
(a)

(b)

(c)

Figure 23. Shown are the two 2D Gaussians fit to the projected image (Orange) and the
reference image (Blue) where Peak 1 (the more intense peak) of the projected image
has been shifted to the same location as Peak 1 of the reference image. Shifting shows
the relative locations of the second peak for both images, indicated by the red ×. The
plot is in 3D with respect to normalized intensity.
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Figure 24. A single line along the z-axis is plotted of the Gaussian fit to the projected
reconstruction data of MOT Three and the reference image. The line goes through
the Peak 2. The reference image has a different intensity scaling than the plenoptic
data and shows that the peak is behind the focal plane and is narrow. The center
reconstruction artifacts result in raising the value of the projected reconstruction near
the center and broadening the peak, increasing the measured optical axis spreading
beyond that of the back projection spreading and also shifting the estimated axial
location toward the center.

Table 3. The calculated lengths of the peaks along the optical axis and back-projection
based estimations of the optical axis lengths given the minor axis of an ellipse fit to
the FWHM data of the standard on-axis image of the atoms.

Image and Peak
Projected Image
Optical Axis Length (µm)

Back-projection Based Esti-
mate of Optical Axis Length
(µm)

MOT One: Peak 1 1960±140 1950±60

MOT One: Peak 2 1950±140 1850±60

MOT Two: Peak 1 1360±130 1270±60

MOT Two: Peak 2 1190±130 1090±60

MOT Three: Peak 1 1200±130 1210±60

MOT Three: Peak 2 1250±130 860±60
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Figure 25. The raw plenoptic camera data after cropping and the background has been
subtracted of a single small atom cloud taken with a 0.14 NA objective LFM. The the
cloud is about about 0.7mm wide.
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Figure 26. The projected data of the 0.14 NA objective LFM for a 34mm deep volume
reconstruction. It is clear here that the extent of the atoms in the z-direction is not
accurate as it spreads across the entire 3mm but is less than a millimeter in diameter
based on the plenoptic image in Figure 25.
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4.3.2 Back Projection Spreading Comparison to NA = 0.14 Objective

and Modeled Ellipse.

A few pictures were taken using a 0.14 NA objective on the LFM, which was the

same optical set-up, swapping out the 0.26 NA objective, but because of the even

smaller NA, the back projection spreading was significantly worse. Figure 25 shows

the background subtracted plenoptic data of one of the 0.14 NA images. Figure 26

shows the projection of a deconvolved volume that is 3mm deep. The deconvolution

is not able to remove light along the z-dimension or optical axis effectively enough

to limit the reconstruction to the defined volume. This cloud did not have the wire

imaged onto it and was close to spherical in shape and easily fit well inside the nearly

2mm × 2mm × 3mm volume of the reconstruction. Figure 27 shows that if the z-

axis depth of the deconvolved volume is long enough, the deconvolution does reach a

point at which it can effectively determine that no light is coming from those planes,

but the result indicates a long cigar-shaped MOT according to the deconvolution

when it is much closer to a sphere in reality. The standard image gives a diameter

measurement of about 0.73 ± 0.03mm, for NA= 0.14 the resulting back projection

lengthening factor, tan(π/2−α0) = 7.1, giving a predicted axial length of 5.2±0.2mm.

The extent of the spreading measured from the projection of the reconstruction was

5.8± 0.5mm.

To double check the back projection calculation on a more controllable case, a

modeled volume (g) was made. The volume had voxel values of all zeros except in

one plane along the optical axis. This plane was at z = −250µm and a value of one

was given to voxels in the shape of an ellipse. The volume containing this thin ellipse

was then forward projected to create an image. The resulting image was deconvolved

the same way as the cold atom pictures. The reconstructed volume shows the peak at

the appropriate location and the shape stretched along the optical axis as expected.
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Figure 27. Here as apposed to Figure 26 the deconvolved volume does limit the light
in the z-direction but it is far too extended, reaching a projected FWHM of about
5.8± 0.5mm when the atoms only extend about 0.7mm in the x and y directions.

An ellipse with a semi-major axis of 304µm and a semi-minor axis of 192µm gets

spread along the optical axis 1450µm using the FWHM of the reconstruction data

down the center of the volume. The predicted spreading is 2l = 1460µm. Figure

28 shows the ellipse, the resulting plenoptic image and the reconstruction projected

along the x-axis.

4.4 Error

The error in the peak locations of the projection images is estimated from the

resolution of the reconstruction and the angle chosen for the projection. The resolu-

tion, in the case of the plenoptic projection, was determined by the magnification of

the optical system and the diameter of the micro lenses, giving an (x, y) resolution

of 16µm, along with the z-axis resolution of the voxels, 50µm. In the case of the ref-

erence image, the resolution is purely the magnification of the objective and the size

of the pixels. This estimation of the error is based on the discrete nature of the data

and pixel noise. This contribution to error was estimated straightforwardly as half

the pixel size in a given direction. This pixel error is the only error in the reference

image measurements. In the case of MOT One, a different objective was used for the

reference image than for MOT Two and MOT Three; the magnification was lower,
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Figure 28. The top image is the ellipse placed in the reconstruction volume and then
projected on to the sensor. The resulting image is shown in the center. The recon-
struction is projected along the major axis of the ellipse in the bottom image, showing
the optical axis spreading. The ellipse has a minor axis of 384µm, giving an expected
axial spreading of 1460µm, the measured spreading was 1450µm.
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hence there is a larger error in the reference image locations (see Table 2).

The second source of position error is from the angle of the reference camera with

respect to the reconstructed volume created from the plenoptic image. The projection

was created assuming that the reconstructed volume was level with the optical table

and that the x-axis of the reference image was in line with the z-axis of the plenoptic

volume (also level with the table); that is, the image was taken at 90◦ degrees to the

z-axis and rotated up to be looking down on the reconstructed volume from the side.

That meant that the Radon transform could be performed on individual slices along

the z-axis. However, there are variations to how level the reconstructed volume was,

how well-aligned the camera was to the z-axis and even how far up it was rotated.

This error can be approximated by looking at the effects of rotations on a vector in

the plenoptic volume.

The plenoptic volume has coordinates (x, y, z) as shown in Figure 19. Using the

x-, y-, and z-axes as fixed pitch, yaw, and roll rotation axes, the view of the reference

camera can be rotated to the view of the plenoptic camera by three rotations. First

a rotation around the x-axis of θx1 if the volume is not level. Second, a rotation

around the y-axis of θy, which will be approximately 90◦ to get the side view. Lastly

a second rotation around the x-axis of θx2, which will be approximately 50◦ to raise

the view to looking down on the original volume. This set of rotations will transform

a vector in the original plenoptic volume (x1, y1, z1)T to a vector (x2, y2, z2)T seen by

the reference camera. The rotation matrix R is

R =


cos(θy) sin(θx1) sin(θy) cos(θx1) sin(θy)

sin(θx2) sin(θy) cos(θx1) cos(θx2)− cos(θy) sin(θx1) sin(θx2) − cos(θx2) sin(θx1)− cos(θx1) cos(θy) sin(θx2)

− cos(θx2) sin(θy) cos(θx2) cos(θy) sin(θx1) + cos(θx1) sin(θx2) cos(θx1) cos(θx2) cos(θy)− sin(θx1) sin(θx2)

 . (48)
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Then (x2, y2, z2)T is given by


x2

y2

z2

 = R


x1

y1

z1

 . (49)

The values x2 and y2 are the 2D projected coordinates of the original vector in the

new reference frame. Taking the total differential of x2 and y2 gives their respective

errors given (x1, y1, z1), (δx1, δy1, δz1), (θx1, θy, θx2), and (δθx1, δθy, δθx2). (x1, y1, z1) is

estimated using the calculated z location from the projection and the standard image

x and y locations, and (δx1, δy1, δz1) are simply the resolution errors. (θx1, θy, θx2) is

assumed to be simply the rotation used for the projections, (θx1, θy, θx2) = (0, 90◦, 53◦)

for MOT One, and (θx1, θy, θx2) = (0, 90◦, 51◦) for MOT Two and MOT Three.

The errors in the angles were estimated based on the camera locations and the

measurement of the θx2 rotation, (δθx1, δθy, δθx2) = (1◦, 3◦, 9◦) for MOT One, and

(δθx1, δθy, δθx2) = (1◦, 3◦, 5◦) for MOT Two and MOT Three. The error for MOT

One tends to be higher than for MOT Two and MOT Three because of the greater

uncertainty in the determination of the reference camera angle δθx2 (see Table 2).

The location error based on the pixel’s resolution and the location error based on

the rotation error were added in quadrature to determine the error of the locations in

Table 2. For the error in the back projection lengths in Table 3, the location errors

were simply propagated through the calculation.

There is a systematic error evident in the projected reconstruction axial separa-

tion. In the case of MOT Two and MOT Three, the z-axis splitting measurement in

Table 2 is smaller than the reference in both cases. This is because the clouds were

closer together in the first place, and due to the reconstruction noise near the center

planes of the reconstruction, the Gaussian fits get pulled toward the center.
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4.4.1 Impact of Using the Lytro Development Kit Sensor.

The LDK micro lens array and sensor provided a simple and cost-effective basis

for the LFM where custom systems were more than twice the cost. The sensor also

provided a excellent (x, y)-plane resolution while still providing depth information.

However this did fix the micro lens properties so the rest of the LFM had to be

built around this. The micro lenses were not designed for large magnifications and

the optics of the objective and tube lens had to be restricted to matching the f/#

of the MLA. This was not a major problem for this system because increasing the

magnification made the atom cloud larger than the field of view. But with further

objective design, this could be expanded and greater magnification could be applied,

which can improve the (x, y) resolution further, if the loss in angular resolution can

be accepted along with a reduction in the volume that can be reconstructed.

The larger impact on performance came from the color sensor. The Lytro R© sensor

was designed for visible wavelength color images with well lit scenes. The pixels were

very small, ≈ 1.4µm and color filtered with a Bayer pattern, resulting in primarily

red pixels responding to the 780nm wavelength fluorescence of the atoms, and very

little light reaching a given pixel. Only one in four pixels are red in the Bayer pattern

resulting in a greatly reduced signal detected by the sensor. The exposures had to

be several seconds to get a good signal and small signals got washed out by the

noise. This contributed to the estimated location error resulting from pixel noise.

Additionally, it made determining the correct intensity signal at the sensor difficult

to determine from the measured pixel values, and as discussed in Chapter V, made

detecting the low levels of light needed for absorption imaging impractical. The pixel

intensity is ultimately used to determine the number of atoms seen in the image (see

Section 4.8). For this first application of a LFM to cold atom imaging, this was not
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a limiting factor but future application to atom interferometry will require accurate

measurements of the atom number and distribution.

4.5 Phase Term Effects on the 3D Volume

As discussed in Section 4.1, the phase term,

exp(− iv
2

4N
(1 +M)), (50)

is typically dropped from Ui, the PSF equation, assuming N � v2/4, but is not for

this LFM. This means there is a fairly rapidly changing phase term that needs to

be added to the calculation of the PSF. The question then is, what is the impact of

including this phase?

For Ui, the difference between the wave with the additional term dropped and

that with it added is a change in overall phase. The added term is a quadratic phase

with respect to the radius v which will come out as a shift in the focal point of the

point source. This can be seen in the intensity difference on the sensor between PSFs

created with and without the additional term as shown in Figure 29. The intensity

behind each micro lens is shifted toward the center. If a point is being focused past

the MLA, then the rays will tend toward the center of the cone focusing down to the

actual image point, while if the point is being focused before the MLA, the rays tend

to be focused away from the center behind the MLs. So a shift of rays towards the

center shifts the light field up in object space.

This shift in the light behind the ML impacts the deconvolution. The difference

between two deconvolutions, which were the same except for the phase term in the

creation of the PSFs, is shown in Figure 30. The primary effect is a shifting of the

light in the positive z-direction.
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Figure 29. A plot of the difference between the PSF intensity at the sensor calculated
with and without the typically dropped phase term (Equation (50)) used in calculating
Ui. It is clear that near the origin the effect is small but has increasing importance
as the distance from the center increases. The intensity behind each ML is shifted
preferentially toward the center as those value are more positive. The difference scale
is on the order of 10−3 which is also the scale of the intensity images from which it is
derived.
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(a) (b)

(c)

Figure 30. The deconvolution produced using PSFs modeled with the added phase
term is in (a), and the one without it in (b). (c) shows a projection of the difference of
the two deconvolved volumes, emphasizing the shift in light from the back to the front.
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4.6 Shifting the Focal Plane of the LFM

Another simple measure of the accuracies of the LFM 3D reconstructions was

performed, in some ways by accident, on MOT Two and MOT Three. When imaging

the atoms it was difficult to tell exactly when the cloud of atoms was in focus. The

focal distance was directly measured as accurately as possible from outside the vacuum

chamber but the error was on the order of a millimeter which was the scale of the

cloud. To get at least one image with the entire cloud in focus, seven pictures were

taken shifting the position of the camera between each. The first image was the central

point, assuming it was near the optimal focus. Three images were taken moving the

camera closer at each step. The camera was returned to the center position and

three more images were taken moving back at each step. Each step was a shift of

230µm along the optical axis using a translation stage and micrometer. From this

series of images, one that was in focus on one atom cloud or the other was used. It

also provided data on the accuracy of the measured axial locations made from the

reconstructions. Figure 31 shows a fixed projection of the reconstructed volume with

the full series of images taken in micrometer position order.

Figure 32 shows the z-axis locations of the two peaks in the clouds as determined

by the reconstruction plotted versus the relative camera position. The offset of the

peaks shows that neither was quite in focus for the central image but it was actually

centered between the two peaks and shows their axial separation from each other. The

straight center line in the figure is a plot of the camera position plotted against its self.

The slope of the peak lines should match that of the center line if the reconstruction

always accurately determined the locations of the cloud as the cloud would shift the

same amount as the camera. Instead the slopes change. As the peaks start to get

close to the edge of the reconstruction volume (z = 1500µm), the slope starts to

increase, and when it is near the center of the volume (z = 0µm), the slope decreases.
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It is most notable in the Peak 1 data which was the brighter of the two clouds. This

is a result of the pull on the Gaussian fits toward the edges of the volume when the

cloud is close to the edge and towards the noise in the center when the cloud is near

z = 0µm.
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Figure 31. A series of projected reconstructions of MOT Two from images taken while
adjusting the position of the LFM, effectively changing the focal plane to different
planes in the MOT. The red points show the calculated centers of the cloud. The
reconstruction can effectively determine if the cloud is shifting closer or further away.
The spacing on the shifting locations is compared to the actual shift of the MLA in
Figure 32. Note: The aspect ratio has been stretched to show the changing locations
along the z-axis all together.
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Figure 32. The measured location along the z-axis of the two peaks in the MOT atom
cloud reconstructions after projection, as a function of shifts in the focal plane position
made by moving the camera forward and back with micrometer stage. The Camera
line is a plot of its position against itself. Moving the camera “forward” is a negative
translation along the z-axis so the Camera position sign was flipped, to give a better
comparison of how the MOT positions would ideally be shifting.
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4.7 Optical System Trade Offs

There are many factors to consider when designing a LFM; on the optical side,

there is NA, magnification, and micro-lens size. There are also practical factors such

as working distance, and physical pixel size. The working distance tends to decrease

with increasing NA but with good objective designs such as the long working distance

Mitutoyo objectives, this can be adjusted to some degree independently of the NA.

The pixel size is closely tied to the diffraction-limited spot size of the imaging system

including magnification.

If a large reconstruction volume with the best possible resolution is desired, the

pixel size is the primary physical limitation to consider because of its direct relation

to the NA and magnification M via the spot size given by the Sparrow limit in

Equation (18). Considering the pixel as the limit on spot size, it can be used to

determine the highest NA and magnification combination possible. Figure 33 shows

how the spot size changes with respect to magnification and NA. Obviously a bigger

NA gives a smaller spot size, and this allows for more total spots in the trade-off

between angular and spatial resolution. Determining the desired spot size fixes the

M/NA ratio, but in general, a larger NA is desired as it also reduces the optical

axis spreading as discussed in Section 4.3.2. With the desire for a high number of

spots/pixels but with the limit of a 1µm pixel, the NA and magnification pairs that

Table 4. Numerical Aperture Optical Stretching Factor and Magnification Resulting
in ≈ 1µm Spot Sizes

NA tan(π/2− α0) Magnification

0.14 7.1 0.38

0.26 3.7 0.71

0.4 2.3 1.10

0.7 1.0 1.91

0.9 0.5 2.45
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Figure 33. The spot size of the LFM increases linearly with Magnification with a slope
dependent on the NA. The higher NA the better the spot size and the smaller the
optical axis spreading from back projection.

result in ≈ 1µm spot sizes can be calculated and are shown in Table 4 along with the

axial spreading factor. This fixes the NA and magnification variables in looking at

the other properties of the LFM.

The next consideration is the axial resolution in the depth of field Dtot2 , the full

depth of field Dtot3 , and the spatial resolution Rres. Using Equations (18) and (19),

Dtot2 and Dtot3 can be written in terms of NA, Dml, and M,

Dtot3 ≈
λn

NA2
+

D2
mln

2(0.47)2λM2
. (51)

Similarly a single slice is

Dtot2 ≈
λn

NA2
+

Dmln

2(0.47)NAM
. (52)

The spatial resolution is simply Rres = Dml/M. All depend on the chosen diameter

of the micro lens. Figure 34 shows the resolution, depth of field, and full depth of
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field as a function of micro lens diameter.

Basing the design off of the minimum spot size optimizes the system in terms

of depth of field. It will allow the most resolvable points behind a micro lens of a

given diameter which gives the largest full depth of field. Given a minimal acceptable

resolution, the result will be the best axial resolution over the largest volume. For

instance with a NA= 0.7, a magnification of 2 and Dml = 40µm, the resulting system

would have a spatial resolution of about 20µm, a depth resolution of about 30µm,

and a full depth of field of about 1mm, which could work well for a small MOT atom

cloud. In the NA= 0.26 system used in this work, the working distance was a higher

priority and the full implications of the limits imposed by the NA were not yet known.

The system can be optimized for axial resolution as well by increasing the mag-

nification. For instance a 3D lattice of atoms could be imaged such as the lattice

described by Nelson in [52], where imaging multiple layers of the lattice all at once is

desired. In Nelson’s paper, the spacing between atoms is approximately 5µm. Using

a LFM with a NA= 0.7 objective, a magnification of 80, and Dml = 175µm, the slice

depth of field is 4.92µm with a full depth of field of 15.5µm potentially allowing about

three different layers of the lattice to be distinguished.
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Figure 34. The top plot is the spatial resolution of the LFM as a function of the
diameter of a micro lens Dml, for different numerical apertures. The middle and and
bottom plots are the slice depth of field and the full depth of field along the optical axis
also as a function of Dml for the same set of numerical apertures. The magnification is
chosen to give a 1µm spot size.
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4.8 Atom Number Measurements

All of the MOT cloud images were taken using fluorescence from the atoms. While

in the MOT, the atoms are absorbing light from the trapping lasers and then re-

radiating. This fluorescence depends on the number of atoms in the cloud and can

be used to measure the 2D density distribution from an image. In order to get the

density distribution, the rate that light is emitted per atom is related to the intensity

of light measured by an image or photo-diode. The fluorescence for an atom is given

by the scattering rate of the atom

Rs =
Γ

2

(
I/Isat

1 + I/Isat + 4∆2/Γ2

)
, (53)

where I is the incident intensity, ∆ is the detuning of the laser from resonance, Γ is

the natural line width, and Isat is the saturation intensity. The number of atoms seen

by a given pixel is given by

N =
4π(photon detection rate)

(solid angle)Rs

. (54)

The solid angle is determined by the radius of the objective a and the distance from

the atoms d and is equal to π a
2

d2
. The photon detection rate is determined by the

camera sensor’s quantum efficiency and the exposure time.

This calculation is prone to errors. These include not getting the solid angle

correct due to errors in distance to the atoms, to scattering rate changes due to line

broadening, power broadening and the optical thickness of the atoms in front of the

radiating atoms [61]. But fluorescence imaging is easy, can be done continuously

while the atoms are in the MOT, and is easily applied to a LFM.

The number of atoms in the atom clouds imaged here was calculated using an

objective lens with an aperture of one inch, focusing on a Thor Labs PDA100A
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photodiode to count photons. Unfortunately, the objective got misaligned from the

atoms but the change was not caught until after the data had been collected. The

directly calculated atom numbers are about a factor of 100 lower than expected.

If this had not been the case, the total number of atoms in the cloud calculated

using the photodiode could be used to calibrate the LFM volume reconstruction. By

sectioning off each cloud with an intensity threshold and then totaling the intensity

associated with each cloud, the overall intensity of the cloud in the image could be

determined. The total number of atoms related to the overall intensity of the cloud

would give the intensity per atom as measured by the LFM in the reconstructed

volume. Then the cloud number distribution could be determined. However, it would

not have been very accurate because of the axial spreading in the reconstruction. But

this application would be needed for determining atom number in two atom clouds

resulting from an interferometric measurement as mentioned in the introduction.

Future work can be done to utilize the intensity images taken by the LFM for atom

number calculations. A calibration step would be essential as the reconstruction

places light in the volume iteratively and not completely accurately. Knowing the

value of a voxel cannot be directly tied to the intensity of that voxel in object space.

The calibration would simply be a measurement of the total number of atoms in the

cloud as described above. Once this is done, the number of atoms imaged can be

calculated directly from the images and reconstructions.

92



V. Absorption and Off-Resonance Imaging

The previous chapter dealt entirely with atoms in a MOT being imaged by mea-

suring their fluorescence. In this chapter, imaging atoms by absorption imaging or

their dispersive properties will be explored in relation to the plenoptic camera’s ca-

pabilities.

5.1 Absorption and Off-Resonance Imaging Theory

Absorption and off-resonance imaging can be more accurate than fluorescence

imaging because it avoids unknowns in scattering rate changes from line broadening

and power broadening, and the optical thickness of the atoms in front of radiating

atoms does not come into play. It is a bit more difficult to do because a probe laser

is needed to image the atoms. The principle is to shine a laser through the atoms,

which will interact with the light casting a “shadow” on a sensor array. The recorded

image can be used to determine the 2D column distribution of the atoms.

The light interacts with the atoms via their complex index of refraction which

depends on the density distribution of the atoms. For a two-level atomic system

using the rotating wave approximation, the index of refraction is

nrefr = 1 +
σ0n(x, y, z)λ

4π

[
i

1 + δ2
− δ

1 + δ2

]
, (55)

where n(x, y, z) is the number density of the atoms, σ0 = ~ω0Γ
2Isat

is the resonant cross

section, and δ ≡ ω−ω0

Γ/2
= ∆

Γ/2
is the detuning of the probe light frequency ω from the

atomic resonance frequency ω0, normalized by the natural half line width of the atomic

transition Γ [43]. This imaginary index gives both the absorption (from the imaginary

part) and the phase shift (from the real part) imparted to a wave propagating through

the atoms. Assuming the probe beam is simply a collimated plane wave propagating
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along the z-axis, the scalar wave just after the atoms can be given by

E(x, y) = E0 exp

{
ik0

∫
[nrefr(x, y, z)− 1]dz

}
= E0t(x, y) exp(iφ(x, y)), (56)

where, given ñ =
∫
n(x, y, z)dz,

t(x, y) = exp(− ñσ0

2

1

1 + δ2
) (57)

and

φ(x, y) = − ñσ0

2

δ

1 + δ2
. (58)

Pure absorption imaging is the case where δ = 0 and there is no phase shift in the

wave, only attenuation. In this case, the imaged intensity is

I =
1

2
|E|2 =

1

2
|E0|2 exp(−ñσ0) = I0 exp(−ñσ0). (59)

In practice, ñ can be extracted by taking an intensity image with no atoms present,

I0, and dividing by an atom image with the atoms in the path of the probe beam, I.

An image of background light is subtracted from each to remove the added noise, Ibg,

I − Ibg
I0 − Ibg

= exp(−ñσ0). (60)

The resulting image can then be used to calculate ñ.

5.1.1 Absorption Imaging with the Light Field Microscope.

Using the LFM discussed in the last chapter and NA=0.26 objective, some ab-

sorption images were attempted. But it was determined that with the LDK MLA

and sensor, it was impractical to do.
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The three images just described are typically taken in rapid succession because

the probe beam is coherent and there are always some interference effects from optics

and surfaces in the path of the beam. Taking the atom and intensity images as close

together as possible in time reduces any changes between images that might take

place in the interference pattern over time. The images are also taken in sync with

the control system of the MOT in order to precisely time exposures of the camera

and probe beam to when the atoms are present and when they are not. Typically

the timing system is set up as desired to control the atoms, then the probe beam and

camera are triggered at the appropriate times.

Timing the system was a problem as the LDK sensor was not designed for an

external trigger or to be read quickly. Successive images had to be taken about

500ms apart. Without an external trigger, the control of the MOT and the probe

beam had to be based around when the camera took the picture. A triggering signal

was used which came from the camera when it would fire its physical shutter, but

the timing on the actual exposure would change shot to shot by as much as 4ms.

This made synchronizing the probe beam with the exposure of the sensor difficult.

Additionally, the camera used a rolling electronic shutter along with the physical

shutter and they could not be controlled independently. The lack of control, along

with the fact that a probe pulse for good absorption imaging is typically about 10µm

long meant that, even when the timing did work, only part of the sensor would be

exposed. The end result was, after many attempts at taking a picture, only one or

two sets of intensity, atom and background images would be correctly timed, greatly

increasing the time needed to make adjustments.

Additionally, the quantum efficiency of the sensor at the 780nm wavelength was

low. High probe beam intensities on the order of a 100µW along with long exposure

times on the order of 0.5ms were needed just to consistently see a signal from the
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beam. Exposure to the probe beam cycles the atoms out of the absorbing transition

into a dark state in about 170µs, so most of the light observed by the camera was

not absorbed by the atoms. The combination of poor timing control and very low

absorption signal made standard imaging of absorption impractical with the LDK

sensor.

With some custom design, most of these problems could be avoided. Then the

properties of a plenoptic system should provide angular as well as spatial information

about the light imaged. With absorption imaging, the light is primarily a plane wave

coming straight at the camera with no angular component; in general there is little

angular information to be measured. But in the case of pure absorption, the atoms do

cause some diffraction and an estimate of the amount of diffraction can be made by

assuming the atom cloud is a fully absorbing disk of some radius r. The normalized

Fraunhoffer diffraction of a circular aperture can be written in terms of the angle of

the ray from the center of the disk as

I(θ) =

(
2
J1(kr sin(θ))

kr sin(θ)

)2

,

where θ is the angle of the ray, k is the wave number, and J1 is the first order Bessel

function. I(θ) is the Airy disc. Using Babinet’s principle, the image of a blocking

disk will simply be the shadow 1− I(θ) [12].

Most of the diffracted light (or diffracted shadow in this case) is contained in the

center peak of the Bessel function. Using the first zero of the Bessel function, the

angles containing most of the diffracted light can be calculated and compared to the

angles measurable by the LFM system. The first zero is at 3.83 = kr sin(θ). Given

a LFM with a resolvable angle θ, the necessary size of the cloud can be determined.

The resolution in angle of the LFM sensor is simply twice the acceptance angle of

the objective α0 divided by the number of resolvable spots behind a micro lens Nu,
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Rangle = 2α0/Nu. For the NA= 0.26 LFM from Chapter IV, Rangle = 0.046 rad. For

a wavelength of λ = 780nm and θ = 0.046 rad, the radius of the disk would need

to be r = 10.3µm. This is already smaller than the spatial resolution of 16µm and

increasing the angular resolution will only decrease the spatial resolution, and vice

versa. Increasing the size of the cloud only reduces the angle of diffracted light, and

in the end, the cloud is not strictly a disk so the diffraction would be reduced even

more. This means that for standard absorption imaging, the plenoptic camera cannot

collect any angular information without reducing the spatial resolution too far. So

no angular information could be extracted.

5.2 Off-Resonance Imaging

Off-resonance imaging takes advantage of the dispersion of the light in the atoms

and occurs when δ 6= 0 in Equation (56). The phase shift φ(x, y) is non-zero and the

absorption t(x, y) is reduced by 1/(1 + δ2). Because of the reduced absorption, if δ is

large enough, the atoms are not heated and can remain in their cold state, either in

the MOT or even as a BEC. This is desirable for better understanding the dynamics

of cold atom systems [6].

The phase shift induced by the atoms causes interference in the images of the

atoms if steps are taken to expose it. This is typically done using dark field or phase

contrast imaging as described in [43]. These methods use a screen at the Fourier

plane of the imaging system with a spot at the center to either block the undisturbed

or constant portions of the plane wave or give it a phase shift to interfere with the

scattered light. The intensity of such an image is given by

I = I0(1 + t2 + τ 2 + 2tτ cos(φ− γ)− 2t cosφ− 2τ cos γ), (61)
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where the properties of the spot on the screen at the Fourier plane are determined

by γ the phase shift, and τ 2 the transmission. For dark field imaging, τ = 0, and for

phase contrast, τ = 1 and γ = ±π
2

[43].

There are a few other ways to extract the 2D number density utilizing the phase

shift φ, notably the diffraction pattern from cold atoms used in diffraction contrast

imaging [70] which is closely related to off-resonance contrast imaging [71]. This

method assumes a probe laser is propagated through the atom cloud and then diffracts

in free space on the other side and does not need a phase screen at the Fourier plane

and can even avoid using imaging optics at all. The resulting intensity diffraction

pattern can be used to determine the column density and even distance from the

sensor to the cloud.

5.2.1 Off-Resonance Imaging with the Light Field Microscope.

Each case of off-resonance imaging uses the scalar wave right after the atoms given

by Equation (56), and in most cases, extracting the phase shift of the light caused by

the atoms requires interfering the wave with itself in some way. Imaging this wave is

interesting in the light field microscope case when considering only 2D information.

Up to the MLA, the optical system of the LFM acts straight forwardly as a

microscope. The objective system simply images the plane wave to the MLA. It

will magnify the wave and convolve it with the point spread function. If the PSF is

sufficiently close to a Dirac Delta function, then only the magnification needs to be

taken into account. Then the MLA can be thought of as a Shack-Hartmann sensor

with the imaged plane wave hitting it; the Shack-Hartmann sensor measures the phase

gradient across the wave [56]. The phase gradient is measured straightforwardly at

the pixel plane as the Fourier transform of the portion of the wave hitting a given

micro lens. Because the micro lenses are small, the wave hitting a given micro lens
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can be assumed to have primarily a linear slope across it. The Fourier transform of

a linear phase shift (or constant slope) is

F {exp(i2π(ax+ by))} = δ(fx − a)δ(fy − b)

where δ is the Dirac Delta function and fi are the spatial frequencies, related to

physical positions by fi = i
λfml

. Considering just one dimension the minimal spatial

frequency that can be detected is when the physical shift matches that of the spot

size of the LFM, that is x = Robj. Then

amin =
Robj

λfml

and similarly for b. a and b are related to the slope of φ by,

dφ

dx
= 2πa

dφ

dy
= 2πb.

The LFMs designed for imaging large volumes do not have very high angular

resolution, such as the NA= 0.26 system used in Section 4.1 or the NA= 0.7 sys-

tem proposed in Section 4.7. In those cases, amin ≈ 55000/m and ≈ 32000/m,

respectively. For a high magnification situation, like the case where NA= 0.7 and

M = 80 mentioned at the end of Section 4.7, the minimum slope is much smaller

with amin ≈ 7500/m.

The density distribution of the atoms determines the slope of the phase shift

on the scalar wave. No experimental images were taken to test this situation but

the maximum phase slopes induced by the cloud can be found using a modeled atom

cloud. A MOT cloud was modeled based on the distribution of a Gaussian as described

in Section 2.2. The column density of a Gaussian cloud with 108 atoms and a FWHM
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of ≈ 0.6mm is plotted in Figure 35 along with the phase φ induced by the atoms and

the slope of the phase when the effect is maximized at δ = 1. The maximum phase

slope, marked with a red dot in the figure, is only 2.61
2π
/m = 0.415/m, so it would not

be detectable by the LFM.

Here is where having a BEC could be an advantage as the density of the atoms is

much higher and a much larger phase shift can be applied. The 2D density distribution

of a BEC is given by

ñc(x, y) = ñ0 max

(
1− x2

L2
x

− y2

L2
y

, 0

)3/2

, (62)

where ñ0 is the peak density of the distribution and L(x,y) is the Thomas-Fermi length,

further details can be found in Appendix B. If this is used to model the distribution,

Figure 36 shows the distribution, phase shift and slope for a BEC with Lx = Ly =

30µm and a peak density of 100 atoms per µm2 or a total atom count of ≈ 105. The

peak slope is marked with the red dot and is a phase slope of ≈ 170000
2π

/m ≈ 27000/m

at x = 21µm. However, this is in object space; the wave will hit the MLA in image

space after having been magnified by the imaging system. Moving to image space

modifies the slope by 1/M, for the M = 80 case the slope seen by the MLA would

be ≈ 340/m which is also too small to be detected.

The way to greatly increase the phase resolution of a plenoptic camera is to set it

up for wave front-sensing, a plenoptic 3.0 system as discussed in Section 3.3. In this

system, the angular information is now labeled by the micro lenses and the spatial

information by the pixels behind each one. Along a single dimension, the spatial

frequency resolution of the plenoptic 3.0 system is

amin =
Dml

λfobj

.
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Figure 35. The top plot is the 2D density distribution of a 3D Gaussian atom cloud with
108 total atoms and a FWHM of 0.6mm. The middle plot shows the phase shift imparted
to a plane wave passing through the atoms plotted as a function of the distance from
the center of the cloud which is radially symmetric. The bottom plot is the slope of
the phase, also radially symmetric. The peak slope is marked with the red dot and is
a gradient of 2.62

2π /m = 0.417/m at x = 0.5mm.
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Figure 36. The top plot is the 2D density distribution of a BEC atom cloud with 105

total atoms and a Thomas-Fermi length of 30µm. The middle plot shows the phase
shift imparted to a plane wave passing through the atoms plotted as a function of the
distance from the center of the cloud which is radially symmetric. The bottom plot is
the slope of the phase, also radially symmetric. The peak slope is marked with the red
dot and is a gradient of ≈ 170000

2π /m ≈ 27000/m at x = 21µm.
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If Dml = 400µm and fobj = 750mm, then amin ≈ 4300/m. This is fine enough to

see the slope of the BEC phase shift, but now the resolution is only the number of

resolvable spots behind a micro lens tiled across the pupil. For a reasonable size lens

like a 2cm diameter objective there are only five resolvable spots behind a micro lens

giving a spatial resolution of 4mm.

It is evident from this analysis that the trade-off of spatial resolution for angular

resolution that a plenoptic system provides is not beneficial for standard plane-wave

absorption or off-resonance imaging. In the case of absorption, the diffraction pro-

duced is too small to be measured. In the off-resonance case, the phase shift imparted

to the wave is also too small even in the case of a high density BEC cloud of atoms.

Strictly speaking, in the BEC cloud case, the phase shift is large enough to be observed

but the resolution trade-off required to measure it is too significant.

5.3 Toward 3D Absorption Imaging

The reasons a LFM is not able to collect any more information from absorption

images than a standard camera has just been outlined. Why does 3D imaging with

the LFM work for florescence imaging? Each atom is radiating in all directions, so

there is no limit on the angle a ray could have. The only limit is what angles can be

collected by the objective as determined by the NA. In the case of absorption, most

of the light is all going along the direction of the original incoming probe beam. This

is by design but the diffraction and refraction that does occur is not enough to be

measured given the trade-off of resolution in plenoptic systems.

However, if there were multiple plane waves, at a range of angles matching the

NA of the imaging system, all propagating through the atoms at the same time, the

MLA would separate them into their respective directions at the sensor. This multi-

plane wave arrangement could be done with coherent light if an array of pin holes
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were placed at the focal plane of an objective and illuminated from behind. The

result would be a discrete series of plane waves at the Fourier plane. The problem

is that because the waves are coherent, they would interfere with each other as they

passed through the cloud. Atoms at locations where the wave experienced destructive

interference would see no electro-magnetic field and not interact with the light. So

they would be missed in any analysis of the beams after they had passed through the

atoms.

If the waves were incoherent then simply the added intensities can be assumed to

be passing through the atom cloud. In terms of extracting 3D information, it would be

the equivalent to the fluorescing system. A set of pixels defining a perspective view

would be the absorption image along that direction, just as the florescence image

would be the light coming in from that direction. Figure 37 shows a comparison

of a simulated absorption image of a very small spherically symmetric 3D Gaussian

distribution and the standard analytical PSF for a fluorescing point source. The

simulation was made by projecting waves at a discrete set of angles through the

atoms using Equation (56). Each was individually propagated to the sensor and then

the intensity calculated and summed with each of the others. The figure shows the

division of I0/I to show the removed intensity.

This means that with an incoherent source of light, the atoms can be imaged in

3D via absorption imaging techniques. Because the intensity of the light is directly

measured by the camera, shot noise does not increase with the number of atoms in the

cloud, making number calculations more accurate. However, to determine the total

intensity of light passing through the atoms and the related fraction of scattered

light, a calculation based on the area of the source and the distance to the atoms

will be needed which can introduce the same errors as determining the solid angle of

the objective in fluorescence imaging. However, the cone of light can more directly
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Absorption "PSF" Fluorescence PSF

Figure 37. The simulated absorption “PSF” is shown on the left with the standard
fluorescence PSF on the right. The absorption PSF was created by propagating a
discrete set of plane waves through a small 3D Gaussian cloud of atoms that was
behind the focal plane 75µm. The intensity of each wave was added at the sensor. This
was done again for a set where the cloud was removed and the left figure is the division
of the intensity image I0 and the atom image I, I0/I. The fluorescence PSF is for a
point source 75µm behind the focal plane. The absorption “PSF” simulation does not
start with an analytical solution for the objective PSF like the fluorescence PSF image
is, and the division operation amplifies small differences in the simulated intensities,
so there are some artifacts in the absorption simulation. Also the 3D Gaussian used
to absorb the light has a finite size introducing some changes from an analytical point
source.
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be controlled to reduce this error. The end result is an absorption imaging system

capable of 3D imaging of cold atoms. Finding the full benefits and trade offs of this

method is a subject of further work.
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VI. Conclusion

Cold atom interferometers have demonstrated their ability to precisely measure

accelerations and rotations which can in turn be used for creating inertial navigation

systems (INS) [73, 17, 62]. The Air Force Research Laboratory Space Vehicles Di-

rectorate (AFRL/RV) is researching these systems because inertial navigation can be

critical in times and places where GPS may be unavailable. In order for these INSs

to be practical, the atom interferometers must function in dynamic environments

and be small enough to fit on a mobile vehicle. The dynamic environment creates

challenges when measuring the cold atom clouds, as the location of the clouds and

the distribution of the clouds (which can contain the needed interference pattern)

will be unknown. Additionally, making the systems smaller and mobile limits optical

access to the cloud of atoms. The research that has been presented here is the first

work done to find a solution to these two problems by using a plenoptic or light field

imaging system which is capable of three-dimensional imaging with a single camera.

The goal of this research was to build and analyze a plenoptic imaging system ca-

pable of imaging a trapped cold atom cloud in 3D. A plenoptic or light field imaging

system utilizes a micro lens array (MLA) at the focal plane of the objective imaging

system to enable the recording of spatial and angular information about light rays

hitting the MLA and propagating to the image sensor behind the array. This infor-

mation can then be used to measure depth information about what was imaged by

the camera. A light field microscope (LFM) was the plenoptic imaging system used

here. The point spread function (PSF) of a LFM is depth-dependent because of the

angular information made available from the MLA and sensor combination. Utilizing

the depth-dependent PSF, a Richardson-Lucy deconvolution can be performed on

LFM images to reconstruct the 3D volume imaged.
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The first use of a low-magnification LFM to reconstruct a 3D volume contain-

ing cold atoms in a magneto-ooptical trap (MOT) was demonstrated in this work.

Analysis of the low magnification optical system revealed that assumptions used in

deriving the PSF no longer hold, introducing a phase term back into the PSF scalar

wave equation which is typically dropped. The use of a Lytro c© Development Kit

MLA and sensor allowed for a simple cost-effective optical system while providing

high resolution standard fluorescence images and still allowing for 3D reconstruction.

Utilizing a long working distance objective, it was demonstrated that the reconstruc-

tion could be done from a range of about 30cm allowing observation of the atom cloud

well inside a MOT. The use of a single camera is an important piece of this research

because space around the atom traps becomes very limited as cold atom systems are

made smaller and more portable.

The potential use of the LFM for absorption imaging was also explored as this

method can be used to more accurately determine the number of atoms in a cloud.

The imaging system was not able to extract the needed angular data in the standard

coherent light absorption imaging cases. The spatial and angular resolution trade-

off does not allow it. However, another method using an incoherent light source

was shown to produce similar PSFs to that of the fluorescence imaging case. This

method would allow for 3D image reconstruction with absorption-based images, allow-

ing higher accuracy atom number calculations while also providing depth information.

6.1 Future Work

Accurately measuring the atom number and their distribution will be critical for

applying LFMs to atom interferometers as it enables the inertial measurement. The

number of atoms in each cloud and the distribution is the value needed to determine

the inertial forces that acted on the atoms as they moved through the interferometer.
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In the case of the 3D distribution, when the interferometer is on a dynamic system,

the orientation of the cloud and the interference pattern will be unknown, using the

3D reconstruction demonstrated here enables the measurement on a practical system.

A combination of improving the reconstructions along with determining the accuracy

of atom number calculations will be important steps toward an atom interferometer

application.

The 3D image resolution can be improved by increasing the NA of the LFM’s ob-

jective. The trade offs associated with changing the NA were looked at in Section 4.7.

Creating a system tailored to smaller cold atom clouds along with a custom MLA

and sensor are important next steps. This can be combined with research looking at

improving the 3D reconstructions using the data collected.

The 3D reconstructions were based on back projections (part of the Richardson-

Lucy deconvolution) of the images taken by the LFM. The back projection reconstruc-

tion depends on the range of angles measured by the plenoptic system to determine

the depth from which a given amount of light came. This range of angles is limited by

the numerical aperture of the LFM objective. Back projection with a limited range

of angles resulted in spreading of the reconstructed image along the optical axis, dis-

cussed in Section 4.3.1. The limited range of angles can fundamentally affect the

resolution of the system which is discussed in detail by Crowther and Radermacher

[20, 58]. But the axial spreading observed in this work is not caused by this funda-

mental limit but is an artifact of the reconstruction with limited angle information.

There is a significant amount of work looking at this problem in other cases [32, 26]

to try and reduce the reconstruction artifacts. One particular method for improving

the reconstructions uses prior information [72]. Using the known physics of the MOT

as a basis for the reconstruction could potentially improve the final 3D images, and

applying such techniques is an excellent area for future work.
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Experiments to determining the accuracy of atom number calculations can be

performed in the near future using the fluorescence imaging technique shown here.

There was a brief discussion of the steps needed for this in Section 4.8. The associated

errors in the 3D atom number calculations need to be analyzed in light of how the

reconstruction is done and how well it can be calibrated. Absorption imaging can

reduce errors inherent in fluorescence imaging atom number calculations. Creating

and testing such a system is an important candidate for further research, and is the

next step after analyzing the fluorescence imaging atom number calculations. The

absorption images should be able to improve on the atom number calculations once

the 3D imaging capability has been shown.

Developing the capability to accurately measure atom number distributions can

be useful in general. It can be used anywhere a 3D construction would be useful in

a system where optical access is limited. In the case of a cold atom trap, it could

be used to aid in determining trap shape, allowing for adjustment. Additionally,

volumetric imaging could impact observation of three-dimensional arrays of atoms or

ions in some quantum computing architectures, and thus the scalability of the qubits

in those systems, by allowing concurrent observation of multiple planes of the array

simultaneously [52].

The work done here is the first steps into creating a new way to image cold atoms.

There is significant work to be done improving the system and demonstrating its

capabilities for atom interferometry measurements. And there is a lot of exciting

potential in creating a 3D imaging system for cold atom cloud applications.
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Appendix A. Tomography and Back Projection

Three dimensional (3D) imaging with a microscope and 3D imaging via tomog-

raphy are mathematically equivalent as Levoy and others have pointed out [46, 67].

The connection is the reasoning behind using a basic back projection to determine the

optical axis spreading of the reconstructions of the atom cloud as done in Chapter IV.

Tomography is performed by taking multiple 2D orthographic projections of a vol-

ume and using the Fourier slice theorem to form a reconstruction of the volume based

purely on the 2D information collected. A orthographic projection or parallel projec-

tion is the 2D image created by integrating a volume along a single direction defined

by a unit vector at the origin pointing in direction (θ, φ) in spherical coordinates,

Figure 38 shows an example in 2D. The Fourier slice theorem says:

The 2D Fourier transform of the orthographic projection of an object
f(x, y, z) obtained at angle (θ, φ) equals a 2D slice in the 3D Fourier
transform of f where the normal vector to the 2D plane of the slice is at
the same angle (θ, φ).

This theorem can be reduced to two dimensions or expanded to higher dimensions. It

enables sampling of the 3D Fourier space of an object from lower dimensional images

and is what is done quite often in computed tomography (CT) scanners for imaging

inside the human body [41]. Several projections through an object are created, either

by collecting radiation from the object of interest (as in fluorescing atoms) or by

shining a beam through it and measuring the absorption (as with x-rays for CT scans

or absorption imaging of atoms). This gives a particular 2D slice in the 3D Fourier

domain. By taking pictures at many angles through a full semi-sphere the full 3D

Fourier transform is sampled. This set of data is then inverse Fourier transformed to

recover a 3D reconstruction of the object.
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Figure 38. The top left image is a rectangle 300 pixels high and 50 pixels wide, each
pixel has a magnitude of one and the rest of the image pixels are zero. The top right
image shows the back projections of the orthographic projections shown in the bottom
plot, at 0◦, 15◦, 45◦, and 90◦. The 0◦ projections shows the hight and width of the
rectangle in its width and magnitude because it is simply a sum of the pixel values
along the x-axis, similarly for the 90◦ projection. The 15◦ and 45◦ degree projections
show the mixed values of projecting at the respective angle to the rectangle.
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Figure 39. The back projections made from the Fourier transform of horizontal and
vertical projections. The top left image is the 2D object being projected. The top right
figure shows the 1D projections at 0◦, and 90◦ plotted verses r the distance from the
center of the image. The bottom left is the Fourier transforms of the two projections
placed in a 2D matrix representing the approximation to the full 2D Fourier transform
of the object. The bottom right is the 2D inverse Fourier transform of the bottom
left image and is simply the 1D projections back projected over the 2D surface, the
intensity scale has been normalized.
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Using a single slice in the 3D Fourier space and inverse Fourier transforming is the

same as performing a back projection of the orthographic projection corresponding to

the slice, Figure 39 the process in 2D. The back projection simply takes the projected

intensities and spreads them back over the volume to be reconstructed. A single plane

in 3D Fourier space will be a Dirac Delta function along the plane’s normal vector.

The Delta function will simply be a constant along the direction of the normal vector

when inverse transformed back to the volume. The magnitude of the constant will

be determined by the inverse transformed 2D portion, resulting in the same pattern

of the back projection filling the volume.

Recreating the volume purely using the Fourier transform introduces errors be-

cause of the discrete sampling, lack of views from every angle and the introduction

of noise. Because of this iterative techniques are used instead [68]. Equation 43, the

Richardson-Lucy deconvolution in Section 3.4.2, is such an iterative technique.

The point spread function (PSF) of an imaging system is describing the ortho-

graphic projection of a point source onto the sensor for all angles collected by the

imaging system. It is the connection between the projected images and the volume

being reconstructed in iterative techniques. In terms of the plenoptic imaging system

the perspective views are the orthographic or parallel projections. The PSF is used

to both back project the images into the volume and forward project the estimated

volume to the sensor in order to iteratively build and test the volume reconstruction.
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Appendix B. Bose-Einstein Condensate Distributions

A Bose-Einstein Condensate (BEC) is typically created by taking atoms in a

magneto-optical trap and putting them in a purely magnetic trap and then evapora-

tively cooling the atoms, and in some cases compressing the trap in order to reach

the required density for the phase transition to a BEC. A good summary of BEC

theory is given by Dalfovo [21] and Ketterle [43], from these a summery of the three-

dimensional (3D) distribution of atoms in a BEC is given in the following.

The atoms are assumed to be in a magnetic trap with a harmonic potential given

by

V (r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (63)

where m is the mass of the atoms and the omegas are trap frequencies determined

by the design of the trap. In this trap the atoms move in clouds with two different

distributions, one for the atoms in the ground state, that is those actually part of the

condensate, and another for those still in an excited state. The BEC atom distribution

in the Thomas-Fermi limit is given by

nc(x, y, z) = n0

(
1− x2

L2
x

− y2

L2
y

− z2

L2
z

)
, (64)

where n0 is the maximum density of ground state atoms at the center of the distri-

bution and L(x,y,z) =
√

2µ/mω2
x,y,z is the Thomas-Fermi length in their respective

directions and µ is the chemical potential of the gas. The thermal distribution is

given by a Gaussian,

nth(x, y, z) = nte
−( x2

w2
x

+ y2

w2
y

+ z2

w2
z

)
, (65)

where nt is the maximum density of the thermally distributed atoms and w(x,y,z) are
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the Gaussian widths given by

wx,y,z =
aho
2

(
kBT

~ωho
)1/2,

where aho =
√
~/(mωho) with ωho = (ωxωyωz)

1/3, kB is Boltzmann’s constant, T is

temperature and ~ is Plank’s constant divided by 2π.

When looking at absorption imaging of these clouds the 2D density distribution

is seen by the light after passing through the cloud, integrating the density along the

path of the light. If the light is traveling along the z-axis the thermal and condensate

portions of the distribution become

ñc(x, y) = ñ0 max

(
(1− x2

L2
x

− y2

L2
y

, 0

)3/2

(66)

ñth(x, y) = ñte
−
(

x2

w2
x

+ y2

w2
y

)
(67)

where ñc and ñt are now the peak 2D densities.
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Appendix C. MOT Image Collection

Here is presented the images discussed in Chapter IV for each of the three MOTs.

The plenoptic image, a contour plot, and the projected reconstruction with the ref-

erence image are shown.

3.1 MOT One

Figure 40. The raw plenoptic camera data after cropping and the background has been
subtracted for MOT One.
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Figure 41. A contour surface through the normalized deconvolved volume produced
from the plenoptic data in Figure 40.

Figure 42. The projected image and the reference image for MOT One. Both have
been scaled and plotted over the same range for comparison. Translation shifts have
not been removed.
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3.2 MOT Two

Figure 43. This is the raw plenoptic camera data after cropping and the background
has been subtracted.
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Figure 44. A contour surface through the normalized deconvolved volume produced
from the plenoptic data in Figure 43.

Figure 45. The projected image and the reference image for MOT Two. Both have
been scaled and plotted over the same range for comparison. Translation shifts have
not been removed.
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3.3 MOT Three

Figure 46. This is the raw plenoptic camera data after cropping and the background
has been subtracted.
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Figure 47. A contour surface through the normalized deconvolved volume produced
from the plenoptic data in Figure 46.

Figure 48. The projected image and the reference image for MOT Three. Both have
been scaled and plotted over the same range for comparison. Translation shifts have
not been removed.
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dans un interféromètre en rotation uniforme”. CR Acad. Sci., 157:708–710, 1913.

64. Sakmann, Kaspar and Mark Kasevich. “Single-shot three-dimensional imaging
of dilute atomic clouds”. Optics Letters, 39(18):5317–5320, 2014.

65. Schechner, Yoav Y and Nahum Kiryati. “The optimal axial interval in estimating
depth from defocus”. Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on, volume 2, 843–848. IEEE, 1999.

66. Schuldt, Thilo, Christian Schubert, Markus Krutzik, Lluis Gesa Bote, Naceur
Gaaloul, Jonas Hartwig, Holger Ahlers, Waldemar Herr, Katerine Posso-Trujillo,
Jan Rudolph, et al. “Design of a dual species atom interferometer for space”.
Experimental Astronomy, 39(2):167–206, 2015.

127



67. Streibl, N. “Depth transfer by an imaging system”. Journal of Modern Optics,
31(11):1233–1241, 1984.

68. Swedlow, Jason R, John W Sedat, and David A Agard. “Deconvolution in optical
microscopy”. Deconvolution of images and spectra, 285:284–309, 1997.

69. Townsend, CG, NH Edwards, CJ Cooper, KP Zetie, CJ Foot, AM Steane,
P Szriftgiser, H Perrin, and J Dalibard. “Phase-space density in the magneto-
optical trap”. Physical Review A, 52(2):1423, 1995.

70. Turner, Lincoln D, KFEM Domen, and Robert E Scholten. “Diffraction-contrast
imaging of cold atoms”. Physical Review A, 72(3):031403, 2005.

71. Turner, Lincoln D, Karl P Weber, David Paganin, and Robert E Scholten. “Off-
resonant defocus-contrast imaging of cold atoms”. Optics letters, 29(3):232–234,
2004.

72. Venkatakrishnan, Singanallur V, Charles A Bouman, and Brendt Wohlberg.
“Plug-and-play priors for model based reconstruction”. Global Conference on Sig-
nal and Information Processing (GlobalSIP), 2013 IEEE, 945–948. IEEE, 2013.

73. Wildermuth, S, S Hofferberth, I Lesanovsky, S Groth, P Krüger, J Schmiedmayer,
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