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Abstract 

Special features of the air-to-space neutron transport problem are identified, 

characterized, and quantified to provide information on features that should be 

included in Monte Carlo simulations to obtain accurate predictions. Currently 

available codes and tools for Monte Carlo neutron transport calculations do not 

provide an adequate (in accuracy nor precision nor efficiency) framework for 

practical transport calculations in the context of the air-to-space neutron 

transport problem. A new Fortran code, High Altitude Transport to Space for 

Neutrons (HATS-n), is developed and tested to perform high fidelity Monte 

Carlo neutron transport calculations for this class of problems. Special features of 

the air-to-space neutron transport are identified and categorized:  The influence 

of relative motions, the influence of gravity, the influence of the implementation 

of the atmosphere model, and the influence of radioactive decay of free neutrons. 

Each special feature is examined individually and methods and procedures are 

developed for research and practical implementations. Finally, the features are 

demonstrated in concert using the new HATS-n code.
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1 

SPECIAL FEATURES OF THE AIR-TO-SPACE NEUTRON   
TRANSPORT PROBLEM 

I. Introduction 

The Air-to-Space Neutron Transport Problem 

A point source in space and time, in the earth’s atmosphere or at some 

distance above it, emits neutrons that may reach a satellite in orbit. Upon 

emission from the source or a subsequent interaction in the atmosphere, the 

probability of the next interaction occurring at the satellite may be computed. 

The distribution in time, energy, and direction of neutrons arriving at the 

satellite is of interest. The general transport problem is illustrated in Figure 1. 

 
Figure 1:  The air-to-space neutron transport problem. 
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Monte Carlo for the Air to Space Neutron Transport Problem 

An estimate of the time-energy-direction distribution of neutrons at the 

satellite may be obtained using Monte Carlo methods to generate neutron 

histories that may result in contributions to neutron current at the satellite. The 

contributions accumulated over a large enough number of histories may be used 

to describe the expected distribution of neutrons in time, energy, and direction. 

The general procedure for simulating a neutron history consists of six steps:  start 

a neutron, move the neutron, compute a next-event probability, interact the 

neutron, kill or continue the neutron, and then tally the history: 

1. Start Neutron:  A neutron is created at the location of the source at 

time zero. The energy and direction are chosen correlated with the 

properties of the source. A first-flight contribution to the detector may 

be computed at this point if a sampled (rather than directly computed) 

first-flight estimate is desired. 

2. Move Neutron:  The neutron is transported through the atmosphere to 

the location of the next interaction. This step is sometimes referred to 

as raytracing. Sample an optical thickness to the next interaction and 

transform that optical thickness to a geometric distance along a path 

in the atmosphere which in turn determines the location of the next 

interaction. This step involves inversion or root-solving of a function 

that describes the optical thickness of the transport medium. 

3. Next-Event Neutron:  Compute the probability that the interaction (to 

which the neutron has just arrived) will result in a scattered pseudo-

particle that will intercept the satellite. If the properties of scatter 

(properties of the neutron and interaction target) and the properties of 

the detector allow an intercept, compute the properties of the intercept 
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(time of flight, launch and arrival direction, launch and arrival energy). 

The contribution to record at the detector is then adjusted by the 

probability of scatter into the required direction for intercept, the 

probability of escaping the atmosphere along that path, and divergence 

of the pseudo-particle on the flight to the detector. 

4. Interact Neutron:  Returning to the neutron at the point of its next 

interaction, but before the interaction which generated the pseudo-

particle has occurred, choose properties of the interaction correlated 

with the properties of the neutron, interaction target, and scattering 

model. Use the selected properties of the interaction to determine the 

direction and energy of the neutron after the interaction. 

5. Kill Neutron:  When the neuron has moved outside the range of the 

problem of interest (absorption, leakage, time or energy out of range, 

or other kill criteria), the history is terminated. If the kill criteria are 

not met, the history continues by returning to the Move Neutron step. 

6. Tally Neutron:  The contribution(s) recorded during the history are 

processed and added to the totals for the simulation. It is important to 

distinguish this as a step for each history, and not for each 

contribution. Even if multiple contributions are computed during a 

history, together they represent a single estimate of the expected value. 

This description of the procedure includes few, if any, overt features 

distinguishing it from other general transport problems to which many 

established and available production codes could be applied. However, when 

transport calculations for the air-to-space problem are performed using a 

production code, such as MCNP, the result is degraded to some extent by the 

special features of the air-to-space problem that are not modeled, or only 

partially modeled, in such a code. The degradation is a result of the underlying 
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transport assumptions made in the development of any such code based on the 

specific problem set for which the code was designed. In the case of most 

production codes, the problem of interest is reactor design, criticality analysis, or 

shielding. The scale of these problems is typically measured in meters and 

fractions of seconds, and a set of traditional neutron transport assumptions are 

applied. 

Traditional Neutron Transport Assumptions 

In Computational Methods of Neutron Transport (Lewis & Miller, 1993, pp. 

3-4), the authors state:  “The following assumptions are made in the derivation of 

the neutron transport equation: 

1. Particles may be considered as points. … 

2. Particles travel in straight lines between collisions. … 

3. Particle-particle interactions may be neglected. … 

4. Collisions may be considered instantaneous. … 

5. The material properties are assumed to be isotropic. … 

6. The properties of nuclei and the compositions of materials under 

consideration are assumed to be known and time-independent unless 

explicitly stated otherwise. … 

7. Only the expected or mean value of the particle density distribution is 

considered. …” 

Additional assumptions are made to simplify most codes: 

8. The source, scattering medium, and point at which the flux is to be 

estimated are stationary in the same reference frame. 
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9. The composition, density, and temperature are uniform within regions 

that define the problem. 

10. Radioactive decay of neutrons is not significant in the scale of time 

relevant to the problem. 

Assumptions 2, 8, 9, and 10 are not valid for the air-to-space transport 

problem studied here. The others do apply. 

Distance and Time Scales 

The single feature that most differentiates the air-to-space neutron 

transport problem from conventional problems is the magnitude of the distance 

and time scales considered, and their range of variation within the phase space of 

the problem. 

The minimum energy for a neutron at the surface of the earth to reach a 

detector at geosynchronous altitude, 35,786 kilometers (km), is approximately 

0.56 electronvolts (eV). With this energy, and assuming constant velocity (no 

gravity), the time of flight to a point directly overhead at geosynchronous 

altitude is nearly an hour. Accounting for gravity, the neutron trades kinetic 

energy for altitude throughout its flight, and the time of flight is actually more 

than four and a half hours. For a 20 MeV neutron, the time of flight to reach the 

same point is approximately 0.57 seconds, and neglecting gravity introduces an 

error in this time of flight of only 0.000007%. 

At sea-level, the mean free path of a neutron ranges from tens to hundreds 

of meters depending on neutron kinetic energy. At higher altitude, 86 km for 
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example, the mean free path is longer by six orders of magnitude due to the 

lower density of the transport medium. Other transport problems may include 

variation in mean free path on this scale (e.g. a shielding problem with a shield 

and air) but those problems are generally easily partitioned into regions where 

variation in the mean free path is small in each region (e.g. the shield and the 

air). In the case of the atmosphere, the variation in mean free path is continuous 

(with density and composition of the atmosphere) through the full thickness of 

the atmosphere. Partitioning the scattering medium into regions of constant 

composition and density introduces computational overhead, discretization error, 

and artifacts into result of the transport calculation. 

The scale of the air-to-space problem ranges from meters to tens of 

thousands of kilometers and fractions of a second to hours. Also, the problem is 

not easily partitioned into geometric regions over which the scale may be 

considered constant. As a result, the validity of some of the assumptions 

traditionally applied in transport calculations becomes questionable. 

Relative Motion 

The components of the air-to-space problem (source, atmosphere, satellite) 

all move independently of one another and, given the distance and time scales 

considered in the air-to-space problem, this motion may not be negligible. A 

neutron source can move at speeds on the order of 10 km/s. The atmosphere 

rotates with the surface of the earth (velocity is dependent on altitude and 
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latitude). The satellite has velocity depending on the properties of its orbit 

(approximately 3 km/s for satellites in geosynchronous orbits, and higher for 

lower orbits). Additionally, particles in the scattering medium are subject to 

random thermal motion and motion due to winds. 

Line of Sight and Flight Path 

A key element of any estimator for flux-at-a-point (the air-to-space problem 

is a flux-at-a-point problem) is the determination of whether the flight path of 

the neutron from a given point in the problem space to the point of interest (in 

the case of the air-to-space problem:  a satellite in orbit) is unobstructed by 

dense materials (i.e., the earth itself). If gravity is omitted from the 

computational method, the flight path is simply a straight line, i.e., the line of 

sight. Since the geometric construction of this particular problem is relatively 

simple (earth, atmosphere, vacuum, no other obstructions), this is trivial to 

implement. With gravity, the computations are much more complicated.  

The impact on the problem is both quantitative and qualitative:  With 

gravity, the satellite need not be above the horizon as viewed from the point of 

emission. Thus, an obstructed line of sight does not necessarily imply an 

obstructed flight path. Further, the neutron emission direction to achieve a 

rendezvous with a satellite need not even be remotely in the direction of the 

satellite. In fact, if emission energy, direction, and time of flight are 

unconstrained, then a flight path to the satellite is always available between any 
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two points above the earth with the consideration of gravity. This may seem 

obvious, but the important distinction is that a model neglecting gravity does not 

find a flight path when the earth obstructs a straight-line path between the 

source and the detector. 

Research Goals 

 The primary goal of this research is to identify, characterize, and quantify 

influences of the special features of the air-to-space neutron transport problem to 

provide information on features that should be included in a Monte Carlo 

simulation to enhance fidelity for yet-to-be-specified applications. A secondary 

goal is to demonstrate the influence of these special features in the context of a 

Monte Carlo code. For this purpose, a code that includes these features was 

written and tested. As a research code for this work, it provides only the 

capabilities needed for the research. 
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II. Special Features of the Air-to-Space Problem 

To facilitate investigation of the influence of the special features of the air-

to-space neutron transport problem, the special features of the problem are 

described as a list of mechanisms that may quantitatively and qualitatively 

influence the transport calculation. The mechanisms are grouped into categories:  

Relative motions, gravity, fidelity of the atmosphere model, and radioactive 

decay.  

Relative Motions 

The source, scattering medium, and point at which the flux is to be 

estimated are not stationary relative to one another, thus violating assumption 8. 

These relative motions influence several aspects of the air-to-space neutron 

transport problem: 

1. The Rendezvous Problem:  The detector and emission point move in 

the ECI frame, changing the procedure by which conditions and 

properties of a rendezvous between a scattered neutron and a detector 

are found.  

2. Divergence Factor:  Ratio of intensity at the detector to intensity at 

emission of a neutron due to divergence on the flight to the detector. 

Without gravity and with no relative motions, this is the 21 / r  

divergence that usually applies. However, this factor is influenced by 

motion of the emission point and motion of the detector (and by 

gravity). 
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3. Optical Thickness Through the Atmosphere:  The earth (including the 

atmosphere) rotates in the earth-centered inertial (ECI) reference 

frame. This changes the optical thickness traversed by a neutron in the 

atmosphere as the atmosphere moves relative to the geometric path 

during the time of flight. 

4. Motion of the Scattering Medium:  Particles in the scattering medium 

undergo random thermal motion in addition to bulk motion from 

rotation of the atmosphere and major wind patterns influencing 

interaction cross sections, which is usually accommodated by Doppler 

broadening the cross sections. It also influences the kinematics of each 

neutron interaction, which is rarely modeled in transport codes but is 

of interest here. 

5. Motion of the Source:  The source has a velocity in the ECI frame 

influencing the distribution in direction and energy of emitted 

neutrons. 

Gravity 

Gravity causes neutrons to travel on orbital trajectories, violating 

assumption 2:  Particles travel in straight lines between collisions. Over the long 

distances and times of flight involved in the air-to-space neutron transport 

problem, this may not be negligible. This influences three aspects of the transport 

problem:   

6. The Rendezvous Problem:  Evaluation of conditions necessary for a 

neutron to make a flight to the detector and the determination of the 

parameters describing such a trajectory. 

7. Divergence Factor:  Ratio of intensity at the detector to intensity at 

emission of a neutron due to divergence on the flight to the detector.  
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8. Optical Thickness Through the Atmosphere:  Integration of air density 

along an orbital trajectory instead of a straight line. 

Fidelity of Implementation of the Atmosphere Model 

Temperature, density, and composition of the transport medium (the 

atmosphere) vary continuously with altitude violating assumption 9. The method 

by which integrals along trajectories through the atmosphere defined by a chosen 

model are performed influences the results in the air-to-space neutron transport 

problem. Three considerations are: 

9. Continuous versus Discrete Representation:  Previous implementations 

divide the problem into regions (such as concentric spherical annuli), in 

each of which the properties of the transport medium are approximated 

as uniform. That is to say, a piecewise-constant computational model 

has been used. This considerably simplifies the transport computation 

in a single region at the cost of increasing the number of boundary 

crossing calculations performed during the raytracing procedure. Using 

a few regions with continuous variation in each makes the layers more 

difficult to model, but minimizes the cost of raytracing. Here, the 

layers in the U.S. Standard Atmosphere 1976 are used for this purpose. 

Thus, discretization of the atmosphere influences the computed optical 

thicknesses through the atmosphere. 

10. High Altitude Atmosphere:  The atmosphere above some altitude is 

neglected (changed to vacuum) in the implementation of any 

atmosphere model. The choice of this altitude influences the computed 

optical thicknesses through the atmosphere and the spatial distribution 

of scatters simulated by the Monte Carlo code. 
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11. Atmospheric Constituents:  The atmosphere is predominantly 

composed of Nitrogen-14 and Oxygen-16. Rare constituents (Argon, 

Nitrogen-15, Oxygen-17, Oxygen-18, etc.) influence the properties of 

the scattering medium and scatter kinetics. Which constituents to 

include is another aspect of the fidelity of implementation of an 

atmosphere model. 

Radioactive Decay 

Free neutrons are not stable elementary particles. They decay radioactively 

with a half-life of around ten minutes: 

12. Radioactive Decay of Free Neutrons:  In ordinary nuclear radiation 

transport applications, neutron lifetimes are on the scale of milliseconds 

to seconds, so that radioactive decay of neutrons is negligible. (The 

probability of decay in 100 milliseconds with a 10 minute half-life is 

approximately 1 in ten thousand.) Radioactive decay is not negligible 

on the time scale of the air-to space problem. Applying it as a post 

processing effect introduces errors and increases variance in binned 

data. 

Approach 

The approach to the research is to analyze each selected special feature 

sufficiently that the physics can be modeled in a Fortran code. Then such a code 

is developed. Both the code and solutions to particular parts of the problem 

(performed in Mathematica (Wolfram Research, 2017)) is used to investigate 
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each feature in order to characterize its influence. Each feature will be considered 

separately and, where additional utility or insight is gained, by combining them. 

Fidelity of Optical Thickness Calculations in a Layered Atmosphere 

The underlying assumptions made in the development of most production 

codes preclude their direct use for investigation of the influence of the special 

features in the air-to-space problem. In particular, the treatment of the 

atmosphere model is of importance:  Discretizing the atmosphere into many 

layers of constant density introduces overhead to the raytracing process and the 

integrals necessary to determine optical thickness along a path suffer from 

systematic errors.  

Computational overhead is introduced to the raytracing procedure by the 

added complication of layers to the problem geometry. The initially trivial 

geometry of the air-to-space problem consists of two points (source and satellite) 

and two concentric spheres (earth and atmosphere). Straight-line (no gravity) 

and orbital trajectories (with gravity) are employed so that the location of a 

neutron and the geometric description of paths through this geometry is readily 

determined (with some care to obtain numerically well-conditioned formulae) and 

efficiently computed. Adding hundreds, thousands, or many more concentric 

spheres (the constant density layered atmosphere) to the geometry incurs the 

cost of computing the location of the intersection of each neutron trajectory with 

each layer boundary. Apart from the obviously large amount of arithmetic 
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incurred, care must also be taken to avoid systematic accumulation of error and 

appropriately treat numerically problematic portions of the geometry. This 

becomes more difficult as more layers are packed into the atmosphere 

representation. 

Issues of overhead and numerical conditioning aside, the layered constant 

density representation of the atmosphere also impacts the evaluation of the path- 

length integrals. Performing the integral along a path through layers of constant 

density effectively implies a composite low-order quadrature with a fixed number 

of quadrature points per unit change in altitude along the path. If the 

atmospheric density in a given layer is approximated as the density at the 

geometric middle of the layer, the implied quadrature rule is the composite 

midpoint rule.  

For vertical paths, it is possible to create a many-layered piecewise-

constant-density representation of the atmosphere that provides an adequate 

approximation (six digits) to path length with approximately 3,500 layers 

between zero and 86 km altitude, and to some this may be a tractable number. 

The problem arises with the consideration of horizontal, nearly horizontal, or 

truly any non-vertical path:  The number of layers between zero and 86 km 

required for a six-digit approximation to path length on a path that includes the 

point where it is horizontal is close to two million layers with a thickness of 

about 50 cm each.  



 

15 

 Because cross-sections from the Evaluated Nuclear Data File (ENDF) 

(IAEA, 2017) are tabulated to 4 digits, I chose a precision goal of 6 digits for air 

integrals. Reducing this to 4 digits would decrease the number of layers from 2 

million to 200,000:  Even this would dominate the cost of an entire Monte Carlo 

simulation. 

Source-Detector Orientations 

The influences of the special features of the air-to-space problem are best 

illustrated in certain orientations of the source and detector at the instant of 

neutron emission. The location of a geostationary satellite in its orbit, with 

respect to a point fixed in ECI coordinates on or above the earth specified by the 

difference in right ascension, aD , between the two. When 0aD = , the satellite 

is above the equator due north or south of the fixed point and both are on the 

same side of the earth. As the satellite moves east along its orbit, aD  increases. 

Figure 2 shows various values of aD  that were selected to illustrate the 

influences of the special features explored in this document. A value of aD , 

along with a source latitude, fully defines the orientation of the source and 

detector (as long as the detector is restricted to a circular equatorial orbit, as it is 

in this research) at the instant of neutron emission.  
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Figure 2:  Source-detector orientations for example problems:   

Problem names and their difference in right ascension, aD , 

 at the moment of neutron emission. 

The locations of the source and detector at the instant of emission shown in 

Figure 2 were selected for their convenience, importance, or to illustrate 

interesting features of the problem and research findings. Beginning with 

0,aD =  the satellite is above the equator due north or south of the source point 

(fixed in ECI) and both are on the same side of the earth. This orientation (

0aD = ), at the time of emission, represents the point of closest approach 

between the source and detector.  

Next, 45aD = -   and 45aD = +   are referred to as the ascending and 

descending geometries. The ascending geometry ( 45aD = -  ) positions the 
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detector such that it is in view of the source to the west from the point of view of 

the source at the instant of emission. In the ECI frame, this detector then 

ascends in the sky (hence the term ascending) as viewed from the ECI location of 

the source during the time scale of the problem. At the instant of neutron 

emission in a transport calculation beginning in the ascending geometry, the 

range between the source and detector is closing and direct trajectories (with and 

without gravity) to the detector arrive with a velocity component opposite that 

of the direction of detector motion. The descending geometry ( 45aD = +  ) 

positions the detector such that it is in view of the source to the east from the 

point of view of the source at the instant of emission. In the ECI frame, this 

detector then descends in the sky (hence the term descending) as viewed from the 

ECI-fixed location of the source during the time scale of the problem. At the 

instant of neutron emission in a transport calculation beginning in the descending 

geometry, the range between the source and detector is opening and direct 

trajectories (with and without gravity) to the detector arrive with a velocity 

component in the same direction as the motion of the detector. 

Geometries were also selected to demonstrate cases where the line of sight 

and flight path may change from unobstructed to obstructed (and vice versa) 

during the time scale of the simulation. First, 92aD = -   is referred to as the 

rising case. At the instant of neutron emission, the detector is not visible from 

the point of view of the source, but during the time scale of the problem, the 

detector may rise (in the ECI frame) into view of the ECI source location. Next, 
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83aD =   and 87aD =   represent the high setting and low setting orientations 

respectively. In both the high and low setting cases, the detector is in view from 

the point of view of the source at the time of emission, but then sets out of view 

(in the ECI frame) during the time scale of the problem. The high setting case is 

the general case to demonstrate the change in obstruction state of the line of 

sight and flight path, and the low setting case demonstrates a feature of the 

transport seen only with consideration of gravity:  the loss and subsequent 

reacquisition of an unobstructed flight path to the detector during the range of 

times of flight for neutrons reaching the detector. 

The final orientations, 118aD =   and 180aD =  , are collectively referred 

to as behind the earth. These orientations are used demonstrate another feature of 

the transport problem only seen with the inclusion of gravity:  The availability of 

flight paths to a detector on the opposite side of the earth from the source. 

The HATS-n Code 

Achieving good precision in the path-length integrals at an acceptable cost 

necessitates the development of a specialized code that treats the atmosphere 

continuously within each of a few layers for the air-to-space class of problems. A 

research code, High-Altitude Transport to Space for Neutrons (HATS-n), was 

developed as part of this research effort as a tool for demonstrating the effects of 

the special features influencing the transport problem. Code development 

required organizing the simulation into modules that incorporated the physics for 
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each feature and required developing well-conditioned formulas for each one. This 

was the major time investment in the research. Nevertheless, the code, while of 

value as a starting point for future production codes for this application, is not 

intended to include all the features that a production code would require.  

Initially, HATS-n was a branch of the High-Altitude Space Transport 

Estimator for Neutrons (HASTEN) code project which is a research platform for 

various flux-at-a-point estimators in the context of the air-to-space transport 

problem (Mathews, 2013-2017). The creation of the HATS-n branch implemented 

changes in three areas:  First, removal of advanced and experimental estimators 

leaving only the original next-event flux-at-a-point estimator described in (Kalos, 

1963). Second, addition of modules and routines to account for the special 

features of the problem that are the subject of this research. And finally, revision 

of code implementation to target execution on massively parallel architectures 

(specifically the Intel® Xeon PhiTM x100 series Many-Integrated-Core coprocessor 

family). The addition of special features to the code and targeting for massively 

parallel architecture constitute major revisions to the original HASTEN code:  As 

of this writing, HATS-n has less than 20% code in common with the original 

HASTEN project. An overview of the HATS-n code is given in Appendix A. 

Overview of the HATS-n Code.  

Output from HATS-n is in the form of formatted text files containing the 

bin-by-bin listings of the intercepted neutron current density, J , per bin per unit 

detector area per source neutron 2[( / bin) / (km )]d sn n⋅ , as well as variance 
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estimates (in the form of standard error, stds ). Bin-by-bin estimates and 

standard errors are listed for time-energy bins, time bins (integrated in energy), 

energy bins (integrated in time), nadir cosine -azimuth bins, nadir cosine bins 

(integrated in azimuth), azimuth bins (integrated in nadir cosine), and total 

intercepted neutron current density seen by the detector. Example plots of time-

energy data from three HATS-n runs are shown in Figure 3. The two plots at the 

top of Figure 3 show the bin-by-bin current density estimates integrated in 

energy and time, respectively. Total scattered current density estimates are 

plotted using the darker hue while the first-flight current density is plotted using 

the lighter hue. When only a single HATS-n estimate is plotted, as in Figure 4, 

the relative standard error, /std Js  where J  is the intercepted neutron current 

density for which stds  was computed, is plotted in gray with its scale on the 

right side of each plot in which it appears.  

The lower left plot in Figure 3 shows the position in time and energy of 

arriving current density contributions as seen by the detector. The lower right 

plot shows the segment of a geostationary orbit over which the current density 

contributions (from the total estimate, direct and scattered) are spread. Neither 

the magnitude of intercepted neutron current density in any time-energy bin nor 

their variance are shown in the lower two (time-energy position and orbit 

segment) plots. The source point is shown by the small black dot on the gray 

arrow at the edge of the earth and the longer gray arrow points to the location of 

the detector at the instant of neutron emission. In this example, the satellite is at 
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0aD =   relative to the source point at the instant the neutrons are emitted. 

Although the plot is two dimensional, it is, in effect, a cross-section of the earth 

cut through the equatorial plane and seen from above the north pole. Thus, the 

satellite moves eastward (counterclockwise). Neutrons arrive from within a few 

tenths of a second up to some hours later, arriving at points along the orbit 

further east for later arrivals.  

 
Figure 3:  Example HATS-n time-energy plots of intercepted neutron current density from a 

Watt-fission-235 source at 50 km and 45ºN to stationary and geostationary detectors without 

gravity and geostationary detector with gravity. 
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Figure 4:  Example HATS-n time-energy plots of intercepted neutron current density from an 

equatorial Watt-fission-235 source at 50 km stationary and geostationary detectors without 

gravity and geostationary detector with gravity 

Example plots of the nadir-azimuth data from a HATS-n run are shown in 

Figure 5. The two plots at the top of Figure 5 show the bin-by-bin neutron 

current density estimates integrated in azimuth and nadir cosine with first-flight 

intercepted neutron current density and relative standard error plotted as before. 

The polar plot shows the nadir and azimuth of arriving contributions as seen by 

the detector. The plot is oriented such that the displayed radial axis (black 

horizontal axis) points in the forward direction (direction of detector motion) and 

zero degrees on the radial axis (the center of the figure) points downward toward 
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the center of the earth. The magnitude of intercepted neutron current density in 

any nadir-azimuth bin and variance are not shown in this plot. The blue ring 

(crossing the radial axis near 10 degrees) on the nadir-azimuth plot approximates 

the field of view which the earth occupies as seen from geostationary altitude. 

 
Figure 5:  Example HATS-n nadir-azimuth plots of intercepted neutron current density from 

a Watt-fission-235 source at 50 km and 45ºN to overhead stationary and geostationary 

detectors without gravity and geostationary detector with gravity. 
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Continuua of First-Flight Problems 

When viewing the output from HATS-n, the direct influence of any feature 

of the transport model on the transport calculations is obscured or merged with 

the other features of the transport problem. This is by design, and is the great 

strength of Monte Carlo methods for solving complex physical problems, but the 

side-effect is that the intermediate states at any point during the simulation are 

not saved. These intermediate states are where the mechanisms of influence act 

directly on the transport calculation. In particular, the parameters associated 

with any given neutron flight to the satellite are of interest for this research. 

Instead of attempting to unfold the result of a HATS-n run to isolate special 

features of the problem, some features may be investigated by restricting 

consideration to the set of first-flight trajectories that join an emission point with 

a detector absent other aspects of the transport problem. For these first-flight 

problems, a neutron emerges from a stationary point and makes a direct flight to 

the detector. The emergence point may be the neutron source or a collision in the 

atmosphere. The first-flight problem is then solved for a continuum of emission 

energies over which properties of the neutron flight can be compared. The 

comparison may be plotted with either emission energy or time of flight to 

intercept as the dependent variable:  Emission energy as the dependent variable 

is useful for observing variation at high energies and low times of flight, and time 

of flight as the dependent variable is useful for observing variation at low energies 

and longer times of flight. 
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In comparing two quantities, a norm of relative difference is needed. I chose 

to use the symmetric relative difference (SRD). The SRD has exchange 

symmetry:  , ,
srd srd

x y y x= , unlike the usual relative differences /x y y-  and 

/x y x- . The SRD between two quantities x  and y  is 

 

0 0

, otherwise

2
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x y
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.  (1) 

The SRD approaches the relative error, /x y x- , for small x y- . Unlike the 

relative error, with which 2 is 100% larger than 1, but 1 is 50% less than 2, which 

is misleading, the SRD has exchange symmetry:  The SRD of 2 and 1 as the 

same as the SRD of 1 and 2. Furthermore, the SRD is bounded and continuous 

for all y if 0x ¹ . As x y-  ¥ , the SRD approaches 2. If x  and y  have 

opposite signs, or one is zero and the other is not, the SRD is 2.  

An example of the arrival energy as a function of time of flight from an 

emission point at 50 km altitude and 45ºN after flight to a geostationary detector 

with 0aD =  at the time of emission, with and without the influence of gravity, 

is shown in Figure 6. The plot at left shows the comparison with the SRD plotted 

in gray with its scale on the right. The right portion of the figure shows the 

orientation of the emission point and satellite at time of emission, with the 

segment of the satellite orbit covered by the range of emission energies 

highlighted in the appropriate color. These follow the dashed black ellipse which 
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is the orbital path of the satellite. The neutron trajectories that intercept the 

satellite at the earliest and latest times are also shown in this view. They join the 

emission point to the ends of the orbit segments. A plan view of the satellite 

orbit, as seen from the north side of the orbit, is shown as the light gray circle. 

The orbit segments are also drawn on the plan view.  

 
Figure 6:  Example first-flight comparison of arrival energy as a function of time of flight from 

an emission point at 50 km altitude and 45ºN after flight to a geostationary detector with 

0aD =  at the time of emission, with and without the influence of gravity. 

Scope, Assumptions, and Limitations 

In general, the scope of the research is limited to identifying, characterizing, 

and quantifying the influence of the major special features of the air-to space 

neutron transport problem. To facilitate concise and effective discussion of these 

special features, detailed description of the specific algorithms and the practical 
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aspects of their development is excluded from this document. The algorithms as 

presented here are part of the general description of the process by which the 

features of interest were investigated. 

It should be noted that the research question here is, fundamentally:  Are 

the effects of gravity, relative motion, atmospheric modeling, and radioactive 

decay significant enough to be included in Monte Carlo calculations for the air-

to-space neutron transport problems. To answer this question, simplified models 

are sufficient. Presuming the answer to be yes, the fidelity of modeling (such as 

what perturbations to include, i.e., winds, an asymmetric gravitational field, 

third-body gravity) needed for any particular application is application-

dependent and a subject for future work. 

Frames of Reference 

Several reference frames are required throughout the consideration of the 

problem including earth-centered inertial, earth-centered earth-fixed, reference 

frame of the air, center-of-mass of each scattering collision, and reference (rest) 

frames for the source and satellite or detector. The earth-Centered Inertial (ECI) 

frame has its origin at the geometric center of the earth with one axis pointing to 

true north, the next to the First Point of Ares, and the third completing a right-

handed system. The ECI frame does not rotate with the earth. Motion of the 

elements in the system are referenced to the ECI frame unless otherwise noted. 

The Earth-Centered Earth-Fixed (ECEF) frame also has its origin at the 
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geometric center of the earth and one axis pointing towards true north, but 

unlike the ECI frame, the second axis points towards the prime meridian with 

the third axis completing a right-handed system. The ECEF frame rotates with 

the rotation of the earth and is denoted with the superscript ecef . The reference 

frame of the air, used when considering thermal and other motion of the air and 

rotation of the atmosphere with the earth, is described using East-North-Up 

(ENU). Quantities in the reference frame of the air are indicated with the 

superscript af . The center of mass of the collision (CM) frame is used for 

describing and computing the scattering behavior of neutrons in the medium. 

Basis vectors ˆ ˆ ˆABC  in the CM frame are referenced to either the incident or 

scattered direction depending on the application. Quantities expressed in the CM 

frame are denoted with the superscript cm . The directional and energy 

distributions of neutron emitted by the source are specified in the rest frame of 

the source. This frame is indicated with the superscript sf . The emergence frame 

refers to either the CM frame or the source frame as appropriate and is used 

when the formulations or procedures may be applied to neutrons emerging from 

the source or emerging from a collision. Quantities in the emergence frame are 

denoted with the superscript ef . The reference frame of the satellite is described 

using the down, orbit normal, forward ( )DONF  set of basis vectors. The down 

vector D̂  points from the center of mass of the satellite to the geometric center of 

the earth; the orbit normal vector ON  points in the direction normal to the 

plane containing the orbit of the satellite; and the forward vector F̂  completing 
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this right-handed system:  ˆ ˆF D ON= ´ . (For a circular orbit, such as the 

geostationary orbit used here, F̂  points in the direction of the satellite velocity 

vector.) 

Elements and Geometry of the Air-to-Space Problem 

Source 

The source is approximated as a point in space and time fixed in the ECI 

frame and at time equals zero. Neutrons are emitted from the source at the 

instant of time equals zero. Source motion is captured as an instantaneous 

velocity at the time of neutron emission. The emission spectrum of neutrons (in 

the rest frame of the source) for all the results presented in this research is a 

Watt spectrum approximating the probability density function (pdf) of neutron 

energies from fission of Uranium-235 (Knief, 2008, p. 45): 

 ( ) ( )235
0.0010363 0.0478( ) 0.452463 510 h 39SinnE

n nU
E e Ec --= ´   (2) 

where the neutron energy nE  has units kiloelectronvolts (keV). The cumulative 

distribution function (CDF) is 
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The probability and cumulative density functions for this distribution are plotted 

in Figure 7. 

 
Figure 7:  Probability density and cumulative distribution functions approximating the 

distribution of neutron energies from fission of Uranium-235. 

Detector 

The detector is approximated as a point that may or may not move during 

the problem. Where necessary, the geometry of the detector is further assumed to 

be spherical with geometric cross-sectional area of unity. Detector efficiency is 

not considered (implying a perfect detector), but could be added to the 

calculations if a specific detector response function were to become of interest.  

Earth and Atmosphere 

The earth is approximated as a spherical perfect absorber with radius RÅ  

surrounded by an atmosphere from the surface of the earth to the top of the 

atmosphere:  RÅ  to atm
topR ZÅ + . Altitudes above atm

topZ  are in vacuum. In order to 
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reduce computational run times, a minimum altitude for the atmosphere may 

also be specified as atm
botZ  below which the atmosphere is considered a perfect 

absorber. The results reported here used atm
botZ  equal to 0 km. The atmosphere 

may be composed of layers in which the properties of the atmosphere are 

computed by different methods or formulae (for example, the U.S. Standard 

Atmosphere 1976 has seven layers from the surface of the earth up to 86 km). 

Each layer is numbered with index b  beginning with 1b =  for the layer closest 

to the surface of the earth and increasing with altitude. The altitudes at the 

bottom and top of a layer are 1bZ -  and bZ  respectively. 

The methods developed here apply to any planet with an atmosphere and 

an orbiting detector. The earth is the example of interest, and is used in all the 

examples. However, in this document, the word earth is not capitalized because it 

could be replaced by planet or the example planet. 

Relative Motions 

For relative motions, the atmosphere is modeled as though the air is 

geostationary, i.e., the earth and the atmosphere are modeled as having rigid-

body rotation. Thus, the air moves only longitudinally (east to west). Thermal 

motion of atoms and molecules of the air is determined by the temperature of the 

medium as specified in the selected atmosphere model. Localized atmospheric 

motion, e.g. wind and weather, is not considered, although well characterized 

large wind patterns such as the Jet Stream are mentioned for scale.  
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The detector is modeled either as stationary in the ECI frame (moving in a 

straight line in the emergence frame) or as geostationary (a particular circular 

orbit in the ECI frame, or stationary in the ECEF frame). It is sufficient for this 

study to model the source as emitting from a point in space at an instant in time. 

(Because the solution for such a point source is the Green’s function for a source 

distributed in space and time, nothing is to be gained here by treating a 

distributed source.) Therefore, the velocity of the source at that instant must be 

included in the model here, but the trajectory of the source at other times is 

irrelevant.  

Gravity 

Neutron motion is either straight at constant speed (without gravity) or 

along two-body orbital trajectories, i.e., along general or degenerate hyperbolas, 

parabolas, or ellipses, depending on neutron total energy (with gravity). 

Perturbations of the gravitational field due the earth (caused by 

gravitational attractions of other bodies and the deviation of the earth from a 

radially-symmetric sphere) are small. However, they accumulate over many 

revolutions of earth satellites, resulting in slow drifts of their orbital elements. 

Because neutrons survive only a matter of hours, the effects of these 

perturbations are quite small, and not included in orbit determination 

calculations performed in this research.  
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Atmosphere Model 

The U.S. Standard Atmosphere 1976 (NOAA, NASA, USAF, 1976) is the 

atmosphere model selected for this research. Relevant constants and equations 

are summarized in Appendix B. Summary of U.S. Standard Atmosphere 1976. 

Higher fidelity and more modern empirical models are available that include 

much more detail (atmospheric weather, space weather, etc.), but at a higher 

cost in complexity and computation time. The U.S. Standard Atmosphere 1976, 

herafter referred to as USSA-76, provides a continuous temperature and density 

approximation of sufficient complexity to demonstrate the influence of the model 

and for meeting the research goals. To further preserve generality, it is worth 

noting that the construction of the USSA-76 model can be adapted and applied 

to account for other empirical atmospheric data with little effort and changes to 

the calculations performed here. It is simply a matter of finding a piecewise- 

linear fit to the temperature profile of the atmosphere to be modeled and 

applying the corresponding formulae from the USSA-76 model appropriately. 

Radioactive Decay 

Radioactive decay of free neutrons follows the exponential law of 

radioactive decay. The mean lifetime for free neutrons is listed in Table 2. 
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Physical Constants and Units 

Relevant units of measure, physical constants and values, and constants for 

unit conversion are listed in Table 1, Table 2, and Table 3 respectively. Unless 

otherwise stated, quantities are expressed in units listed in Table 1. Note that the 

mean lifetime for neutrons, nt  in Table 2, is not known with great certainty:  

Values in the literature range from 878 (Serebrov, et al., 2008) seconds to 886 

seconds (Yue, et al., 2013). The value used here is the mean of the lifetime from 

these two references. 

Table 1:  Units of Measure 

Quantity Unit 

Distance kilometer (km) 

Time second (s) 

Energy kiloelectronvolt (keV) 

Microscopic Cross Section barn (b) 

Macroscopic Cross Section 1 / kilometer (km-1) 
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Table 2:  Physical Constants 

Constant Symbol Value 

Neutron Mass nm  1.674927471×10-27 kg 

Boltzmann Constant k  1.38064852×10-23 J/K 

Mean Lifetime of Free 

Neutrons (due to 

radioactive decay) 

nt  882 s 

Mean Radius of the Earth RÅ  6371 km 

Angular Rotation of the 

Earth 
wÅ  7.292115×10-5 rad/s 

Standard Gravitational 

Parameter of Earth 
m  398600.4418 km3/s2 

Table 3:  Constants for Unit Conversions 

Conversion Constant Value 

km/mK  10-3 km/m 

keV/JK  6.241509126×1015 keV/J 
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III. The Rendezvous Problem 

To use a next-event estimator, it is necessary to determine the trajectory 

that will result in a neutron emerging from either the source or a scattering 

collision subsequently arriving at the detector without colliding along the way. 

This is the rendezvous problem. 

The Challenge  

In a code that implicitly puts the source, the scattering medium, and the 

detector at rest (i.e., in the lab frame), and that moves neutrons in straight lines, 

this problem is trivial:  Set the direction of motion to ( )2 1 2 1
ˆ /r r r rW = - -   

. The 

rendezvous then occurs for any neutron speed, and the speed is computed from 

the direction. (The problem doesn’t deserve a name in such codes.) 

However, with relative motions and curved neutron paths, the problem is 

not at all trivial. The rendezvous solution requires a nonlinear search algorithm 

that accounts for several factors: 

1. The speed of an emitted neutron is independent of its direction in the 

rest frame of the emission point:  The speed of a scattered neutron is 

independent of its direction in the CM frame of the collision. Therefore, 

its speed in the ECI frame and the direction in the ECI frame are 

coupled variables. 

2. The detector follows an orbital trajectory:  Given the initial location 

and the parameters of the satellite orbit, finding the location of the 
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detector after a given time of flight constitutes the orbit propagation, 

or Kepler’s, problem. Algorithms for solving Kepler’s problem are 

available, but the speeds of high-energy neutrons are so much greater 

than those encountered in astrodynamics applications that some 

reformulation of the equations is required to ensure acceptable 

numerical conditioning. There is, in general, computational cost to 

consider because solutions to Kepler’s problem are generally found 

iteratively.  

3. The neutron follows an orbital trajectory:  Given the initial and final 

locations and a time of flight, finding the parameters of an orbit joining 

the two points constitutes the targeting, or Lambert’s, problem. 

Efficient algorithms are available for the Lambert problem, but as with 

solutions to the Kepler problem numerical conditioning and 

computational cost must be considered. 

4. The starting location of the neutron (at the source or scatter) and the 

time of this event are known:  If the time of rendezvous were known, a 

single solution to Kepler’s problem would find the location of the 

satellite at the rendezvous time. Then the solution to a Lambert 

problem would find the velocity (in the ECI frame) with which the 

neutron must leave the starting point to follow the trajectory that 

would rendezvous with the detector at that location after that time of 

flight. 

5. The starting speed (in the ECI frame) is unknown:  The starting speed 

in the ECI frame depends on the starting direction of motion in the 

ECI frame. If the starting speed were known, it would specify both the 

starting direction of motion and the kinetic energy of the neutron.  

6. The starting direction of motion (in the ECI frame) is unknown:  The 

starting direction of motion in the ECI frame depends on the starting 

speed in the ECI frame. If the starting direction of motion were known, 

it would specify the starting speed (hence kinetic energy) of the 

neutron in the ECI frame. 
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The challenge is to find an efficient and accurate way to find the time of 

flight, the starting direction, and the starting speed (hence kinetic energy) that 

are mutually consistent with achieving a neutron rendezvous with the detector. 

The required and available emission speeds for a sample rendezvous 

problem are shown in Figure 8Error! Reference source not found.. The required 

speed is the magnitude of the velocity vector required to achieve rendezvous. The 

available speed is the speed of the neutron after the scatter in the direction 

required for rendezvous. The shape of the required speed curve is predictable:  

Monotonically decreasing from infinity at 0tD =  through escape speed at the 

parabolic flight time, parabolict tD = D , to a global minimum at the minimum 

velocity transfer, minVt tD = D , and then monotonically increasing back to escape 

speed at tof = ¥ . The shape of the available speed curve depends on the 

direction to each rendezvous represented on the required speed curve. 

The points at which the required and available speed curves cross are 

solutions to the rendezvous problem. In this example, Figure 8, there are two 

roots:  One early-time rendezvous where the neutron is on the outbound portion 

of its trajectory, and one late time rendezvous where the neutron is on the return 

portion of its trajectory. Given the flight times involved to reach geosynchronous 

detectors (up to 5 hours), and the high probability of radioactive decay of a 

neutron on flights longer than this, the algorithm presented below only seeks 

possible rendezvous on outbound trajectories. Should detectors in closer 

proximity to the emergence point be considered (i.e. detectors in low- or middle- 
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earth orbits), or if rendezvous on return trajectories becomes of interest, the 

algorithm would need to be modified to seek these additional roots. 

 
Figure 8:  Required and available speed for an example rendezvous problem. 

Algorithm for Solving the Rendezvous Problem 

An algorithm for the rendezvous problem requires an iterative process that 

starts with an estimate of one of the coupled variables (time of flight, starting 

direction, and starting energy or speed), computes the other two yielding a 

difference between one of the variables as obtained two different ways, and 

adjusts the estimated variable until this difference is sufficiently small. 

Note:  If the influence of gravity on the neutron is neglected, the Lambert 

problem reduces to a trivial trigonometry problem, but the rendezvous problem 
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still requires this iterative search. Additionally, the check for a clear flight path 

simplifies to a check for line of sight. With these exceptions, the algorithm is the 

same in each case. 

The algorithm I use is: 

Find Neutron Rendezvous 

In( 1r

, 1

efs , satr


, satv


 ) Out( tD  ) 

1. Establish a lower bound on time of flight:  mintD .  

IF the required speed to achieve rendezvous in the emergence 

frame for this time of flight, 1 ( )ef
mins tD , exceeds the 

actual speed available in the emergence frame, 1
efs , then 

there is not enough kinetic energy available for the 

neutron to achieve a rendezvous, 

RETURN a NO SOLUTION flag. 

END IF (a solution is possible at a lower speed and a longer 

time of flight) 

2. Establish an upper bound on time of flight:  maxtD .  

IF the required speed to achieve rendezvous in the emergence 

frame for this time of flight, 1 ( )ef
maxs tD , is less than the 

actual speed available in the emergence frame, 1
efs , then 

there is too much enough kinetic energy available for the 

neutron to achieve a rendezvous, 

RETURN a NO SOLUTION flag. 
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END IF (a solution is possible at a higher speed and a shorter 

time of flight) 

3. Choose a starting value for time of flight 0nt =D  in the search 

interval ( ),min maxt tD D . 

4. DO 

Find 1 ( )ef
ns tD  and compare it to the actual speed 1

efs . 

Compare ntD  to 1nt -D . 

IF both speed and time of flight agree within a 

tolerance, a rendezvous has been found, 

EXIT the loop. 

ELSE IF the required speed is the greater, 

SET min nt tD = D . 

ELSE 

SET max nt tD = D . 

END IF 

Choose a new time of flight, 1nt +D  between the new, 

tighter bounds ( ),min maxt tD D . 

END DO 

5. Check for a clear flight path to the detector. 

IF, in the ECI frame, 1 1 0r v⋅ <
 (neutron starts downward) and 

2 2 0r v⋅ >
 (neutron meets detector moving upward), then the 
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flight path of the neutron to the rendezvous may be 

obstructed by the earth. 

Calculate the radius at perigee, pr , for the trajectory. 

IF pr  is less than the radius of the earth, RÅ, 

RETURN a NO SOLUTION flag. 

ELSE (the path is clear) 

  RETURN the solution. 

END IF 

ELSE (the path is clear) 

RETURN the solution. 

END IF 

6. From the solution to the rendezvous problem, compute the 

properties of the rendezvous. 

Details of the Rendezvous Calculations 

With the consideration of gravity, a neutron now follows an orbital 

trajectory on its flight to rendezvous with a detector also in orbit. The same 

procedure as presented for finding the path to intercept a moving target applies 

here, with small changes to account for gravity. 
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Kepler’s Problem 

Determining the location of an orbiting body at a particular time is referred 

to as the orbit prediction problem or Kepler’s problem. The problem is stated as:  

Given position 0r


 and velocity 0v


 at time 0t , find position r  and velocity v

 at 

time 0t t+D . Techniques for solutions are common in the literature. An 

algorithm developed by Gooding (Gooding & Odell, 1988) is robust, 

computationally efficient, and well documented. The FORTRAN77 routines from 

Gooding (Gooding & Odell, 1988) were revised for implementation in modern 

Fortran with additional minor changes for this specific application. Most of these 

changes were made to improve numerical conditioning for the high velocities of 

energetic neutrons. (Such high velocities are not achievable by space vehicles and 

thus were not of concern to Gooding and Odell.) A compact notation to denote a 

solution to Kepler’s problem will be useful. The notation used here is 

 0 0( , ) ( , , )r v r v t= D   ,  (4) 

or separately as the Kepler position and Kepler velocity 

 
0 0

0 0

( , , )

( , , ).

r

v

r r v t

v r v t

= D

= D





 

 



  (5) 

Lambert’s Problem 

Determining an orbital trajectory that connects two positions given a time 

of flight is referred to as the targeting problem or Lambert’s problem. The 
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problem is stated as:  Given positions, 1r


 and 2r


, and time of flight tD , 

determine the orbit that joins the two points (find velocities 1v


 and 2v


). 

Techniques for solutions are common in the literature. An algorithm developed 

by Gooding (1988) (1990) expands on the work of Lancaster (1969) and is robust, 

computationally efficient, and well documented. The FORTRAN77 routines from 

Gooding (1990, pp. 160-164) were revised for implementation in modern Fortran 

with additional minor changes for this specific application (mainly; multi-

revolution trajectories need not be considered as solutions for this specific 

application). 

A compact notation for the solution to Lambert’s problem will be useful 

 1 2 1 2( , ) ( , , )v v r r t= D    ,  (6) 

or separately for each Lambert velocity 

 
1 1 1 2

2 2 1 2

( , , )

( , , ).

v r r t

v r r t

= D

= D

  

  



  (7) 

Minimum Time of Flight 

Assuming the detector is at a higher altitude than the emission point, the 

minimum possible time of flight may be bounded by accounting for the maximum 

possible closing speed between the detector and the emitted neutron:   

 2 1

1

min ef max
ef d

r r
t

s u v

-
D =

+ +

 

  .  (8) 
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As with any object on and orbital trajectory, the maximum detector velocity is 

the velocity at perigee. The radius and velocity at perigee, pr  and pv , are  

 
1p

p
r

e
=

+
  (9) 

and 

 2p
p

v
r

m
x
æ ö÷ç ÷+= ç ÷ç ÷÷çè ø

  (10) 

where the orbit’s semi-parameter (or semi-latus rectum) p , specific (total, i.e., 

kinetic and potential) mechanical energy x , and eccentricity e  are  

 
2

r vp
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,  (11) 
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Maximum Time of Flight 

The maximum time of flight to the rendezvous is not strictly limited, and a 

practical limit can be established by recognizing that a free neutron has a high 

probability of radioactive decay during a sufficiently long time of flight. However, 
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to construct a robust algorithm, the maximum time of flight can be chosen from 

limiting cases in the set of solutions to the rendezvous problem which includes 

orbital motion of the neutron. The chord c  and semi-parameter s  of the triangle 

defined by sides 1r


 and 2r


 are  

 ( )2 2
1 2 1 22c r r r r= + - ⋅   

  (14) 

 
1 2

2

r r c
s

+ +
=
 

.  (15) 

These are used for determining time of flight on special orbits joining two points 

1r


 and 2r


. If the emission speed and speed of the emission frame are such that 

neutron has sufficient energy to escape the gravitational pull of the earth 

regardless of emission direction, i.e.  

 ( )21

1

0
2

ef
efmin

n

s u

r

m
x

æ ö÷ç ÷-ç ÷ç ³÷ç = - ÷ç ÷ç ÷÷çè ø




,  (16) 

then the maximum time of flight is no more than the time of flight on a parabolic 

trajectory 

 

3
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If the condition in (16) is not met, then elliptical trajectories must be considered 

and maximum time of flight to an outbound rendezvous may be bounded by the 

time of flight on the minimum energy elliptical trajectory 

 ( )
31

sin
2 2minV e e

s
t p b b

m
D = - +   (18) 

where 

 2arcsine
s c

s
b

-
= .  

The bound for maximum time of flight computed from (17) or (18) depends on 

the location of the rendezvous which in turn depends on the time of flight. Thus, 

(17) or (18) is applied iteratively to find the bound for maximum time of flight. 

It is important to note that when elliptical neutron trajectories are considered 

that minVtD  is not an actual upper bound for the time of flight to rendezvous:  

It is simply a practical limit for the case of a neutron making a flight to a 

geostationary detector. This practical limit excludes rendezvous trajectories that 

travel upward past the orbit of the detector and then fall back down and make a 

rendezvous on the return portion of the elliptical trajectory. For detectors at 

geostationary altitudes, this is an acceptable exclusion because the probability of 

radioactive decay of a free neutron on these long times of flight is high. Should 

detectors at lower altitudes be considered, where the time of flight on an elliptical 
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return trajectory is not as long, the procedure would need to be modified to 

account for these possibilities. 

Required Speed for Rendezvous 

This algorithm requires a subprogram to calculate the required neutron 

speed in the emergence frame given the time of flight.  

Required Speed for Rendezvous 

In( 1r

, tD , satr


, satv


 ) Out( 1 ( )efs tD  ) 

1. Compute a location for the rendezvous, 2r

, by solving Kepler’s 

problem for the satellite given tD :  2 ( , , )r sat satr r v t= D    

2. Find the emission velocity, 1v

, for a trajectory joining 1r


 and 

2r

 with time of flight tD : 

Accounting for gravity, 1v

 is found by solving Lambert’s 

problem:  1 1 1 2( , , )v r r t= D   . 

Neglecting gravity, 1v

 is trivially 2 1

1
r r

v
t

-
=

D

 
. 

3. Shift to the emergence frame and compute the speed required 

for rendezvous:  11
ef

efs v u= - 
. 

Checking a Clear Flight Path 

Once the direction and speed required to achieve a rendezvous are found, 

the flight path to that rendezvous must be checked for obstructions to confirm 

that the rendezvous is possible. For neutron following an orbital trajectory, this 
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is accomplished by first checking if the neutron flies through periapsis (the closest 

point to the center of the earth) on the flight path to the detector. Periapsis is 

traversed when 

 ( ) ( )1 1 2 20 AND 0r v r v⋅ < ⋅ ³  
.  (19) 

If the condition in (19) is met, then the neutron passes through periapsis on the 

flight path to the detector. If the radius at periapsis, pr  from (9), is less than the 

radius of the earth, RÅ , then the flight path to the detector is obstructed by the 

earth. Otherwise, if the condition in (19) is not met or pr RÅ> , then the flight 

path is unobstructed and the rendezvous is possible.  

If gravity is neglected, the check for flight path simplifies to a check for line 

of sight along a straight line from the emission point to the location of the 

rendezvous. The radius of closest approach to the center of the earth, car , on the 

straight flight path is:   
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1 1

1 1
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



  (20) 

If car RÅ> , then the straight flight path is unobstructed and the 

rendezvous is possible. 
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Neutron Intercept State 

Once the orbital trajectory to achieve rendezvous with the detector is 

found, the remaining properties of the neutron flight and intercept can be 

computed. The relevant state variables are time of flight tD , emission zenith 

cosine 1z , emission energy 1E , intercept energy df
aE , intercept nadir cosine df

ah , 

and intercept azimuth angle df
aw . Time of flight tD  and emission velocity 1v


 are 

results of the procedure for finding the rendezvous. The velocity of the neutron at 

intercept is found by solving Lambert’s problem for the known time of flight 

 2 2 1 2( , , )v r r t= D   .  (21) 

Alternatively, 2v


 could be computed as a side effect during the iteration to find 

tD  and 1v


 for the rendezvous. In the case where gravity is neglected 2v


 is 

trivially 2 1v v= 
. 

 Emission zenith cosine and emission energy are 

 1 1
1

1 1

r v

r v
z

⋅
=


   (22) 

 

2

1
1

sp

v
E

k

æ ö÷ç ÷ç= ÷ç ÷ç ÷÷çè ø


  (23) 

where spk  is a conversion constant  

 km/m
/

2
sp

keV J n

k K
K m

º .  (24) 
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The intercept energy is the energy of the neutron at intercept in the reference 

frame of the detector 

 

2

2
df

df
a

sp

v
E

k

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷è ø



,  (25) 

the intercept nadir cosine is the cosine of the angle from downward of the 

direction of arrival of the neutron 

 2 2

2 2

df
df
a df

r v

r v
h

⋅
= -



 ,  (26) 

and the intercept azimuth angle is 

 ( ) ( )2 2atan2 ,df df df
a v ON v Fw é ù= ⋅ ⋅ê úê úë û

 
  (27) 

where 2
dfv


 is the neutron velocity at intercept in the frame of reference of the 

detector  

 22 ( )df
d ev v v t t= - +D  

,  (28) 

( )d ev t t+D
 is the velocity of the detector in the ECI frame at the time of 

intercept, atan2  is the two-argument inverse tangent function that returns its 

result in the proper quadrant, and ON  and F  are the orbit normal and forward 

basis vectors in the detector frame.  
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Failure of the Bracketing Method and Multiple Roots 

Two notes on implementation of the algorithm for finding a neutron 

rendezvous:  First, during the main iteration (step 4 of the algorithm Find 

Neutron Rendezvous), the brackets could move to exclude the root being 

sought. This occurs when the position of the target (hence the velocity required 

to reach it) changes rapidly. The failure mode is easily detected by checking the 

sign of 

 ( )( )1 1 1 1( ) ( )ef ef ef ef
min maxs t s s t sD - D -   (29) 

Where 1 ( )ef
mins tD  and 1 ( )ef

maxs tD  are found using the algorithm Required 

Speed for Rendezvous. If the product in (29) is positive, then the factors have 

the same sign and a root is no longer bracketed. To recover, restart the iteration 

with revised brackets 

 

( )

( )

1 1
0

1 1
0

,  for ( ) 0

OR

,  for ( ) 0.

ef ef
min min min
n n n

ef ef
max max max
n n n

t t s t s

t t s t s

= =

= =

æ ö÷ç ÷ç ÷D D D - <ç ÷ç ÷ç ÷è ø

æ ö÷ç ÷ç ÷D D D - >ç ÷ç ÷ç ÷è ø

  (30) 

Second, no explicit handling is included in this algorithm for finding 

multiple roots when they exist. Should multiple roots be of interest, the available 

and required velocity curves may be partitioned into regions containing one root 

each. Then the contributions for each rendezvous would be determined. 
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Contributions resulting from multiple solutions to the rendezvous problem are 

independent of one another and would be tallied accordingly. Thus, by ignoring 

multiple roots, we may be underestimating the expected value by a small 

amount. However, the independent property of contributions from multiple roots 

is violated if the root has multiplicity. In this case, the same emergence velocity 

found by the search results in multiple rendezvous with unique times of flight. 

For roots with multiplicity, the contributions with longer times of flight must 

include a conditional probability that the neutron did not collide during an 

earlier rendezvous with the detector. It is also worth mentioning that while it is 

easy to construct single rendezvous scenarios where these issues arise, such 

circumstances are rarely encountered in practical transport calculations. The 

likelihood of multiplicity is essentially equivalent to the likelihood of aligning two 

objects with sizes measured in meters, separated from the viewer and each other 

by thousands of kilometers, so precisely that one cannot be seen because the 

other obstructs the view of it. 
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IV. The Divergence Factor  

The divergence factor accounts density for the spreading apart of neutrons 

that start with slightly different initial velocities. In the usual problem, without 

motion of the emitter and detector, the probability that an isotropically-emitted 

neutron will intercept the detector is simply the cross-sectional area of the 

detector normal to the radius vector from the emitter to the detector, times 

( ) 1
4p

-
 (the directional probability density), times 21 / r  (here referred to as the 

divergence factor). More generally, neutrons emitted in a small solid angle in the 

emergence frame, efDW , travel to and enter the detector (if uncollided on route) 

through its effective cross-sectional area, effA . The effective area is usually 

greater than the actual detector area, dA . Thus, the probability that the 

neutrons arrive at the detector is the product of the probability that they are 

emitted with directions in, or scattered into directions in ˆefDW  times the 

probability that they don’t collide on route. The divergence factor is  

 
ef

eff
divergence

eff d

A
F

A A

æ öæ öDW ÷ ÷ç ç÷ ÷ç ç= ÷ ÷ç ç÷ ÷ç ç ÷÷çç è øè ø
.  (31) 

With this, the probability of detection is 

 
detect (detect|neutron enters detector)

ˆ(not collide enroute) ( ) ,ef
divergence

P P

P f F

=

´ W
  (32) 
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where ˆ( )eff W  is the probability density function for the angular distribution of 

emission or scatter in the rest frame of the source or the CM frame of the scatter, 

respectively, and Ŵ  is the direction of emission in the source frame that sends 

the neutron to the center of the detector. 

In this chapter, the formula for the divergence factor is derived first to 

account for the relative motions but without gravity. Then the influences of 

gravity are addressed and an algorithm for this case is presented. 

Divergence with Relative Motions but without Gravity 

In the absence of gravity, a stationary monoenergetic and isotropic emitter 

at 1r
  emits neutrons that intercept a stationary spherical detector at 2r

 . For a 

stationary spherical detector eff dA A=  and the divergence factor on a straight 

trajectory from 1r
  to 2r

  is 

 
2

2 1

1stationary
divergenceF

r r
=

- 
 , (33) 

which is the familiar 21 / r  spherical divergence factor. In the rest frame of the 

source (the ECI frame for a stationary source), a neutron is emitted in some 

direction, with speed v independent of the direction of emission. After time of 

flight tD , the neutron must lie somewhere on the sphere of radius v tD  centered 

on the source. This sphere is the locus of points where the neutron could be 

found at this time of flight. This surface is hereinafter referred to as the neutron 
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locus. At time of flight 1 2v t r rD = - 
, the detector is on the locus. This yields 

the divergence factor in equation (33). 

Relax the restrictions of a stationary emission point and detector (but still 

in the absence of gravity):  The emitter at 1r


 has velocity efu


 and emits neutrons 

with speed 1
efs  in the emergence frame at time et . After time of flight tD  the 

neutrons intercept the spherical detector at 2r
  which has velocity dv


 at the time 

of intercept. This influences the divergence factor in two ways:  First, the center 

of the neutron locus moves in the ECI frame during the neutron flight to the 

detector. Second, the motion of the detector at the time of the intercept 

effectively smears the detector through the surface of the neutron locus during 

intercept increasing the geometric cross-sectional area of the detector dA  to its 

effective cross-sectional area effA . Assuming a spherical detector, and stationary 

neutron locus with negligible curvature at time of intercept, this increase is 

proportional to the inverse of the absolute value of the cosine of the angle 

between the incident direction and the direction of detector motion. Thus, the 

divergence factor becomes 

 

( )
2

2 1

1 1motion
divergence

ef

F
r r u t a

=
- + D  

  (34) 

where 

 
( )1

1

ˆef ef
locusd

ef ef
d

v v n

v v
a

- ⋅
=

-

 

  .  (35) 
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and l̂ocusn  is a unit vector normal to the locus surface at the time of intercept. In 

the case of a neutron traveling in a straight line to the intercept (no gravity), 

 
( )
( )

2 1 1

2 1 1

ˆ
ef

ef
locus ef

ef

r r u t v
n

r r u t v

- + D
= =

- + D

   

    .  (36) 

As a result of the assumption of a flat stationary neutron locus, as a  

approaches zero (perpendicular incidence), the effective area of the detector 

across the neutron locus is overestimated and eventually unbounded as 0a  . 

This approach may be patched by establishing some practical limit on a , 

amending (34) with 

 
1

max ,
10patcheda a

é ù
ê ú= ê úë û

  (37) 

but this is less than satisfactory. 

Retaining the assumption of negligible curvature in the neutron locus near 

2r


 at the time of intercept, but recognizing that the locus surface moves with the 

velocity of the intercepting neutron 

 
( )
( )

2 1
2 1

2 1

efef
ef

ef

r r u t
v s u

r r u t

- + D
= +

- + D

  
 

   ,  (38) 

the detector velocity in the frame of reference of the surface of the locus at 

intercept is 2
n
d dv v v= -  

. Thus, a  in (34) is replaced by  
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ˆ 1

max ,
10

n
n d locus
patched n

d

v n

v
a

é ù
ê ú⋅ê ú= ê ú
ê ú
ë û



   (39) 

which, by adding consideration of the motion of the locus surface, reduces the 

likelihood of a  near zero. It remains necessary for a practical limit to the value 

of na  to be established as in (37), but this limit was rarely invoked in computing 

the results presented here. 

Further refinements are possible, but not pursued here, beginning with 

consideration of the curvature of the locus. The formulation using (34) and (39) 

are adequate to investigate the influence of relative motions on the divergence 

factor. 

Divergence with Relative Motions and Gravity 

With gravity, the motion of the locus is no longer equal to the motion of a 

neutron in the locus. Consider a plane locus with the neutrons moving in the 

plane of the locus; the locus does not move but the neutrons do. The detector can 

arrive at normal incidence to the plane. The faster the neutrons move laterally in 

the plane, the more of them collide with the detector. In general, the formula for 

a  is 

 ˆl̂ocus reln va = ⋅ ,  (40) 
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where l̂ocusn  is a unit vector normal to the plane of the locus at the point (in 

space and time) at which the center of the detector sphere passes through the 

locus and r̂elv  is the velocity of the detector relative to a neutron in the locus at 

that same point (in space in time). This is consistent with equation (35) 

developed without gravity. As long as the locus has negligible curvature over the 

length of the region of intersection (the diameter of the detector sphere divided 

by a ) compared to the thickness of the detector normal to the surface (the 

diameter of the detector sphere), the factor of 1 / a  is acceptable. 

 Also, with gravity, the locus changes shape as the neutrons follow 

differently-curving paths with differently-changing speeds. Also, paths offset by a 

small difference in the initial direction and speed do not diverge steadily as do 

straight lines. For example, two elliptical orbits with the same perigee diverge as 

they climb to apogee, but converge again as the fall back to the same perigee. 

This is complicated by the differences in speed so that particles that start the 

two paths together arrive back at perigee at different times. To deal with all this, 

a shooting method was developed.  

In short, the shooting method perturbs the emission direction of a neutron 

on a known intercept trajectory, and estimates the ratio /ef
effADW  and adjusts 

the approximation for /eff dA A  for the change in incident direction and speed 

from emission to intercept on the orbital rendezvous trajectory. A detailed 

description follows. 
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A neutron is emitted at 1r


 in direction 1
ˆefW  with speed 1

efs  from the 

emission frame which has velocity efu


. After time tD , the neutron intercepts a 

detector at 2r
  that has velocity dv


 at the time of intercept. The neutron velocity 

upon intercept with the detector is 2v


. These quantities are obtained as the 

solution to a preceding rendezvous problem. 

In the emission frame, establish the coordinate basis vectors: 
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ˆ ˆ
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

  (41) 

Create a set (four is convenient) of emission directions perturbed from the central 

emission direction 1
ˆefW  by e  in the N̂  and T̂  directions 

 

1
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e

e

=

=

W ¢W =
W 

W ¢W =
W 

  (42) 

Solve Kepler’s problem (propagate the orbit) for each of the four orbital 

trajectories with emission directions from (42) with time of flight tD : 

 1
ˆ( , , )ef ef

m r n m efr r s u t¢ ¢= W + D   .  (43) 
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The four mr ¢


 from (43), may be used to approximately describe the surface of the 

neutron locus in the vicinity of 2r


 at the time of intercept. A normal vector to 

this approximated locus surface is 

 
( ) ( )
( ) ( )

1 3 2 4

1 3 2 4
l̂ocus

r r r r
n

r r r r

¢ ¢ ¢ ¢- ´ -
¢ =

¢ ¢ ¢ ¢- ´ -

   

    .  (44) 

The cosine of the incidence angle of the detector motion on the neutron locus at 

intercept is estimated 
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  .  (45) 

As before, it remains necessary for a practical limit to the value of na¢  to be 

established as in (37) and (39), but this limit was rarely invoked in computing 

the results presented here. 

The divergence factor is then estimated as 
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1 3 2 4

1 3 2 4
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F
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=
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V. Optical Thickness along a Trajectory through the Atmosphere 

Effective Path Length 

The effective path length (EPL), symbol L , is defined as the path length 

through a medium of uniform density r  having the same optical thickness as the 

actual path through the actual medium:   

 
( )0

0

( )s z z s
L ds

r

r

D +D
= ò   (47) 

where sD  is the geometric length of path, 0z  is the geometric altitude at the 

beginning of the path, and ( )z sD  is the change in geometric altitude as a 

function of position s  along the path. For a straight path,  
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2 2
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2

s r s
z s

r r s r s

z

z

+
D =

+ + +
 , (48)  

where 0r  is the distance from the center of the earth at the start of the path

0 0( )r R zÅ= +  and 0z  is the cosine of the zenith angle at the start of the path. 

Equation (47) is easily evaluated using numerical quadrature by 

partitioning the ray into segments that each lie in a single atmospheric layer. The 

effective path length on any such segment is approximated by Gauss-Legendre 

quadrature 
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( ( ))
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n
b

b i b i
i
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L w Z z sr

r -
=

D
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where bsD  is the length of the segment, 1bZ -  is the altitude of the base of the 

atmospheric layer, and iw  is the Gauss-Legendre weight corresponding to the 

Gauss-Legendre abscissa ia  used to find is  by 

 ( )1
2

b
i i

s
s a

D
= + .  (50) 

Computational efficiency can be improved by changing the variable of 

integration to z : 
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ò   (51) 

where zD  is the change in altitude from beginning to the end of the path. For 

convenience, also introduce the constraint that only upward paths ( 0 0z ³  and

0zD > ) are considered. The formulation for an upward path is well-conditioned. 

Because the integral is independent of the direction of integration along the path, 

downward paths become upward paths by swapping the roles of the endpoints. 

Paths with downward and upward parts are partitioned at the lowest point on 

the path into two upward paths (from there to each endpoint in turn). As before, 

the effective path length in any single atmospheric layer is approximated by 

Gauss-Legendre quadrature 
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where bZD  is the change in altitude on the segment in the layer and each iz  

corresponds to a Gauss-Legendre abscissa ia   

 ( )1
2

b
i i

Z
z a

D
= + .  (53) 

Computational efficiency is enhanced when computing paths through full 

atmospheric layers because the location of quadrature points in altitude is known 

ahead of time so the density function 1( )b iZ zr - +  may be precomputed. Only 

factors containing 0z  need to be evaluated at runtime, so equation (52) may be 

written as 
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where  
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  (55) 

are precomputed and stored for each full atmospheric layer. 

Evaluation of equation (51) by Gauss-Legendre quadrature performs poorly 

for small 0z . In this case, Gauss-Legendre quadrature may be used to evaluate 

equation (47) effectively despite the higher computational cost. 
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The effective path length as a function of zenith cosine 0z  for various 

starting altitudes to the top of the atmosphere is shown in Figure 9. 

 
Figure 9:  Effective path length to the top of the atmosphere (86 km) for various starting 

altitudes. 

Rotation of the earth 

The earth, including the atmosphere, rotates eastward in the inertial 

reference frame. The speed of the air in the inertial frame is a function of altitude 

z  and latitude f : 

 ( )( , ) cosairs z R zf w fÅ Å= + .  (56) 

The speed of the atmosphere in the inertial frame as a function of altitude and 

latitude is plotted in Figure 10. For a sense of scale relative to the speed of 

neutrons during the transport calculation, neutron speed as a function of kinetic 
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energy is plotted in Figure 11. A neutron with approximately 0.0013 eV has the 

same velocity as the maximum rotational speed of the atmosphere (0.5 km/s).  

 
Figure 10:  Speed of the rotating atmosphere as a function of altitude and latitude. 

 
Figure 11:  Neutron Speed as a function of kinetic energy. 

The rotation of the atmosphere introduces a location-dependent and 

heading-dependent component to the optical thickness seen by a neutron along a 

path through the atmosphere as a result of the atmosphere sweeping past the 
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path during the time the neutron takes to traverse it. The corrected effective 

path length is  
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where nE  is the kinetic energy of the neutron, hq  is the heading measured 

eastward from true north, f  is the latitude of the neutron, and afC  is a 

correction factor for the speed of the air along the path 
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  (58) 

where the speed of a neutron with kinetic energy nE  in the ECI frame is 

 ( )n n sp ns E k E=   (59) 

with spk  from (24). (This correction is an option in HATS-n, but was not used in 

obtaining the results presented here.)  

Optical Thickness Through the Atmosphere Along Kepler Trajectories 

With the consideration of gravity, the neutron travels through the 

atmosphere along an orbital trajectory. The trajectory is defined by the specific 

mechanical energy and semi-parameter (equations (11) and (12)). The effective 
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path length along an upward ( 0 0z ³  and 0 1Z Z< ) orbital trajectory through 

the atmosphere is  
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where x  is the specific mechanical energy of the orbital trajectory from (12). 

As with straight paths, only upward paths are considered, and downward or 

downward and upward paths may be represented as the superposition of one or 

more upward paths. 

The effective path length in any single atmospheric layer is approximated 

by Gauss-Legendre quadrature 
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  (61) 

where bZD  is the change in altitude on the segment in the layer and each iz  

corresponds to a Gauss-Legendre abscissa ia   
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and p  is the semi-parameter of the orbital trajectory from (11). As before, 

computational efficiency is enhanced when computing paths through full 

atmospheric layers because the distribution of quadrature points in altitude is 

known ahead of time so the density function 1( )b iZ zr - +  may be precomputed. 

Only factors in equation (61) containing x  and p  need to be evaluated at 

runtime so it may be written as 
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where  
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are precomputed and stored for each full atmospheric layer. 

As with the effective path length on straight paths, evaluation of (60) by 

Gauss-Legendre quadrature performs poorly for small 0z . In this case, the 

variable of integration may be changed to true anomaly n , and with eccentricity 

e  from (13), the effective path length is  
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where the limits of integration are 
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  (66) 

and ( )z n  is obtained using the orbit equation 
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The effective path length through a single layer is then approximated using 

Gauss-Legendre quadrature 
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where bnD  is the change in true anomaly on the segment in the layer and each 

in  corresponds to a Gauss-Legendre abscissa ia   

 ( )1
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b
i ia

n
n

D
= + .  (69) 

Despite poor numerical conditioning (in (66) and (67)), this formulation is 

adequate for the precision sought when evaluated using double precision and 

Gauss-Legendre quadrature for small 0z . If higher precision is required, and to 

further enhance computational efficiency, the variable of integration may be 

changed to 1 01 cos 1 cosv n n= - - - , but this step is not required here. 
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The Effect of Optical Thickness on the Transport Calculation 

The sensitivity of the transport calculation to the effective path length (and 

the precision achieved in computing it) depends on the kinetic energy of the 

neutron traversing the path and the cross section of the transport medium. For 

context, consider the probability of a neutron escaping the atmosphere for 

various effective path lengths, Figure 12. For short effective path length (e.g. 1 

mm), the probability of escape remains large except for the lowest kinetic 

energies where the atmosphere becomes very optically thick. For long effective 

path lengths (e.g. 1 km or greater), the probability of escape is low for all 

energies, and effectively zero below 10 keV. In the mid ranges of effective path 

length, 0.1 to 0.5 km or so, observe the sensitivity in escape probability to 

effective path length. In this region of effective path length, the probability of 

escape for neutrons with kinetic energy below 1 MeV varies rapidly with effective 

path length.  
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Figure 12:  Probability of neutron escape from the atmosphere as a function of kinetic energy 

for various effective path lengths to escape. 

Fidelity of the Atmosphere Model 

Continuous vs Discrete Representation 

In a traditional approach to the air-to-space transport problem, the density 

of the atmosphere would be approximated by dividing the atmosphere into 

concentric shells within which the atmospheric properties vary by a small enough 

amount that they may be considered constant. For general transport calculations, 

this speeds the process of determining the material properties at a given location 

(temperature, density, composition, etc.) at the expense of increased geometric 

complexity in the problem representation which increases computational 

overhead in the raytracing procedure. In a system with sharp boundaries (e.g. a 
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reactor with fuel, cladding, coolant, etc.), the benefit of this approach is clear 

because the geometry of the problem contains natural boundaries at which to 

transition from one region to another. However, in the case of the air-to-space 

problem, the overhead introduced in the raytracing process is considerable when 

compared to the cost of continuous evaluation of the atmospheric properties. The 

validity of the previous statement depends on the selected atmosphere model, but 

the author believes that a model of considerable complexity would have to be 

introduced to balance the raytracing overhead. 

Aside from the practical code design considerations, the discretization of the 

atmosphere introduces considerable error in the calculation of effective path 

length. In a representation of the atmosphere using layers with constant density, 

the effective path length is computed using an implied composite low-order 

quadrature with a fixed number of quadrature points per unit altitude. A 

continuous representation can utilize a higher order quadrature for the effective 

path-length integrals, as well as adaptive spacing of quadrature points to enhance 

speed and precision. 

High Altitude Atmosphere 

When simulating the transport of neutrons from the atmosphere to space, it 

is convenient, and necessary to the construction of the estimator, to establish 

some altitude above which the atmosphere is negligible and is considered 

vacuum. When using the 1976 U.S. Standard Atmosphere (NOAA, NASA, 
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USAF, 1976), a convenient altitude is 86 km:  Below this altitude the atmosphere 

is turbulently mixed and of constant composition with temperature variation 

piecewise-linear with altitude which simplifies the empirical model for 

determining atmospheric density. Above 86 kilometers, the fractional composition 

of the atmosphere is no longer constant and the temperature variation with 

altitude takes forms other than linear. As a result, the calculation of atmospheric 

composition and density given altitude is considerably more complex and costly. 

The relevant quantities and equations to compute atmospheric composition and 

density for the 1976 U.S. Standard Atmosphere (USSA-76) are summarized in 

Appendix B. Summary of U.S. Standard Atmosphere 1976. 

Addition of an extended (high-altitude) atmosphere model to the transport 

problem adds two areas for consideration:  First, the optical thickness through 

the high-altitude region must be considered when computing effective path 

lengths. Second, the geometric extent of the scattering medium is extended 

changing the geometric distribution of scatters. Further, additional complexity is 

introduced in computation of cross sections and scatter kinetics as a result of 

variation in composition and temperature of the atmosphere in the extended 

scattering region. 

Atmospheric Constituents 

When choosing and atmospheric representation, an important feature of the 

model is the number and choice of atmospheric constituents to be included in the 
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composition of the scattering medium. In particular, the interaction cross sections 

for the scattering medium may vary greatly depending on the section of 

atmospheric constituents. Commonly, when describing the atmosphere, only 

Nitrogen and Oxygen are considered because they make up more than 99% of the 

atmosphere near the surface of the earth. Unfortunately, this fails to consider the 

relative cross section of these and other elements, as well as less abundant 

isotopes, as a function of incident neutron energy. 

The atmosphere below 86 kilometers (as described by USSA-76) is 

considered turbulently mixed with constant fractional composition (NOAA, 

NASA, USAF, 1976, p. 3). The fractional composition by isotope of the four most 

common elements in sea-level dry air from this model is listed in Table 4.  

Table 4:  Relative fractions by isotope of Nitrogen, Oxygen, Argon, and Carbon of sea-level 

dry air. 

Isotope Relative Fraction 

14N 7.77717×10-1 
16O 2.08973×10-1 
40Ar 9.3031 ×10-3 
15N 3.12336×10-3 
18O 4.18952×10-4 
12C 3.10546×10-4 
17O 8.37904×10-5 
36Ar 3.11956×10-5 
38Ar 5.8842 ×10-6 

13C 3.454 ×10-6 
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Additionally, but not considered here, in the case where the high-altitude 

region of the atmosphere is included, the elements and isotopes of interest may 

change with altitude. In particular, the fraction of atomic (vs molecular) oxygen 

and the fractions of helium and hydrogen are not negligible above 86 kilometers 

in the USSA-76. The influence of helium and hydrogen cross sections and 

scattering kinetics on the air-to-space class of problems may be of importance due 

to the difference in scattering kinetics when compared to heavier atmospheric 

constituents. Nevertheless, the air is quite rarefied at these altitudes, so an 

investigation of this is not needed here.  
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VI. Motion of The Scattering Medium 

Particles in the scattering medium undergo random thermal motion as well 

as bulk motion due to rotation of the atmosphere and wind/weather patterns. 

This influences the apparent cross sections of the scattering medium and changes 

the kinematics of scattering calculations. 

Bulk Velocity in the Scattering Medium 

The scattering medium moves in bulk due to rotation of the atmosphere 

with the earth, and wind or weather patterns. At any altitude and latitude, the 

velocity due to earth rotation can be computed from (56) and has an 

approximate maximum of 0.54 kilometers per second at 1000 kilometers above 

the equator. A major wind pattern, such as the Jetstream, in the atmosphere 

may also be of interest. Wind velocity of such a pattern could be as large as 0.18 

km/s. Inclusion of winds was not attempted here.  

Thermal Motion in the Scattering Medium 

In addition to bulk motion of the atmosphere, individual atmospheric 

particles undergo random thermal motion. This influences the interaction cross 

section of the scattering medium by Doppler broadening, and the scattering 
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kinetics due to the contribution of kinetic energy of the scattering target nucleus 

to the total energy in the collision. 

The Doppler broadened cross section for a neutron traveling with velocity v  

through a medium with temperature T  is 

 ( )2
( , ) ( , ) ( , )v T v T v T

v

g
s s s

p
* *= - -   (70) 

where ( )0/ 2 ( )M k T Tg = - , M  is the target mass, k  is the Boltzmann 

constant, 0T  is the reference temperature for which cross section values are 

tabulated ( 0 0T K=  for unbroadened cross sections). The function ( , )v Ts*  is 
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where 0( )rvs  is the value of the unbroadened cross section evaluated at velocity 
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(Romano & Trumbull, 2014).  

The changes to scattering kinetics accounting for thermal (and bulk) motion 

of the scattering target are trivially implemented as a series of vector additions 

(bulk target velocity, sampled thermal velocity, neutron velocity) in the 
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calculation of the scatter parameters. This approach remains valid as long as the 

relative energies are such that the particles (neutron and nucleus) may be treated 

as points in the emission frame without the influence of any other mechanisms. 

As this assumption breaks down (i.e. low energy, hence slower, incident 

neutrons), a more complex scatter model is needed. This is beyond the scope of 

this research. 
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VII. Motion of the Source 

If the neutron source has a velocity sv


 in the ECI frame, then the 

distributions in direction and energy of emitted neutrons are in the frame of 

reference of the source, or the emergence frame. To convert the direction and 

energy ( ef
nE  and ˆef

nW ) of an emitted neutron to the ECI frame ( nE  and ˆ
nW ): 
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  (73) 

The maximum likely source velocity is near 10 kilometers per second 

(Morris & Benson, 1963). For a sense of scale, this is similar to the velocity 

required to achieve geostationary altitude.  
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VIII. Radioactive Decay 

Free neutrons have a mean lifetime nt  between approximately 878 

(Serebrov, et al., 2008) and 886 (Yue, et al., 2013) seconds (about 15 minutes). 

The value I used is 882 seconds. The probability that a neutron emitted from the 

source at time zero has not decayed before arriving at a detector after emerging 

from an interaction at time et  and time of flight tD  is  

 ( )n enodecay t t
nP e

l- +D
= ,  (74) 

where 1 /n nl t=  is the decay constant for free neutrons and nt  is the mean 

lifetime of free neutrons listed in Table 2. 

Time of flight from a point in the atmosphere to a geostationary detector 

ranges from less than one second to approximately 19,000 seconds for a minimum 

velocity orbital transfer. The actual maximum time of flight is larger than this, 

but the minimum velocity transfer is a suitable practical limit for this discussion. 

Assuming that the time spent between scatters in the atmosphere is small 

compared to the time of flight tD , and evaluating (74) for contributions with the 

minimum and maximum times of flight reveals that the intensity of a 

contribution for the shortest time of flight is decreased by less than 0.07% while 

at the longest time of flight the intensity is reduced by twelve orders of 

magnitude. 
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The adjustment for radioactive decay may be applied to the time history of 

contributions as a post processing step, and thus the computational cost is 

irrelevant. However, it should be noted that this introduces errors in binned data 

that can be significant depending on the resolution of the grid to which it is 

applied and also the variance of the estimate to which it is applied. Additionally, 

if binned data does not include a dimension in time (e.g. nadir-azimuth direction 

bins data collected by HATS-n), then it is not possible to apply a correction to 

the magnitude of contributions during post processing. This could be mitigated 

by adding time as a dimension in which to bin contributions in nadir and 

azimuth as they are tallied, and if the time-direction distribution is of interest, 

then this approach could be used. A better approach is to apply the adjustment 

in (74) to each contribution as it is tallied during the simulation. This avoids the 

error due to applying the correction to the data after binning and also corrects 

tallies that may not have time data retained during the simulation. The 

computational cost is trivial, an exponential each time a contribution is 

computed, so this should be the preferred approach. 

Decay was not included in the results presented in this dissertation so that 

the scales could be read. Note that the values of current density are in units of 

expected neutrons per (time of energy) bin per km2 of actual detector cross-

sectional area per source neutron (without neutron decay). Thus, in addition to 

the parameters investigated here, the probability of detection of the source by an 

actual system would depend on the detector size and efficiency, presumably as 
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functions of nadir cosine and azimuth, and upon the total number of neutrons 

emitted by the source. Therefore, detection limits can be applied to the plots only 

by a user with an application that specifies these details, or one who postulates 

these details in conducting design studies for a new system. 
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IX. Influence of Special Features of the Air-to-Space Problem 

The influence of the special features of the problem vary greatly with the 

conditions of the transport problem posed. It is not possible to globally describe 

these effects. The examples presented here are restricted to detectors in 

geostationary orbits (stationary in the ECEF frame) and stationary detectors 

(meaning stationary in the ECI frame) at geostationary altitude. The locations of 

the source and detector at the instant of emission that are presented were 

selected for their convenience, importance, or to illustrate interesting features of 

the problem and research findings. 

Before discussing the influences of relative motions and of gravity 

separately, a point about omitting them both is in order:  A Monte Carlo code 

that has not been modified to include gravity and relative motion will simulate 

the motion of neutrons to the detector at energies so low that gravity would 

prevent them from climbing to the rendezvous point. The output of such a code 

is, of course, misleading. In order to demonstrate this shortcoming, the HATS-n 

code mimics this behavior when gravity is turned off. Thus, the results shown in 

the no-gravity curves of many plots include these unphysical results. 
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Relative Motions (without Gravity) 

The Rendezvous Problem (without Gravity) 

Motion of the detector during the rendezvous problem introduces changes in 

the time-energy and direction distributions as seen by the detector. This is 

initially illustrated with an example of a neutron source with the detector 

directly overhead at time of emission (source on the equator and 0aD = ). 

Detector motion adds the possibility that availability of line of sight to the 

detector may change during the time scale of the problem, or even during the 

time of flight to the detector. That is to say, the earth may block the trajectory 

of neutrons with energies in some range, but not for neutrons of other energies. 

This cannot happen if detector motion is not included in a code. Without 

gravity, two cases arise. First, the rising detector:  the detector is below the 

horizon at the time of emission and comes into sight during the time of flight. 

Second, the setting detector:  the detector is in view at the time of emission and 

drops below the horizon during the time of flight.. 

Overhead Detector (without Gravity) 

Initially consider the flight of a neutron, neglecting gravity, from a 

stationary equatorial emission point at 50 km altitude to a detector in 

geostationary orbit directly overhead ( 0aD =  ) at the time of emission. Allow 

the emission energy of the neutron cover the range of 20 MeV down to the 
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minimum energy to reach geostationary altitude in the presence of gravity:  This 

depends on the starting altitude, ranging from approximately 0.56 eV from the 

surface of the earth to 0.47 eV from 1,000 km altitude. The range of times of 

flight over this energy domain is plotted in Figure 13 for an emission point at 50 

km above the surface of the earth. The difference in times of flight is not visible 

between the fixed and moving detector cases on this scale (the orange curve 

overlays the blue one). Therefore, the SRD between them is plotted in gray. It 

exceeds one percent at the lowest energies. 

 
Figure 13:  Emission energy as a function of time of flight from an equatorial source at 50 km 

to a detector at 0aD =   at time of emission with and without detector motion. 

The arrival energy of neutrons as seen by the detector is plotted in Figure 

14 as a function of emission energy and Figure 15 as a function of time of flight. 

In this case (stationary versus geostationary detector, without gravity), the 
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change in arrival energy varies exclusively due to motion of the detector at 

intercept. Because the neutron is always moving almost entirely upward 

(radially) in this case, and the satellite has no radial velocity, the energy of the 

neutron in the detector’s rest frame at arrival is higher in the case of the moving 

detector. The difference is greatest, approaching 10%, at longer times of flight 

where neutron kinetic energy is lower and thus the satellite kinetic energy 

contributes a larger fraction to the total arrival energy. Figure 16 takes just the 

portion of Figure 15 at long times of flight to show the effect more clearly:  The 

relative difference in arrival energy increases for longer times of flight. 

 
Figure 14:  Arrival energy as a function of emission energy from an equatorial source at 50 

km to a detector at 0aD =   at time of emission with (orange) and without (blue) detector 

motion. 
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Figure 15:  Arrival energy as a function of time of flight from an equatorial source at 50 km 

to a detector at 0aD =   at time of emission with (orange) and without (blue) detector 

motion. 

 
Figure 16:  Detail view at long times of flight of arrival energy as a function of time of flight 

from an equatorial source at 50 km to a detector at 0aD =   at time of emission with 

(orange) and without (blue) detector motion. 
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This effect is also visible in the time-energy output from HATS-n. Figure 17 

shows the expectation value, in intercepted neutron current density per source 

neutron, as seen by overhead stationary and geostationary detectors from an 

equatorial neutron source at 50 km altitude. The time-energy position view 

(lower left) shows a pronounced bend to the right at low energy and late time. 

The beginning of this bend is the difference in arrival energy from the previous 

discussion and Figure 16. The extended pronounced hook at the end of the 

geosynchronous time-energy position plot would be visible in the first-flight 

analysis if longer times of flight and lower emission energies were considered, but 

these lower energies are not sufficient for a neutron to reach geosynchronous 

altitude. This is further illustrated by comparing the orbital segments reached by 

the first-flight and HATS-n outputs (right side of Figure 15 and lower right plot 

in Figure 17):  The HATS-n output includes intercepts covering a much longer 

segment of the orbit despite these intercepts being physically impossible.  
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Figure 17:  Intercepted neutron current density as a function of time-energy computed by 

HATS-n for an equatorial Watt-fission-235 neutron source at 50 km as seen by stationary and 

geostationary detectors at 0aD =   at time of emission. 

Arrival nadir cosine for this detector orientation is shown in Figure 18. For 

long times of flight the difference in nadir cosine is approximately 3%. This is 

confirmed in the nadir-azimuth output from HATS-n, shown in Figure 19. Note 

that for the equatorial source location, the first-flight contributions should not 

(and are not) distributed in azimuth angle. However, the scattered contributions 

come from interactions geometrically separate from the source (hence non-

equatorial) and thus spread the contributions in azimuth. On this scale, the 
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scattered contributions largely obscure the view of the direct contributions in the 

nadir-azimuth plots. 

The decrease in nadir cosine from the first-flight analysis can be seen in the 

HATS-n plot of nadir cosine in cosine values from approximately 0.97 to 1. As 

with the time-energy output from HATS-n, the effect is extended to nadir cosines 

less than 0.7 by neutron intercepts with less than the minimum energy to reach 

the satellite. If neutrons with less than the minimum energy to reach the detector 

are excluded from the estimate, the HATS-n nadir cosine plot would be 

truncated to match the first flight analysis. Also, the large tail for the 

geosynchronous detector in the polar nadir-azimuth plot in the lower part of 

Figure 19 would be trimmed. However, it is worth noting that even by excluding 

the trajectories without the minimum energy to reach the satellite, the tail on the 

nadir-azimuth plot still extends outside the view of the earth as seen by the 

detector. In this case, the contributions with longer times of flight have an 

apparent nadir angle at arrival up to approximately 14 degrees, while the earth 

covers nadir angles less than 10 degrees. From the point of view of the detector, 

these neutrons arrive from a source geometrically separate from the earth. (A 

detector perfectly collimated to see only the earth would not detect these 

neutrons.) As the source moves out of the equatorial plane, a greater fraction of 

nadir-azimuth bins with contributions fall outside the view of the earth as seen 

by the satellite. Figure 20 shows the nadir-azimuth plots from HATS-n for the 
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same source at 45ºN. Note the distribution of observed neutrons arriving from 

directions outside the detector view of the earth. 

 
Figure 18:  Arrival nadir cosine as a function of time of flight from an equatorial source at 50 

km to a detector at 0aD =   at time of emission with and without detector motion. 
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Figure 19:  Intercepted neutron current density as a function of nadir-azimuth computed by 

HATS-n for an equatorial Watt-fission-235 neutron source at 50 km as seen by stationary and 

geostationary detectors at 0aD =   at time of emission. 
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Figure 20:  Intercepted neutron current density as a function of nadir-azimuth computed by 

HATS-n for a Watt-fission-235 neutron source at 50 km and 45ºN as seen by stationary and 

geostationary detectors at 0aD =   at time of emission. 

Rising Detector (without Gravity) 

For the rising detector, with 92aD = -  , when motion of the detector and 

gravity are neglected, no rendezvous is possible for first-flight neutrons, regardless 

of neutron energy, because the stationary detector remains below the horizon for 

the entire time scale of the problem. The only neutrons that reach the detector 

are those that undergo a chain of scatters in the atmosphere which brings the 

neutron to a location where line of sight to the detector becomes available. With 
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motion of the detector, the detector rises into view (in the ECI frame) during the 

time of flight as shown in Figure 21. The domain of emission energies reaching 

the detector and the corresponding range in times of flight are limited. The only 

intercepts that can occur are ones with sufficiently long times of flight for the 

detector to come into view during the time of flight. 

 
Figure 21:  Emission energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 92aD = -   and rising at time of emission with and without detector motion. 
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Figure 22:  Arrival energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 92aD = -   and rising at time of emission with and without detector motion. 

Figure 23 shows the results from HATS-n for the same rising detector 

transport problem. As expected from the first-flight analysis, no contributions 

result from direct flight from the source to a stationary detector. Unfortunately, 

in the one million histories run to generate the figure, no first-flight contributions 

were tallied in the case of the geosynchronous detector either. The energy 

threshold below which the time of flight is long enough for the detector to come 

into view makes first-flight contributions rare in the context of this problem. 

Neutrons with energy less than 10 eV can make the intercept, but the probability 

of sampling such a low neutron energy at the source from the Watt-fission-235 

distribution (equations (2) and (3), and Figure 7) in HATS-n is approximately 

1.4×10-8. In 106 histories, it is unlikely a neutron with low enough energy will be 

sampled. Fortunately for this discussion, the scattered contributions computed by 
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HATS-n form a large population (approximately 2×108) of neutrons scattered 

down in energy. Approximately 25% of these scattering interactions resulted in 

next-event contribution tallies at the detector. Recognizing that the scattering 

interactions generating these contributions occur at relatively close geometric 

proximity to the source, the first-flight analysis can still be qualitatively 

compared to the scattered result from HATS-n.  

The HATS-n plots of intercepted neutron current density integrated in time 

and energy (top of Figure 23) match the expected time of flight and arrival 

energies from the first-flight analysis in Figure 22, although the orbit segments do 

not agree. As seen in the overhead case, the extension of the orbit segment 

during which contributions arrive reported by HATS-n is primarily a result of 

scattered neutrons with less than the minimum energy to reach geostationary 

altitude. However, in this case, the early time of flight segment on the orbit, 

which should have no contributions according to the first-flight analysis, is also 

reported as having contributions by HATS-n. This is due to inclusion of the 

scattered contributions and the fact that the orbit segments do not include 

information on the intensity of the intercepted neutron current density being 

reported. The short times of flight are a result of fast neutrons that were emitted 

in the direction of the detector such that the detector came into view much 

earlier than for neutrons emitted at the source. These are rare events, and have 

correspondingly small contributions (tens to hundreds of orders of magnitude 
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below the scale of the integrated time and energy HATS-n plots), but they cause 

the plotting routine to highlight the orbit segment over which they arrive. 

 
Figure 23:  Intercepted neutron current density as a function of time-energy computed by 

HATS-n for a Watt-fission-235 neutron source at 50 km and 45ºN as seen by stationary and 

geostationary detectors at 92aD = -   and rising at time of emission. 

Setting Detector (without Gravity) 

The case of a setting detector, 83aD =  , is shown in Figure 24. Here, for 

the full range of emission energies considered, it is possible for the neutron to 

intercept the satellite when motion of the detector is neglected because the 

stationary detector never falls out of view. With detector motion, neutrons 
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emitted with energy below some threshold have a time of flight to the detector 

during which the detector falls out of view. Neutrons with energy below this 

threshold cannot intercept the detector.  

 
Figure 24:  Emission energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 83aD =   and setting at time of emission with and without detector motion. 

 
Figure 25:  Arrival energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 83aD =   and setting at time of emission with and without detector motion. 
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Figure 26 shows the results from HATS-n for the same setting detector 

transport problem. The HATS-n output does report first flight contributions for 

both the stationary and geostationary deters as expected from the first-flight 

analysis, but the intensity of the tallied contributions is very low due to the long 

optical thickness through the atmosphere to fly directly to the detector. The 

scattered contribution has much higher intensity due to scatters in locations with 

a lower optical thickness to the detector. So, as with the rising detector, the 

scattered contributions from HATS-n will be qualitatively compared to the first-

flight analysis.  

The HATS-n plots of intercepted neutron current density integrated in time 

and energy (top of Figure 26) match the expected time of flight and arrival 

energies from the first-flight analysis in Figure 25, although the orbit segments do 

not agree. In this case, the long time of flight extension of the orbit segment 

during which contributions arrive reported by HATS-n is primarily a result of 

neutrons scattering in the atmosphere along paths that follow the detector over 

the horizon. These histories retain line of sight to the detector longer than 

neutrons emitted at the source. 



 

101 

 
Figure 26:  Intercepted neutron current density as a function of time-energy computed by 

HATS-n for a Watt-fission-235 neutron source at 50 km and 45ºN as seen by stationary and 

geostationary detectors at 83aD =   and setting at time of emission. 

Divergence Factor (without Gravity) 

Consider a neutron source at 50 km and 45ºN. At the moment of neutron 

emission, the detector is in view to the west, for example, with 45aD = -  . This 

is the ascending detector geometry. The divergence factor for neutrons 

intercepting an ascending geostationary detector with and without detector 

motion is shown in Figure 27. In this geometry, the divergence factor with 

detector motion is globally greater (meaning less divergence and higher intensity 

of contributions) than the divergence factor without detector motion. This can be 
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attributed to two features of this geometry:  First, recognize that the point of 

closest approach between the source and the detector occurs at 0aD = . In the 

ascending geometry the source and detector are closing with one another as time 

of flight increases, decreasing the radius, hence area, of the neutron locus and 

reducing divergence. Second, for longer times of flight, the kinetic energy, hence 

magnitude of velocity, of the neutron is smaller relative to the velocity of the 

detector. As neutrons approach the detector traveling vertically or nearly 

vertically (as they always do when traveling on a straight trajectory to intercept) 

the incident direction is always nearly perpendicular. When the velocity of the 

detector is large compared to the velocity of the neutron, the effective area of the 

detector becomes large resulting in less divergence. 

 
Figure 27:  Divergence factor as a function of time of flight from a source at 50 km and 45ºN 

to an ascending detector with and without detector motion. 
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The same features of the geometry affect the divergence factor in the case of 

a descending detector geometry in which the detector is visible to the east from 

the source, with 45aD = +  , and descending towards the horizon as shown in 

Figure 28. In this case, the two factors compete. First, the distance between the 

source and detector is increasing with increasing time of flight resulting in a 

larger radius, hence lager area, of the neutron locus (tending to increase 

divergence and decrease the divergence factor). And second, the neutron speed to 

the rendezvous decreases with increasing time of flight so the relative velocity is 

rotating toward that of the detector while, geometrically, the normal direction to 

the locus is rotating toward the direction of motion of the detector. Thus, the 

effective area of the detector is increasing due to detector motion increases. The 

dip in the divergence factor at about 2000 seconds occurs because the first factor 

dominates for flight times less than about 1500 seconds. The dip in the SRD at 

about 2000 seconds occurs as the divergence factor increases through its value for 

the stationary detector, which would be the divergence at infinite energy.  
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Figure 28:  Divergence factor as a function of time of flight from a source at 50 km and 45ºN 

to a descending detector with and without detector motion. 

Optical Thickness Through the Atmosphere (without Gravity) 

Consider the first-flight neutrons:  Without gravity and without relative 

motions, the speed along the path decreases for longer times of flight, but the 

path does not move. It is the straight line between the emission point and the 

detector. The optical thickness changes only due to the change in cross section of 

the air, which is a function of neutron energy. 

Without gravity, relative motion changes the path through the atmosphere 

(as well as changing the speed along the path). The path to the rendezvous 

changes in zenith angle and heading in a way that depends on the latitude of the 

source point.  

1. Decreasing the zenith angle, i.e. increasing z , decreases the geometric 

length of the path, tending to decrease the optical thickness. 
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2. Decreasing the zenith angle changes the relative speed in the air frame 

of reference in way that depends upon the heading of the path and the 

speed of the neutron. This changes the rotating-earth correction factor 

and hence the optical thickness. 

3. Changing the heading changes the rotating-earth correction factor in a 

way that depends on zenith angle and speed, changing the optical 

thickness. 

The optical thickness for scattered neutrons is also subject to these effects, 

which are dependent upon the location of the scatter. Additionally, for a given 

energy and satellite location, the optical thickness varies with the scatter 

location, which also changes the zenith angle and heading. 

Effective Path Length to Rendezvous (without Gravity) 

The EPL through the atmosphere to a setting geostationary detector (

83aD =  ) from an emission point at 50 km altitude and 45ºN is shown in 

Figure 29. As time of flight increases, the EPL to intercept increases and reaches 

a maximum at the last possible intercept after which the detector drops below 

the horizon and out of line of sight. Compare this to the constant EPL for the 

stationary detector. The required emission zenith cosine to make this continuum 

of intercepts is shown in Figure 30. The entire range of intercepts is achieved 

with downward emission directions, aiming further downward as the detector 

approaches the horizon. The value of emission zenith cosine for the final (longest) 
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time of flight corresponds to a path through the atmosphere beginning at the 

emission point traveling downward to grazing incidence at the surface of the 

earth and then back upwards through the full thickness of the atmosphere and to 

the detector. 

 
Figure 29:  Effective path length as a function of time of flight from a source at 50 km and 

45ºN to a detector at 83aD =   and setting at time of emission with and without detector 

motion. 
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Figure 30:  Emission zenith cosine as a function of time of flight from a source at 50 km and 

45ºN to a detector at 83aD =   and setting at time of emission with and without detector 

motion. 

Rotation of the Earth 

As a neutron traverses a path in the atmosphere, the atmosphere rotates 

eastward in the ECI frame, but the path of the neutron is stationary in the ECI 

frame. As the atmosphere sweeps across the path of the neutron, the EPL may 

be lengthened or shortened depending on the relative magnitude and direction of 

the neutron and atmosphere velocities. This effect is greatest for horizontal paths 

traveling due east and due west at the equator. Figure 31 shows the EPL for a 

horizontal path at 45ºN and at the equator (dashed) traveling east and west 

through the full thickness of the atmosphere. For neutrons above 10 eV, the 

influence is small (less than one percent). However, below this energy the motion 

of the atmosphere can have a profound effect on the effective path length.  
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This is mitigated, somewhat, by the fact that at energies below 10 eV, the 

total interaction cross section for the atmosphere is proportional to 1 / v  and 

regardless of the effective path length most paths are optically thick. This feature 

of the problem causes a systematic asymmetry in the transport. Neutrons emitted 

westerly direction see a longer EPL than those headed northward or southward,, 

and thus more attenuation, through the atmosphere due to rotation of the 

atmosphere. As a result, these neutrons are less likely to escape the atmosphere 

without colliding and their geometric distance to the next interaction is shorter. 

On the other hand, neutrons traveling eastward will see a reduced effective path 

length resulting in a longer geometric distance to the next interaction in the 

atmosphere. From an overhead viewpoint, like an overhead detector, the shape 

and distribution of the scattering region in the atmosphere changes. This 

enhances the asymmetry between ascending and descending geometries.  

It is also worth noting that for the lowest energies, the corrected path 

length in Figure 31 shows negative path lengths for the eastbound equatorial 

case. While a negative path length is not strictly physical (distance backward is 

still distance), this indicates the situation in which the atmosphere sweeps past 

the path of the neutron faster than the neutron traverses the path. The result is 

still a positive computed path length, but it is left negative for this plot to 

illustrate the point. 
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Figure 31:  Effective path length including rotation of the atmosphere for east and west 

horizontal paths at the equator (Dashed) and 45ºN (Solid). 

Motion of the Scattering Medium 

The influence of Doppler-broadened cross sections on the fidelity of the 

atmosphere model was evaluated by comparing the pointwise total cross section 

as tabulated in ENDF (unbroadened, 0 K) to cross sections broadened to room 

temperature (300 K) and the maximum temperature in the USSA-76 atmosphere 

model (1000 K). Overall, the influence was small for the atmospheric constituents 

used. For energies above 0.5 eV, the maximum SRD was less than 0.01 

(approximately 1%) for the total cross section of the atmosphere broadened for 

300 K and 1000 K. Below 0.5 eV, the difference is larger, climbing to a SRD of 1 

for the lowest energies (10-8 keV). This is mitigated by the fact that over this 

range the total cross section for the atmosphere is proportional to 1 / v  so the 

atmosphere is already optically thick. The total cross section increases due to 
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broadening in this energy range, but the effect is that an optically thick 

atmosphere simply becomes thicker. Recalling the sensitivity of probability of 

escape from Figure 12 at this energy, for most effective path lengths, the 

probability of escape for neutrons with kinetic energy 0.5 eV and below is already 

fairly low. Additionally, neutrons with kinetic energy less than approximately 0.5 

eV (varies depending on emission altitude) are less likely to have the minimum 

kinetic energy required to achieve geosynchronous altitude to intercept a 

detector. 

Motion of the Source 

Including source motion in practical calculations is trivially implemented 

and has trivial cost. Further discussion of source motion is not necessary, except 

to point out that the magnitude of the source velocity (up to about 10 km/s) is 

similar to that of the minimum velocity required to reach Geostationary altitude, 

approximately 35,786 km. Thus, depending on orientation of the source velocity, 

the population of neutrons able to intercept an orbital target can be significantly 

impacted. This is especially significant for first-flight neutrons because of the 

rapid fall-off of the Watt source distribution at energies this low. 
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Gravity 

In this section, detector motion is included, unless specifically stated 

otherwise. Results with gravity are compared to results for the same problems 

without gravity.  

Note:  I reserve line of sight to mean a straight line, as in common usage. 

With gravity, the line of sight between an emergence point and the detector can 

be blocked while a neutron of low-enough energy starts at a higher elevation 

angle that decreases along the trajectory (due to gravity) and can reach the 

detector without being obstructed by the earth. An unobstructed trajectory (with 

gravity) is referred to here as a clear flight path. Thus, such a neutron that has 

an obstructed line of sight can have a clear trajectory. This effect, together with 

the need for a low-enough energy cause behaviors in the results that are 

qualitatively dramatically different than those predicted by a code that neglects 

gravity, even if it includes satellite motion. For some initial differences in right 

ascension and source latitudes, a detector would actually be exposed to neutrons 

while a transport code that does not include gravity would not be so exposed. 

The consequences of this could be very significant. 

The Rendezvous Problem 

Gravity has a large influence on the rendezvous problem. In general, with 

the inclusion of gravity in the rendezvous problem, the range of successful 

intercepts given any set of starting conditions is greatly increased. The presence 
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of gravity also introduces three special cases worth noting:  the multi-direction 

rendezvous case as the detector passes through the antipode, the loss and 

subsequent reacquisition of a clear trajectory (unobstructed by the earth) as the 

detector disappears over the horizon, and the case of a source above either pole. 

In this section, the results for various example satellite locations at the moment 

of emission are presented. These include examples that demonstrate these 

behaviors. 

Overhead Detector 

As when adding relative motions to the rendezvous problem, consider the 

flight of a neutron from a stationary source on the equator at 50 km altitude to a 

detector in geostationary orbit directly overhead, 0aD =  , at the time of 

emission. Allow the emission energy of the neutron to cover the range from 20 

MeV down to the minimum energy to reach geostationary altitude, or even lower 

for illustration of differences when gravity is neglected. The properties of these 

rendezvous are compared to the corresponding rendezvous that ignore the 

presence of gravity (i.e. those with straight trajectories). The range of time of 

flight over this energy domain is plotted in Figure 32. In the figure, no-gravity 

rendezvous that lack sufficient energy to reach the satellite with gravity are 

distinguished by a lighter shading (tan as opposed to orange). 



 

113 

 
Figure 32:  Emission energy as a function of time of flight from an equatorial source at 50 km 

to a detector at 0aD =   at time of emission with and without gravity. 

The arrival energy of neutrons as seen by the detector is plotted in Figure 

33 as a function of emission energy and Figure 34 as a function of time of flight. 

In this case (intercepting a geostationary detector with and without gravity), the 

change in arrival energy varies due to motion of the detector at intercept and the 

change in neutron energy and direction on the flight to the detector. As the time 

of flight to intercept increases, the arrival energy as seen by the detector 

decreases significantly more for the gravitational trajectory than for the 

trajectory neglecting gravity. For the longest times of flight, the difference is 

nearly an order of magnitude.  
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Figure 33:  Arrival energy as a function of emission energy from an equatorial source at 50 

km to a detector at 0aD =   at time of emission with and without gravity. 

 
Figure 34:  Arrival energy as a function of time of flight from an equatorial source to a 

detector at 0aD =   at time of emission with and without gravity. 

This effect is also visible in the time-energy output from HATS-n. Figure 35 

shows the expected intercepted neutron current density as seen by an overhead 

geostationary detector from an equatorial Watt-fission-235 neutron source at 50 
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km with and without gravity. With gravity, the time-energy position view 

(lower-left) shows a pronounced bend downward and then to the right at low 

energy and late time. The time-energy position plot for contributions with and 

without gravity matches the shape of the lines in Figure 34 as expected.  

 
Figure 35:  Intercepted neutron current density as a function of time-energy computed by 

HATS-n for an equatorial Watt-fission-235 neutron source at 50 km with and without gravity 

as seen by stationary and geostationary detectors at 0aD =   at time of emission. 

Arrival nadir cosine for the overhead case is shown in Figure 36. For long 

times of flight, the difference in nadir cosine is grows rapidly. Neglecting gravity 

and detector motion, neutrons in any intercept come from downward or nearly 
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downward directions by construction of the problem. The addition of detector 

motion, as shown previously, increases the range of nadirs as seen by the 

detector, but for the time-energy range and source-detector orientations 

considered, the variation in nadir was relatively small. This changes with the 

inclusion of gravity. Even neglecting motion of the detector, the direction of 

neutron motion changes as the neutron makes the flight to the detector. As the 

neutron climbs on an orbital trajectory, the zenith angle increases; i.e., as 

altitude increases, the motion of the neutron is less vertical. In fact, for the 

minimum velocity intercept solution (the longest time of flight considered in this 

analysis), the neutron arrives at the location of the intercept with only a 

horizontal component to its velocity. 

 
Figure 36:  Arrival nadir cosine as a function of time of flight from an equatorial source at 50 

km to a detector at 0aD =   at time of emission with and without gravity. 
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This is confirmed in the nadir-azimuth output from HATS-n, shown in 

Figure 37. The decrease in nadir cosine from the first-flight analysis can be seen 

in the HATS-n plot of nadir cosine:  Cosine values range from one down to 

slightly less than zero. The values slightly less than zero are the neutrons arriving 

with a small negative radial component of velocity. These inbound neutrons have 

their apogee just above the satellite’s orbital radius. HATS-n is intended to find 

the outbound rendezvous, but where the inbound and outbound rendezvous are 

close enough together, the inbound one is sometimes found by the rendezvous 

solver. The nadir-azimuth plot (lower portion of Figure 37) shows the directions 

from which contributions arrive as seen by the detector. Gravity greatly extends 

the range of directions from which neutrons arrive at the detector, including from 

above (nadirs greater than 90 degrees).  
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Figure 37:  Intercepted neutron current density as a function of nadir-azimuth computed by 

HATS-n for an equatorial Watt-fission-235 neutron source at 50 km with and without gravity 

as seen by stationary and geostationary detectors at 0aD =   at time of emission. 

As the source moves out of the equatorial plane, these plots change. Figure 

38 shows the nadir-azimuth plots from HATS-n for the same source at 45ºN. This 

is due to the shape of orbital trajectories of neutrons arriving in these direction 

bins. The orbital trajectory is confined to a plane containing the emission point, 

the detector, and the center of the earth. With the emission point(s) at or near 

45ºN, this confines the direction of the neutron as it reaches the intercept to be 
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south-westerly. Adding the motion of the detector gives the distributions shown 

in Figure 38. 

 
Figure 38:  Intercepted neutron current density as a function of nadir-azimuth computed by 

HATS-n for a Watt-fission-235 neutron source at 50 km and 45°N with and without gravity as 

seen by stationary and geostationary detectors at 0aD =   at time of emission. 

Rising Detector 

Next, consider a rising detector, with 92aD = -  , where the detector is 

just below the horizon (as viewed from the emission point) at the time of 

emission but may come into view during the time of flight. Neglecting gravity, 
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rendezvous is not possible until the time of flight is such that the detector rises 

above the horizon. With gravity, the neutron can travel over the horizon to 

intercept the detector before it rises for the earliest straight-line intercept. In this 

case, the line-of-sight is obstructed but the flight path is clear. Figure 39 shows 

the range of times of flight for emission energies to intercept the rising detector. 

Note the difference in the orbit segments covered on the right side of the figure:  

The earliest intercepts are available with gravity. These neutrons are emitted 

with direction and energy such that they fall over the horizon to intercept a 

detector that has not yet achieved line of sight. These early intercepts correspond 

to the few dots visible at early time and high energy in the time and energy 

integrated plots at the top of Figure 41:  These are rare contributions from 

neutrons emitted at high energy in the direction of the source and scatter at a 

location such that the probability of scatter to the detector and escape 

probability from the atmosphere is high. 
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Figure 39:  Emission energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 92aD = -   and rising at time of emission with and without gravity. 

 
Figure 40:  Arrival energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 92aD = -   and rising at time of emission with and without gravity. 
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Figure 41:  Intercepted neutron current density as a function of time-energy computed by 

HATS-n for a Watt-fission-235 neutron source at 50 km and 45ºN with and without gravity as 

seen by stationary and geostationary detectors at 92aD = -   and rising at time of 

emission. 

Setting Detector 

The case of a setting detector, with 83aD =  , is shown in Figure 42. Here, 

for the full range of emission energies considered, it is possible for the neutron to 

intercept the satellite when gravity is included. Compare this to the range of 

rendezvous restricted by line of sight when neglecting gravity. Figure 43 shows 

the arrival energy of neutrons as a function of time of flight. Note that at the 

longest times of flight the energy of arrival increases slightly:  At these times of 
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flight, the kinetic energy of the neutron in the reference frame of the detector is 

dominated by the motion of the detector and the intercept geometry is such that 

the apparent energy of arriving neutrons is increased. 

 
Figure 42:  Emission energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 83aD =   and setting at time of emission with and without gravity. 

 
Figure 43:  Arrival energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 83aD =   and setting at time of emission with and without gravity. 
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Figure 44 shows the time-energy results from HATS-n for the same 

transport problem. The HATS-n plots of intercepted neutron current density 

integrated in time and energy match the expected time of flight and arrival 

energies from the first-flight analysis in Figure 43 including the small hook at the 

long time of flight visible in the time-energy position plot. However, note the gap 

in time-energy contributions near time of flight of 8000 seconds and arrival 

energy near 0.1 eV. There is an interruption of line of sight to the detector at 

this point in the spectrum. The interruption in line of sight in this case fell 

between grid points in the first flight analysis. Further discussion of the gap in 

line of sight follows in the next section.  
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Figure 44:  Intercepted neutron current density as a function of time-energy computed by 

HATS-n for a Watt-fission-235 neutron source at 50 km and 45ºN with and without gravity as 

seen by stationary and geostationary detectors at 83aD =   and setting at time of emission. 

Temporal Interruption of the Clear Trajectory 

As observed in the previous output from HATS-n (Figure 44), with gravity, 

the setting detector geometry can include a gap in the clear trajectory to the 

detector. Figure 45 and Figure 46 show the emission energy and arrival energy as 

a function of time of flight for a setting detector geometry, with 87aD =  , 

where clear trajectory to the detector is interrupted by the earth, but reacquired 

at some later time of flight. Consider the view of a setting detector from the 

emission point in the ECI frame. The aim-point, or emission direction, to 
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intercept the detector needs to lead the detector (by aiming down towards the 

horizon) in order to compensate for detector motion during the time of flight. 

However, gravity will cause the neutron to fall towards the center of the earth, 

down towards the horizon, during the flight to the detector. To compensate for 

gravity, the aim-point to intercept the detector is adjusted by aiming up away 

from the horizon. For short times of flight, the fall of the neutron on the 

trajectory is small, so leading the target (aiming lower towards the horizon) 

dominates the selection of the aim-point. As the aim-point to intercept the 

detector drops below the horizon, the trajectory becomes obstructed. Then, as 

the time of flight increases, compensating for neutron fall on the longer time of 

flight trajectory becomes the dominant input to the aiming process and the aim-

point rises back above the horizon. When it is far enough above the horizon, it 

becomes unobstructed. Thus, there is a time gap in the availability of a clear 

trajectory to the detector. Understanding this is important, lest such a gap be 

misinterpreted as a system fault. 
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Figure 45:  Emission energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 87aD =   and setting at time of emission with loss and reacquisition of line of 

sight when including of gravity. 

 
Figure 46:  Arrival energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector at 87aD =   and setting at time of emission with loss and reacquisition of line of 

sight when including of gravity. 
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Detector Behind the Earth 

With gravity, neutrons can arrive at the detector in some geometries in 

which they could not without gravity. There is no more profound difference in 

predictions using models than the difference between some neutrons and no 

neutrons.  

One such case is when the detector is on the opposite side of the earth 

relative to the source. Two examples are presented:  Sources at zero and 45ºN. In 

both cases, a geosynchronous detector at 118aD =   at time of emission and 

passing through 180aD =   during the range of intercept times of flight was 

simulated, as well as a stationary detector fixed at 180aD =   . A stationary 

detector isn’t realistic, but its results may be viewed as free-field estimates. For 

the equatorial source, the detector passes through the antipode. For the source at 

45°N, the detector misses the antipode but does pass through its most distant 

point from the source. 

Figure 47 shows the expected times of flight and arrival energies from the 

first-flight analysis to a geostationary detector passing through 180aD =   with 

the source at 45°N during the range of times of flight over which intercepts are 

available at the detector. The neutrons able to reach the detector in this 

geometry are following low elevation paths in a northward direction. They then 

fall across the detector orbit from the northward direction. This geometry was 

also demonstrated in HATS-n. Figure 48 and Figure 49 show the time-energy and 

nadir-azimuth estimates as seen by the detector. The counting statistics are poor 
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for this number of histories, but the expected behavior can be confirmed:  The 

range and shape of the arrival energy versus time of flight curve from Figure 47 

is present in the integrated time and energy plots and the time-energy position 

output from HATS-n and the contributions arrive from the expected clusters of 

northward directions in Figure 49 for the two detector types of detector motion. 

 
Figure 47:  Arrival energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector passing through 180aD =   during rendezvous range. 

One questionable difference is visible in the length of orbit segments 

between the first flight analysis and the result from HATS-n (right side of Figure 

47 and lower right side of Figure 48). The segment reported by the HATS-n run 

appears to begin later but end at the same point predicted by the first flight 

analysis. One possible explanation for this is aided by observing the emission 

zenith as a function of time of flight for this geometry, Figure 50. The early times 
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of flight (possibly the range of times of flight excluded from the orbit segment) 

have a negative emission zenith. Neutrons on these trajectories have a long 

optical thickness to traverse to reach the detector, and given the poor counting 

statistics achieved in the HATS-n run for this geometry, it is possible that the 

contributions in those early time bins were too small to be numerically 

represented and underflowed to zero during the data processing and analysis 

steps in the code. At the time of this analysis, it remains unclear whether this is 

the reason for the disagreement between the first flight analysis and output from 

HATS-n:  This has been added to the list of open issues for investigation and 

debugging in the HATS-n code. 
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Figure 48:  Intercepted neutron current density as a function of time-energy computed by 

HATS-n for a Watt-fission-235 neutron source at 50 km and 45ºN with gravity as seen by 

stationary and geostationary detectors at or passing through 180aD =   during rendezvous. 
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Figure 49:  Intercepted neutron current density as a function of nadir-azimuth computed by 

HATS-n for a Watt-fission-235 neutron source at 50 km and 45°N latitude with gravity as 

seen by stationary and geostationary detectors at or passing through 180aD =   during 

rendezvous. 
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Figure 50:  Emission zenith cosine as a function of time of flight from a source at 50 km and 

45ºN to a detector passing through 180aD =   during rendezvous range. 

The second case places the source in the equatorial plane so that the 

detector passes through the antipode. This confines all intercepting first-flight 

trajectories to equatorial orbits in the first flight analysis to meet the 

geostationary detector (except for rendezvous exactly at the antipode). The 

result, shown in Figure 51, is a discontinuity in the energy at arrival between 

short and long times of flight. The short times of flight intercept the detector 

before it passes through the antipode and follow trajectories that approach the 

detector from behind. As the detector passes through the antipode, the emission 

direction required for intercept switches to trajectories that approach the detector 

head-on. The time of flight where this switch occurs is the location of the 

discontinuity in arrival energy. All these are the outward-bound intercepts, 

meaning that the radial component of the neutron velocity in the ECI frame is 
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positive (or zero) computed by HATS-n. There are westbound intercepts that 

arrive before the discontinuity and eastbound intercepts that arrive after the 

discontinuity, but these are inbound intercepts and are not often found by the 

rendezvous solver. If these were included, there would be two arcs that overlap in 

time of flight but are at different arrival energies. (This capability should be 

added for a production code, presuming the detector of interest is not collimated 

in a way that prevents detection of downward-moving neutrons, but it was not 

required in demonstrating the need to include motion and gravity for this class of 

problems.) 

 
Figure 51:  Arrival energy as a function of time of flight from a source at 50 km and 45ºN to 

a detector passing through 180aD =   during rendezvous range. 

Figure 52 and Figure 53 show the time-energy and nadir-azimuth results 

from a HATS-n run for the distribution of neutrons from an equatorial source as 
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seen by a geostationary detector passing through the antipode and a stationary 

detector at the antipode. As with the non-equatorial source, the counting 

statistics are poor, but some expected behavior can still be observed. The time-

energy position plot in the lower left side corner of Figure 52 shows the 

discontinuity in the arrival energy and time of flight predicted by the first flight 

analysis. 

The distribution in arrival direction, Figure 53, also shows interesting 

features. For the stationary detector, the contributions at the detector are 

arriving from trajectories that had to fly around the earth to reach the detector, 

so that they arrive with nadirs near horizontal, but are spread uniformly in 

azimuth. This effect is limited to geometries in which the source, detector, and 

center of the earth are collinear (equatorial source and detector). The nadir-

azimuth plot in Figure 53 also includes the distribution of directions from the 

equatorial source as seen by a geostationary detector that passes through the 

antipode. The ring of arrival directions is still visible, as a result of the 

contributions arriving at the instant at which the detector passes through 

180aD =  , although it has been distorted by the addition of detector motion. As 

the detector approaches 180aD =   from 118aD =   the contributions arrive at 

the detector on predominantly eastbound trajectories, and after the detector 

passes through 180aD =   the contributions arrive on predominantly westbound 

trajectories.  
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Figure 52:  Intercepted neutron current density as a function of time-energy computed by 

HATS-n for a Watt-fission-235 equatorial neutron source at 50 km with gravity as seen by 

stationary and geostationary detectors at or passing through 180aD =   during rendezvous. 
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Figure 53:  Intercepted neutron current density as a function of nadir-azimuth computed by 

HATS-n for a Watt-fission-235 equatorial neutron source at 50 km with gravity as seen by 

stationary and geostationary detectors at or passing through 180aD =   during rendezvous. 

Polar Source 

Another interesting case that arises with gravity is the view of a source 

located at the pole. Without gravity, sources below approximately 74 km do not 

have line of sight to a geostationary detector at any point on the detector orbit. 

Even for sources above this threshold, the magnitude of contributions tallied at 

the detector is low because of the long initially downward and optically thick 

path through the atmosphere required for every first-flight trajectory. The 
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scattered contribution from the vicinity of the source is similarly limited, so that 

the largest contributions tallied at the detector are from the rare chains of events 

that scatter the neutron to a location in the atmosphere where line of sight was 

available to the detector without a long optical path through the atmosphere to 

reach the detector. Thus, without gravity, a large population of scatters is 

ignored due to obstructed lines of sight and another population has its 

importance reduced by artificially long path lengths through the atmosphere. 

With gravity, neutrons with the right combination of energy and zenith 

angle pass through the satellite orbit at various times and at all satellite right 

ascensions at each time. (Right ascension is indeterminate above the poles, so 

aD  has no meaning in the case.) Thus, a geostationary satellite is exposed to 

neutrons regardless of its initial location in its orbit. For sources close enough to 

either pole, this is also the case, but the range of energies and times of flight vary 

with aD  for sources not exactly at the pole. 

The time of flight as a function of emission energy and energy at arrival as 

a function of time of flight for neutrons emitted from a source 50 km over the 

north pole is shown in Figure 54 and Figure 55 respectively. From this altitude, 

neutrons will less than approximately 10 eV may follow orbital trajectories to 

rendezvous with a geostationary detector. Neutrons with energy above this 

threshold have a required emission zenith too low in elevation to have a clear 

trajectory to the detector. First-flight neutrons arrive at the detector just under 

1000 seconds after time of emission and range in energy from 10 eV down to less 
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than 0.1 eV. For the earliest times of flight, approximately 1000 to 3000 seconds, 

the emission zenith is actually downward as shown in Figure 56. This is expected, 

as the highest energy neutrons able to make the rendezvous will approach the 

straight-line trajectory, but it also means that these neutrons will have a long 

optical thickness to traverse to intercept the detector and will have a 

correspondingly smaller contribution to tally. For times of flight greater than 

3000 seconds, the emission zenith is positive and increasing with time of flight so 

that longer times of flight traverse shorter optical thicknesses through the 

atmosphere on the path to the intercept. This is illustrated in Figure 57:  The 

effective path length decreases by five orders of magnitude from the earliest to 

the latest times of flight. 

 
Figure 54:  Emission energy as a function of time of flight to a geostationary detector from a 

source at 50 km altitude at the north pole. 
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Figure 55:  Arrival energy as a function of time of flight to a geostationary detector from a 

source at 50 km altitude at the north pole. 

 
Figure 56:  Emission zenith as a function of time of flight to a geostationary detector from a 

source at 50 km altitude at the north pole. 
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Figure 57:  Effective path length as a function of time of flight to a geostationary detector 

from a source at 50 km altitude at the north pole. 

The results of the first-flight analysis are observed in output from the 

HATS-n code. Figure 58 and Figure 59 show the time-energy and direction 

distributions of neutrons from a polar source as seen by a geostationary detector 

estimated by HATS-n. As with earlier examples, the intensity and counting 

statistics of the direct contribution alone is poor, so the scattered contribution 

may be qualitatively compared to the first flight analysis since most of the 

scatters occur in the vicinity of the source. Times of flight after 1000 seconds and 

arrival energies below 10 eV are observed as predicted, with the lower times of 

flight (1000 to 3000 seconds) and higher energies (10 eV down to 1 eV) 

attenuated by the long optical thickness traversed for each contribution. The 

HATS-n output also shows a low intensity (with very poor counting statistics) 

distribution of neutrons arriving at the detector with times of flight as low as one 



 

142 

second and energies as high as 2 MeV. These are due to rare chains of events 

that result in fast neutrons scattering to a location in the atmosphere where they 

have line of sight to the detector in a next-event. In the context of the transport 

problem, these events are not particularly rare in this problem:  any scatter at an 

altitude above 74 km will have line of sight to the detector. 

 
Figure 58:  Intercepted neutron current density at a geostationary detector as a function of 

time-energy computed by HATS-n for a Watt-fission-235 neutron source at 50 km and above 

the north pole. 

The relative standard error (gray dots in Figure 58 and Figure 59) indicate 

the variance for the estimated neutron current density in each bin (shown in 
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green). Relative standard error near 1 indicates large variance (hence poor 

convergence). In this case, the variance is high over much of the range of time 

and energy because the envelope of available neutron energies and times of flight 

at which flights to the detector is limited. As a result, contributions outside this 

envelope result from rare events with appropriately poor counting statistics (thus 

the high relative standard error). Observe the low relative standard error at long 

times of flight and low energies in Figure 58:  This shows the time-energy 

envelope where the population of contributions is high (yielding an estimate with 

lower variance). 
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Figure 59:  Intercepted neutron current density as a function of nadir-azimuth computed by 

HATS-n for a Watt-fission-235 neutron source at 50 km and above the north pole 

geostationary detector. 

Divergence Factor 

The influence of gravity on divergence factor is significant, particularly for 

longer times of flight. In the case of an source-detector geometry with 0aD =  , 

Figure 60, the divergence factor is initially lower (more divergence) for shorter 

times of flight. Gravity causes the adjacent trajectories to spread apart faster 

than just the spatial divergence from the straight-line case. The effect becomes 

pronounced for middle times of flight (5000 to 7000 seconds) and then the 
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divergence factor begins to increase until it becomes larger than the straight line 

case for the longest times of flight. This is a result of the change in direction of 

incidence that influences the effective area of the detector. As in the discussion of 

divergence factor from relative motions, this increase in effective detector area 

was due to the incidence angle approaching perpendicular. In this case, the 

increase in effective area is a result of the turning of the neutron trajectory as it 

approaches the rendezvous and the closing speed of the neutron with the detector 

becomes small. The increase in effective area of the detector greatly reduces the 

divergence at the longest times of flight. 

 
Figure 60:  Divergence factor as a function of time of flight from a source at 50 km and 45ºN 

to a detector at 0aD =   with and without gravity. 
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Optical Thickness Through the Atmosphere 

 For a given source-detector geometry, the rendezvous trajectories found 

with and without gravity have different emission zeniths resulting in wide 

variation in effective path length through the atmosphere. Figure 61 shows the 

EPL through the atmosphere to meet a setting detector, with 83aD =  , from a 

source at 50 km and 45ºN. For shorter times of flight, the EPL initially remains 

close to the EPL for the no-gravity intercept. However, as the emission zenith of 

the orbital trajectory to intercept increases, as shown in Figure 62, the effective 

path length then falls off for longer times of flight. In general, for longer times of 

flight on orbital intercepts, the required emission zenith is closer to vertical. This 

results in a shorter effective path length, hence less attenuation and larger 

contributions in these late-time bins at the detector. 

 
Figure 61:  Effective path length as a function of time of flight from a source at 50 km and 

45ºN to a detector at 83aD =   and setting at time of emission with and without 

consideration of gravity. 
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Figure 62:  Zenith cosine as a function of time of flight from a source at 50 km and 45ºN to a 

detector at 83aD =   and setting at time of emission with and without consideration of 

gravity. 

An Example of Combined Influence:  Detector Motion and Gravity 

With insight from exploration of the special features investigated during 

this research, it is informative to observe some of the changes visible in the 

results from a run of HATS-n for a simple problem geometry. For this example, 

limit consideration of special features of the problem to detector motion and 

gravity. Figure 63 and Figure 66 show the results from the HATS-n code for a 

Watt-fission-235 source at 50 km and 45ºN with a detector at 0aD =   at the 

time of emission. Initially, HATS-n was run with stationary detector and no-

gravity approximations (blue), followed by a geostationary detector and no-

gravity (yellow). The final calculation was made using a geostationary detector 

and including gravity in the calculation of neutron flights (green). 
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The time-energy distributions seen by the detector, Figure 63, show little 

variation (or at least variation small enough to be hidden by the scale of the 

plot) for short times of flight and high energies. When looking at the results of 

the transport calculation in this context (this geometry on these scales), the 

effects of relative motions and gravity are visible, and quite pronounced, for times 

of flight longer than 1000 seconds and arrival energies less than 10 eV. 

Initially, compare the no-gravity stationary detector and geostationary 

detector cases (blue and yellow). At times of flight longer than 10,000 seconds 

the intensity of contributions as seen by the detector falls off rapidly with the 

addition of detector motion. Since, in this particular geometry, the detector has 

passed its point of closest approach at meridian passage a neutron must have 

sufficient speed to close the distance with the detector as the distance to the 

detector increases with time of flight. For times of flight greater than 10,000 

seconds, the population of neutrons meeting these criteria falls off rapidly. 

However, recall from the discussion of relative motions that many of these long 

time of flight intercepts computed by HATS-n result from neutrons with 

insufficient energy to reach geostationary altitude should gravity be taken into 

account. If the HATS-n model were to account for this, the sharp drop in 

contribution intensity would shift from time of flight of 10,000 seconds back to 

approximately 1,000 seconds. 

Next, consider the HATS-n estimate including both detector motion and 

gravity (green). At long times of flight, there is a decrease in the intensity of 
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contributions as seen by the detector. This is attributed to the influence of the 

divergence factor and effective path length to the detector for these intercept 

trajectories. Figure 64 shows that for times of flight less than 10,000 seconds and 

arrival energies greater than 0.1 eV, the divergence factor is small reducing the 

magnitude of contributions. For times of flight greater than 10,000 seconds and 

arrival energies below 0.1 eV the divergence factor increases due to increasing 

effective area of the detector at intercept and the magnitude of contributions 

recovers. The change in magnitude of the accumulated histories is visible in the 

HATS-n output, but distorted by the competing influence of effective path length 

on the trajectories resulting in these contributions. Figure 65 shows that for times 

of flight longer than 1,000 seconds and arrival energies less than 1 eV the 

effective path length through the atmosphere for the trajectory that includes the 

consideration of gravity is shorter resulting in a larger contribution at the 

detector due to less attenuation in the atmosphere. 
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Figure 63:  HATS-n time-energy distribution of contributions from a Watt-fission-235 source 

at 50 km and 45ºN to stationary and geostationary detectors at 0aD =   at time of 

emission without gravity and geostationary detector with gravity. 

 
Figure 64:  Divergence factor as a function of time of flight and arrival energy from a source 

at 50 km and 45ºN to a geostationary detector at 0aD =   at time of emission with and 

without gravity. 
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Figure 65:  Effective path length as a function of time of flight and arrival energy from a 

source at 50 km and 45ºN to an overhead geostationary detector at 0aD =   at time of 

emission with and without gravity. 

 
Figure 66:  HATS-n nadir-azimuth distribution of contributions from a Watt-fission-235 

source at 50 km and 45ºN to overhead stationary and geostationary detectors at 0aD =   

at time of emission without gravity and geostationary detector with gravity. 
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Fidelity of the Atmosphere Model 

Continuous vs Discrete Representation 

Consider a path from the surface of the earth straight up to 86 km. The 

EPL in this limiting vertical case is simply 
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A combinatorial-geometry approach would model the atmosphere as a set of 

concentric annuli (e.g., n  uniformly-spaced shells in each atmospheric layer) with 

uniform density. If the uniform density in each shell is chosen to be equal to the 

density at the center altitude of the layer, this is effectively a composite midpoint 

approximation to the integral, but only in this vertical case ( 1z =  ) 

The EPL by this approximation through any layer is 
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where bZD  is the geometric thickness of the atmospheric layer, n  is the number 

of concentric shells of uniform density, and each iz  is the altitude at the 

geometric middle of a shell. The precision achieved by this approximation for a 

vertical path is shown below for various values of n . Also plotted is the precision 

achieved by application of a Gauss-Legendre n -point quadrature on the full 

thickness of each layer. 
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Figure 67:  Precision achieved in effective path length computed using discrete constant-

density cells (midpoint quadrature) and continuous full layer quadrature (Gauss-Legendre) for 

vertical paths. 

Six digits of precision is achieved in the many-shelled model with 512 shells 

per layer (3584 shells for the 7 layers of the atmosphere model from the surface 

up to 86 km), whereas six digits are obtained by application of just one 5-point 

Gauss-Legendre quadrature in each layer. 

Note that this comparison is for a full-thickness effective path length. In the 

case that the path length is not full thickness (the actual application of the 

model), the many-shelled representation applies an effectively coarser 

approximation on the shorter path (although without requiring new evaluations 

of the density function) resulting in degraded precision. The approach of treating 

each layer continuously is easily extended to partial layers without degrading 

precision (but requires evaluation of the density function at each quadrature 

point for Gauss-Legendre). 
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For an other than vertical path (still from the surface to 86 km altitude), 

the effective path length is 
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and the many-shelled approximation is 
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Performance is degraded by the shape of /ds dz . This is more easily seen by 

considering the integral with respect to s, because it has the same integrand as in 

the vertical case. However, if 1z < , the curvature of the path puts more of the 

path below the center altitude than above it. To have composite midpoint, the 

density would have to be evaluated at the center of the s interval along the path 

through each annulus. This is impractical, so that the quadrature loses the 

accuracy of a midpoint method. The local truncation error of midpoint 

quadrature is third order, so that the composite quadrature with fixed limits of 

integration has order 21 / n  convergence as the grid is refined. However, with the 

integrand evaluated at off-center points, the local truncation error is only second-

order This means that the composite quadrature has order 1/n convergence as 

the mesh is refined. The closer the path is to horizontal, the farther the 

evaluation points are from the center (in s), and the greater the error. 
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To show this, Figure 68 adds the precision achieved for various values of n  

on horizontal ( 0 0z = ) and nearly horizontal ( 0 0.07z = ) paths. Note the 

significant degradation in precision for the many-shelled approach from the 

vertical case. Note that the continuous layer approach using Gauss-Legendre 

maintains precision because its local truncation error is tenth order. It is 

adequate for 0 0.07z ³  because it captures the shape of the integrand factor 

/ds dz . However, that factor is singular at 0z =  for 0z = , requiring another 

approach for 0.07z < . 

 
Figure 68:  Precision achieved in effective path length computed using discrete constant-

density cells and continuous-density full layer Gauss-Legendre quadrature for vertical and 

horizontal paths. 

However, note the degraded performance of the Gauss-Legendre quadrature 

for small 0z . In this case ( 0 0.07z £ ), the effective path length may be evaluated 

using the formulation from its definition in (47): 
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Evaluation of this integral incurs higher computational cost than the formulation 

integrating over z  (mainly because the values of the density function cannot be 

precomputed), but preserves precision for small 0z .  

Figure 69 adds the precision achieved for other values of 0z  ( 0 0.0001z =  

and 0 0.001z = ) and the better conditioned formula for small 0z . The cases for 

vertical and horizontal bound the effect. 

 
Figure 69:  Precision achieved in effective path length computed using discrete constant-

density cells and continuous-density full-layer Gauss-Legendre quadrature for vertical, 

horizontal, and nearly horizontal paths. 

High Altitude Atmosphere 

The EPL on a vertical path from 86 to 1000 km (the top of the turbulently 

mixed portion of USSA-76) is equivalent to a path length of approximately 3.2 
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centimeters through sea-level density atmosphere. For a sense of scale at higher 

altitude, this is approximately equal to a vertical path in the final four kilometers 

of the atmosphere up to 86 km. 

Effective Path Length 

The EPL as a function of zenith cosine 0z  for various starting altitudes to 

the top of the extended atmosphere is shown in Figure 70. Except for the 

extended scale, and addition of higher starting altitudes, this figure is not visibly 

different from the effective path length plotted without the extended atmosphere 

in Figure 9. The symmetric relative difference in effective path length when 

ignoring the extended atmosphere is shown in Figure 71 for paths beginning at 86 

km and below. 

 
Figure 70:  Effective path length to the top of the extended atmosphere (1000 km) for various 

starting altitudes. 
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Figure 71:  Symmetric relative difference when including the extended atmosphere in effective 

path length to the top of the extended atmosphere (1000 km) for starting altitudes 86 km and 

below. 

Spatial Distribution of Scatters 

The spatial distribution of scatters changes with the extension of the 

atmosphere model, but due to the highly rarified atmosphere at these altitudes, 

the probability of scatters occurring in this region is small. Further, for a distant 

detector (e.g. a detector in geostationary orbit), the change in the size of the view 

of the earth due the additional thickness of the extended atmosphere is also 

small. 

Atmospheric Constituents 

Relative error in total interaction cross section for the atmosphere is shown 

in Figure 72. Across the full range of energies, five good digits in the total cross 

section for the atmosphere is achieved by including the eight most abundant 
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isotopes in the atmosphere from Table 4. Note that the SRD increases upon 

addition of the sixth atmospheric constituent (12C). This is due to the larger 

relative cross section of 12C relative to the other constituents (being added to the 

model in order of abundance, not in order of increasing interaction cross section). 

This presents an interesting dilemma for the choice of constituents for the 

atmosphere representation:  While a particular constituent may be more rare 

than others, its contribution to the total interaction cross section for the 

atmosphere could be of a greater magnitude (and vice versa). 

 
Figure 72:  Relative error in total atmospheric cross section for various numbers of included 

atmospheric constituents. 
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X. Summary 

Relative Motions 

The influence of relative motions on the problem is considerable and the 

changes required to include it in the transport calculations are not trivial. 

Detector motion requires a new procedure to solve the rendezvous problem, and 

the properties of any neutron rendezvous with the detector are influenced. Figure 

73 shows the symmetric relative difference as a function of time of flight for the 

properties of neutron rendezvous (emission energy, arrival energy, emission zenith 

cosine, arrival nadir cosine, divergence factor, and effective path length) with and 

without detector motion. The SRD generally increases, for all the properties of 

the rendezvous, with increasing time of flight to the detector. Accounting for 

detector motion also introduces the possibility that a clear line of sight to the 

detector becomes obstructed by the earth (or vice versa) during the time scale of 

the problem. This introduces two special cases not accounted for when motion of 

the detector is ignored:  The rising detector with obstructed line of sight at time 

of emission that comes into view during the time scale of the problem, and the 

setting detector with clear line of sight at time of emission that drops out of view 

during the time scale of the problem. 
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Figure 73:  Symmetric relative difference (SRD) in properties of neutron rendezvous as a 

function of time of flight to a geostationary detector with and without detector motion 

(without gravity) for source-detector orientations with line of sight. 

Calculation of the divergence factor is changed to account for motion of the 

emission location (velocity of the source at the moment of emission or of the 

center of mass in a scatter) which changes the effective distance from the 

emission to the detector and motion of the detector which changes the effective 
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area of the detector for the intercept. The calculation of optical thickness along a 

trajectory through the atmosphere is changed because the atmosphere rotates in 

the ECI frame in which the neutron trajectory is fixed. Particles in the transport 

medium (the atmosphere) undergo random thermal motion and bulk motion due 

to rotation of the earth. The influence of random thermal motion on interaction 

cross sections is accounted for by Doppler broadening the cross sections, but also 

contributes variance to the scattering kinetics calculations performed during the 

transport due to the contribution of an atmospheric particle’s kinetic energy to 

the total energy available in the system (that is a scatter). Bulk motion of the 

transport medium is generally smaller than other velocities considered in the 

transport calculation, but is of concern because errors introduced in the path-

length calculations by ignoring it are systematic. Motion of the source is not 

negligible in the context of the air-to-space neutron transport problem and can 

greatly influence the population of low-energy neutrons able (or unable) to 

intercept the detector. This effect is increased by the inclusion of gravity. 

Gravity 

The influence of gravity on the transport problem is profound, especially 

when combined with detector motion; including gravity requires considerable 

procedural changes to the transport calculation. To account for gravity, the 

rendezvous problem is solved using the same procedure as described for the 
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rendezvous problem with detector motion with the exception that each stage of 

the solver includes solving an orbital targeting problem known as Lambert’s 

problem. The rendezvous properties of neutrons intercepting the detector change 

even more considerably when accounting for gravity than when adding motion of 

the detector. Figure 74 shows the symmetric relative difference as a function of 

time of flight for the properties of neutron rendezvous (emission energy, arrival 

energy, emission zenith cosine, arrival nadir cosine, divergence factor, and 

effective path length) with and without gravity. The SRD generally increases, for 

all the properties of the rendezvous, with increasing time of flight to the detector. 

The rendezvous problem is further impacted when accounting for gravity by the 

fact that a clear line of sight to the detector is no longer a requisite to achieve a 

clear flight path to the detector:  With gravity, neutrons may follow orbital 

trajectories around the earth, or over the horizon to intercept a detector that has 

no view of the emission location. Solutions partially or fully ignored by a 

transport calculation that does not account for gravity are the rising and setting 

detector cases, the special setting case with a temporal interruption of a clear 

flight path to the detector, polar and other high latitude sources, and detectors 

on the side of the earth opposite the source. 
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Figure 74:  Symmetric relative difference (SRD) in properties of neutron rendezvous as a 

function of time of flight to a geostationary detector with and without gravity for source-

detector orientations with line of sight. 

As with relative motions, the formulation of the divergence factor changes 

when accounting for gravity. I chose to empirically estimate the divergence factor 

by applying a shooting algorithm as an alternative to direct computation, which 

would require handing the many special geometric and numerically-sensitive cases 
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that arise. The optical thickness through the atmosphere also requires new 

formulations to account for the shape of an orbital trajectory through the 

atmosphere, but the general approach to computing effective path lengths 

remains unchanged except for the new formulae.  

Fidelity of the Atmosphere Model 

Fidelity of the atmosphere model drives both accuracy and overhead 

computational cost of computation for the air-to-space transport problem. It is 

essential to incorporate the continuous variation of the atmosphere density in 

order to compute the required path-length integrals with accuracy and precision. 

Approaches that discretize the atmosphere model into layers of uniform density 

introduce errors in the path-length calculations. The addition of a high-altitude 

atmosphere to the model influences the path-length calculations and the 

geometric distribution of scatters, but these effects are small due to the highly 

rarefied atmosphere at high altitudes. The number of atmospheric constituents 

included in the atmosphere influences the interaction cross sections and the 

kinetics of scatters during the transport calculation. Similar to the influence of 

thermal motion of atmospheric nuclei, the influence on cross sections can be 

accounted for, but the influence of the different scattering kinetics of rare 

atmospheric constituents introduces variance into the result of the transport 

calculation.  
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Radioactive Decay 

The radioactive decay of free neutrons is not negligible on the time scale of 

solutions to air-to-space transport problems. The effect of radioactive decay 

should also not (if possible) be applied to binned estimates as a post-processing 

effect as this introduces discretization error. Given the trivial cost of adjusting 

each computed contribution for radioactive decay between neutron emission and 

rendezvous with the detector, radioactive decay of free neutrons should be 

accounted for at each next-event arrival during the transport calculation.  

Ranges of Influence 

The most profound influences found in the air-to-space neutron transport 

problem result from detector motion and gravity. In general, detector motion and 

gravity have little influence on high energy and short time of flight ranges of the 

transport problem in the context of the time-energy and direction distributions of 

neutrons at the detector. The influence grows, but remains small, for moderate 

energies and middle times of flight. For low energy and long times of flight, the 

influence of relative motions and gravity is profound in both the time-energy and 

direction distributions of neutrons as seen by the detector.  
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Missing Solutions 

In addition to the time-energy and direction distribution ranges over which 

the influence of relative motions and gravity is considerable, the special cases 

introduced (rising & setting detector geometry, temporal interruption of a clear 

flight path, detectors behind the earth, and polar or other high latitude sources) 

demonstrate features of solutions, and even the existence of entire sets of 

solutions, that are lost when the special features of the air-to-space neutron 

transport problem are not included in a transport code. 

Source Velocity 

Additionally, the velocity of the source should always be included in 

transport computations for the air-to-space problem in two ways. (1) Depending 

on the directions of the source velocity and of the emitted neutron velocity, it 

adds or subtracts energy from the emitted neutron (in the ECI frame). Because 

of gravity, this energy determines whether the neutron can reach the detector. 

The energy distribution of emitted neutrons falls rapidly with decreasing energy 

at low energies. Therefore, the population of neutrons able to reach the detector 

becomes dependent on emission direction. (2) The velocity of the source is 

required for the calculation of correct divergence factors for first-flight neutrons 

arriving at the detector With the trivial computational cost of including source 
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motion, there is little justification for its exclusion from any model for the air-to-

space neutron transport problem.  

Special Features Contributing Variance 

When conducting a Monte Carlo study of a given problem, it is not only 

the expectation value that is of interest, but also the variance of the estimate 

obtained by the simulation. The variance in the estimate can be attributed to 

two general sources:  First, simulation variance, or variance as a result of the 

Monte Carlo process of sampling a finite number of histories to estimate the 

behavior of a system. Second, and relevant to this discussion, is physical variance 

or variance introduced to the estimate because physical processes modeled in the 

simulation themselves have variance. Two of the special features of the air-to-

space transport problem that were investigated during this research fall into this 

category:  The effect of thermal motion of particles in the atmosphere and the 

effect of rare atmospheric constituents on scattering kinematics. The influence of 

thermal motion and rare atmospheric constituents on the expectation value 

estimated by a Monte Carlo simulation of the air-to-space neutron transport 

problem is small. However, if the variance of the estimate is of interest (for study 

or if a specific certainty needs to be achieved), these features need to be included 

in the simulation to fully characterize the variance of any estimate obtained. 
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The HATS-n Code 

The High-Altitude Neutrons to Space (HATS-n) code developed in support 

of this research is a well-designed and appropriately targeted tool for continuing 

investigation of the air-to-space neutron transport problem. It is important to 

remember that when considering this class of problems, approaches that 

discretize the atmosphere into constant-density cells should be avoided. These 

approaches introduce high computational overhead (for raytracing) by 

complicating the otherwise trivial problem geometry and introduce considerable 

error in the evaluation of density integrals through the atmosphere to determine 

optical thickness. While codes like HATS-n and HASTEN may not be 

appropriate for all research questions posed for the air-to-space class of problems, 

it is the opinion of the author that at the time of this writing, there are no other 

codes or tool available to the transport community that perform adequately in 

accuracy, precision, or computational speed for the air-to-space neutron transport 

class of problems. 
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XI. Conclusions 

The objective of this research was to identify, characterize, and quantify 

influences of the special features of the air-to-space neutron transport problem to 

provide information on features that should be included in a Monte Carlo 

simulation to enhance fidelity for yet-to-be-specified applications. A secondary 

goal was to demonstrate the influence of these special features in the context of a 

Monte Carlo code. The research objectives were met. Special features in the areas 

of relative motions, gravity, and fidelity of the atmosphere model were identified 

and described, and then investigate to the extent necessary to quantify them or 

add them to the HATS-n code product. Considerable effort was spent developing 

well-conditioned and efficient methods for solving various portions of the 

problem, both in the context of the special features and the context of the air-to-

space problem as a whole.  

The special features of the air-to-space neutron transport problem 

investigated and demonstrated during this research have considerable influence 

on the transport calculations required for analysis of the problem. Some 

influences (detector motion, gravity) introduce additional, sometimes 

considerable, computational effort and complexity to the otherwise simple process 

for the Monte Carlo estimator for neutron current as seen by a satellite-based 

detector. However, the influence of these features is such that they need to be 

included as part of the baseline set of assumptions to the problem (in contrast to 
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the traditional set of neutron transport assumptions in which they are ignored). 

Should a transport problem be posed in which only high energy and early time 

neutrons are of interest, it is possible that increased computational speed could 

be a suitable justification for neglecting the effects of detector motion and 

gravity. However, for the general class of air-to-space neutron transport 

problems, the range of neutron energies and times of flight is such that the effects 

of the special features of the problem (detector motion and gravity included) 

cannot be ignored. 

Other special features of the problem, such as source motion and 

radioactive decay of free neutrons, may or may not have a significant influence 

on the problem (depending on the energy and time scales to which the problem is 

restricted), but the computational cost of including these features is so trivial 

that any effort invested in justifying their inclusion is simply wasted. Similarly, 

thermal motion of atmospheric nuclei and rare atmospheric constituents influence 

the variance of any estimate obtained from the simulation at a largely trivial 

computational cost. In most cases, the variance of any estimate obtained via a 

Monte Carlo simulation is of interest, so these features should also be included. 

Finally, the accuracy, precision, and computational efficiency of the calculation of 

path-length integrals is a cornerstone of any Monte Carlo approach to the air-to-

space neutron transport problem. These integrals are not adequately 

approximated by approaches that discretize the atmosphere into layers of 

uniform density. Any approach to the air-to-space neutron transport problem 
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should treat the variation of atmospheric properties with altitude continuously. 

This results in both more correct and more computationally-efficient calculation 

of the path-length integrals.  
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Appendix A. Overview of the HATS-n Code 

The HATS-n code is a purpose-built Monte Carlo code written in modern 

Fortran to simulate the transport of neutrons from a source in the atmosphere to 

a distant detector in space. The HATS-n code was initially a branch of the 

HASTEN code developed by Professor Kirk Mathews at AFIT. The HASTEN 

code is a research tool developed to test various flux-at-a-point estimators in the 

context of the air-to-space neutron transport problem. 

Commonality with HASTEN 

Although initially developed as a branch of the HASTEN project, the 

current HATS-n shares very little code with the original HASTEN. The main 

program and other routines for executing neutron histories and accumulating 

results is largely common between the projects (although no effort has been made 

to maintain commonality, so the similarities are largely procedural rather than 

actual interchangeable code), as well as some of the low-level support routines 

and modules. However, the majority of the code required to perform any step 

within a neutron history has been revised or replaced to account for the special 

features of the problem explored during the course of this research. Additionally, 

significant revisions were made throughout the common and revised code 

targeting implementation on massively parallel architectures. 
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Target Architecture 

The HATS-n Fortran code is targeted for implementation on a massively 

parallel shared memory architecture:  Specifically the Intel® Xeon PhiTM x100 

series of coprocessors as a natively executed coarray Fortran application. The 

available computing hardware for development and testing was an Intel® Xeon 

PhiTM x100 31S1P coprocessor capable of hosting 228 parallel images with 8 

gigabytes of shared memory. This imposes a memory limit of approximately 30 

megabytes per image during execution (in general, small for a neutral particle 

transport simulation). The memory limit could be relaxed with incorporation of 

shared variables, but tuning of parallel performance of the application was not 

pursued in this research. The memory footprint of the code was reduced by using 

variable length lists in place of large arrays and by storing minimally processed 

cross section data. The trade for the small memory footprint is increased 

overhead in list management and the computational cost of interpolating and 

reconstructing interaction cross sections throughout the simulation. 

Program synchronization and data sharing is implemented as a single 

program multiple data (SPMD) approach of fully independent program images 

with no shared variables during the generation of histories. Shared problem setup 

data is distributed to each image during the setup phase of the program. Each 

image then runs an assigned number of neutron histories and writes the raw 

results to disk. Once all images have completed the assigned work, a single image 

merges, processes, and outputs the results from the entire set of images. 
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Modules and Descriptions 

1. HASTE DRIVER:  Main program. Manages setup, running histories, 

and processing results as well as synchronization and sharing during 

SPMD execution. 

2. Results:  Contains routines for reading/writing raw image tallies and 

results, merging individual image results, and writing final results to 

file. 

3. MC Neutron:  Contains routines necessary for execution of a single 

neutron history:  emission, raytracing, scattering, next-event 

estimation, and killing. Contains type definition for collection of 

variables defining a neutron in the phase space. 

4. Find Trajectory:  Routines for determining a trajectory from an 

emission point to a detector. Depending on problem setup inputs, 

solves the rendezvous problem ignoring or accounting for gravity and 

ignoring or accounting for relative motions. 

5. Detectors:  Contains routines for definition and setup of the detector 

object, as well as receiving and recording of tallies in the detector 

grid. 

6. Tallies:  Contains routines for definition, setup, and management of 

the time-energy-direction grid that is part of a detector object. 

7. Neutron Scatter:  Routines for sampling or setting properties of 

neutron interactions, computing per- and post- scatter quantities. 

Also contains type definitions for collections of variables defining the 

scatter model and next interaction properties. 

8. Target Motion:  Contains routines for sampling the velocity of the 

target particle due to thermal motion and combining with rotational 

atmosphere and wind velocities. 

9. Path Lengths:  Routines for tracing the geometry and optical 

thickness of rays through the atmosphere:  point and altitude of 
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closest approach, distance to edge of the scattering medium, effective 

path length (with and without gravity), and line of sight checks. 

10. Satellite Motion:  Routines used by detector object to determine 

position and velocity of the detector given simulation time. 

11. Divergence:  Routines to compute divergence factor (with and 

without gravity) accounting for relative motion of the emission point 

and the detector during the flight of a neutron from emission to the 

detector. 

12. Astro Utilities:  Contains routines for astrodynamics calculations for 

determining properties of orbital trajectories and solving orbit 

propagation (Kepler’s) and orbit determination (Lambert’s) 

problems. 

13. Setups:  Routines for reading and processing estimator input and 

problem definitions. 

14. Sources:  Contains routines for definition and setup of the neutron 

source object, as well as distributions and sampling of emission 

energies. 

15. Random Directions:  Routines for sampling scattered directions and 

determining the constrained scattering angles to achieve rendezvous 

trajectories. 

16. Cross Sections:  Routines and type definitions for reading and storing 

raw ENDF cross section data. Routines for reconstructing pointwise 

cold or broadened cross sections given energy of the incident neutron 

and temperature of the scattering medium. 

17. Neutron Utilities:  Routines for computing properties of the neutron 

in the phase space. 

18. Atmospheres:  Interface routines to make atmospheric properties of a 

continuous atmosphere model available to other modules. Also 

contains type definitions and setup routines for the atmosphere 

object and generic atmosphere models (isothermal-exponential, 

linear, uniform). 
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19. Statistics:  Statistics routines for processing tallies into results. 

20. Global:  Contains fundamental and derived constants used 

throughout the code. 

21. US Std Atm 1976:  Routines and functions to compute temperature, 

pressure, density, and composition as functions of altitude according 

to the 1976 U.S. Standard Atmosphere. 

22. Interpolation:  Interpolation routines mainly used in interpolating 

ENDF cross sections (linear-linear, linear-log, log-linear, log-log, 

histogram). 

23. Legendre Utilities:  Routines for evaluation of Legendre expansion 

angular distributions for scattered directions. 

24. Sorting:  Routines for sorting lists. 

25. Random Numbers:  Random number generators, specifically from the 

Intel® Math Kernel Library™ (MKL). Provides faster generators 

with better properties than the intrinsic random number generators, 

as well as a selection of independent random number generators 

specifically designed for parallel applications. 

26. FileIO Utilities:  Support routines for creating, modifying, deleting 

files and folders and/or dumping and reading variables to/from 

unformatted files. 

27. Utilities:  Support routines performing general mathematical or 

commonly used computational tasks (quadratic roots, cross products, 

vector length, bisection search, etc.) 

28. Kinds:  Contains parameter definitions for Fortran kind selections for 

consistent typing (single, double, quad, etc.) of Reals and Integers. 
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Appendix B. Summary of U.S. Standard Atmosphere 1976 

The relevant information, equations, and data from the 1976 U.S. Standard 

Atmosphere (NOAA, NASA, USAF, 1976) are reviewed here for easy reference 

and also to document minor changes and assumptions in the implementation of 

the model for application to the transport problem. Further, relevant tables and 

plots are reproduced (in part or in whole) to provide a local reference and 

verification of interpretation because of poor readability in the original reference. 

Relevant physical constants used in the model are listed in Table 5. Values of the 

constants listed in Table 5 may have been refined since the publication of the 

atmosphere model, but the original values are used (for implementation of the 

atmosphere model) to maintain consistency with the original publication. 

Further, only the portions of the model are included which are required to 

compute atmospheric temperature, density, and fractional composition as a 

function of altitude as these are the only relevant quantities for the scope of the 

research problem. 
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Table 5:  Physical constants for 1976 U.S. Standard Atmosphere. (NOAA, NASA, USAF, 

1976, pp. 3-6) 

Constant Symbol Value 

earth radius RÅ  6356.766 km 

Acceleration due to 

gravity at sea level 
0g   9.80665 m/s2 

Gas constant *R  8.31432×103 N⋅m/(kmol⋅K) 

Mean molecular weight 

of sea level air 0M   28.9644 kg/kmol 

Avogadro constant AN  6.022169×1026 kmol-1 

 

Sea Level to 86 kilometers 

Below 86 km, the atmosphere is divided into seven layers in which the scale 

is considered by geopotential height instead of geometric altitude. Geopotential 

height H  is related to geometric altitude Z  by 

 
R Z

H
R Z

Å

Å
=

+
  (79) 

(NOAA, NASA, USAF, 1976, p. 8). For geometric altitude expressed in 

kilometers (km), the corresponding geopotential height has units of kilometers¢ 

(km¢).  

Temperature 

The molecular temperature of the atmosphere in each layer is given by 
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 ( )( )( ) ( )M b b bT H f Z T L H H= + -   (80) 

where bT  is the temperature at the base of the layer, bL  is the lapse rate, bH  is 

the geopotential height at the base of the layer, and 

 ( )( ) ( )0 0
1 1

1

( ) 1 2 2M i i
i i

M Mf Z Z Z Z Z
M M- -

-

æ ö æ ö÷ ÷ç ç= - - + -÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
  (81) 

is the interpolated ratio of atmosphere mean molecular weight at sea level to the 

mean molecular weight at the geometric altitude Z  corresponding to geopotential 

height H   (NOAA, NASA, USAF, 1976, pp. 9-10). Values for bT , bL , and bH  

are listed in Table 6. Values for iZ  and 0( / )iM M  on which to interpolate for 

Mf  are listed in Table 7. The molecular temperature from sea level to 86 km 

geometric altitude is plotted in Figure 75. 

Table 6:  Reference levels and temperature lapse rates (NOAA, NASA, USAF, 1976, p. 3), 

and computed base temperatures and pressures from the surface to 86 geometric kilometers. 

Sub-

script 

b  

Geopotential 

Height (km¢) 

bH  

Lapse Rate 

(K/km¢) 

bL  

Base Temp 

(K) 

bT  

Base Pressure 

(N/m2) 

bP  

0 0 -6.5 288.15 101325 

1 11  0.0 216.65 22632.0336239 

2 20  1.0 216.65  5474.87437676 

3 32  2.8 228.65  868.014988511 

4 47  0.0 270.65  110.905629144 

5 51 -2.8 270.65   66.9384346264 

6 71 -2.0 214.65   3.9563844998 
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Table 7:  Molecular weight ratio for various geopotential heights and geometric altitudes. 

(NOAA, NASA, USAF, 1976, p. 9) 

Geometric 

Altitude (km) 

iZ   

0

i

M
M

æ ö÷ç ÷ç ÷÷çè ø
 

≤ 80.0 1.000000 

80.5 0.999996 

81.0 0.999989 

81.5 0.999971 

82.0 0.999941 

82.5 0.999909 

83.0 0.999870 

83.5 0.999829 

84.0 0.999786 

84.5 0.999741 

85.0 0.999694 

85.5 0.999641 

86.0  0.9995788 
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Figure 75:  Temperature as a function of geometric altitude below 86 km. 

Density 

The atmospheric pressure (necessary for computing density) in each layer is 

 
( )

0 0

0 0

0
( )

( )

0

b

b

b

g M

R Lb
b b

g M H H

R T
b b

T
P L

T H
P H

Pe L

*

*

æ ö÷¢ç ÷ç ÷ç ÷ç ÷ç ÷çè ø

æ ö¢ - ÷ç ÷ç ÷-ç ÷ç ÷ç ÷çè ø

ìïïï æ öï ÷çï ÷ ¹çï ÷çï ÷çè øï= íïïïïïï =ïïî

  (82) 

where bP  is the pressure at the base of the layer (NOAA, NASA, USAF, 1976, p. 

12). Computed values for bP  are listed in Table 6. The atmospheric pressure 

from sea level to 86 km geometric altitude is plotted in Figure 76. 
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Figure 76:  Atmospheric pressure as a function of geometric altitude below 86 km. 

The atmospheric density may then be computed by 

 0 ( )
( )

( )

M P H
H

T HR
r

*
=   (83) 

(NOAA, NASA, USAF, 1976, p. 15). The atmospheric pressure from sea level to 

86 km geometric altitude is plotted in Figure 77. 
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Figure 77:  Atmospheric density as a function of geometric altitude below 86 km. 

Composition 

Below 86 km geometric altitude, the atmosphere may be considered 

homogeneously mixed with relative fractions of constituents constant from sea 

level as listed in Table 8 (NOAA, NASA, USAF, 1976, p. 3). 



 

185 

Table 8:  Molecular weights and fractional volumes for constituents of sea level atmosphere. 

(NOAA, NASA, USAF, 1976, p. 3) 

Species 

Molecular Weight 

(kg/kmol) 

 

Fractional 

Volume 

iF  

N2  28.0134 0.78084 

O2  31.9988  0.209476 

Ar  39.948 0.00934 

CO2  44.00995  0.000314 

Ne  20.183  0.00001818 

He  4.0026  0.00000524 

Kr 83.80  0.00000114 

Xe 131.30  0.000000087 

CH4  16.04303  0.000002 

H2  2.01594  0.0000005 

 

Above 86 kilometers 

Above 86 km geometric altitude, the atmosphere is modeled in five main 

layers scaled by geometric altitude. 

Temperature 

Atmospheric temperature as a function of geometric altitude above 86 km is 

given by 
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where 
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(NOAA, NASA, USAF, 1976, pp. 10-11). Values for bT , bL , and bZ  are listed in 

Table 9. The atmospheric temperature from sea level to 500 km geometric 

altitude is plotted in Figure 78. 

The derivative of temperature with respect to geometric altitude will also be 

required to compute number densities of species for the density calculations that 

follow 
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  (85) 

(NOAA, NASA, USAF, 1976, pp. 10-11). 

Table 9:  Reference levels, function designations, and base temperatures for the atmosphere 

above 86 km geometric altitude (NOAA, NASA, USAF, 1976, p. 4) 

Sub-

script 

b  

Geometric 

Altitude (km) 

bZ  

Lapse Rate 

(K/km) 

bL  

Functional 

Form 

Base Temp 

(K) 

bT  

7 86 0.0 linear 186.867167 

8 91 ---- elliptical 186.867167 

9 110 12.0 linear 240 

10 120 ---- exponential 360 

11 500 ----  999.235602 

12 1000 ----  1000 

 



 

188 

 
Figure 78:  Temperature as a function of geometric altitude up to 500 km. 

Density 

Atmospheric density above 86 km geometric altitude is  

 
( )

( ) i i

A

M n Z
Z

N
r = å

  (86) 

where iM  is the molecular weight of the i -th species and ( )in Z  is the number 

density of the i -th species at geometric altitude Z   (NOAA, NASA, USAF, 

1976, p. 15). Values for iM  are listed in Table 10. 
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Table 10:  Molecular weights and reference number densities for atmospheric constituents 

above 86 km geometric altitude. (NOAA, NASA, USAF, 1976, p. 13) 

Sub-

script 

i  

Species 

Molecular Weight 

(kg/kmol) 

iM  

Reference (Z = 86 km) 

Number Density (m-3) 

86
in  

Background 

gas count 

ik   

1 N2  28.0134 1.129794×1020 1 

2 O  15.9994 8.6 ×1016 1 

3 O2  31.9988 3.030898×1019 1 

4 Ar 39.948 1.351400×1018 3 

5 He  4.0026  7.5817 ×1014 * 3 

6 H  1.00794 500
6n =  8.0×1010 5 

* This value is incorrectly listed as 7.5817×1010 in Table 9 of the U.S. Standard Atmosphere 1976 

publication (NOAA, NASA, USAF, 1976, p. 13). The value used here was chosen to agree with 

plotted and tabulated data from the same reference and confirmed in Table 2 of (NASA, 1976, p. 

10) which is the source document for the primary reference for the atmosphere model. 

Values of ( )in Z  for all species except molecular Nitrogen ( 1)i =  and atomic 

Hydrogen ( 6)i =  are computed from 
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 ( ) ( ) ( ) ( )3 3
2 2

( ) i i i iW Z U w u Z
i i i i ih Z Q Z U e q u Z e

- - - -
= - + -   (93) 

and values for ia , ia , ib , iQ , iU , iW , iq , iu , and iw  are listed in Table 11, 

Table 12, and Table 13. For verification purposes, a plot of ( )iD Z  for each 

species is reproduced in Figure 79. 
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Table 11:  Species dependent constants for thermal diffusion and molecular diffusion 

coefficients (NOAA, NASA, USAF, 1976, p. 5). 

Sub-

script 

i  

Species 

 

 

 

 

ia  

 

 

ia  

 

 

ib  

1 N2  0.00 ---- ---- 

2 O  0.00 6.986×1020 0.750 

3 O2  0.00 4.863×1020 0.750 

4 Ar  0.00 4.487×1020 0.870 

5 He -0.40 1.700×1021 0.691 

6 H -0.25 3.305×1021 0.500 

Table 12:  Species dependent coefficients for empirical expression of flux term for computing 

number density (NOAA, NASA, USAF, 1976, p. 5). 

Sub-

script 

i  

Species 

 

 

iQ  iU  iW  

2 O -5.809644×10-4 56.90311 2.706240×10-5 

3 O2  1.366212×10-4 86.000 8.333333×10-5 

4 Ar  9.434079×10-5 86.000 8.333333×10-5 

5 He -2.457369×10-4 86.000 6.666667×10-4 

Table 13:  Additional species dependent coefficients for empirical expression of flux term for 

computing number density (NOAA, NASA, USAF, 1976, p. 5). 

Sub-

script 

i  

Species 

 

 

 

 

iq  

 

 

iu  

 

 

iw  

2 O 
-3.416248×10-3 86 97Z£ £  

97.0 5.008765×10-4 
0.0 97Z >  
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Figure 79:  Eddy diffusion (K) and molecular diffusion (O1, O2, Ar, He, H1) coefficients as a 

function of geometric altitude. 

Beginning with molecular Nitrogen ( 1)i = , (87) is reduced to 

 7

( ) ( )

86 * ( )7
1 1( )

( )

Z i
Z

M Z g Z
dZ

R T ZT
n Z n e

T Z

-ò
=   (94) 

after applying assumptions and approximations from (NOAA, NASA, USAF, 

1976, p. 13). Number densities of atomic and molecular Oxygen ( 2, 3)i =  may 

then be computed using (87) and the number density of molecular Nitrogen, 

followed by Argon and Helium ( 4,5)i =  using (87) and the accumulated number 

densities of molecular Nitrogen, and atomic and molecular Oxygen (NOAA, 

NASA, USAF, 1976, pp. 13-14). Finally, the number density for atomic Hydrogen 

( 6)i =  is 
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and f  is the vertical flux of atomic Hydrogen (7.2×1011 m-2⋅s-1) (NOAA, NASA, 

USAF, 1976, p. 14). Computed number densities for all species as a function of 

geometric altitude are plotted in Figure 80. 
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Figure 80:  Number density of individual species and total number density as a function of 

geometric altitude. Reproduces Fig. 5 from (NOAA, NASA, USAF, 1976, p. 13). 

Evaluating (86) using the appropriate combinations of (87) through (97), 

the atmospheric density up to 1000 km is plotted in Figure 81. 
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Figure 81:  Atmospheric density as a function of geometric altitude above 86 km. 

Composition 

The relative fractional composition of any species i  at geometric altitude Z  

above 86 km is 

 
( )

( ) .
( )

i
i

j

n Z
F Z

n Z
=
å

  (98) 

A Note on Implementation Above 86 km 

The calculation of density and composition for the atmosphere above 86 km 

takes considerable effort. The difficulty is in the series of diffusion problems 

required to compute the number density of each species. Equation (94) is 

evaluated for the number density of Nitrogen, but the follow calculations for both 
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molecular and atomic Oxygen use the number density of nitrogen as a 

background gas for the diffusion problem solved by evaluation of (87):  

Evaluation of (87) by numerical quadrature requires evaluation of (94) at each 

quadrature point. The computational effort progresses geometrically for Argon 

and Helium which use Nitrogen and both species of Oxygen as the background 

gas for the diffusion problem:  Evaluation of (87) requires a separate evaluation 

of itself for each species of Oxygen, each requiring evaluation of (94)… and so on 

and so forth. The computational effort for even a single number density of 

Hydrogen is considerable. It is possible to craft the implementation to avoid 

duplication of effort at the cost of an ever-increasingly complex code structure, 

but the computational cost of directly computing the number density of species 

in the atmosphere remains considerable no matter how clever and devious the 

code designer may be. 

To support a Monte Carlo code where the cost of evaluating the 

atmospheric density function may drive simulation time, I recommend 

precomputing a table of number densities for each species (much like what was 

used to generate Figure 80) and choosing an appropriate interpolation scheme. 

Interpolation error may be managed by selection of the interpolation method and 

the grid on which number densities are computed and stored, but the slow-down 

of the Monte Carlo code avoided by precomputing a table of number densities.  
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