenetic trees for subtyping 
characterization and from on-line databases for species ID and drug resistance (listed 
below). For subtyping, we used a novel approach. Rreads from particular bacterial species 
can be collated into a single file and then analyzed in a phylogenetic framework using a 
program our labs at MGGen and TGen have developed called the whole genome focused 
array SNP typer (WG-FAST, https://github.com/jasonsahl/wgfast). The goal of WG-FAST 
is to phylogenetically genotype an unknown sample in the context of a well studied 
pathogen. This sample can be from either a metagenomics dataset, a metatranscriptomics 
dataset, or a single isolate sequencing dataset. WG-FAST works off of existing 
phylogenetic trees so is most informative for well characterized organisms where their 
evolutionary history is accurately described with a tree (i.e., largely clonal organisms).  
 

5. Comprehensive literature search with an emphasis on subtyping (e.g. 
determining particular lineages, clonal complexes, etc.) and finding targets 
for drug resistance characterization  

 
Completed for all target pathogens. After much initial work on our end, several on-line 
databases became available or were recommended to us so we switched to use these 
compiled databases. Genes coding for known antibiotic resistance mechanisms were 
downloaded in multi-FASTA format from the Antibiotic Resistance Genes Database (Liu 
and Pop 2009) and the Comprehensive Antibiotic Resistance Database (McArthur et al. 
2013). Genes coding for known virulence factors were downloaded in multi-FASTA format 
from the Virulence Factors of Pathogenic Bacteria database (Chen et al. 2012). 16S 
(bacterial) and 18S (fungal) sequences for numerous known human pathogens were 
downloaded from GenBank. These were concatenated into a single multi-FASTA file 
bioinformatically and used as a consolidated reference for aligning sequence reads. 
 
Pathogen strains targeted in this study 
Acinetobacter baumannii Escherichia coli 
Aspergillus fumigatus Francisella tularensis 
Bacillus anthracis Haemophilus influenza 
Brucella abortus Klebsiella pneumonia 
Brucella melitensis Mycobacterium avium 
Brucella suis Pseudomonas aeruginosa 
Burkholderia mallei Rickettsia prowazekii 
Burkholderia pseudomallei Rickettsia rickettsii 
Burkholderia thailandensis Staphylococcus aureus 
Clostridium botulinum Staphylococcus epidermidis 
Coxiella burnetii Yersinia pestis 
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6. Contact infectious disease experts  
 

Given the focus on identifying genetic target sequences for agent identification and 
characterization, the extensive expertise in genetic signature and assay development for 
genetic subtyping of Select Agent pathogens and public health pathogens already in house 
at MGGEN and TGen North, respectively, obviated the need for contacting outside experts 
for the purposes of this project. 
 
Create pan-genome references of targets  
 

7. Generate a reference pan-genome with sequences for all loci/targets 
 
Determining species identity by aligning reads against a reference genome for various 
targets is clear-cut for many species. This alignment process compares the read data from 
the sequencing run against the entire reference genome. This is relatively quick and 
straightforward when you know your target DNA and are only comparing to one reference 
genome. Due to improvements in the Refseq database and our ability to incorporate its 
genomes into our MetaGeniE analysis pipeline, we changed our analysis strategy of 
developing a reference pan-genome. While the reference pan-genome is intuitively simple, 
the Refseq database provides superior searching and matching capabilities. Full details of 
our new approach are given in our clinical sequencing results section as well as our 
description of the MetaGeniE pipeline. 
 

8.   Determine appropriate statistical threshold for a match to the pan-genome.  
 

Due to the change in our approach and shift from a pan-genome approach to use of the 
RefSeq database this task in no longer entirely appropriate. However, the concept of what 
defines a “match” remains extremely valid. As discussed above, some measure of read 
alignment dispersal pattern, such as % reference genome covered, appears to be an 
important aspect of determining the presence/absence of a given organism within a 
sample. The challenge is that even with a particular cutoff or thresholds there are 
possibilities for detection and exact identification and characterization of a particular 
sample with only a few sequence reads. See Francisella tularensis section in Task 13.  
 
Create mixtures of human and pathogen DNA 

9. Spike single or multiple pathogens DNA at varying quantities into human 
DNA.  

 
In order to evaluate the effect of exogenous DNA on the identification and classification of 
bacterial DNA we generated mixtures of varying proportions of bacterial DNA and human 
DNA. Results from this is the following section are fully detailed, only the experimental 
design and set up is given so they are relatively short. We generated the necessary 
bacterial DNA for this work, and acquired commercially available human DNA for the 
mixtures.  Both the bacterial and the human DNA were quantified by Nanodrop and the 
following mixtures were made (Table 8). By using DNA mixtures we know what proportion 
of each mixture should be bacterial reads, allowing for the examination of bioinformatics 



 40 

bias in metagenomics analysis. We also examined the effect of whole genome 
amplification (WGA) on these mixtures. A WGA was performed on each of the mixtures. 
Sequencing libraries were created for both the neat DNA/DNA mixtures, and the WGAs of 
the mixtures. 

 
Table 8. Experiment with 11 different mixtures of three different Select Agent bacteria 
spiked into human DNA. Percentage is amount of bacteria relative to human DNA. 
Yersinia pestis = Yp, Bacillus anthracis = Ba, Burkholderia pseudomallei = Burk.  
 

  Percent of Mixture Amount added (ng) 
Mixture 

ID Yp Ba Burk Yp Ba Burk 

1 0.01% -- -- 0.2 0 0 
2 0.00% -- -- 0.02 0 0 
3 -- 0.01% -- 0 0.2 0 
4 -- 0.00% -- 0 0.02 0 
5 -- -- 0.00% 0 0 0.02 
6 0.01% 0.01% -- 0.2 0.2 0 
7 0.00% 0.00% -- 0.02 0.02 0 
8 0.01% 0.00% -- 0.2 0.02 0 
9 0.00% 0.01% -- 0.02 0.2 0 

10 0.00% 0.00% 0.00% 0.02 0.02 0.02 
11 0.10% -- 0.10% 2 0 2 

 
 

10. Spike cultures of multiple pathogens into human clinical samples.  
 
In order to mimic a clinical sample more closely we prepared mixtures with Y. pestis 
cultures at different bacterial loads and either human sputum or human blood samples and 
extracted DNA (Table 9).  For the sputum samples, the Y. pestis culture spikes were 
calculated based on OD and added to equal volumes of sputum for each sample.  There 
were four different sputa used for these mixtures (Table 9). For the blood samples, there 
was one single blood sample used with the four concentrations of Y. pestis.  Three 
concentrations (103, 104, 107) of Y. pestis were used along with a sample with no bacterial 
spike (NTC). Sequencing libraries were created for both the sputum and blood mixtures. 
           

Table 9. Different bacterial loads spiked into the samples prior to extraction. 
 

Sputum	  ID	   Y.	  pestis	  cell	  loaded	  
TGN6576	   0	  
TGN6576	   103	  
TGN6576	   104	  
TGN6576	   107	  
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TGN6376	   0	  
TGN6376	   103	  
TGN6376	   104	  
TGN6376	   107	  
TGN6380	   0	  
TGN6380	   103	  
TGN6380	   104	  
TGN6380	   107	  
TGN6388	   0	  
TGN6388	   103	  
TGN6388	   104	  
TGN6388	   107	  

 
 
Sequence DNA mixtures on Ion Torrent and Illumina platforms 

11. Determine level of sensitivity and accuracy using known mixtures of single 
and multiple pathogen experiments. 

 
To confirm the generated DNA/DNA mixtures, all samples were tested with qPCR assays 
specific to each bacterium (Yersinia pestis, Bacillus anthracis, Burkholderia pseudomallei).  
We used specific qPCR assays and not a general 16S qPCR, which would detect all 
bacteria in these samples, not just the targets. The goal of the qPCR assay was to verify 
the relative amount of DNA spiked into the sample with a method that is highly sensitive to 
the detection of trace amounts of target DNA present in a complex matrix of DNA, cells, 
and cell parts from the host and its natural microbial community. In all but two cases, both 
with 0.001% of bacteria that had been prepared using whole genome amplification (WGA), 
the target bacteria in the sample were detectable with qPCR. Also as expected, 1/10 
dilutions of target DNA (e.g. as seen with mixtures 3 and 4) gave a ~3 Ct difference, 
consistent with typical qPCR dilutions. The eleven mixtures were run on at least one 
Illumina platform (GAIIx or HiSeq, 100-150 bp paired-end runs with~600 bp inserts) and on 
the Ion Torrent PGM instrument with 318 chips.  
 
Table 10. Quantitative PCR assays run on DNA/DNA mixtures to independently test the 
amount of bacteria DNA spiked into human DNA samples. Yersinia pestis = Yp, Bacillus 
anthracis = Ba, Burkholderia pseudomallei = Burk. Amounts of bacterial DNA given in 
nanograms rather than percentages. Cycle threshold values (Ct) are given as a relative 
measure of bacterial DNA quantity in the sample, with samples run both neat (pure 
sample) and as a whole genome amplification (WGA) neat DNA. Bacteria not detected are 
in red and given as undetermined (und.). 
 

Mixture 
Yp 

amount 
(ng) 

Ba 
amount 

(ng) 

Burk 
amount 

(ng) 

Yp 
Neat 

Ct 

Yp 
WGA 

Ct 

Ba 
Neat 

Ct 

Ba 
WGA 

Ct 

Burk 
Neat 

Ct 

Burk 
WGA 

Ct 

1 0.2 0 0 27.4 26.4 --- --- --- --- 
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2 0.02 0 0 32.2 30.3 --- --- --- --- 
3 0 0.2 0 --- --- 27.9 29.6 --- --- 
4 0 0.02 0 --- --- 31.4 32 --- --- 
5 0 0 0.02 --- --- --- --- 33.1 und. 
6 0.2 0.2 0 28.2 25.8 27.4 29.6 --- --- 
7 0.02 0.02 0 31.5 29.5 31.1 31.5 --- --- 
8 0.2 0.02 0 28.2 25.7 30.7 32.9 --- --- 
9 0.02 0.2 0 31.1 30.3 27.7 29.2 --- --- 

10 0.02 0.02 0.02 31.1 30.4 31.7 32.3 32.5 und. 
11 2 0 2 24.2 21.9 --- --- 26.4 28.3 

 
 
To confirm the generated blood and sputum mixtures, all samples were tested with qPCR 
assays specific to Y. pestis. Again, we used specific qPCR assays and not a general 16S 
qPCR, along with a plasmid dilution curve to allow for quantification of Y. pestis. The goal 
of the qPCR assay was to verify the relative amount of Y. pestis spiked into the sample 
with a method that is highly sensitive to the detection of trace amounts of target DNA 
present in a complex matrix of DNA, cells, and cell parts from the host and its natural 
microbial community.  We ran a chromosome based assay to calculate the number of Y. 
pestis cells in each mixture (Table 11). 
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Table 11. Quantitative PCR assays run on blood and sputum mixtures to independently 
test the amount of Y. pestis spiked into human blood or sputum samples.  The blood 
samples are denoted by A, B, and C.  The sputum samples are denoted by TGN numbers. 
Cycle threshold values (Ct) are given as a relative measure of bacterial DNA quantity in 
the sample, the higher the Ct the lower the number of Y. pestis cells. The chromosome 
copy mean is calculated based off the plasmid quantification curve that was run with all the 
samples. If Y. pestis was not detected the Ct is given as undetermined (Und). 
 

Sample	  Name	   Ct	  
mean	  

Chromosome	  
copy	  mean	  

A	  103	   35.3	   2	  

A	  104	   32.5	   17	  

A	  107	   22.9	   57,019	  
A	  NTC	   Und	  	   0	  

B	  103	   35.3	   2	  

B	  104	   34.3	   4	  

B	  107	   23.6	   30,528	  
B	  NTC	   Und	  	   0	  

C	  103	   36.4	   1	  

C	  104	   24.5	   13,831	  

C	  107	   35.0	   4	  
C	  NTC	   Und	  	   0	  

TG6376	  103	   20.8	   316,414	  

TG6376	  104	   32.4	   19	  

TG6376	  107	   33.6	   8	  
TG6376	  NTC	   Und	  	   0	  

TG6380	  103	   19.2	   1,176,816	  

TG6380	  104	   29.9	   153	  

TG6380	  107	   34.1	   4	  
TG6380	  NTC	   Und	  	   0	  

TG6388	  103	   20.9	   288,999	  

TG6388	  104	   31.4	   46	  

TG6388	  107	   36.1	   1	  
TG6388	  NTC	   Und	  	   0	  

TG6576	  103	   19.6	   874,228	  

TG6576	  104	   29.7	   182	  

TG6576	  107	   34.9	   2	  
TG6576	  NTC	   Und	  	   0	  
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Detection of DNA in mixtures  
Table 12. Detection of bacteria by identification of genome % for different mix for bacteria 
spiked in only. The top hit is in the Bacteria column and the percent of the reads is 
indicated in the % Genome column.  
 
Samples Actual Detected Genomically 

  

% mix 
bacterial/ 
human Bacteria % Genome 

Yersinia-pestis_mix1 0.01% Yp (antiqua) 7.8% 
Yersinia-pestis_mix2 0.00% Yp (angola/antiqua) 2.0% 
Bacillus-anthracis_mix3   Ba (A0248/AmesAnc) 12.0% 
Bacillus-anthracis_mix4   Ba (CDC684/AmesAnc) 1.0% 
Burkholderia-pseudomallei_mix5   Bmallei(ATCC23344) 0.3% 

Yersinia-pestis_mix6 0.01% 
Ba (A0248/AmesAnc), Yp 
(antiqua) 8.3%,8.4% 

Yersinia-pestis_mix7 0.00% Yp (angola/antiqua) 1.3% 
Yersinia-pestis_mix8 0.01%     

Bacillus-anthracis_mix9 0.00% 
Ba (A0248/AmesAnc), Yp 
(antiqua) 7.0%, 1.0% 

Yersinia-pestis_mix10 0.00% 
Yp (antiqua), Ba 
(A0248/AmesAnc) 1.1%,0.4% 

Yersinia-pestis_mix11 0.10% Yp (antiqua), Bp(K9) 25.3%,8.6% 
 
 
Table 13. Detection of bacteria by identification of genome % for different mix for whole 
genome amplified (WGA) samples only. The top hit is in the Bacteria column and its 
percent of the reads is indicated in the % Genome column. 
 
Samples Actual mix Detected mix 

  

% mix 
bacterial/ 
human Bacteria %Genome 

Yersinia-pestis_mix1  NA  Yp (antiqua) 3.6% 
Yersinia-pestis_mix2  NA Yp (antiqua) 2% 
Bacillus-anthracis_mix3  NA Ba (A0248/AmesAnc) 0.2% 
Bacillus-anthracis_mix4  NA No significant hits - 
Burk.-pseudomallei_mix5  NA No significant hits - 
Yersinia-pestis_mix6  NA Yp (antiqua) 5.7% 
Yersinia-pestis_mix7  NA     
Yersinia-pestis_mix8  NA     
Bacillus-anthracis_mix9  NA Yp (antiqua), Ba (A0248/AmesAnc) 2.7%,0.2% 
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Yersinia-pestis_mix10  NA 
Yp (antiqua), Ba 
(CDC,A0248/AmesAnc) 3.2%,0.1% 

Yersinia-pestis_mix11  NA Yp (antiqua), Bmallei(ATCC23344) 49%,1.1% 
 
Detection for DNA Mixtures on HiSeq  
Table 14 represents the 11 HiSeq mixtures that were mixed with various strains at 
different concentrations. Blind comparisons* were performed with the % genome 
coverage detected by MetaGeniE against the actual concentration per strain (*The 
actual organism and concentrations were released after in silico detection for non bias 
comparison). 
 
Table 14. Comparison between the actual mixture (ng) and the detected mixture (% 
genome coverage). *Incorrect detection at species level (but detection of sample in 
correct genus) shown in red font.  
 

Samples Species Actual Mixture Detected Mixture 
Ba_Mixture3 Ba 0.2ng 12% 
Ba_Mixture4 Ba 0.02ng 1% 
Ba_Mixture9 Ba;Yp 0.2 ng; 0.02ng 7%;1% 
Bp_Mixture5 Bp 0.02ng 0.34% 
Yp_Mixture1 Yp 0.2ng 7.80% 

Yp_Mixture10 Ba;Yp;Bp 0.02ng;0.02ng;0.02ng 0.43%;1.1%;0.06% 
Yp_Mixture11 Yp;Bp 2ng,2ng 25.3%;8.6% 
Yp_Mixture2 Yp 0.02ng 2% 
Yp_Mixture6 Yp;Ba 0.2ng;0.2ng 8.4%;8.3% 
Yp_Mixture7 Yp;Ba 0.02ng;0.02ng 1.3%;83% 
Yp_Mixture8 Yp;Ba 0.2ng;0.02ng 8.1%;0.9% 

 
Table 15 shows a Lasergene NGEN™ analysis of 17.7M Illumina sequence reads derived 
from an artificial Y. pestis-human sputum mixture DNA extraction (107 CFU Y. pestis load). 
All columns shown are output by Lasergene except for the read dispersion ratio column. 
The table is split into two sections. The top section consists of all the reference genomes 
found to have reads aligned with dispersion ratios greater than 0.1, sorted by # reads 
aligned. All of the organisms in this section with greater than 100 reads aligned are likely 
present in this sample, and have been found in other human sputum samples we have 
analyzed for other research projects. The bottom section consists of the genomes with the 
nine highest # reads aligned with dispersion ratios less than 0.1. This value is calculated 
by dividing the actual length of the reference sequence covered by the theoretical 
maximum amount of sequence that would be covered if the sequence reads were 
completely dispersed around the reference genome (genome length-reference bases not 
covered)/( # Reads Aligned X 100bp read length). The larger this value (range 0-1), the 
greater the level of read dispersion around a given genome. This value, in conjunction with 
the % reference genome covered, can indicate whether a given organism was likely 
present within a sample. For example, P. stutzeri (green shading) had 51 reads align, 
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resulting in only 0.06% of the reference genome covered but has a 0.44 dispersion ratio, 
indicating the reads are dispersed across the genome. Normally, this level of read 
dispersion would indicate that this organism was likely present in the sample. However, it 
is more likely that a number of the reads that mapped to the P. aeruginosa genome (29943 
reads, dispersion ratio = 0.519) also mapped to this related species. In contrast, the M. 
vannielii genome had 494 reads align, resulting in 0.06% of the reference genome 
covered, but a dispersion ratio of only 0.019. This indicates these reads are not well 
dispersed and are likely all aligning to a very small portion of the genome that is likely 
highly conserved within bacteria. This organism was likely not present in the sample. This 
highlights the fact that closely related species can give false calls in metagenomic 
analyses due to genetic similarities and that care must be taken to identify the most likely 
microbe in a sample. 
 
Table 15. Lasergene NGEN metagenomic analysis of Y. pestis-human sputum mixture. 
Preliminary metagenomic analysis of artificial Y. pestis-Sputum and blood mixtures. More 
detailed analyses were then done with MetaGeniE. 
 

# Reads 
Aligned 

NCBI reference 
Accession reference genome 

genome 
length 

reference 
bases not 
covered 

% reference 
covered 

read 
dispersion 
ratio 

29943 NC_002516.2 Pseudomonas aeruginosa PAO1 chromosome   6264536 4709003 24.83% 0.519 
2938 NC_003143.1 Yersinia pestis CO92 chromosome   4646554 4481240 3.56% 0.563 
1312 NC_009708.1 Yersinia pseudotuberculosis IP 31758 chromosome   4705701 4631769 1.57% 0.564 
225 NC_017671.1 Stenotrophomonas maltophilia D457   4758756 4745993 0.27% 0.567 
172 NC_017958.1 Tistrella mobilis KA081020-065 plasmid pTM3   95201 85953 9.71% 0.538 
114 NC_003131.1 Yersinia pestis CO92 plasmid pCD1   68166 62198 8.76% 0.524 
99 NC_008782.1 Acidovorax sp. JS42 chromosome   3809387 3804328 0.13% 0.511 
88 NC_003134.1 Yersinia pestis CO92 plasmid pMT1   90142 85375 5.29% 0.542 
87 NC_007973.1 Cupriavidus metallidurans CH34 chromosome   2568261 2563258 0.19% 0.575 
82 NC_003132.1 Yersinia pestis CO92 plasmid pPCP1   9202 5655 38.55% 0.433 
77 NC_017731.1  Providencia stuartii MRSN 2154 chromosome   4304594 4300357 0.10% 0.550 
62 NC_014640.1  Achromobacter xylosoxidans A8 chromosome   6920779 6917738 0.04% 0.490 
58 NC_010554.1  Proteus mirabilis HI4320 chromosome   4029955 4026731 0.08% 0.556 
55 NC_012590.1  Corynebacterium aurimucosum ATCC 700975   2732383 2729471 0.11% 0.529 
51 NC_009434.1  Pseudomonas stutzeri A1501 chromosome   3711059 3708817 0.06% 0.440 
42 NC_015436.1  Spirochaeta coccoides DSM 17374 chromosome   2209761 2209064 0.03% 0.166 
34 NC_009349.1  Aeromonas salmonicida subsp. salmonicida A449 plasmid 4   96768 95124 1.70% 0.484 
31 NC_007946.1  Escherichia coli UTI89 chromosome   2198538 2196887 0.08% 0.533 
23 NC_007164.1  Corynebacterium jeikeium K411 chromosome   2084729 2083235 0.07% 0.650 
23 NC_018107.1  Klebsiella oxytoca E718 plasmid pKOX_R1   340976 339771 0.35% 0.524 
22 NC_015410.1  Pseudomonas mendocina NK-01 chromosome   5208340 5207059 0.02% 0.582 
21 NC_008027.1  Pseudomonas entomophila L48 chromosome   5166302 5165277 0.02% 0.488 
20 NC_007972.2  Cupriavidus metallidurans CH34 plasmid pMOL28   35742 34727 2.84% 0.508 
20 NC_015556.1  Pseudomonas fulva 12-X chromosome   4531508 4530572 0.02% 0.468 
       
1292 NC_015958.1  Thermoanaerobacter wiegelii Rt8.B1 chromosome   2266998 2266406 0.03% 0.005 
1101 NC_009441.1  Flavobacterium johnsoniae UW101 chromosome   5718680 5718523 0.00% 0.001 

973 NC_014738.1 
 Riemerella anatipestifer ATCC 11845 = DSM 15868 
chromosome   1522151 1522074 0.01% 0.001 

494 NC_009634.1  Methanococcus vannielii SB chromosome   1691825 1690884 0.06% 0.019 
478 NC_007355.1  Methanosarcina barkeri str. Fusaro chromosome   4481158 4480637 0.01% 0.011 
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448 NC_009135.1  Methanococcus maripaludis C5 chromosome   1090695 1090596 0.01% 0.002 
445 NC_014933.1  Bacteroides helcogenes P 36-108 chromosome   3845056 3844935 0.00% 0.003 
405 NC_003901.1  Methanosarcina mazei Go1 chromosome   4058071 4057483 0.01% 0.015 
378 NC_017941.1  Haloferax mediterranei ATCC 33500 chromosome   1245902 1245843 0.00% 0.002 

 
Table 16 shows sequence analysis data comparing artificial mixtures of Y. pestis culture at 
different CFU loads with human blood. Two libraries with different insert sizes were 
prepared from each mixture. The 220 bp insert library is designed to provide overlapping 
reads, in order to test SNP analysis capability with low numbers of reads at 1X and 2X 
coverage at SNP loci. The use of overlapping reads to improve SNP reliability is 
conceptually simple but few people have been using this strategy. The data indicate that, 
at the indicated # of total reads, the 220 bp insert library, not surprisingly, is less sensitive 
at detecting Y. pestis in the mixtures, having lower reference genome coverage and 
dispersion ratio values. The 600 bp insert library promises to be more sensitive, as the 
reads will be more dispersed around the genome, resulting in greater reference genome 
coverage. Thus, our preliminary results suggest that overlapping reads drastically improve 
SNP calling data but come at a cost of less data. These samples will be resequenced on 
the HiSeq platform to obtain greater numbers of reads to ideally remove the impediment of 
lower coverage. Further analysis, including establishing optimal alignment parameters and 
BLAST analysis of mapped reads, will be needed to establish a robust threshold of 
detection. 
 
Table 16. Y. pestis-human  blood mixture sequence analysis: Y. pestis detection 
sensitivity. Preliminary bacterial CFU load sensitivity analysis. 
 

Sample 
Y. pestis CFU 
load 

Library insert 
size 

Total # Illumina 
100bp reads 

# reads mapping to 
CO92 reference 
genome 

% reference 
genome 
coverage  dispersion ratio 

Mock YP Blood mixture 0 220 28.4M 355 0.04% 0.046 

Mock YP Blood mixture 0 600 27.7M 349 0.03% 0.03 

Mock YP Blood mixture 1000 220 32.7M 397 0.02% 0.02 

Mock YP Blood mixture 1000 600 12.5M 178 0.04% 0.11 

Mock YP Blood mixture 10000 220 30.3M 415 0.16% 0.18 

Mock YP Blood mixture 10000 600 22.1M 376 0.18% 0.224 

Mock YP Blood mixture 10000000 220 20.3M 34446 37.30% 0.503 

Mock YP Blood mixture 10000000 600 18.8M 31797 46.30% 0.678 
 
Identification of microbial species in a sample however is relatively commonplace in 
research labs, particularly if the focus is only on 16S and ITS sequencing for species 
identification. The next step is to not just identify the organisms but to fully characterize 
them, including such traits as antibiotic resistance as well as to identify specific lineages of 
epidemiological importance. In order to address the capability of next-generation sequence 
technology for direct genotyping of organisms found within clinical samples, we are 
exploring the use of short insert sequencing libraries. The challenge here is to extract 
reliable SNP data from a limited # of reads that are dispersed around any given genome, 
resulting in very low coverage depth, as little as 1X, for any SNP call. The error rate of 
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Illumina sequencing can be as high as 0.5-1.0%, depending upon a number of factors, 
resulting in roughly 1 base call error in every 100 bp read. One way to address this is to 
only call SNPs at loci that have been previously validated to be variable using a set of high 
quality genomic sequences, or a Master SNP database. This approach requires previous 
whole genome sequence analyses be done with the target organisms. We have these 
databases in place for a number of Select Agent organisms as well as numerous 
pathogens important from a public health perspective and are continuously adding to this 
reference dataset. A second strategy would be to try to generate overlapping reads, so 
that any given SNP locus has a high probability of having at least one read on each strand. 
This may increase the reliability of a SNP call, as the probability of an error occurring in the 
same position in 2 overlapping reads is theoretically the product of a single error occurring 
in one read (e.g. 0.05 x 0.05 = 0.0025). In addition, having a read on each strand may be 
more reliable than 2 reads on the same strand. We are still exploring the use of short insert 
libraries to generate overlapping reads. A 220 bp fragment library contains on average 100 
bp of genomic sequence between the adapters. With the use of a 100 bp paired-end read 
run, this will provide a read on each strand of the genomic sequence covered. We have 
generated both 220 and 600 bp fragment libraries for a number of the DNA mixtures as 
well as the mock Y. pestis-blood and sputum mixtures and compared the reliability of 
resulting SNP calls against a Master SNP database that includes genome sequence for 
the Y. pestis strain used in the mixtures. 

We note another avenue of research we are exploring for analysis of clinical samples. 
Some clinical samples may not yield enough total DNA for reliable preparation of 
sequencing libraries. One mitigating methodology is Whole Genome Amplification (WGA), 
a generally accepted method for synthesizing microgram quantities of high molecular 
weight (10-20 Kbp) DNA from nanograms to picogram quantities of genomic DNA. 
However, this technique may result in a biased representation of genomes present in a 
sample. For example, it is also known to amplify high GC organisms very poorly. We are 
evaluated the impact of Whole Genome Amplification on the detection and characterization 
of a number of target organisms in the artificial DNA mixtures. While this technique has 
been used to prepare single cell sequencing libraries, avoiding WGA processing is 
preferable if possible. New developments in library preparation reagents are promising to 
generate libraries from less than 1ng of total DNA, further minimizing the need for using 
the WGA technique for any but the most extreme low level DNA sample types. 
 
Mock mixture sample sequencing 
We created various mixtures such as B. pseudomallei Illumina sequence read data and 
the cystic fibrosis (CF) samples, which generated sequence data in the ranges of 10-
72000 reads. Initial sequencing of a subset of samples was done on the Illumina GAIIx 
platform to evaluate library qualities and estimate required coverage levels. The bulk of the 
more recent sequencing is being done on the Illumina HiSeq platform due to the ca. 5 fold 
increase in data yield, allowing for increased multiplexing of samples/lane. The DNA-DNA 
mixtures are being blinded to the data analyst for unbiased analysis. 

MetaGeniE is able to recall correct number of organisms up to species level even at 
very low concentration (0.02 ng) except for Burkholderia. Considering the blind test 
analysis, no false positives and false negatives were detected, which is important for 
reliable detection in clinical datasets. Figure 9 shows the Pearson correlation between 
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the actual mixture and the detected genome coverage %. The correlation between 
percent of the genome detected and concentration (in ng) for actual mixture for all 
samples excluding B. pseudomallei was found to be 0.9. This high correlation suggests 
that the percent genome mapped is directly proportional to the sampling effort and thus 
makes it an important step for metagenomic studies. In our experience, however, high 
GC%  organisms such as B. pseudomallei is more difficult to detect especially at low 
concentration as compared to other organisms, due to lower PCR amplification 
efficiency during library prep and during the sequencing process. Including B. 
pseudomallei (but excluding the incorrect species detected) reduced the Pearson 
correlation to 0.73. 
 

 
 
Figure 9. Pearson correlation between the actual mixture and detected genome 
coverage.  
 
Detection for WGA Mixture HiSeq  
Often samples may have pathogens at extremely low levels. We included a step that 
involved whole genome amplification (WGA) of the sample to assess if WGA increased 
sensitivity/detectability in metagenomic analyses. Table 17 shows the detection of 
bacteria in WGA mixtures. In comparison to Table 14, we see the WGA mixtures do not 
correlate with the actual mixture either in number of the correct strain(s) detected or/and 
with the actual concentration of the mixture. We therefore conclude that WGA shows 
biases in detection. 
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Table 17. Bacterial detection in WGA Mixture. 
  

 
 
Detection of Mock Yp using HiSeq  
Bacterial detection for sputum and blood samples for Mock Yp HiSeq is shown in Table 
18.  
 
Table 18. Bacterial detection in Mock Yp HiSeq samples. 
 
Bacteria %Genome Tissue 
P. aeruginosa LESB58, N mucosa C102, Strep 
mitis B6 

67.9%, 86.5%, 
41% Sputum 

Myco tuberculosis W-148, Bp 1026b 2.8%, 0.27% Blood 
Myco tuberculosis H37Ra, Bp 1026b 1.6%, 0.2% Blood 
Yp (antiqua), Myco tuberculosis W-148 77.3%, 4.3% Blood 
Myco tuberculosis W-148, Bp 1026b 2.3% , 21% Blood 
No significant hits   Blood 
No significant hits   Blood 
Yp (antiqua) 56% Blood 
No significant hits   Blood 
No significant hits   Blood 
No significant hits   Blood 
Yp (antiqua) 21.80% Blood 
No significant hits   Blood 

 
Sequence patient clinical samples 
After development of MetaGeniE and validating its results using a variety of methods, we 
shifted our focus to actual clinical samples from different sources. In the following section, 

Samples Bacteria %Genome
Ba_Mixture3,WGA Ba(A0248/AmesAnc) 0.24%
Ba_Mixture4,WGA No?significant?hits
Ba_Mixture9,WGA Yp(antiqua),?Ba(A0248/AmesAnc) 2.7%,.18%
Bp_Mixture5,WGA No?significant?hits
Yp_Mixture1,WGA Yp(antiqua) 3.60%
Yp_Mixture10,WGA Yp(antiqua),?Ba(CDC,A0248/AmesAnc) 3.2%,.07%
Yp_Mixture11,WGA Yp(antiqua),?Bmallei(ATCC23344) 49%,1.1%
Yp_Mixture2,WGA Yp(antiqua) 2%
Yp_Mixture6,WGA Yp(antiqua) 5.70%
Yp_Mixture7,WGA Yp(antiqua) 2.30%
Yp_Mixture8,WGA Yp(antiqua) 2.10%
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we detail our results for different datasets. However, we first discuss in more depth how 
MetaGeniE works.   
 
Detection of Mock Yp on HiSeq and GAIIx 
Blood Samples  
The 12 mock YP HiSeq dataset belonging to blood tissue has three replicates 
NTC_RepA, NTC_RepB and NTC_RepC. The three NTC replicates are the baseline 
samples without any bacterial presence. These 3 replicates were then spiked with 
Yersinia pestis at three different concentrations 10e3, 10e4 and 10e7 (Figure 10).   
MetaGeniE did not detect any bacterial population in 2 NTC replicates (RepB-NTC and 
RepC-NTC) confirming the experimental design. However contamination in Replicate A 
(RepA-NTC) due to Mycobacterium tuberculosis is detected. This contamination is 
consistently detected in all the three subsamples of this replicate at different 
concentration (also discussed in next Section). This finding is significant in 
metagenomic sequencing as contamination can result in false detection.  
The Yersinia pestis spiked at three concentrations for each replicate is detected only at 
concentration 10E7 and not in lower concentrations (10e3 and 10e4). This suggests 
that detection of an organism is limited by the concentration/sampling. We expect that 
the threshold might vary according to the genome (example GC rich pathogens) and the 
yield per sequencing lane.  

 
Figure 10. Three replicates for blood sample spiked with Yersinia pestis at 3 different 
concentrations with HiSeq. Yp: Yersinia pestis; Mt: Mycobacterium tuberculosis. *GAIIx 
sequencing for RepA similar to HiSeq and not shown here. 
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Contamination  
Contamination in the blood sample YP-Blood repA-NTC_220bp in HiSeq due to 
Mycobacterium tuberculosis is detected as discussed above. This contamination is also 
consistently detected in three concentration subsamples. Mycobacterium tuberculosis 
and Y. pestis do not share any reads and thus no homology exist between these two 
organisms (Figure 11). BLAST analysis further confirmed the presence of M. 
tuberculosis. 

 
Figure 11. Total number of reads overlapping between Mycobacterium tuberculosis and 
Yersinia pestis. 
 
Contamination can lead to incorrect detection of pathogen, as it is not possible to 
otherwise separate it from the true community without a priori information about it. We 
were able to confirm M. tuberculosis contamination as all the NTC samples were 
suppose to be baseline sample without any bacterial presence. We believe that 
contamination can usually assimilate during sample prep and more rigorous laboratory 
protocols are required to handle contamination. 
 
Sputum samples 
Twelve mock YP HiSeq and GAIIx dataset belonging to sputum tissue were sequenced 
(Table 19). These sputum samples belong to two different NTC samples (TGN6376 and 
TGN6576). These two NTC samples are spiked with Yersinia pestis at different 
concentrations. Pseudomonas aeruginosa was detected in TGN6376 NTC sputum 
samples while Pseudomonas aeruginosa, Neisseria meningitis and Streptococcus 
pneumonia were detected in TGN6576 NTC sputum samples.  
 
Table 19. Bacterial presence in sputum samples. Pa: Pseudomonas aeruginosa; Yp: 
Yersinia pestis; Nm: Neisseria meningitis; Sp: Streptococcus pneumonia. 
 

Samples Platform Bacteria %Genome 
YP-Sputum TGN6376-

NTC_220bp 
Hiseq Pa 24.10% 

YP-Sputum 
TGN6376_10e3_220bp* 

GA IIx Pa;Yp 10%;7.3% 
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YP-Sputum TGN6376-
10e3_220bp 

Hiseq Pa, Yp 8.4%, 2.9% 

YP-Sputum 
TGN6376_10e3_600bp* 

GA IIx Pa;Yp 3.9%;5.1% 

YP-Sputum TGN6376-
10e4_220bp* 

GA IIx Pa 7.21% 

YP-Sputum 
TGN6376_10e7_220bp* 

GA IIx Pa 13.02% 

YP-Sputum TGN6376-
10e7_220bp* 

GA IIx Pa 17.35% 

YP-Sputum 
TGN6376_10e7_600bp* 

GA IIx Pa 13.5% 

YP-Sputum TGN6576-
NTC_220bp 

Hiseq Pa, Nm, 
Sm 67.9%, 86.4%, 41.1% 

YP-Sputum TGN6576-
10e3_220bp 

Hiseq Pa, Yp, 
Nm, Sp 21.3%, 25%, 55.8%, 22.5% 

YP-Sputum TGN6576-
10e4_220bp 

Hiseq Pa, Nm, 
Sp 43.9%, 81.8%, 37.2% 

YP-Sputum TGN6576-
10e7_220bp 

Hiseq Pa, Nm, 
Sp 20.4%, 50.8%, 22.6% 

 
12. Compile all clinical samples then culture, extract and quantify DNA for all 
pathogens. 

 
Table 20. Overview of total number of clinical sample per project. 
 

Id Sample Type 
Number 

of 
Samples 

Project 
Goals 

1 Mixtures 
HiSeq 11 DoD (Artificial) Validation of clinical 

samples 

2 
WGA 

Mixtures 
HiSeq 

11 DoD (Artificial) 
Validation of clinical 

samples 

3 Mock Yp 
HiSeq 18 DoD (Spiked) Validation of clinical 

samples 

4 Mock Yp 
GAIIx 15 DoD (Spiked) Validation of clinical 

samples 

5 Cystic 
Fibrosis 4 CF Bacterial, Fungal & 

Viral community 

6 African 
Samples 3 Unknown 

disease 
Bacterial, Fungal & 

Viral community 

7 Francisella 
tularensis 8 Tularemia Bacterial 

community, 
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Antibiotic resistance 

8 Burkholderia 
Samples 4 Melioidosis Bacterial community 

9 Myeloma Cell 
lines + blood 22 TGEN Phoenix Viral scan 

 
 
13. Run deep coverage sequencing of clinical samples 
 
Workflow of Clinical Samples 
Due to the variations and limitations in metagenome analyses as discussed and 
importance of detection accuracy given clinical perspective, the analyses of clinical 
samples might require the Detection à Validation à Confirmation cycle (Figure 12).  
 

 
Figure 12. The workflow of the clinical sample analysis. 
 
After detection of infection and community, the validation of clinical datasets can be done 
through analysis like SNP genotyping, BLAST analysis etc., depending on number of 
reads aligned to detected organism, type of organism. These inferences from clinical 
datasets can finally be confirmed with laboratory test/culture, PCR or patients clinical 
history. We performed Detectionà Validation à Confirmation workflow to evaluate overall 
performance of MetaGeniE for most of the clinical datasets presented in this Report. 

We analyzed 14 clinical samples that are suspected or known to contain F. tularensis 
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DNA using our typical approach of analyzing directly extracted DNA from the tissue 
sample following standard extraction procedures. We also generated human DNA 
subtracted sequencing libraries from these for deep sequencing to evaluate the efficacy of 
wet bench host subtraction techniques (i.e., not bioinformatically). In addition, we 
evaluated a smaller insert size library preparation for increasing the quality of SNP calls 
from dispersed reads. A SNP call based upon a single Illumina read will be of very 
questionable quality, given the 0.5-1.0% error rate. Increasing the coverage of any given 
SNP locus to even 2X, with a read in each direction, can significantly increase the 
reliability of a SNP call, as the probability of an error occurring in the same location in two 
reads would be ca. 0.0001 (0.01 x 0.01). By decreasing the library insert size to the length 
of the read of the sequencing run, we achieved this with dispersed reads. This is based on 
a similar approach recently published by Schmitt et al. (2012). This approach does not rely 
on achieving an overall average coverage depth of >2X across the entire genome. An 
example of this is shown in Figure 13. 
 

 
Figure 13. Alignment of ca. 40M Illumina 100bp paired reads against the NCBI F. 
tularensis OSU18 genome. 

 
Panel A shows a pair of overlapping reads with potential SNP calls in only one of the 

paired reads (Figure 14). These are sequencing read errors that would not be detectable 
as such if only a single read were present in this location. Panel B shows a SNP call found 
in both reads, a potentially more reliable true SNP call. This approach is effective with 
actual sequencing libraries as well as supported using in silico modeling. 
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Figure 14. SNP locus found in F. tularensis clinical sample with overlapping paired reads. 
Panel A shows an overlapping read pair with SNP calls only on one of the two reads. 
Panel B shows a SNP call found in both reads in the sample position. SNPs are shown in 
blue.  
 
Cystic Fibrosis Community 
We applied MetaGeniE analysis to four clinical samples from cystic fibrosis patients, 
three throat and one nasopharyngeal swab sample (CF6612, CF6778, CF6780, 
CF6998). We presented some initial results for the cystic fibrosis dataset in previous 
Annual Report and report the results more fully here where we first present the 
complete breakdown of alignment statistics, identification and validation of four CF 
samples. Due small amount of DNA present in the sample, the DNA was subjected to 
Whole Genome Amplification prior to library preparation. We have optimized library 
preparation protocols to allow library preparation without WGA, as this process is known 
to be subject to biased amplification, especially with high GC DNA, typical of some 
organisms (Pinard et al. 2006). The libraries were sequenced on both the GAIIx and 
HiSeq Illumina NGS instruments. The sequencing of these four samples resulted in 
47.01M, 36.96M, 57.91M and 53.95M reads respectively. After running the Read-
Reduction module of MetaGeniE, the total number of reads were reduced to 4.86m, 
15.71m, 20.01m and 32.20m, respectively. The Pathogen-Detection module resulted in 
total of 3.43m, 5.69m, 3.88m and 4.47m hits, respectively, against the bacterial 
pathogen genome database. We detected genome signatures unique to individual 
samples as well as genomic entities common among all four samples (Figure 15). 
Tables 21-24 show the pathogen reference genomes with the greatest portion of the 
genome covered by mapped reads (Coverage % column) for the four samples. 
 

 

A 

B 
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Table 21. Top organisms detected for sample 6612. 

 
 

 
Table 22. Top organisms detected for sample 6780. 

 
 
 

 
 

Organism Coverage(%) Coverage Genome1Size
Staphylococcus_#_aureus_!_subsp._{_aureus_}_USA300_TCH1516_chromosome 99.995 2872779 2872915
Staphylococcus_#_aureus_!_subsp._{_aureus_}_USA300_FPR3757_chromosome 99.988 2872432 2872769

Staphylococcus_#_aureus_!_subsp._{_aureus_}_JH9_chromosome 96.853 2815239 2906700
Staphylococcus_#_aureus_!_subsp._{_aureus_}_JH1_chromosome 96.859 2815213 2906507

Staphylococcus_#_aureus_!_subsp._{_aureus_}_str._Newman_chromosome 97.049 2793937 2878897
Staphylococcus_#_aureus_!_subsp._{_aureus_}_COL_chromosome 98.381 2763926 2809422

Staphylococcus_#_aureus_!_subsp._{_aureus_}_NCTC_8325_chromosome 97.79 2758996 2821361
Staphylococcus_#_aureus_!_subsp._{_aureus_}_Mu50_chromosome 95.792 2757396 2878529
Staphylococcus_#_aureus_!_subsp._{_aureus_}_Mu3_complete 95.669 2755433 2880168
Staphylococcus_#_aureus_!_subsp._{_aureus_}_N315_complete 97.881 2755176 2814816
Staphylococcus_#_aureus_!_subsp._{_aureus_}_ED98_complete 95.439 2695569 2824404

Staphylococcus_#_aureus_!_subsp._{_aureus_}_VC40_chromosome 99.847 2688446 2692570
Staphylococcus_#_aureus_!_subsp._{_aureus_}_MW2_complete 94.98 2678885 2820462

Staphylococcus_#_aureus_!_subsp._{_aureus_}_MSSA476_chromosome 94.581 2648072 2799802
Staphylococcus_#_aureus_!_subsp._{_aureus_}_TCH70_genomic_scaffold 94.82 2642227 2786578

Staphylococcus_#_aureus_!_subsp._{_aureus_}_ATCC_BAAX39_genomic_scaffold 90.478 2623968 2900112
Staphylococcus_#_aureus_!_subsp._{_aureus_}_MRSA252_chromosome 85.133 2471098 2902619
Staphylococcus_#_aureus_!_subsp._{_aureus_}_M013_chromosome 87.626 2443571 2788636
Staphylococcus_#_aureus_!_subsp._{_aureus_}_MN8_chromosome 82.709 2398214 2899588

Staphylococcus_#_aureus_!_RF122_{_complete_} 85.31 2339666 2742531

Organism Coverage(%) Coverage Genome1Size
Enterobacter_#_cloacae_!_subsp._{_cloacae_}_ATCC_13047 55.936 2972741 5314581

Enterobacter_#_hormaechei_!_ATCC_{_49162_}_genomic_scaffold 93.983 2216087 2357960
Enterobacter_#_cloacae_!_EcWSU1_{_chromosome 45.875 2171935 4734438
Klebsiella_#_oxytoca_!_KCTC_{_1686_}_chromosome 35.327 2110459 5974109
Streptococcus_#_salivarius_!_CCHSS3_{_complete 93.861 2081061 2217184

Enterobacter_#_hormaechei_!_ATCC_{_49162_}_genomic_scaffold 93.823 2036816 2170907
Streptococcus_#_parasanguinis_!_ATCC_{_15912_}_chromosome 92.922 2001226 2153652
Streptococcus_#_parasanguinis_!_ATCC_{_903_}_genomic_scaffold 91.657 1927010 2102412

Enterococcus_#_italicus_!_DSM_{_15952_}_genomic_scaffold 85.551 1920292 2244623
Streptococcus_#_australis_!_ATCC_{_700641_}_genomic_scaffold 80.417 1706071 2121533

Enterobacter_#_asburiae_!_LF7a_{_chromosome 33.979 1635357 4812833
Streptococcus_#_vestibularis_!_ATCC_{_49124_}_genomic_scaffold 81.505 1421522 1744094

Veillonella_#_dispar_!_ATCC_{_17748_}_genomic_scaffold 85.802 1334727 1555587
Streptococcus_#_sp._!_C150_{_genomic_}_scaffold 82.347 1329633 1614676
Veillonella_#_parvula_!_DSM_{_2008_}_chromosome 60.868 1297793 2132142

Klebsiella_#_pneumoniae_!_subsp._{_pneumoniae_}_HS11286 23.492 1253046 5333942
Klebsiella_#_pneumoniae_!_NTUHUK2044_{_chromosome 22.8 1196660 5248520

Klebsiella_#_pneumoniae_!_subsp._{_pneumoniae_}_MGH_78578 21.989 1168723 5315120
Escherichia_#_coli_!_S88_{_chromosome_}_complete 20.267 1019880 5032268
Escherichia_#_coli_!_APEC_{_O1_}_chromosome 19.914 1012049 5082025
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Table 23. Top organisms detected for sample 6998. 

 
 
 
 

Table 24. Top organisms detected for sample 6778. 

 
 
 

Organism Coverage(%) Coverage Genome1Size
Escherichia_#_coli_!_APEC_{_O1_}_chromosome 93.321 4742614 5082025

Escherichia_#_coli_!_S88_{_chromosome 93.982 4729449 5032268

Escherichia_#_coli_!_UTI89_{_chromosome 92.683 4695079 5065741

Escherichia_#_coli_!_CFT073_{_chromosome 84.56 4423684 5231428

Escherichia_#_coli_!_536_{_complete 85.257 4210783 4938920

Escherichia_#_coli_!_ED1a_{_chromosome 78.196 4073662 5209548

Escherichia_#_coli_!_O55:H7_{_str._}_CB9615_chromosome 72.016 3879035 5386352

Escherichia_#_coli_!_KO11FL_{_chromosome 76.928 3784970 4920168

Escherichia_#_coli_!_ATCC_{_8739_}_chromosome 78.728 3736612 4746218

Escherichia_#_coli_!_O127:H6_{_str._}_E2348/69_chromosome 75.148 3731497 4965553

Shigella_#_sonnei_!_53G_{_complete 73.695 3676268 4988504

Shigella_#_flexneri_!_2a_{_str._}_301_chromosome 76.94 3544800 4607202

Escherichia_#_coli_!_IAI39_{_chromosome 63.947 3281793 5132068

Escherichia_#_coli_!_SMST3T5_{_chromosome 61.794 3131984 5068389

Escherichia_#_coli_!_UMN026_{_chromosome 57.134 2972169 5202090

Escherichia_#_coli_!_55989_{_chromosome 57.146 2945816 5154862

Escherichia_#_coli_!_O26:H11_{_str._}_11368_chromosome 51.131 2913077 5697240

Escherichia_#_coli_!_O103:H2_{_str._}_12009_complete 52.85 2879966 5449314

Escherichia_#_coli_!_O157:H7_{_str._}_EC4115_chromosome 50.655 2822534 5572075

Escherichia_#_coli_!_O157:H7_{_str._}_TW14588_chromosome 50.484 2816387 5578816

Organism Coverage(%) Coverage Genome1Size
Staphylococcus_#_aureus_!_subsp._{_aureus_}_str._Newman_chromosome 73.3 2110219 2878897

Staphylococcus_#_aureus_!_subsp._{_aureus_}_VC40_chromosome 77.669 2091285 2692570
Staphylococcus_#_aureus_!_subsp._{_aureus_}_JH1_chromosome 71.782 2086341 2906507
Staphylococcus_#_aureus_!_subsp._{_aureus_}_JH9_chromosome 71.768 2086087 2906700

Staphylococcus_#_aureus_!_subsp._{_aureus_}_ED98 73.829 2085241 2824404
Staphylococcus_#_aureus_!_subsp._{_aureus_}_COL_chromosome 74.077 2081142 2809422
Staphylococcus_#_aureus_!_subsp._{_aureus_}_Mu50_chromosome 71.848 2068177 2878529

Staphylococcus_#_aureus_!_subsp._{_aureus_}_MSSA476_chromosome 73.728 2064228 2799802
Staphylococcus_#_aureus_!_subsp._{_aureus_}_N315 73.221 2061049 2814816

Streptococcus_#_salivarius_!_CCHSS3_{_complete_}_genome 92.536 2051701 2217184
Staphylococcus_#_aureus_!_subsp._{_aureus_}_NCTC_8325_chromosome 70.503 1989134 2821361

Staphylococcus_#_aureus_!_subsp._{_aureus_}_USA300_TCH1516_chromosome 69.149 1986597 2872915
Staphylococcus_#_aureus_!_subsp._{_aureus_}_USA300_FPR3757_chromosome 69.136 1986108 2872769

Staphylococcus_#_aureus_!_subsp._{_aureus_}_MW2_complete_genome 70.025 1975034 2820462
Staphylococcus_#_aureus_!_subsp._{_aureus_}_Mu3_complete_genome 68.502 1972985 2880168

Prevotella_#_pallens_!_ATCC_{_700821_}_genomic_scaffold 84.552 1957298 2314907
Staphylococcus_#_aureus_!_subsp._{_aureus_}_TCH70_genomic_scaffold 69.783 1944549 2786578

Staphylococcus_#_aureus_!_subsp._{_aureus_}_ATCC_BAAY39_genomic_scaffold 64.102 1859019 2900112
Streptococcus_#_parasanguinis_!_ATCC_{_15912_}_chromosome 86.23 1857095 2153652
Streptococcus_#_parasanguinis_!_ATCC_{_903_}_genomic_scaffold 85.684 1801440 2102412
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Figure 15. Overlap among the total number of organisms detected in the 3 throat samples. 
Venn diagram is from prior analyses but is presented to show that some organisms 
overlap among samples.  
 
 
 
 
 
  



 60 

Alignment Statistics 
We first removed low quality, redundant and human reads with the Read-Reduct 
module of MetaGeniE from the initial metagenomic reads (Figure 16). For these 4 
samples, total ~33%-90% of the reads were filtered out. Different steps utilized by 
MetGeniE have varying effects of reduction/filtration on these metagenomes. 
 

 
 
Figure 16. Iterative reduction of the metagenome reads for four clinical samples from 
cystic fibrosis patients. The bars represent the remaining reads after each processing 
step.  
 
The remaining reads after running Read-Reduct module are input into the Patho-Detect 
module (Figure 17). The total number of reads mapped against public genome 
databases ranged from 24-68%.  
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Figure 17. Pathogen detection of the metagenome reads for 4 clinical samples from 
cystic fibrosis patients. Each bar represents the remaining (unmapped) reads after 
aligning against reference database at each processing step. 
 
 
Identification of Microbial Community through Genomic Reconstruction 
The mapped reads in the Patho-Detect module are utilized for genomic reconstruction 
of the community. The genomic reconstruction (i.e., % genome mapped) of the top hits 
for CF samples ranged from ~55-99% (Table 25). The four CF samples represented 
different genomic signatures and thus different infections in each patient. 
 
Table 25. Top five hits sorted by the genome coverage mapped per organism for four 
cystic fibrosis samples. 
 

Sample Organism Genome 
Coverage % 

Genome 
Coverage 

Genome 
Size 

6612 
 

Staphylococcus aureus 
subsp. aureus USA300 
TCH1516 

99.995 2872779 2872915 

Streptococcus sanguinis 
SK36 75.607 1805813 2388435 

Enterococcus faecalis V583 50.015 1609507 3218031 
Rothia mucilaginosa DY-18 42.98 973323 2264603 
Granulicatella adiacens 88.068 669773 760519 
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ATCC 49175 genomic 
scaffold 

6998 

Escherichia coli APEC O1 93.321 4742614 5082025 
Shigella sonnei 53G 73.695 3676268 4988504 
Streptococcus parasanguinis 
ATCC 903 82.959 1744143 2102412 

Haemophilus influenzae 
10810 78.98 1565017 1981535 

Veillonella dispar ATCC 
17748 genomic scaffold 61.605 958312 1555587 

6780 

Enterobacter cloacae subsp. 
cloacae ATCC 13047 55.936 2972741 5314581 

Klebsiella oxytoca KCTC 
1686 35.327 2110459 5974109 

Streptococcus salivarius 
CCHSS3 93.861 2081061 2217184 

Veillonella dispar ATCC 
17748 85.802 1334727 1555587 

Escherichia coli S88 20.267 1019880 5032268 

6778 

Staphylococcus aureus 
subsp. aureus str. Newman 73.3 2110219 2878897 

Streptococcus salivarius 
CCHSS3 92.536 2051701 2217184 

Prevotella pallens ATCC 
700821 84.552 1957298 2314907 

Fusobacterium nucleatum 
subsp. polymorphum ATCC 
10953 

71.999 1749354 2429698 

Haemophilus parainfluenzae 
T3T1 74.169 1547812 2086875 

 
 
The transmission of pathogens to CF patients occurs through nosocomial, social and 
environmental routes. These transmissions as well as commensal microbiota represent 
the microbial community in CF patients. The community for each CF metagenome 
sample is represented by top hit per each genus detected by MetaGeniE (Figure 18). 
Organisms such as Gemella, Granulicatella, Haemophilus, Neisseria and Streptococcus 
are genera that are commonly found in the oral microbiome, including samples from CF 
patients and dominate the communities in these four samples. 
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Figure 18. Community detected by deep sequencing Metagenome for four CF datasets. 

Validation with Laboratory Culture 
The clinical laboratory detected microbial infection across these four samples using 
culture-based methods (Table 27). The top hit (Table 24) and community (Figure 18) 
identified by MetaGeniE confirmed the lab culture results (Table 28). We were able to 
demonstrate that MetaGeniE can detect organisms at very low coverage, which is 
confirmed with culture results. The ability of MetaGeniE to correctly identify infections to 
the strain level, for example MRSA versus MSSA detection, demonstrates higher 
resolution than amplicon sequencing community analysis. 
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Table 27. Bacterial infection detected by Laboratory Culture. MRSA: Methicillin resistant 
Staphylococcus aureus; ENCL: Enterobacter cloacae; PSAR: Pseudomonas 
aeruginosa; MSSA: Methicillin sensitive S. aureus; PSARM: Pseudomonas aeruginosa 
– mucoid; ECOL: Escherichia coli; SESP: Serratia sp.; ENSP: Enterococcus sp.; HAEM: 
Haemophilus influenza; YT: Yeast not Cryptococcus. 
 

BarC

ode 

Source 

Code 
Isolate 1 Isolate 2 

Isolate 

3 

6612 Throat MRSA ENCL PSAR* 

6998 Throat ECOL HAEM YT 

6780 Throat ECOL SESP ENSP 

6778 NP MSSA PSAR 
PSAR

M* 

 
 
Table 28. Bacterial infection detected by MetaGeniE confirmed with the culture media 
as above 
  

Sample Culture 
Report Metagenome Detection 

6612 
MRSA S. aureus subsp aureus USA300 TCH1516 
ENCL Enterobacter cloacae subsp cloacae ATCC 13047 
PSAR * 

6998 
ECOL Escherichia coli APEC O1 
HAEM Haemophilus influenzae 10810 

YT Fungal infection detected 

6780 
ECOL Escherichia coli S88 
SESP Serratia sp AS9 
ENSP Enterococcus italicus DSM 15952 

6778 
MSSA Staphylococcus aureus subsp aureus str Newman 
PSAR P aeruginosa PAO1 

PSARM * 
 
Validation with SNP genotyping 
Single nucleotide polymorphism (SNP) genotyping is widely used in analysis of WGS to 
accurately identify and discriminate between strains of a species. Figures 19-21 
represents the phylogenetic tree for the metagenome sequences mapping to top hit 
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detected by MetaGeniE for sample 6612, 6998 and 6778. We found that top-hits 
detected by MetaGeniE are also confirmed through SNP genotyping. With respect to 
detection up to strain level, Staphylococcus aureus subsp. aureus USA300 TCH1516 
(MRSA) and Escherichia coli APEC O1 detected in clinical sample 6612 and 6998 
respectively is also confirmed with SNP analysis. Staphylococcus aureus subsp. aureus 
str. Newman (MSSA) detected by MetaGeniE and confirmed by culture report is not 
accurately detected by SNP genotyping due to low depth of this organism in 
metagenome sample. 
 
Sample 6612: 

 

Figure 19. Phylogenetic tree representing the mapped reads of E. coli APEC O1 from 
clinical dataset and available genome in GenBank (CI – Consistency Index; PI – 
Parsimony Informative). 

 

 

 

 

 



 66 

 
Sample 6998: 

 
 
Figure 20. Phylogenetic tree representing the mapped reads of E. coli APEC O1 from 
clinical dataset and available genome in GenBank (CI – Consistency Index; PI – 
Parsimony Informative). 
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Sample 6778: 

 
 
Figure 21. Phylogenetic tree representing the mapped reads of S. aureus Newman from 
clinical dataset and available genome in GenBank (CI – Consistency Index; PI – 
Parsimony Informative). 
 
16S RNA versus Metagenome datasets 
Comparison of community analysis between 16S RNA and deep sequencing 
metagenome datasets was performed with four cystic fibrosis samples. 
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6778 6612 6998 6780 

Pseudomonadaceae 
 

Staphylococcus 
 

Escherichia 
Enterobacteriaceae 

Enterobacteriaceae 
Pseudomonadaceae 

Common is 3 or all samples 
 Rothia;  Haemophilus;  Veillonella;  Streptococcus;  Granulicatella; 

Neisseria;  Gemella 
 
Figure 22. Community analysis with 16S rRNA analysis for 4 cystic fibrosis samples. 
 
Figure 22 represent the community analysis performed for 4 cystic fibrosis dataset with 
QIIME on 16S rRNA sequencing. Figure 18 shows the top 9 organism (genus level) 
detected by MetaGeniE for deep sequencing. Based on these two figures, we see there 
is considerable overlap between the communities detected between these two 
technologies. Pathogens like Staphylococcus for 6612, E coli for 6998 and Enterobacter 
for 6780 is found in both technologies. There is also considerable overlap between 
species in the commensal community such as Rothia spp. and Gemella spp. among 
others. Many organisms detected by 16S rRNA and deep sequencing could not be 
compared due to higher phylogenetic level reported by 16S rRNA sequencing. 
We observed that deep metagenome sequencing can lead to higher resolution, to 
species and even strain level. In Annual Report, we presented that MRSA and MSSA 
that is also confirmed with laboratory culture is detected in sample 6612 and 6778 
respectively. This characterization to strain level is not possible with the 16S rRNA 
technology as demonstrated here. Other observation is that there seems to be no 
correlation between the abundance and genome coverage of bacteria found between 
these two technologies. Example for Staphylococcus detection for sample 6778, the 
abundance reported by QIIME is .2% while MetaGeniE reports the same organism as 
top hit at 73.3% genome coverage. Pseudomonas is detected by MetaGeniE in sample 
6778 and 6780 at low genome coverage% (3.4% and 5.3%) while QIIME reports for 
sample 6612, 6778 and 6780. 
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We conclude that deep metagenome sequencing is more accurate in identifying 
pathogens in clinical samples at sensitivity levels meeting or exceeding traditional 16S 
rRNA analyses while also providing characterization of bacterial phenotypes not 
possible with 16S rRNA. 
 
Francisella Samples  
Eight of 14 clinical samples we sequenced from patients suffering from tularemia. These 
patients showed resistance to antibiotic treatment and thus were treated for longer 
duration.  
 
Bacterial Interrogation 
Out of 800 million total reads sequenced for these eight clinical samples, very few reads 
(~9,000) belonged to major component of infection F. tularensis (Figure 23). Francisella 
tularensis subsp. holarctica (with possibility of LVS/FTNF as possible strain) is detected 
as major component of infection in all the eight samples despite low genome coverage 
% (ranging from 2% to 15%).  
 

 
 
Figure 23. Overview of data analysis of Francisella tularensis samples. 
 
Quantitative PCR also confirmed the presence of Francisella tularensis subsp. 
holarctica LVS. Further no conflict between manual canonical SNP detection despite 1x-
3x coverage and assay data were found (Table 29). 
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We were able to detect few antibiotic resistance genes that are native to F. 
tularensis subsp. holarctica LVS. However as the overall genome coverage is low to 
report all antibiotic resistance genes, we are trying to build antibiotic resistance profile of 
close relative of F. tularensis LVS. Interestingly, coinfection with Ralstonia picketti is 
found in all the 8 samples at low coverage. Ralstonia picketti also natively consist of few 
antibiotic resistance genes and is usually a nosocomial pathogen affecting immune 
compromised patients (Table 30). 
Table 29. Bioinformatic data and assay data. 
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Table 30. The major component of infection F. tularensis and coinfection R. picketti 
detected in eight samples. 
 

 
 
Additional validation shows that F. tularensis and R. picketti do not share any homology 
with each other as no reads are shared between these two organisms (Figure 24). 
 

 
Figure 24. The overlap between the major component of infection with F. tularensis and 
coinfection with R. picketti. 

Pa#ent'
number'

City'of'
turkey' Fever' FT'Reads'

Picke9'
Reads' Previous'an#bio#cs'

Response'of'
therapy'

Hospitali>
za#on' Treatment'of'tularemia'

Pa#ent'2' cankırı''''''''''''''''yes' 483' 167' cam'''''''''''''''''' no' yes' cipro,amikasin'''''''''''''''''''''
Pa#ent'1' corum''''''''''''''''''yes' 261' 89' gentamisin''''''''''' no' yes' genta,doksisik,tetrasik,cipro''''''

Pa#ent'3' yozgat'''''''''''''''''yes' 1835' 10'
penis,sefaz,genta,tetr
asiklin'''' no' yes' cipro,rifampisin'''''''''''''''''''

Pa#ent'5' corum''''''''''''''''''yes' 137' 158' sam,bit'''''''''''''' no' yes' cipro,'genta,'tetrasiklin'
Pa#ent'6' corum''''''''''''''''''yes' 3291' 371' cam,gentamisin''''''' no' no' gentamisin,'doksisiklin''''''''''''

Pa#ent'8'
(adult)' bala/ankara'''''''''''yes' 1041' 3' cam'''''''''''''''''' no' no' '''''''''''''''''''''''''''''''''''

Pa#ent'9' ankara'''''''''''''''''yes' 837' 38' cam' no' yes' genta,doksi,'siproflok,amik,ornid,vanko'

Pa#ent'13' ankara'''''''''''''''''yes' 953' 106' cam,'sam,'klindamisin' no' yes' ganta,'doksisilin,'cipro'
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Extracting the reads mapping to R. picketti and then performing blast on these 
sequences shows that these sequences very specifically map only to the R. pickettii 
confirming their presence. Aligning these sequences against antibiotic resistance genes 
resulted in few of the reads hit the resistance database. Few of the reads mapped to 
multidrug efflux system subunit MdtA. This efflux is part of a tripartite efflux system 
composed of MdtA, MdtB and MdtC, which confers resistance against novobiocin and 
deoxycholate. These finding are indicator of presence of co-infection that might be 
linked with increased antibiotic resistance. 
 
Viral Interrogation 
The viral interrogation is performed for the unmapped Francisella read against latest 
viral database (build 61). The bacterial interrogation was already submitted with the 
2013 Annual Report. 
 
Table 31. Detection of Viral infection in 3 samples. 
 

Sample Id Pathogen 
FT3 Human parvovirus B19; Hepatitis B virus  
FT5 Human parvovirus B19; 
FT6 Human parvovirus B19; 

 
We were able to detect two viral infections in 3 patients at very low-level (Table 31). For 
sample 3, only 12 reads mapped to Hepatitis B virus out of nearly 100 million 
sequencing read. After manual inspection of these low number of reads, we confirmed 
the presence of this viral infection. These 12 reads that mapped to Hepatitis B virus is 
visualized against Hepatitis B genome in Figure 25. 
 

 
 
Figure 25. Visualization of 12 reads mapped against Hepatitis B reference genome 
 
Personal communication with the doctor about detection of Hepatitis B in Patient 3 that 
is usually asymptomatic led to further investigation. After clinical testing, it was 
confirmed that patient 3 is infected with Hepatitis B. 
 
Burkholderia Samples  
For melioidosis the numbers of reads removed ranged from 76%-99% (Figure 26). 
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Figure 26. Iterative reduction of the metagenome reads from 4 clinical samples for 
melioidosis patients. The bars represent the remaining reads after each processing 
step. 
 
The total number of reads mapped against public genome databases was 23-47% for 
melioidosis samples (Figure 27). From the four samples (2 urine and 2 sputum) 
collected from melioidosis patients, Burkholderia pseudomallei is identified as a 
dominant bacterium in 2 urine samples. Besides Burkholderia pseudomallei, species 
commonly found oral bacterial communities such as Prevotella sp., Streptococcus sp., 
and Rothia sp., were also detected in 2 sputum samples.  
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Figure 27. Pathogen detection of the metagenome reads for melioidosis patients. Each 
bar represents the remaining (unmapped) reads after aligning against reference 
database at each processing step.  
 
Myeloma Samples  
For the myeloma samples, the numbers of reads removed were higher, with removal of 
98%-99% reads (Figure 28). The myeloma cell line samples have high human DNA 
content and therefore resulted in higher amounts of read reduction than the other 
sample type. 
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Figure 28. Iterative reduction of the metagenome reads from 14 clinical samples from 
myeloma patients. The bars represent the remaining reads after each processing step.  
 
For myeloma, the number of mapped reads against viral database was low (<1%) for 6 
out of 14 samples and ranged from 0.5%-29% (Figure 29). 
 

 
 
Figure 29. Pathogen detection of the metagenome reads from 14 clinical samples from 
myeloma patients. Each bar represents the remaining (unmapped) reads after aligning 
against reference database at each processing step. 
 
No significant viral community was detected for these 14 human cell line samples. The 
eight blood samples showed viral community that seems to be mostly related to dietary 
habits of the patients. The myeloma samples were spiked with PhiX174 at about 1% in 
all the samples. MetaGeniE is able to reconstruct 99% of this “control” genome from 
these samples showing high sensitivity for its detection. 
 
African Skin Snip Samples 
Identification of unknown community is especially important in clinical samples for rapid 
identification in the case of a sudden disease outbreak. Three clinical samples collected 
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from skin snips of children suffering from nodding disease from Africa were collected. 
We were able to detect Wolbachia endosymbiont of Onchocerca ochengi, commonly 
found bacteria in Africa along with some lesser-known pathogens that might be 
causative agent for this disease (Table 32). 
 
Table 32. The bacterial community detected in three skin snip samples (Only one 
representative is selected per genus). 
 

 
 
Tuberculosis Patients 
Clinical samples from tuberculosis patients were analyzed with MetaGeniE (Figure 30).  
 

 
 
Figure 30. The breakdown of the total number of reads filtered against human database 
and aligned against bacterial datasets. 

P145 137 140
Comamonas'testosteroni'CNB.2'chromosome' Pantoea'vagans'C9.1'chromosome' Wolbachia'endosymbiont'of'Onchocerca''ochengi

Delftia'acidovorans'SPH.1'chromosome' Erwinia'billingiae'Eb661'chromosome' Leptospira'borgpetersenii'serovar'Hardjo.bovis'
Dechlorosoma'suillum'PS'chromosome' Klebsiella'pneumoniae'subsp.'pneumoniae'
Sphingobium'yanoikuyae'ATCC'51230' Serratia'proteamaculans'568'chromosome'
Ochrobactrum'anthropi'ATCC'49188' Cronobacter'turicensis'z3032'chromosome'

Acinetobacter'sp.'NIPH'809' Salmonella'enterica'subsp.'arizonae'
Brevundimonas'diminuta'ATCC'11568' Enterobacter'asburiae'LF7a'chromosome'

Citrobacter'sp.'30'2'genomic' Escherichia'coli'IAI1'chromosome'
Ochrobactrum'anthropi'ATCC'49188' Edwardsiella'tarda'EIB202'chromosome'

Sinorhizobium'fredii'USDA'chromosome Rahnella'sp.'Y9602'chromosome'
Bordetella'pertussis'CS'chromosome Brenneria'sp.'EniD312'chromosome'
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We were not only able to detect multi-drug resistant strains of tuberculosis for these 
samples but also the presence of Acinetobacter baumannii (Table 33). 
 
 

 
 
Table 33. The top three hits per genus detected in tuberculosis samples. 
 
To further confirm the presence of A. baumannii, we tried to look at the overlapping 
regions (reads) shared between M. tuberculosis and A. baumannii (Figure 31). Any 
significant overlap between these two organisms can be attributed to homology and 
usually presence of organism with higher genome coverage. However we found overlap 
between only the strains of Mycobacterium (as expected) and none with Acinetobacter, 
we conclude that both M. tuberculosis and Acinetobacter baumannii are present. 
 

 
Figure 31. The overlap between two strains of Mycobacterium tuberculosis and 
Acinetobacter baumannii.  

Organism Coverage(%) Coverage Genome1Size
Mycobacterium_#_tuberculosis_!_CCDC5079_{_complete 26.351 1163227 4414325

Mycobacterium_#_tuberculosis_!_X122_{_scaffold 26.323 1159439 4404714

Mycobacterium_#_tuberculosis_!_HN878_{_scaffold 26.23 1155365 4404672

Acinetobacter_#_baumannii_!_1656H2_{_chromosome 11.397 449127 3940614

Acinetobacter_#_baumannii_!_TYTHH1_{_chromosome 11.222 444102 3957368

Acinetobacter_#_baumannii_!_TCDCHAB0715_{_chromosome 10.684 442145 4138388
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KEY RESEARCH ACCOMPLISHMENTS 
 

• MetaGeniE Completion. We have created a metagenomic application for analysis of 
clinical samples previously referred to as IRIMAS.  

• Submission of MetaGeniE for publication  
• Development of the Read-Reduct module that sequentially filters and reduces the 

low quality, redundant and human reads 
• Efficient read mapping of pathogen sequences using Patho-Detect module 
• Accurate and sensitive detection of pathogens in clinical samples 
• Development of SNP based framework and workflow for pathogen specific reads for 

detailed characterization of samples 
• Evaluated human DNA subtraction methodology 
• Overlapping paired-end read methodology for dispersed read SNP calling 
 

 
REPORTABLE OUTCOMES 
 
Presentations 
 
Birdsell, D., Y. Özsürekci, M. Çelik, E. Karadağ-Öncel, A. Johansson, A.J. Vogler, A. 

Rawat, P. Keim, M. Ceyhan, and D.M Wagner. Whole-genome genetic analysis of F. 
tularensis-positive clinical samples from Turkey. Medical Biodefense Conference. 
Bundeswehr Medical Academy. Munich, Germany. October 2013. 

 
Ozsurekci, Y., D. Birdsell, A.E. Aycan, V. Gurbuz, A. Rawat, J. Schupp, A.J. Vogler, P. 

Keim, M. Ceyhan, and D.M. Wagner. Whole genome genetic analysis of F. tularensis-
positive clinical samples from Turkey. Annual meeting of the Interscience Conference 
on Antimicrobial Agents and Chemotherapy, Denver, Colorado, September, 2013.  

 
Özsürekci, Y., D. Birdsell, M. Çelik, E. Karadağ-Öncel, A.J. Vogler, P. Keim, M. Ceyhan, 

and D.M. Wagner. Phylogenetic analysis of Francisella tularensis subspecies holarctica 
isolates from Turkey. International meeting on Francisella tularensis and Tularemia, 
Ürgüp, Turkey, June 2013.  

  
Wagner, D.M. Signatures, membership, and whole genome SNP typing: examples using 

Yersinia pestis. 11th International Symposium on Protection against Chemical and 
Biological Warfare Agents, Stockholm, Sweden, June 2013.  

 
Foster, J.T. Invited Seminar. Genomic approaches to disease epidemiology. University of 

New Hampshire. May 2013  
 
Foster, J.T. Invited Seminar. Genomic approaches to disease epidemiology in livestock 

and wildlife. University of Vermont. March 2013 
 
Keim, P. Genomics for Public Health Applications. CDC invitation lecture. Atlanta GA. 
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September 2012. 
 
Foster, J.T. et al. Testing Limits of Next Generation Sequencing for Diagnostics. 

ASM2012—American Society for Microbiology Annual Meeting, San Francisco, CA, 
June 2012. Invited Talk at ASM2012. 

 
Rawat, A. et al. Characterization of Microbial Infection in Cystic Fibrosis Clinical Samples 

using Deep Metagenomic Sequencing. ASM2012—American Society for Microbiology 
Annual Meeting, San Francisco, CA, June 2012.  

 
Publications 
 
Please note that while we have numerous manuscripts in preparation or resubmission after 

review at a journal, we do not currently have any publications as a result of this work. 
 
 
CONCLUSION 
 
Among the primary translational goals of metagenomic sequencing of clinical samples is 
accurate and comprehensive identification of pathogens within a sample. Identification 
of these microbes with high fidelity can help in generating insights for personalized 
medicine and rapid and accurate clinical management for patients suffering from 
infections. However, metagenomic samples have high variation in terms of human 
reads, bacterial community that is oftentimes limited by sampling, community complexity 
as seen in CF samples, and GC rich pathogens like Burkholderia.  
 
MetaGeniE provides novel insights and analyses of clinical datasets, detecting and 
characterizing the major component of community that is usually the infectious agent of 
interest as well as identifying the other microbes in this community. Furthermore, we are 
able to validate these detections with laboratory culture, and available patient 
information. Finally, we are able to take these analyses a step beyond nearly all current 
approaches and can use both SNP genotyping and determine features such as 
antibiotic resistance to precisely characterize these pathogens. 
 
Our study is able to provide insights into clinical samples where the pathogen causing 
infection is known (F. tularensis, Burkholderia), while also detecting additional co-
infections (e.g., Ralstonia in F. tularensis samples), as well as identifying samples in 
unknown communities (artificial mixtures, CF, skin snip samples). Considering the blind 
test analysis of using known mixtures on the HiSeq instrument, no false positives were 
detected, which is quite important for reliable detection in clinical datasets. With 
samples with high genome coverage percentages, we are able to strain type detected 
organisms in our samples and confirm their placement in a SNP based phylogeny. As 
the genome coverage percentage decreases, the ability to strain type an organism is 
reduced but the ability to use multiple potential loci across the genome makes this 
approach superior to targeted approaches such as those using 16S rRNA. For low 
genome coverage (~ <15%), mapping canonical SNPs manually can be applied as seen 
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in the F. tularensis samples. Our novel approach for metagenomic analysis has been 
accurate in identifying pathogens in clinical samples at sensitivity levels meeting or 
exceeding traditional 16S rRNA analyses, while also providing characterization of 
bacterial phenotypes not possible with 16S rRNA. Additional analysis besides SNP 
genotyping such BLAST analysis, antibiotic resistance detection, lab culture and 
annotation can benefit the study of various metagenomic datasets. 
 
SO WHAT 
 
Rapid and accurate identification of pathogens responsible for infectious disease is one of 
the Holy Grails of medicine. Our research provides a vital next step in this work where all 
of the genetic pieces of different organisms in a sample can be taken, a veritable soup of 
host and microbial DNA, and then the specific sequences of interest can be found and 
identified. These basic results are not new. Identifying various organisms in complex 
backgrounds such as amidst host DNA or in environmental samples has been done for 
nearly ten years. What is new however with our approach is the ability to know far beyond 
simple species identification and be able to fully characterize the genomes of the 
organisms detected at only trace levels. For example, we can determine which antibiotics 
a bacterium is resistant to, which has immediate relevance for clinical treatment. We also 
may know which lineage a microbe belongs to, a fact critically important for disease 
epidemiology especially if one lineage has low pathogenicity and the other is highly 
pathogenic. Moreover, our approach looks for a whole range of different pathogens. We 
were looking specifically for bacterial pathogens in most instances but found infections with 
viral agents as well. Thus, the ability to detect coinfections is possible as well. We expect 
our approach will be a part of the future of medical diagnostics.   
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Appendix 1. Quarterly Report (POP 08 December 2013 - 07 March 2014). Submission of 
this report as an appendix to the Final Report approved by Ms. Danielle Nolitt.  
 
Summary of work conducted in this quarter  
Our research in the last quarter was multifaceted, with work on enriching for bacterial 
DNA during the extraction process rather than simply trying to do it bioinformatically, 
reducing the amount of host (human) DNA during the extraction process, and finalizing 
our bioinformatic work on pathogen detection. Some of these results were also 
presented in the final report for completeness. We appreciate the extra time afforded to 
us by the no-cost extension because it allowed us to complete some extremely 
interesting data sets.  
 
Microbial DNA Enrichment 
Metagenomic DNA extracted from (sample origins) of four Francisella tularensis clinical 
cases was quantified using the Nanodrop 1000 spectrophotometer. Based on these 
quantifications, 1-2 µg of total DNA was enriched for microbial DNA using the NEBNext 
Microbiome DNA Enrichment Kit (New England Biolabs, Ipswich, Massachusetts, USA) 
according to the supplied protocol. This protocol captures DNA with CpG methylation, 
which is prominent in eukaryotic DNA and rare in prokaryotic DNA, and removes it from 
the metagenomic sample, effectively enriching microbial DNA. 
 
Sequencing Library Preparation 
Both native and subtracted DNA samples were prepared for multiplexed Illumina 
sequencing using the KAPA Illumina series library preparation kit (Kapa Biosystems, 
Wilmington, Massachusetts, USA) with adapter and index primer oligos as described in 
Kozarewa and Turner (2011). Libraries were size-selected using the dual-SPRI scheme 
described by Lundin et al. (2010) to achieve an average insert size of 700 bp. 
Sequencing was performed on an Illumina HiSeq 2000. 
 
Human Subtraction Protocol Analysis 
 
For the four F. tularensis samples, human reads were subtracted using methylation 
protocol. We compared these four subtracted samples with the normal samples (Figure 1). 
We found that the subtracted human sequencing reduces the total percentage of human 
reads as against the normal sequencing from ~1% to ~6%.  
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Figure 1. Comparison of subtracted human protocol sequencing versus normal 
sequencing 
 
We also found that the total number of reads aligning to bacterial reads significantly 
increased by factor of ~5 to ~90 (Figure 2).  
 

 
 
Figure 2. Comparison of bacterial read alignment of subtracted human protocol 
sequencing versus normal sequencing 
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Comparing the community between the subtracted human (host) sequencing and normal 
sequencing, microbial detection was quite different. For normal sequencing, we were able 
to detect Francisella tularensis as major component of infection, for these patients 
suffering from tularensis besides other organisms like Ralstonia picketti. However 
comparing the distribution of population with the human subtracted sequencing, top hits 
were Herbaspirillum seropedicae SmR1 for Sample 1 and 2 and Cupriavidus metallidurans 
CH34 for Sample FT6 and FT13 (See ). Francisella tularensis is also detected but the 
genome coverage % was higher for two samples and lower for other two samples.  
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Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Herbaspirillum_#_seropedicae_!_SmR1_{}_|gi|300309346|ref|NC_014323.1| 2870146 52.053 5513887
Collimonas_#_fungivorans_!_Ter331_{}_|gi|340785197|ref|NC_015856.1| 386377 7.449 5186898
Janthinobacterium_#_sp._!_CG3_{_JANGC3DRAFT1.1_}|gi|484156181|ref|NZ_KB467824.1| 267953 4.829 5549265
Delftia_#_acidovorans_!_SPHZ1_{}_|gi|160895450|ref|NC_010002.1| 220753 3.262 6767514
Ralstonia_#_eutropha_!_H16_{}_1_|gi|113866031|ref|NC_008313.1| 220577 5.444 4052032
Achromobacter_#_xylosoxidans_!_A8_{}_|gi|311103224|ref|NC_014640.1| 220474 3.144 7013095
Cupriavidus_#_necator_!_NZ1_{}_1|gi|339324158|ref|NC_015726.1| 212406 5.484 3872936
Ralstonia_#_solanacearum_!_CMR15_{}_|gi|523408232|ref|NC_017559.1| 206756 5.75 3596030
Delftia_#_sp._!_Cs1Z4_{}_|gi|333911667|ref|NC_015563.1| 204803 3.063 6685842
Cupriavidus_#_taiwanensis_!_LMG_{_19424_}1|gi|188590795|ref|NC_010528.1| 201059 5.884 3416911
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 200591 10.58 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002Z00|gi|156501369|ref|NC_009749.1| 200154 10.585 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 199713 10.544 1894157
Ralstonia_#_solanacearum_!_Po82_{}_|gi|386331671|ref|NC_017574.1| 197334 5.669 3481091
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 196393 10.36 1895727
Cupriavidus_#_metallidurans_!_CH34_{}_|gi|94308945|ref|NC_007973.1| 193310 4.921 3928089
Ralstonia_#_solanacearum_!_GMI1000_{}_|gi|17544719|ref|NC_003295.1| 192265 5.173 3716413
Ralstonia_#_solanacearum_!_IPO1609_{_|gi|207741818|ref|NW_002196569.1| 188862 5.599 3372855
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 188158 9.972 1886888
Ralstonia_#_solanacearum_!_CFBP2957_{}_|gi|300702374|ref|NC_014307.1| 184200 5.39 3417386

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 42495 2.241 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002Z00|gi|156501369|ref|NC_009749.1| 42254 2.235 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 42188 2.227 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 42162 2.224 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 40979 2.172 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 38223 1.942 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 35758 1.889 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 35758 1.889 1892775
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 35707 1.887 1892616
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 35707 1.887 1892744
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96Z3418|gi|134301169|ref|NC_009257.1| 35445 1.867 1898476
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 29870 1.577 1893886
Francisella_#_novicida_!_U112_{}_|gi|118496615|ref|NC_008601.1| 16928 0.886 1910031
Francisella_#_cf._!_novicida_{_Fx1_}|gi|385791932|ref|NC_017450.1| 15216 0.795 1913619
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.19|gi|254367826|ref|NZ_DS229056.1| 12257 2.205 555807
Streptomyces_#_griseoflavus_!_Tu4000_{_genomic_}1.1|gi|224581108|ref|NZ_GG657758.1| 8778 0.109 8047042
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC0331.4|gi|254370255|ref|NZ_DS264119.1| 8131 1.032 788151
Francisella_#_tularensis_!_subsp._{_novicida_}_FTE_FTE1|gi|224580220|ref|NZ_DS989818.1| 7110 0.837 849109
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.8|gi|254369615|ref|NZ_DS264140.1| 7070 2.139 330502
Francisella_#_novicida_!_FTG_{_FTG1_}|gi|224580234|ref|NZ_DS995363.1| 6286 0.893 703773

Subtracted,Human,Sequencing,(FT1)

Normal,Human,Sequencing,(FT1)
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Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Herbaspirillum_#_seropedicae_!_SmR1_{}_|gi|300309346|ref|NC_014323.1| 3039047 55.116 5513887
Collimonas_#_fungivorans_!_Ter331_{}_|gi|340785197|ref|NC_015856.1| 455636 8.784 5186898
Janthinobacterium_#_sp._!_CG3_{_JANGC3DRAFT1.1_}|gi|484156181|ref|NZ_KB467824.1| 316372 5.701 5549265
Ralstonia_#_eutropha_!_H16_{}_1_|gi|113866031|ref|NC_008313.1| 261011 6.441 4052032
Achromobacter_#_xylosoxidans_!_A8_{}_|gi|311103224|ref|NC_014640.1| 257003 3.665 7013095
Delftia_#_acidovorans_!_SPH\1_{}_|gi|160895450|ref|NC_010002.1| 252615 3.733 6767514
Cupriavidus_#_necator_!_N\1_{}_1|gi|339324158|ref|NC_015726.1| 247458 6.389 3872936
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 245618 12.955 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 245565 12.964 1894157
Ralstonia_#_solanacearum_!_CMR15_{}_|gi|523408232|ref|NC_017559.1| 243872 6.782 3596030
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002\00|gi|156501369|ref|NC_009749.1| 243843 12.896 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 242455 12.79 1895727
Cupriavidus_#_taiwanensis_!_LMG_{_19424_}1|gi|188590795|ref|NC_010528.1| 240282 7.032 3416911
Ralstonia_#_solanacearum_!_Po82_{}_|gi|386331671|ref|NC_017574.1| 236551 6.795 3481091
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 233405 12.37 1886888
Delftia_#_sp._!_Cs1\4_{}_|gi|333911667|ref|NC_015563.1| 232974 3.485 6685842
Ralstonia_#_solanacearum_!_GMI1000_{}_|gi|17544719|ref|NC_003295.1| 228347 6.144 3716413
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 224368 11.397 1968651
Ralstonia_#_solanacearum_!_IPO1609_{_|gi|207741818|ref|NW_002196569.1| 222563 6.599 3372855
Ralstonia_#_solanacearum_!_CFBP2957_{}_|gi|300702374|ref|NC_014307.1| 215864 6.317 3417386

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 72600 3.833 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002\00|gi|156501369|ref|NC_009749.1| 72361 3.827 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 71914 3.793 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 68360 3.606 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 65721 3.483 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 64022 3.252 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96\3418|gi|134301169|ref|NC_009257.1| 61612 3.245 1898476
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 61426 3.245 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 61174 3.232 1892616
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 61117 3.229 1892775
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 60940 3.22 1892744
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 51421 2.715 1893886
Francisella_#_novicida_!_U112_{}_|gi|118496615|ref|NC_008601.1| 29126 1.525 1910031
Francisella_#_cf._!_novicida_{_Fx1_}|gi|385791932|ref|NC_017450.1| 26557 1.388 1913619
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.19|gi|254367826|ref|NZ_DS229056.1| 22104 3.977 555807
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC0331.4|gi|254370255|ref|NZ_DS264119.1| 14356 1.821 788151
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.5|gi|254368696|ref|NZ_DS264137.1| 13465 2.759 488102
Francisella_#_tularensis_!_subsp._{_novicida_}_FTE_FTE1|gi|224580220|ref|NZ_DS989818.1| 12673 1.493 849109
Francisella_#_novicida_!_FTG_{_FTG1_}|gi|224580234|ref|NZ_DS995363.1| 11472 1.63 703773
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.6|gi|254369075|ref|NZ_DS264138.1| 10313 2.029 508365

Subtracted,Human,Sequencing,(FT2)

Normal,Human,Sequencing,(FT2)
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Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Cupriavidus_#_metallidurans_!_CH34_{}_|gi|94308945|ref|NC_007973.1| 2631037 66.98 3928089
Cupriavidus_#_metallidurans_!_CH34_{_megaplasmid_}|gi|291481467|ref|NC_007974.2| 1746897 67.707 2580084
Ralstonia_#_eutropha_!_H16_{}_1_|gi|113866031|ref|NC_008313.1| 194259 4.794 4052032
Cupriavidus_#_necator_!_NP1_{}_1|gi|339324158|ref|NC_015726.1| 192410 4.968 3872936
Cupriavidus_#_taiwanensis_!_LMG_{_19424_}1|gi|188590795|ref|NC_010528.1| 190485 5.575 3416911
Cupriavidus_#_metallidurans_!_CH34_{_plasmid_}_pMOL30|gi|56130627|ref|NC_006466.1| 184536 78.944 233755
Cupriavidus_#_metallidurans_!_CH34_{_plasmid_}_pMOL30|gi|291464753|ref|NC_007971.2| 184489 78.936 233720
Ralstonia_#_eutropha_!_JMP134_{}_1|gi|73539706|ref|NC_007347.1| 174988 4.597 3806533
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 166871 8.801 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 166321 8.781 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002P00|gi|156501369|ref|NC_009749.1| 165408 8.748 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 162954 8.596 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 151481 8.028 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 145410 7.386 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96P3418|gi|134301169|ref|NC_009257.1| 138407 7.29 1898476
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 138093 7.296 1892744
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 136778 7.227 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 136734 7.224 1892775
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 134359 7.094 1893886
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 96340 5.09 1892616

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 296764 15.652 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 295826 15.618 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002P00|gi|156501369|ref|NC_009749.1| 295286 15.616 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 293857 15.501 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 285104 15.11 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 276026 14.021 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96P3418|gi|134301169|ref|NC_009257.1| 264917 13.954 1898476
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 263190 13.897 1893886
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 262822 13.886 1892744
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 262607 13.875 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 262370 13.863 1892616
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 262370 13.862 1892775
Francisella_#_novicida_!_U112_{}_|gi|118496615|ref|NC_008601.1| 195963 10.26 1910031
Francisella_#_cf._!_novicida_{_Fx1_}|gi|385791932|ref|NC_017450.1| 183855 9.608 1913619
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.19|gi|254367826|ref|NZ_DS229056.1| 86791 15.615 555807
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC0331.4|gi|254370255|ref|NZ_DS264119.1| 82045 10.41 788151
Francisella_#_tularensis_!_subsp._{_novicida_}_FTE_FTE1|gi|224580220|ref|NZ_DS989818.1| 80740 9.509 849109
Francisella_#_novicida_!_FTG_{_FTG1_}|gi|224580234|ref|NZ_DS995363.1| 67747 9.626 703773
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.5|gi|254368696|ref|NZ_DS264137.1| 65767 13.474 488102
Francisella_#_cf._!_novicida_{_3523_}|gi|387823583|ref|NC_017449.1| 64634 3.323 1945310

Subtracted,Human,Sequencing,(FT6)

Normal,Human,Sequencing,(FT6)
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Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Cupriavidus_#_metallidurans_!_CH34_{}_|gi|94308945|ref|NC_007973.1| 3049075 77.622 3928089
Cupriavidus_#_metallidurans_!_CH34_{_megaplasmid_}|gi|291481467|ref|NC_007974.2| 2009785 77.896 2580084
Ralstonia_#_eutropha_!_H16_{}_1_|gi|113866031|ref|NC_008313.1| 271535 6.701 4052032
Cupriavidus_#_necator_!_NP1_{}_1|gi|339324158|ref|NC_015726.1| 260822 6.734 3872936
Cupriavidus_#_taiwanensis_!_LMG_{_19424_}1|gi|188590795|ref|NC_010528.1| 254368 7.444 3416911
Ralstonia_#_eutropha_!_JMP134_{}_1|gi|73539706|ref|NC_007347.1| 242231 6.364 3806533
Cupriavidus_#_metallidurans_!_CH34_{_plasmid_}_pMOL30|gi|56130627|ref|NC_006466.1| 197441 84.465 233755
Cupriavidus_#_metallidurans_!_CH34_{_plasmid_}_pMOL30|gi|291464753|ref|NC_007971.2| 197177 84.365 233720
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 132199 6.973 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002P00|gi|156501369|ref|NC_009749.1| 131543 6.957 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 131258 6.93 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 128893 6.799 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 122915 6.514 1886888
Ralstonia_#_solanacearum_!_CMR15_{}_|gi|523408232|ref|NC_017559.1| 121624 3.382 3596030
Ralstonia_#_solanacearum_!_Po82_{}_|gi|386331671|ref|NC_017574.1| 121071 3.478 3481091
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 113359 5.758 1968651
Ralstonia_#_solanacearum_!_PSI07_{}_|gi|300689714|ref|NC_014311.1| 113115 3.213 3520618
Ralstonia_#_solanacearum_!_CFBP2957_{}_|gi|300702374|ref|NC_014307.1| 113075 3.309 3417386
Ralstonia_#_solanacearum_!_GMI1000_{}_|gi|17544719|ref|NC_003295.1| 110070 2.962 3716413
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96P3418|gi|134301169|ref|NC_009257.1| 109645 5.775 1898476

Organism
Genome,
Coverage

Genome,
Coverage,(%)

Genome,
Size

Francisella_#_tularensis_!_subsp._{_holarctica_}_FTNF002P00|gi|156501369|ref|NC_009749.1| 140625 7.437 1890909
Francisella_#_tularensis_!_subsp._{_holarctica_}_LVS|gi|89255449|ref|NC_007880.1| 140169 7.393 1895994
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC200|gi|422937995|ref|NC_019551.1| 139139 7.346 1894157
Francisella_#_tularensis_!_subsp._{_holarctica_}_OSU18|gi|115313981|ref|NC_008369.1| 138832 7.323 1895727
Francisella_#_tularensis_!_subsp._{_holarctica_}_F92|gi|423049750|ref|NC_019537.1| 132246 7.009 1886888
Francisella_#_tularensis_!_TIGB03_{}_|gi|379716390|ref|NC_016933.1| 122280 6.211 1968651
Francisella_#_tularensis_!_subsp._{_tularensis_}_WY96P3418|gi|134301169|ref|NC_009257.1| 117989 6.215 1898476
Francisella_#_tularensis_!_subsp._{_tularensis_}_TI0902|gi|379725073|ref|NC_016937.1| 115572 6.106 1892744
Francisella_#_tularensis_!_subsp._{_tularensis_}_NE061598|gi|385793751|ref|NC_017453.1| 115405 6.097 1892681
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC198|gi|110669657|ref|NC_008245.1| 115311 6.093 1892616
Francisella_#_tularensis_!_subsp._{_tularensis_}_SCHU_S4|gi|255961454|ref|NC_006570.2| 115311 6.092 1892775
Francisella_#_tularensis_!_subsp._{_mediasiatica_}_FSC147|gi|187930913|ref|NC_010677.1| 115096 6.077 1893886
Francisella_#_novicida_!_U112_{}_|gi|118496615|ref|NC_008601.1| 63192 3.308 1910031
Francisella_#_cf._!_novicida_{_Fx1_}|gi|385791932|ref|NC_017450.1| 55336 2.892 1913619
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.19|gi|254367826|ref|NZ_DS229056.1| 41831 7.526 555807
Francisella_#_tularensis_!_subsp._{_tularensis_}_FSC0331.4|gi|254370255|ref|NZ_DS264119.1| 29337 3.722 788151
Francisella_#_tularensis_!_subsp._{_novicida_}_FTE_FTE1|gi|224580220|ref|NZ_DS989818.1| 27185 3.202 849109
Francisella_#_tularensis_!_subsp._{_holarctica_}_FSC0221.5|gi|254368696|ref|NZ_DS264137.1| 23490 4.813 488102
Francisella_#_novicida_!_FTG_{_FTG1_}|gi|224580234|ref|NZ_DS995363.1| 23381 3.322 703773
Francisella_#_tularensis_!_subsp._{_holarctica_}_2571.13|gi|254367300|ref|NZ_DS229050.1| 21554 6.104 353090

Subtracted,Human,Sequencing,(FT13)

Normal,Human,Sequencing,(FT13)
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Design of Pathogen Detection Module of MetaGeniE 
The second module of the pipeline, Patho-Detect, aligns the remaining reads after 

human filtration against known bacterial, fungal and viral sequences with BWT 
alignment followed with local aligner BLAT (Figure 1). MetaGeniE aggregates global 
and local (BLAT) alignments and generates a cumulative report from both alignments 
for sensitive detection. Detection by read numbers is often not an accurate predictor 
due to repeat elements, close relatives in the metagenome and PCR amplification 
biases. Instead, MetaGeniE detects microbial presence by genomic reconstruction 
using percentage of the genome mapped and therefore largely overcomes these 
biases. Incorporating a larger NCBI RefSeq DB, which includes sequences from 
multiple strains of important pathogenic species, rather than using just a few selected 
complete genomes allows for finer scale resolution of clinical sample community 
memebers to the subspecies/strain level contained within the RefSeq DB. RefSeq DB 
has doubled from 8.7 GB in Release 54 to 19 GB in Release 60 for bacteria. MetaGeniE 
can now handle multiple partitions of the reference database and so is scalable to large 
databases for better memory management. NCBI indexes and hashes allow faster 

extraction of millions of reads.  Custom parsers allocate all reads to all mapped 
genomes instead of SAMTools that map main hits only and therefore MetaGeniE 
provides more sensitive pathogen detection in the metagenome.  
 
Figure 1.  The Pathogen detection module of the pipeline. 
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Features 
Scalability  
Incorporating a larger NCBI RefSeq database rather than using just a few selected 
complete genomes helps in closest resolution of identification to subspecies/strain level. 
However, this results in increasing demand for computational memory to scale for 
growing reference databases. 

 
Figure 2. Multithreaded input sequence file query the multiple partition reference 
database to address the scalability. 
 
To address the issue of scalability with large reference databases, we designed the 
pipeline to handle multiple partitions of reference database for better memory 
management (Figure 2). Each smaller database partitions (~1 GB) can be queried by 
multithreaded input files iteratively therefore reducing overall memory footprint. This 
querying of each input file fragment generates higher number of mapped-unmapped 
relationships against the partitioned database results per iteration that increases the 
computational time. To address this issue, the pipeline utilizes custom hash functions 
and indexing tool formatdb and fastacmd (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/) to 
allow faster extraction of millions of reads as an input to next reference database 
search.  
 
Normalized (%) Genome Coverage 
Pathogen detection by the total number of reads that hit/align to respective genome is 
not always an accurate predictor of presence of an organism due to repeat elements, 
close relatives in metagenome and PCR amplification. To overcome these biases, the 
pipeline detects microbial presence by genomic reconstruction i.e. %genome mapped 
for each organism from initial mixture of non-host DNA of metagenome. The pipeline 
first converts the local and global alignment output to common BED format. Genome 
coverage of each mapped organism is then calculated from the global and local 
alignments with BEDTOOLS (Quinlan and Hall, 2010). The total genome reconstructed 
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for each mapped organism is the sum of genome coverage from global and local 
alignments for any metagenome. The normalized genome coverage (%genome 
coverage) is calculated as follows: 
Normalized  Genome  Cov.= !"#$%"  !"#.    !"  !"#$!  !"#$%&'%(!!"#$%"  !"#.    !"  !"#$%"  !"#$%&'%(

!"#$%  !"#$%"  !"#$
∗ 100  

The normalized genome coverage allows comparison of different organism with 
different genome size. It is helpful in representing the abundance of various organisms 
in metagenome for community analysis. 
 
Benchmark 
Bacterial Datasets: Simulated reads of length 100 bases were generated from 
respective reference genomes as discussed in each section. Average Illumina 
sequencing error of 0.4% is incorporated in all the simulated bacterial reads. To study 
divergence and its effect on detection, additional variability of 0.1%, 0.2%, 0.5% and 1% 
is incorporated in each simulated bacterial library. All these steps utilized the same 
parameters as follows, BWA (default) and BLAT (80% identity). 
 
Pathogen Detection 
Metagenome datasets derived from clinical samples present numerous challenges, 
such as 1) low abundance of pathogens; 2) the complexity of community might vary 
from a single infecting agent (with only one dominant infection) to multiple infectious 
agents, some being closely related, within a  complex community (example cystic 
fibrosis patients); 3) available reference genomes may be quite distinct from novel 
pathogens in the clinical community, minimizing the number of reads that will map. We 
created simulated libraries based on these complexities of community to estimate the 
efficiency of pathogen detection. 
 
Simple Community 
Metagenome sequences are often processed as a single genome alignment to a 
reference genome(s). In a single genome alignment, reads aligning to multiple loci to a 
reference genome are randomly assigned to a locus and SAMTools only parses these 
“main” hits. To compare this against our strategy to discern an organism among its 
close relatives with the all-against-all strategy between reads and reference genome, 
we utilized S. aureus TCH1516 to understand single infection, as Staphylococcus is 
well-characterized genus with high number of strains. This will allow us to test the 
specificity to detect correct organism not only among members of its own clade ST8-
MRSA-IVa/USA300 but large number of well-characterized genome of Staphylococcus 
in reference genome. Typically the genus specific regions of Staphylococcus will be 
assigned to all the members of this taxonomic rank. The reads that will further 
contribute to unique regions, which belong to its species (aureus), and strain specific 
genes (clonal complex 5), will result in highest % genome coverage of correct organism. 
The single alignment coverage is performed with BWA – SAMTools – BEDTools against 
multiple genome RefSeq dataset, Metagenome alignment is performed with human 
read reduction and pathogen detection of pipeline against RefSeq dataset. The results 
are compared with actual coverage detected with BWA – SAMTools – BEDTools 
against single genome of S. aureus TCH1516 genome (Table 1).  
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Table 1. The comparison of percent genome coverage with increasing read number for 
the single genome alignment with metagenome alignment. * Genome coverage of top 
hit reported even if the organism detected is incorrect 

 100 1K 10K 100K 250K 
Single Alignment Coverage 0.014* 0.059 0.62* 5.116 11.307 

MetaGenome Coverage 0.352 3.557 30.126 97.004 99.983 
Actual Coverage 0.348 3.427 29.494 96.955 99.982 

  
We were also able to detect S. aureus TCH1516 in all the test sets as top hit even with 
very low number of reads while single genome alignment is not able to report correct 
detection. We found that the single alignment underestimate the genome coverage 
compared with the results from our pipeline (Table 1). The coverage detected by our 
approach was nearly equal to the actual coverage detected (actual coverage is slightly 
lower than the coverage detected by our pipeline as actual coverage is calculated from 
only BWA alignment while the pipeline calculates coverage from both BWA and BLAT 
alignment).  

We also compared the effect on pathogen detection on number of reads, % genome 
coverage and read recall % with different features available for human filtration of the 
pipeline (Figure 3). Read recall % are the simulated reads that align back correctly to its 
reference genome after human filtration. As the read number increases, as expected 
genome coverage% also increases; approaching 99.9% at nearly 250K reads thus 
having coverage across the entire genome. 250K reads can be defined as approximate 
reads to reconstruct the entire genome of S. aureus TCH1516 from the metagenome.  

 
Figure 6. Effect of human filtration on percent genome coverage and read recall 
percentage of pathogen detection. The legends of the figure are prefixed with the 
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number of reads (.1K=100; 1K=1000; 10K=10000; 100K=100000; 1M=1000000) 
followed by mg_bw2 for only fast alignment feature of human read reduction; mg_dc for 
all features of human read reduction except data compression; mgall_bw2 for all 
features of human read reduction module) 

 
As more number of reads is sequenced (simulated), higher number of duplicate 

reads is also expected. Turning on data compression feature of human filtration of 
pipeline (*_mgall_bw2) to remove duplicates reduces the read recall% but has no effect 
on genome coverage% and detection of correct organism. The duplicate reads 
therefore do not add additional information and to manage computation scalability, 
removal of these duplicates is helpful. We also see that using all the human filtration 
steps of the pipeline (*_mgall-bw2) as compared to using just fast alignment 
(*_mg_bw2) or not utilizing data compression (*_mg_dc) does not lead to 
underestimation of %genome coverage for correct pathogen detection. 
 
Complex Community                 
The ability to detect community in complex clinical samples such as cystic fibrosis might 
be helpful in generating insight for proper clinical recourse. The shared regions are 
expected in even the simplest microbial communities. The simulated library will allow us 
to evaluate the impact on detection due to presence of multiple organisms in community 
that have different genome size. We designed a complex community of five bacteria 
that is detected in one of the cystic fibrosis clinical sample. Simulated reads is 
generated from reference genome of each of the five organisms and four libraries with 
different read number (100, 1000, 10K, 100K per organism) is created. In 
metagenomes, many organisms may not be represented in the reference genome 
database. To test the specificity of detection with unknown organism, V. dispar ATCC 
17748 that is not present in bacterial reference genome (RefSeq Build 60) is added in 
this complex community. Querying a large reference database usually results in 
detection of multiple organisms within same genus due to overlapping homology. 
Therefore for detection of organism, we selected the highest mapped genome (top-hit) 
within the same genus. The correct detection is confirmed for all the organisms except 
for V. dispar ATCC 17748. The pipeline allows detection of correct organisms even in 
complex community.  

Different genera in complex community might share genomic regions. The 
robustness of detection can be measured by loss in sensitivity (genome coverage) of 
any organism in complex community versus single infection. We compared the 
%genome coverage of E. coli APEC O1 as single infection and in complex community. 
We found no difference and hence no loss in % genome coverage is reported and the 
E. coli APEC O1 in simple and complex community overlap completely (Figure 4). All 
against all relationship between the reads and reference database therefore allows us 
to detect any organism without any loss in sensitivity that might have shared genomic 
regions.  

E. coli APEC O1 has highest genome hit among this community, the increase in read 
number have higher impact on the increase in genome coverage (Figure 4). For 
simulated reads of V. dispar ATCC 17748 that is true negative, V. parvula DSM 2008 
chromosome is detected as top hit with lower %genome coverage compared to other 
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hits. We can infer that true calls may not always be possible, given the limited (albeit 
growing) nature of genomic databases and the resolution of detection might decrease.   

 

 
Figure 7. Detection of genomes in complex community. Relationship between genome 
size and genome coverage with increasing sequencing reads. Effect of detection on E. 
coli APEC O1 in simple and complex community. 
 
Co-infections 
We were able to accurately detect top hit per genus in complex community for known 
genomes in complex community as discussed above. However certain clinical samples 
might have pathogens from same species example S. aureus Newman and S. aureus 
TCH516. The S. aureus TCH1516 and S. aureus Newman belong to different clonal 
complex (CC8 & CC5) and resistant (MRSA) and sensitive to methicillin (MSSA) 
respectively. To test the specificity in these types of clinical samples, we created co-
infection libraries consisting of simulated reads from S. aureus Newman and S. aureus 
TCH1516 genomes. 
The presence of S. aureus Newman in co-infection library (true positive) is compared 
with detection in single infection library (false positive) that only has simulated reads 
from S. aureus TCH1516 genome (Figure 5-A).  

Any genome coverage% detected for S. aureus Newman in single infection library 
can be considered as false detection. The %genome coverage of S. aureus Newman 
(false call) is reported slightly less than its true presence in multiple-infection library, due 
to contribution of homologous reads from S. aureus TCH1516. However by top hit per 
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genus, S. aureus Newman rank behind few other closely related genomes of S. aureus 
TCH1516 (CC5) in single infection library but is detected as top hit in co-infection library 
as shown in (Table 2).  
 

 
Figure 8. Comparison of detection of close relative in co-infection versus single 
infection. A. Comparison of %genome coverage of true detection in co-infection versus 
false detection of S. aureus Newman. B. Comparison of %genome coverage of S. 
aureus TCH1516 in co-infection versus simple infection. 
 

A co-infection library consist of reads from both S. aureus TCH1516 and S. aureus 
Newman. Due to the all reads mapped against all reference strategy, the shared 
homology between these two organisms results in higher % genome coverage of S. 
aureus TCH1516 in co-infection library then single-infection library (Figure 5-B). The S. 
aureus TCH1516 is detected as top hit per genus in single infection library and as one 
of top hits with S. aureus Newman in co-infection library as represented in Table 2. We 
can infer that though detection as top hit per genus is correct in co-infection 
metagenome, however detection of co-infection is difficult and might require additional 
validation.  
 
Table 2. The rank of S. aureus Newman and S. aureus TCH1516 in single infection and 
co-infection library. FP: False Positive; TP: True Positive. 
 

 

Ranking of Sa. 
Newman Ranking of Sa. TCH1516 

Reads FP TP Single Inf (TP) Co-Inf (TP) 
.1K 5 1 1 2 
1K 4 1 1 3 

10K 5 1 1 3 
100K 5 1 1 2 

  
 
Diversity 
The metagenome reads might have artificial divergence due to sequencing error or 
variation incorporated due to selective mutation. The ability to assign these divergent 
reads back to its genome can allow the sensitivity for detection. Local alignment 
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algorithms are considered to be more sensitive and accurate than global alignment 
algorithms. However, with the high number of metagenome reads, local aligner like 
BLAST is not optimal given the high computational time cost. Existing global aligners 
such as BWA, STAMPY, BOWTIE, BFAST, MAQ, NOVOALIGN, MOSAIK and SOAP2 
are preferred over local alignments given high volumes of metagenome sequences. 
However utilizing only global aligner might result in loss of detection of divergent reads. 
To incorporate these divergent reads for sensitive detection, we utilized BLAT that is 
~500 times faster than preexisting tools with comparable sensitivity.  

We designed the simulated reads from S. aureus TCH1516 genome with increasing 
divergence (See Benchmark above). To evaluate the sensitivity, reads that global 
aligner is unable to map but are aligned by local aligner (BLAT) are categorized as 
divergent reads. With increasing divergence, higher number of reads is not aligned by 
global aligner (Figure 6).  

 

 
Figure 9. Relationship between percent genome coverage and read recall percentage 
with incremental divergence. 
 
The pipeline is able to incorporate these divergent reads through local alignment without 
decrease in the genome coverage for detection (Figure 6). In all the 25 simulated test 
case (0%, 0.1%, 0.2%, 0.5% and 1% divergence for 100, 1K, 10K, 100K, 250K reads), 
S. aureus TCH1516 is detected correctly in all except one, at 1% divergence with 100 
reads. The limitation of detection for correct identification can therefore be seen at 
highest divergence with low number of reads. 
 
 




