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Major Goals:  The objective of this research is to model the topological and combinatorial structure of realistic data 
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tracking, and classification tasks. Each data item (for instance, an image of a handwritten digit, or the bounding box 
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collecting many points like these from data recordings.

This effort explored two directions in this framework:

The development of descriptors of data sets based on path metrics, measures of how strongly different data points 
are connected by chains of local transformations.

Methods for describing data similarity in the context of visual tracking, where the local transformations mentioned 
above involve non only similarity of appearance, but also closeness in space and time.

Accomplishments:  Please see uploaded PDF document.

Training Opportunities:  Work under this grant has been developed in collaboration with a graduate student, 
Ergys Ristani, who will use results from his research as part of his PhD thesis defense.

Francesco Solera, a PhD student at the University of Modena and Reggio Emilia, in Italy, has contributed to this 
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Department at Duke.
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Accomplishments

Accomplishments under this effort are described under the two categories of path distances and similarity
measures for visual tracking.

Path Distances

The general trend in describing data collections in current literature is to estimate some “underlying mani-
fold.” The existence of such a manifold is questionable for complex data such as images or video. Instead,
this project starts from the observation that the transformations between nearby data points are often well
understood and domain dependent. For instance, in video, these transformations stem from variations in
shading because of small changes in lighting between one frame and the next; small deformations of de-
formable objects; small variations of appearance because of small camera motions.

The modeling effort then goes into developing models for these transformations. Given a data cloud,
one collects statistics p(T |data) of the transformations T ji between nearby points i and j, and allowed local
transformations are those with high likelihood according to these statistics. A local distance is a suitable
norm ‖T ji ‖ of a local transformation.

Given two dissimilar points, a global distance between them can be computed by considering all chains
of local transformations that connect them. One such chain is called a path. The most likely path can be
computed by dynamic programming if the cost of the path is an associative combination of the local costs
(examples: sum, max):

π̂ = arg max
π∈Paths

∏
T∈π

p(T |data) .

The distance between the two dissimilar points is some statistical summary of the costs of the local trans-
formations on the most likely path:

E

[
f

(⋃
T∈π̂

p(T |data)

)]
.

Such a summary is called a path distance.
In this way, the underlying structure of the data set can be described in terms of path distances rather

than manifolds. Local distances are justified by domain-dependent considerations, and global distances rely
on the tight spatial and temporal spacing between observations in dense data streams such as video.

Most of the work on path distances under the short duration of this grant was devoted to the understand-
ing of local distances in the domain of images of hand-written digits from the MNIST data set [2].

Specifically, local distances for hand-written digits were developed as variants of the Earth Mover’s
Distance (EMD, [5]). Given two images, the EMD first solves a linear program to compute a suitably
constrained flow between the mass distributions represented by the two images, and then measures the work
(distance times mass) involved in the flow.

For hand-written digits, images are first transformed from Cartesian to log-polar coordinates to achieve
rotation and scale invariance.

With the standard formulation of the EMD, the linear program that computes the flow tries to move most
mass as little as possible, and this leaves several points that must undergo a large shift. The resulting flow
is very unnatural (Figure 1 (c)). If the cost charged to moving a unit mass is made proportional to a power
(> 1) of the distance, the flow becomes spatially uniform (Figure 1 (d)). This leads to more natural and
more intuitive distances between digit images.
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(a) (b) (c) (d)

Figure 1: (a, b) Two images of the same hand-written digit that differ by a horizontal shift. (c) The Earth
Mover’s Distance charges cost md to move a mass m by Euclidean distance d. The flow that transforms
one image to the other with minimal work is very unnatural. The size of an arrow tip is proportional to the
distance traveled. (d) Changing the unit cost from d to dr where r = 1 + ε with ε > 0 yields the “natural”
flow.

In particular, the modified distance yields to adequate path distances in the MNIST data set. This is
best illustrated by displaying digits through multi-dimensional scaling [6], which transforms EMD-based
distances to Euclidean distances on the plane. While samples of the digits 0 and 1 appear as jumbled
together with the regular EMD, Figure 2 shows that the new variant, which includes transformation to log-
polar coordinates and a power r = 1.25, gives good separation between the two groups of digits (with a few
exceptions) and this improvement is likely to lead to better recognition and classification algorithms.

Similarity Measures for Visual Tracking

When tracking people in video, it is necessary to determine the similarity or dissimilarity between different
images of people, in order to determine if the two images are of the same person or not. This application
was used as an opportunity to study the extent to which local dissimilarities can be learned, rather than
hand-crafted.

To this end, a large collection of snapshots of people [4], developed by the PI under a previous ARO
grant (W911NF-10-1-0387), was used as a training set, and a so-called triplet loss

L = log(1 + exp(1 + d(a, p)− d(a, n)))

was used to learn the local dissimilarity. In this expression, d is the dissimilarity to be learned, a is a person
snapshot (the “anchor” of the triplet), p is a snapshot of the same person as a, and n is a snapshot of someone
else. The idea of using a triplet loss is that d(a, p) should be consistently smaller, by a margin of 1, than
d(a, n) over all triples of this format.

The proposed approach leverages the idea of PK batches [1] for training, where in each batch there are
K sample images for each of P identities. During a training epoch, each identity is selected in its batch,
and the remaining P − 1 batch identities are sampled at random. K samples for each identity are then also
selected at random. The batch-hard loss [1] can be defined as:
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Figure 2: Top: The standard EMD jumbles ones and zeros together in this rendering through multidimen-
sional scaling. Bottom: The new variant separates the two digits cleanly, with only a couple of exceptions.
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L =

all anchors︷ ︸︸ ︷
P∑
i=1

K∑
a=1

[
1 +

positive pairs︷ ︸︸ ︷
K∑
p=1
p 6=a

w+
i,a,pd(x

i
a, x

i
p)

−
P∑
j=1
j 6=i

K∑
n=1

w−i,a,j,nd(x
i
a, x

j
n)

︸ ︷︷ ︸
negative pairs

]
+

(1)

where the weights are binary:

w+
i,a,p =


1, p = arg max

k=1...K
k 6=a

d(xia, x
i
k)

0, otherwise
(2)

w−i,a,j,n =


1, (j, n) = arg min

l=1...P
l 6=i

k=1...K

d(xia, x
l
k)

0, otherwise

(3)

d denotes Euclidean distance, and [x]+ = ln(1 + ex).
Training with the batch-hard loss on a PK batch is equivalent to training with a triplet loss on a batch

with PK triplets of the structure (xa, xhp, xhn) corresponding to the anchor xa, hardest positive example
xhp and hardest negative example xhn within the batch.

The main improvement made under this grant is on the procedure that selects difficult examples. As the
size of the training set increases, sampling P − 1 identities at random rarely picks the hardest negatives,
keeping batch difficulty to semi-hard. To increase the chances of seeing hard negatives, two sets are con-
structed to sample identities from. The hard identity pool consists of the H most difficult identities given
the anchor, and the random identity pool consists of the remaining identities. Then in a PK batch of an
anchor identity, the remaining P −1 identities are sampled from the hard or random identity pool with equal
probability. This technique samples hard negatives more frequently and yet the batch partially preserves
dataset statistics by drawing random identities.

Equations 2-3 assign full weight to the hardest positive/negative example for each anchor while ignoring
the remaining K − 2 positives and K(P − 1) − 1 negatives. This makes the optimization non-smooth
for challenging/mislabeled datasets or very difficult batches. A second improvement was to define weights
using a softmax/min as follows:

w+
i,a,p =

ed(x
i
a,x

i
p)

K∑
k=1
k 6=a

ed(x
i
a,x

i
k)

, w−i,a,j,n =
e−d(x

i
a,x

j
n)

P∑
l=1
l 6=i

K∑
k=1

e−d(x
i
a,x

l
k)

(4)

The hardest positive/negative samples still dominate the loss, while all other samples of a PK batch
contribute. This modification makes training stable with a minor drop in rank accuracy.
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The TriNet deep neural net of [1] is used for learning appearance features. It consists of a ResNet50
model pre-trained on ImageNet whose pool5 layer is followed by a dense layer with 1024 units and ReLU
activation. Batch normalization and another dense layer follow, embedding the appearance features in Rd
with d = 128.

These dissimilarities are evaluated experimentally by computing the F1 score (harmonic mean of pre-
cision and recall), as well as precision and recall figures obtained on the Duke MTMC data set [4] with a
recent method called BIPCC [3]. See Table 1. Applications of this and related ideas were presented in two
recent publications [4, 7] and in work under review.

F1 Score Precision Recall
BIPCC 54.98 62.67 48.97
Proposed 80.26 83.50 77.25

Table 1: The proposed dissimilarity achieves much higher F1 score, precision, and recall than BIPCC, a
recent state-of-the-art re-identification method [3].
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