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Abstract 
Attritable systems trade system attributes like reliability and reparability to 

achieve lower acquisition cost and decrease cost risk.  Ultimately, it is hoped that by 

trading these attributes the amount of systems able to be acquired will be increased.  

However, the effect of trading these attributes on system-level reliability and cost risk is 

difficult to express complicated reparable systems like an air vehicle.  Failure-time and 

cost data from a baseline limited-life air vehicle is analyzed for this reliability and 

reparability trade study. The appropriateness of various reliability and cost estimation 

techniques are examined for these data.  This research employs the cumulative incidence 

function as an input to discrete time non-homogeneous Markov chain models to 

overcome the hurdles of representing the failure-time data of a reparable system with 

competing failure modes that vary with time.  This research quantifies the probability of 

system survival to a given sortie, , average unit flyaway cost (AUFC), and cost risk 

metrics to convey the value of reliability and reparability trades. Investigation of the 

benefit of trading system reparability shows a marked increase in cost risk.  Yet, trades in 

subsystem reliability calculate the required decrease in subsystem cost required to make 

such a trade advantageous.  This research results in a trade-space analysis tool that can be 

used to guide the development of future attritable air vehicles.   
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1.0 Reliability and Cost Impacts for an Attritable System  
1.1  Chapter Overview 

 This introductory chapter establishes a definition for the term “attritable” founded 

on recent research activities within the context of a limited-life air vehicle and examines 

the system attributes of design life and reliability.  These definitions are used to formulate 

the fundamental problem statement and the related investigate questions that must be 

answered within this research.  The methodology by which these investigative questions 

will be addressed is outlined, yet covered in detail in proceeding chapters.  Finally, the 

simplifying assumptions that this reliability and cost research is predicated upon are 

examined.  The limitations that data availability and the choice of modeling technique 

impose on the research outcomes are also discussed.  

1.2 Background 

In 2014, the Secretary of Defense at the time introduced the “third offset strategy” 

to a group of defense experts at the Reagan Defense Forum.  The third offset seeks to 

build off of the strategies emphasized in the first and second offsets of the 1950s and 

mid-1970s, respectively to ensure the United States could overcome a looming 

quantitative disadvantage in future conflicts.  The third offset strategy’s intent is to build 

off of earlier accomplishments in nuclear deterrence, intelligence, surveillance and 

reconnaissance (ISR), precision weapons, stealth, and space-based military 

communication and navigation through improving the performance and decision-making 

ability of the warfighter in highly-contested environments.   
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Deputy Secretary of Defense Bob Work (2014 – Present) identified the five pillars 

of the Third Offset strategy, which he highlighted will be “looked favorably upon in the 

budget,” when he addressed the Center for New American Security in 2015.  The five 

pillars include: support of technologies to improve learning systems, human-machine 

collaboration, combat teaming, assisted human operations, and cyber-hardened yet 

network-enabled autonomous weapons (Mehta, 2015).  Yet, Work specifically challenged 

developers of autonomous aircraft in his address.  Work ventured, “What we want to do 

on human-machine combat teaming is to take it to the next level, to look at things like 

swarming tactics.  Can an F-35 go into battle with four unmanned wingmen?” (Mehta, 

2015).     

 Air Force guidelines, such as Headquarters, Air, Force’s (HAF) USAF Future 

Operating Concept and the Remotely Piloted Aircraft (RPA) Vector Vision Enabling 

Concepts 2013-2038 align with the course plotted by DoD leadership.  In this guideline it 

is acknowledged that the next generation of autonomous aircraft that “must detect, avoid, 

or counter known threats via traditional or innovative means, to enable operations in a 

range of environments” (HAF, 2014, p. 32)  HAF states that, “this can be achieved 

through a combination of speed, low observable technology, altitude, maneuverability, 

employment of air-launched Small Unmanned Aerial Systems, active and passive 

countermeasures, or expendable assets.” (HAF, 2014, p.32). 

 Perhaps the most novel and yet least understood method to operate in highly-

contested environments and overcome a quantitative disadvantage is employment of 

expendable assets.  In 2016, Dr. David Walker, Deputy Assistant Secretary of the Air 
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Force for Science, Technology, and Engineering, briefed the House Armed Services 

Committee on how “disaggregated unmanned air systems present a new dimension for 

achieving the operational agility envisioned in the Air Force Future Operating Concept 

and the Department’s Third Offset Strategy” (Walker, 2016, p. 8). During his 

presentation, Dr. Walker specifically highlighted the Low Cost Attritable Aircraft 

Technology (LCAAT) demonstration program as an emerging capability with great 

opportunity.  The LCAAT vision system, according to Dr. Walker, is meant to leverage 

recent technological advances in manufacturing to field near-term expendable or limited-

life unmanned air platforms as single assets or manned/unmanned teams (Walker, 2016, 

p.8).  The goal of the LCAAT program is “to trade the relatively high costs of UAV 

performance, design life, reliability, and maintainability for a low cost attritable aircraft 

intended for re-use with limited life and number of sorties” (Keller, 2015).  

The researchers determined that a relatively low lifecycle cost is achieved by 

focusing on the typical lifecycle cost drivers.  The Office of the Secretary of Defense’s 

(OSD) Director of Cost Assessment and Program Evaluation (CAPE) cost estimating 

guide illustrates which of the four lifecycle cost categories – Research and Development 

(R&D), Investment, O&S, and Disposal costs are key drivers of overall lifecycle cost.  

Figure 1 depicts an expenditure profile for a typical DoD program over the course of its 

lifecycle.  
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Figure 1: Illustrative System Lifecycle (Source: CAPE, 2014, 2-1) 

The profiles of Figure 1 clearly show that the two cost categories that have the greatest 

effect on a typical DoD system’s lifecycle cost are the Investment, and Operating and 

Sustainment (O&S) costs.   

While the majority of a system’s lifecycle cost is incurred during the Investment 

and O&S phases, it is easiest to control these costs earlier in the system lifecycle.  

According to pioneering systems engineers, Benjamin S. Blanchard and Wolter J. 

Fabrycky, the ease with which systems engineers can change the attributes that contribute 

significantly to Investment and O&S costs decreases exponentially as the system 

proceeds through the lifecycle. Figure 2 illustrates Blanchard and Fabrycky’s argument 

that the opportunity to easily change a system to control lifecycle cost opens early and 

decreases as the system configuration is finalized.   
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Figure 2: Commitment, system-specific knowledge and cost (Source: Blanchard & Fabrycky, 1998, Figure 2.11) 

 Blanchard and Fabrycky’s proposal that the most favorable time to control 

Investment and O&S costs is early in the lifecycle is supported by acquisition policy.  

“DoDI 5000.02 requires that sustainment factors be fully considered at all milestone 

reviews and other acquisition decision points, and that appropriate measures be taken to 

reduce O&S costs by influencing system design early in development, developing sound 

sustainment strategies, and addressing key drivers of cost…the opportunities to reduce 

O&S costs decline significantly as the system design evolves” (CAPE, 2014, 2-1).   

The importance of identifying and addressing lifecycle cost drivers for the 

LCAAT program cannot be overstated as the researchers themselves define attritability as 

a system trait “whereby virture of its cost, loss of the aircraft could be tolerated” 

(AFRL/RQKP, 2015, p. 1).  This definition for “attritable” is consistent with early uses of 

the term by the Director, Operational Test and Evaluation (DOT&E, 1999), the history of 
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which is addressed in subsequent chapters.  The intent is to produce a relatively low cost 

system compared against the high cost to counter its capabilities and “force a cost 

imposition of near peer adversaries” (AFRL/RQKP, 2015, p.1).  In order to accomplish 

this, “performance, design life, reliability, and maintainability with their associated costs 

need to be traded” (AFRL/RQKP, 2015, p. 1).  While there exist numerous strategies to 

engineer and measure reliability and maintainability, little is known about they apply to 

an attritable system.   

1.3 Definitions 

There currently exists little guidance on what constitutes an attritable system 

within the DoD.  Additionally, the use of terms such as design life and reliability should 

be considered carefully as trading these attributes are critical to the achievement of 

attritability for a system.  Further complicating things is the fact that the definition of 

these terms have evolved over time due to interchangeable and imprecise use.   

Therefore, a definition for reliability and design life is provided to serve as a foundation 

upon which to base the trade study methodology and subsequent conclusions.  A more 

comprehensive discussion of reliability-related terms and definitions is provided in a 

subsequent chapter.   

This research seeks to determine the reliability impacts on attritable systems and 

the resultant effect trading reliability on cost.  Therefore, it is important to identify the 

unique characteristics of an attritable system.  While alternative definitions for the term 

and a background of the attritable air vehicle concept are offered in later chapters, this 

research uses the definition provided by AFRL.  According to AFRL, an attritable system 
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is one that is intended to be used more than once – which separates the system from 

expendable systems – and, “whereby virtue of its cost, the loss of the aircraft could be 

tolerated” (AFRL/RQKP, 2015, p.1).  Compared to alternative definitions for “attritable,” 

this definition simplifies the scope of trade space analyses to only the measurable system 

costs and reliability.   

Finally, it is necessary to highlight the differences between the attributes of 

system reliability and design life.  The semantic shift of these terms are examined in 

subsequent chapters, however this research relies on the seminal report from the 

Advisory Group on the Reliability of Electronic Engineers (Hogge, 2012, p.8).  “A 1957 

AGREE report defined reliability as the probability that a system or product will perform 

in a satisfactory manner for a given period of time when used under specified operating 

conditions in a given environment” (Hogge, 2012, p. 8).  The four key elements of this 

definition are: (1) reliability as a probability distribution, (2) specified satisfactory 

performance, (3) specified operation conditions, and (4) in a specific environment 

(Hogge, 2012, p.8).  The AGREE definition of reliability offers the most flexibility in 

specifying the failure mode when compared to definition provided for the design life 

attribute by the System Engineering Book of Knowledge’s (SEBoK).  The primary 

difference between design life and reliability is that reliability describes the probability of 

failure, for any reason, and not just due to a wear-out mechanism as the SEBoK uses 

design life.  There are numerous metrics to describe the reliability of many types of 

systems; a discussion of these metrics is provided in the proceeding chapter.    
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1.4 Research Objectives 

It is difficult to express the impact of subsystem reliability and reparability 

decisions on an attritable system’s overall reliability or its corresponding expected costs. 

To overcome this, applicable reliability modeling and expected cost estimation 

techniques, valid for attritable systems early in the product lifecycle, will be applied.  

Through characterizing the effects of varying subsystem reliability and reparability on 

system-level reliability, and the subsequent effect on expected costs, this research can 

inform decision makers on the value of these design trades. 

1.5 Investigative Questions 

To quantify the impact of component, design, and maintenance choices on an 

attritable aircraft’s reliability and cost, the following issues must be investigated:   

1. What metrics and methods are suitable for to the estimation of reliability and 

costs for attritable systems?  

2. How sensitive is an attritable system’s reliability to changes in subsystem 

reliability and reparability?  

3. What effect does varying subsystem reliability and reparability have on the 

average unit flyaway cost and the cost at risk of an attritable system?    

1.6 Methodology Overview 

1. Lifetime data of a similar fielded system is analyzed.  In this analysis, satisfactory 

system performance is based upon the requirements of the LCAAT program.  The 

specific failure modes are identified and are allocated to various subsystems.  To 

estimate the reliability of the constituent subsystems the competing risk of failure 
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is considered to more accurate estimate each subsystem’s respective hazard rate.  

These data are applied to the subsequent reliability model and used as a baseline 

to compare the effects of varying subsystem reliability and reparability against.   

2. The context of the available data on existing limited-life air vehicles is considered 

to determine the method which allows for the variation of subsystem reliability 

and reparability, and whose output can be applied to the estimation of expected 

costs.  A reliability model is constructed – based off of an existing limited-life air 

vehicle system architecture – in the form of a discrete time-nonhomogeneous 

Markov Chain model.  This modeling technique is the most appropriate as it 

allows for the specification and variation of reliability and reparability 

parameters.  Variation of these transitional probabilities allow the model to 

examine the stated research goals of this research.   

3. The baseline discrete time-nonhomogeneous Markov Chain model is altered by 

varying each respective subsystem’s competing risk hazard rate, as well as 

varying each subsystem’s reparability – that is, its ability to be restored to an 

operational state.  This allows for the determination of the sensitivity of system-

level reliability, defined in termed of its survival function , to these changes.   

4. Example system regeneration, system replacement (defined as average unit 

flyaway cost), and subsystem repair costs are defined and applied to transitional 

probabilities output by discrete time-nonhomogeneous Markov Chain model to 

predict the effect of trading reliability and reparability on system cost risk and 

average unit flyaway cost.  
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1.7 Assumptions and Limitations 

 This study seeks to predict the impact of trading subsystem reliability and 

maintainability of an air vehicle on its overall reliability and expected costs in the hopes 

of determining the appropriate level of reliability for an attritable system. A central 

assumption of this research, which makes it applicable to the conceptual design of an 

attritable air vehicle, is that the vision system will contain subsystems similar to those 

used by existing limited-life air vehicles.  This is a reasonable assumption as the current 

design philosophy of the LCAAT program emphasizes the use of non-developmental 

items (NDI).   

An assessment of the physical architecture of existing limited-life remotely 

operated air vehicles show that the system is composed of seven subsystems: the system 

operator, launch system, vehicle structure, electrical system (which consists of everything 

from communications equipment to avionics and control surface actuators), fuel 

management system, propulsion system, and recovery subsystem.  The assumption that 

the vision system will be composed of these subsystems is not only supported by the 

program’s emphasis on NDI, but the consistency of these subsystems with those outlined 

by MIL-STD 881C Work Breakdown Structures for Defense Materiel Items, Appendix H 

Unmanned Aerial Vehicle Systems.   

Analysis of the life data gathered on the baseline fielded system shows that the 

occurrence of a subsystem failure can prevent the observation of other subsystem 

failures.  Consequently, the competitive nature of these failure modes must be accounted 

for in the computation of subsystem reliability. Therefore, subsystem reliability will be 
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defined in terms of the hazard rate of each respective failure mode’s cumulative 

incidence function.  This is an assumption critical to the specification of the discrete 

time-nonhomogeneous Markov Chain model.  The theory and arithmetic of these 

competing risks analyses is based on literature discussed in proceeding chapters.   

This research is limited to studying the impact of varying subsystem reliability 

and reparability.  The effect of varying component redundancy cannot be studied as the 

life data gathered on similar fielded systems is at a higher level of abstraction.  That is, 

the data upon which the reliability models are based on are not detailed enough to 

allocate each failure occurrence to its root component – merely the respective subsystem.  

If more detailed life data that identified the root cause of each failure at the component 

level were used, a more detailed analysis could use the same methodology outlined here.  

Lastly, this research’s intent to study reliability, as well as reparability – that is the 

ability of a failed subsystem to be restored to an operational state – highlights the need 

for the modeling technique to allow for variations in reparability.  Furthermore, the 

failure-time data gathered on the baseline system not only demonstrates the existence of 

competing failure modes, but also the existence of time dependent failure modes – where 

the probabilities of subsystem failure change with respect to time.  This analysis is 

presented and underscores the need for the modeling technique to have the ability to 

model competitive failure modes that chance over time. Therefore, this research is 

predicated off of the use of a discrete time-nonhomogeneous Markov Chain model as it 

satisfies the aforementioned requirements.  The alternatives to this technique, as well as 
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the consequences of selecting this reliability modeling technique are discussed in 

subsequent chapters.   

1.8 Research Preview 

 The proceeding chapters will discuss the relevant literature regarding reliability 

metrics, modeling techniques, and methods to compute the impact of changing reliability 

and reparability parameters on expected costs.  Also discussed is the applicability of these 

methods to attritable systems.  A methodology to create a reliability model for an 

attritable air vehicle is proposed, which is founded on life data gathered for existing 

limited-life air vehicles.  The reliability model is populated by the statistics computed by 

analyzing the life data gathered on existing limited-life air vehicles and research 

excursions are performed to model the impacts of varying subsystem reliability and 

reparability on overall reliability and cost risk.  The conclusions of these research 

excursions can be used by decision makers to guide the development of attritable 

systems. 
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2.0 Review of Literature for Relating to Attritability, Reliability and Cost  
2.1  Chapter Overview 

 This chapter not only examines the variety of reliability metrics and modelling 

techniques, but also explores the history of unmanned aerial vehicles (UAVs) used as 

“attritable” or limited-life systems.  By identifying the variety of techniques for the 

prediction and measurement of reliability based on such factors as purpose, maturity, and 

data availability this chapter identifies techniques that are most applicable to recent 

research regarding attritable air vehicles.  The methods for the analysis of competing 

failure modes is examined in order to apply these techniques to this research’s reliability 

models.  Finally, literature of expected cost estimation is examined.  Context is gleaned 

on the cost estimation of systems early in the design phase, while methods to forecast the 

impact of varying reliability and reparability parameters are also examined.   

2.2 The Characteristic of Attritability 

The term attritable to describe the acceptability of a system’s loss by the user has 

only just begun to enter the DoD systems engineering lexicon based on recent actions 

taken by the Air Force Research Lab among others.  However, the term dates back almost 

two decades, while the concept of creating systems where the user is tolerant of it loss 

dates back even further.  The first use of the term “attritable” in official DoD program 

documentation is found in a 1999 report on the Predator system published by the 

Director, Operational Test and Evaluation (DOT&E).  Through reporting the current state 

of operational testing, the DOT&E described the Predator system as a “system that 

operates autonomously, is attritable (air vehicle cost is less than $3.5M), and does not 
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compromise sensitive technology should it be lost over enemy territory” (DOT&E, 

1999).  This report suggests that a system’s “attritability” is a function of the tolerance of 

its loss.  An attritable system is one which is designed such that the user is not unduly 

averse to the system’s loss.  In the case of this report, it is based on the system’s 

replacement cost and chance of compromising sensitive technology.  While the term may 

date back to this specific usage, the concept of employing a system whose loss the user 

can tolerate it nothing new.   

The use of unmanned air systems for dull, dirty, or dangerous missions 

underscores how a user can be more tolerant of their loss and their use “trace their 

modern origins back to the development of aerial torpedoes almost 95 years ago,” (Keane 

& Carr, 2013, p. 558).  Yet the supporting technologies that allowed for the achievement 

of militarily useful capabilities took time to mature.  In 1960, “the era of remotely piloted 

vehicles was born under the code name ‘Red Wagon,’ when the United States Air Force 

(USAF) awarded a modest $200,000, but highly classified contract to Ryan Aeronautical 

Company for a flight test demonstration showing how its target drones could be adapted 

for unmanned, remotely guided photographic surveillance missions” (Schemmer, 1982, 

p. ii.).  Designed to operate in the highly-contested airspace over Southeast Asia, Ryan’s 

concept was carried aloft under the wing of a larger manned aircraft and deployed a 

parachute for recovery.  By leveraging the existing airframe of a BQM-34A target drone, 

its design was simple and cost effective.  Powered by comparatively less reliable, but less 

costly, engines Ryan Aeronautical Company pioneered the attritable design philosophy.  
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Development efforts for limited-life unmanned air vehicles languished during the 

late 1970’s and early 1980’s.  However, interest resumed in the mid-1980’s due to 

“stunning technical advances in micro-electronics, jam-resistant and secure data links, 

miniaturized sensors, and all-weather guidance, control and recovery systems [that] 

removed the major technical barriers to exploiting unmanned vehicles for what otherwise 

would be high-risk missions by piloted aircraft” (Schemmer, 1982, p. iii).  The number of 

development programs grew so rapidly that Congressional analysts perceived duplication 

of efforts with unclear program objectives (Thirtle, Johnson, & Birkler, 1997).   

Congress halted efforts until they were consolidated into a single Joint Program 

Office (JPO) in 1987, and the Defense Advanced Research Projects Agency (DARPA) 

began an Advanced Concept Technology Demonstrator (ACTD) effort known as 

Predator in 1994.  The vehicle, based off of an existing airframe provided a solution to 

the Medium Altitude Long Endurance (MALE) need identified by the UAV JPO (Thirtle, 

Johnson, & Birkler, 1997).  The ACTD effort proved so successful that to this day the 

Predator is cited a primary example for transitioning a technology demonstrator into the 

formal acquisition process (Thirtle, Johnson, & Birkler, 1997), and is the first program to 

be described by the term “attritable.” The relationship between the attribute of attritability 

and a system’s reliability, as well as metrics, methods, and models of reliability are 

examined in the proceeding section.    

2.3 System Reliability Engineering 

Economist, and former Secretary of Defense, James R. Schlesinger once said, 

“reliability is, after all engineering in its most practical form” (O’Connor, 2002).  
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However, the defense industry considers reliability engineering a subset of systems 

engineering and its processes are often mistaken as safety engineering. These specialties 

frequently use the same prediction techniques to meet their common primary goal of 

preventing system failure.  However, Barnard differentiates between reliability 

engineering and safety engineering by implying that reliability focuses on the costs of 

failure, while safety engineering concentrates on the danger of failure.  He states, 

“reliability engineering focuses on costs of failure cause by system downtime, cost of 

spares, repair equipment, personnel and cost of warranty claims” (Barnard, 2008, 357).  

Simply put, where safety engineering seeks to prevent system failure as a way to improve 

human survivability, reliability engineering seeks to prevent system failure to avoid the 

cost penalties associated with failure. 

Barnard’s sentiment that reliability engineering emphasizes minimizing the costs 

of failure is echoed by reliability engineers like Yang.  Yang argues that while there are 

upfront costs to early investment in reliability engineering, it breaks “the design-test-fix 

loop and thus greatly reduce the time to market and cost.  In almost every project 

reliability investment is returned with substantial savings in design, verification, and 

production costs” (Yang, 2007, p. 47).  The effect that reliability engineering has on total 

cost is illustrated in Figure 1. 
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Figure 3: Costs associated with a reactive reliability program (Source: Yang, 2007, p. 47) 

Yang’s Figure 1 implies the existence of an optimal level of reliability that 

minimizes total cost, the definition of which is examined in subsequent sections.  This 

hypothesis of an optimal reliability illustrates the benefit that reliability engineering can 

have on total cost.  

2.3.1 Contexts of System Reliability  

 Hogge (2012) identifies two distinct applications of reliability engineering; that is, 

reliability prediction and reliability measurement.  Furthermore, Hogge finds that the 

field can be “divided by the purpose of the analysis and the phase of the product 

lifecycle” (Hogge, 2012).  Hogge’s findings suggest that reliability studies on immature 

systems can rely on estimation from probabilistic models, yet deployed or mature 

systems must apply actual time-to-failure data if available.  

In addition to maturity and reliability data availability, the intended manner and 

environment in which the system operates is an additional consideration to determine 
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reliability.  Hogge (2012), as well as numerous other reliability engineers, distinguish 

between items intended for repair and reuse and those considered non-repairable “throw 

away items.” According to Meeker and Escobar (1998) reliability data for repairable 

systems is differentiable from non-repairable units because it is based on the sequence of 

failure times rather than the time to first failure (Meeker & Escobar, 1998, p. 3). Hogge 

illustrates these distinctions in Figure 1 by defining four quadrants or categories of 

systems.  The most applicable reliability measurement or prediction technique for each 

respective category is identified within quadrant.    

 

Figure 4: The Four Context Areas of Reliability Analysis (Source: Hogge, 2012, p. 11) 

 The high cost of modern complex weapon systems typically precludes their 

treatment as nonrepairable systems, save for expendable systems like munitions.   Yet, 

the statistical techniques associated with nonrepairable systems are often mistakenly 

applied to the study of repairable systems.  Usher (1993) acknowledges this error in 

Reliability Models and Misconceptions, remarking: 

In almost all cases the system under study is repairable in nature; that is, 

upon failure, it can be restored to operation…A curious point, however, is 
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that most of the reliability models found in the literature are appropriate 

only for the analysis of non-repairable systems. (Usher, 1993, p. 261)   

Usher determined that the application of non-repairable models and statistical methods to 

repairable items yielded reliability results that were contrary to correct conclusion.   

2.3.2 Reliability Metrics 

The limitations and merits of the multitude of reliability metrics are as important 

to understand as the operating context and environment of the system under study.  The 

manner in which data are measured and recorded determines which metric can be 

applied.  In other cases, a reliability metric may require simplifying assumptions that can 

hide true failure trends and occlude the underlying relationship between system states and 

the probability of transition between them.  Therefore, a reliability trade study must 

identify and account for these limitations and assumptions.  

According to the MITRE Corporation, “reliability was first practiced in the early 

start-up days of the National Aeronautics and Space Administration (NASA) when 

Robert Lusser, working with Dr. Wehner von Braun’s rocketry program, developed what 

is known as “Lusser’s Law” (MITRE, 2014).  Otherwise known as Lusser’s Product Law, 

it specifies a series system’s reliability as the product of the reliability of its components 

(MITRE, 2014).  According to this scheme, a system is considered “weaker that its 

weakest link”, especially if their failure modes are statistically independent.    

The impetus for the creation of an advisory group in 1952 was the increasing 

complexity of DoD weapon systems.  The group, known as the Advisory Group on the 

Reliability of Electronic Equipment (Hogge, 2012, p.8).  An AGREE report defined 
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reliability as “the probability that a system or product will perform in a satisfactory 

manner for a given period of time when used under specified operating conditions in a 

given environment” (Hogge, 2012, p.8).  This served as an acceptable definition until 

2003 when Air Force Instruction 21-118, Improving Air and Space Equipment Reliability 

and Maintainability introduced Mean Time Between Failure (MTBF) as a generalization 

of reliability.  The use of MTBF as a reliability metric was supported by a 2005 Under 

Secretary of Defense (USD) for Acquisition, Technology, and Logistics (AT&L) 

memorandum on the matter.  It states that, “Material Reliability is generally expressed in 

terms of mean time between failure(s) (MTBF) and, once operational can be measured by 

dividing actual operating hours by the number of failures experienced during a specific 

interval” (USD AT&L, 2005).    

The limitations of MTBF and a related metric, used for nonrepairable items, 

known as Mean Time to Failure (MTTF) presented themselves as the use of these legacy 

metrics became more prevalent. Kumar (1999) identified the limitations of MTBF and 

MTTF early in the Journal of Quality and Maintenance.  According to Kumar, these 

limitations are twofold: MTBF describes the point in time at which there is equal chance 

of either survival or failure, and thus fails to also describe the distribution of system 

failure times.  Additionally, Kumar argues, and the metrics assume an exponential 

distribution of the times-to-failure of the constituent parts of a system.   

According to Kumar, the assumption of an exponential time-to-failure distribution 

restricts the use of MTBF and MTTF in instances of newly designed items or models that 

must account for wear-out related failures.  These limitations led to the abandonment of 
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defense standards such as MIL-HDBK 217 and MIL-STD 1388.  Kumar’s review of 

reliability engineering research in New trends in aircraft reliability and maintenance 

measures found that “the search for a new reliability metric is always one of the prime 

areas of research” (Kumar, 1999). 

Kumar qualifies as a reliability statistician himself, yet he posits that such legacy 

metrics as MTBF and MTTF are imperfect as they are “probabilistic design-based 

measures…more meaningful to statisticians” than to system operators. (Kumar, 1999b). 

This disparity between operator and statistician prompted the creation of the Maintenance 

Free Operating Period metric by Kumar, Knezevic, and Crocker (1999).  Defined as “the 

probability that the item maintains its functionality for at least a period of tmf life units 

without the need for corrective maintenance due to failure of a component…which results 

in an overall critical failure of the system” (Kumar, 1999), MFOP is just one example of 

the myriad of reliability metrics applicable to reliability studies on a reparable system.   

Kumar, et al., however, caution that MFOP’s usefulness is limited by the 

simplying assumptions made to make the MFOP calculation tractable.  They warn: “if the 

majority of the failures are non-age related (or so assumed) then there will be very little 

chance of improving the MFOP probability or the duration of MFOP.  In this case, 

MFOP will not have any advantage compared to that of MTBF” (Kumar, 1999).  When it 

can be assumed that the failure mechanism is neither infant mortality nor wearout, MFOP 

does not differentiate itself as any more useful than the legacy metrics of MTBF or 

MTTF; however, the motivation for MFOP still emphasize the design and operational 

decisions that affect reliability.  
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A leading systems engineer for Research and Development (R&D) at British 

Aerospace stated that the challenge of MFOP “lies in the methodology and tools required 

to produce a system architecture that will reach the target MFOP” (Relf, 1999, 111).  Relf 

identifies design and operational decisions that affect this reliability metric, referred to as 

“options.” Relf’s “options”, presented in Figure 5, are: (1) inherent reliability, (2) 

redundancy, (3) reconfigurability, (4) prognostics (the prediction of failure), and 

diagnostics and (5) lifing policy (an operational decision) (Relf, 1999, 112).   

 

Figure 5: Heirarchy of MFOP Options (Source: Relf, 1999, 112) 

Relf warns that a “determination of which MFOP ‘option’ is the most suitable to maintain 

functionality” (Relf, 1999, 111) must also be accomplished to achieve a suitable MFOP.  

Regardless of the usefulness of the MFOP metric, this remark illustrates the importance 

of trading these options to achieve true attritability, as defined by AFRL.   

 The inability of MFOP and other reliability metrics to separate themselves from 

the limitations of legacy metrics like MTBF and MTTF has prompted reliability 

engineers to use more descriptive parameters. “Typically the traditional parameters of a 

statistical model (e.g., mean and standard deviation) are not of primary interest.  Instead, 

design engineers, reliability engineers, managers, and customers are interested in specific 
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measures of product reliability or particular characteristics of a failure-time distribution 

(e.g., failure probabilities, quantiles of the life distribution, failure rates)” (Meeker & 

Escobar, 1998, p. 3).  A nonnegative, continuous random variable, typically T, is used to 

describe the probability of failure at a given time and “can be characterized by a 

cumulative distribution function, a probability density function, a survival function, or a 

hazard function” (Meeker & Escobar, 1998, 27).  

 “The cumulative distribution function (cdf) of T, , gives the 

probability that a unit will fail before time, .  Alternatively,  can be interpreted as the 

proportion of units in the population (or taken from some stationary process) that will fail 

before time . ” (Meeker & Escobar, 1998, 28). Similarly, the probability density function 

(pdf) is defined as the cdf’s derivative,  and is “used to represent the relative 

frequency of failure times as a function of time.  Although the pdf is less important than 

the other functions for applications in reliability, it is used extensively in the development 

of technical results” (Meeker & Escobar, 1998, 28). 

 Additional valuable functions for reliability analyses are the survival function and 

the hazard function.  The survival function, also called the reliability function.  This 

function is “the complement of the cdf, , and gives the 

probability of surviving beyond time .” (Meeker & Escobar, 1998, 28). The hazard 

function, also known as the hazard rate, is related to both all other reliability distribution 
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functions in the following way: .  Thus, 

the hazard function states the propensity of the unit to fail in the next small interval of 

time, given that the unit has survived to that time  (Meeker & Escobar, 1998, 28). 

The hazard function, also known as the instantaneous failure rate function, is 

useful “because of its close relationship with failure processes and maintenance 

strategies” (Meeker & Escobar, 1998, 29).  Additionally, the hazard function is the 

reliability distribution function used as an input for many reliability models.  “Where a 

competitive type of assessment is acceptable, i.e. one design against another the use of 

general failure rate data is permissible” (Walter & Watson, 1971, 10); however, a 

common misconception is that failure rate is always constant and is considered the 

multiplicative inverse of MTBF.  The fault with this misconception is that it does not 

account for all phases of a system lifecycle, as illustrated by what is commonly termed 

the “bathtub curve” 

“The ‘bathtub curve’ [illustrated by Figure 6] provides a useful conceptual model 

for the hazard of some product populations” (Meeker & Escobar, 1998, 29).  
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Figure 6: Bathtub Curve for Hardware Reliability (Source: Pan, 1999) 

During the burn-in phase, a unit failure may be caused by quality-related defects (infant 

mortality).  The useful life of the product is the period of time during which the hazard 

rate (or failure rate, λ) is approximately constant and are due to external shocks that occur 

at random.  Failures in the latter stages of the system lifecycle can be attributed to 

wearout (Meeker & Escobar, 1998, 29).   

 The preceding reliability metrics are used to describe the time-to-failure behavior 

of non-repairable units or non-repairable components within a repairable system.  Yet, 

there exists ways to describe the reliability of a repairable system as a sequence of 

reported system-failure times.  Rigdon and Basu’s Statistical Models for the Reliability of 

Repairable Systems describe this metric as Mean Cumulative Function (MCF).  MCF is 

defined as the expected value of ,  where ,  represents the 

number of system failures in the interval [0, t].  If MCF is differentiable its derivative is 

defined as , and is known as Rate of Occurrence of Failure, or recurrence rate 
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per system of the population (Meeker &Escobar, 1998, p. 395). “The MCF and the 

ROCOF are important elements to define the reliability of a repairable system” (Hogge, 

2012, 17).   

 Regardless of the “options” employed to affect reliability, it is important to begin 

a reliability study by considering the metric that will apply.  The fundamental 

assumptions of the preceding metrics affect which metrics are applicable to a study that 

trades reliability for an attritable system.  For this reason, it is critical to account for these 

in the choice of reliability model as well.   

2.3.3 Reliability Models 

For repairable systems, as well as repairable systems consisting of non-repairable 

components, probabilistic models are used to predict performance and compare design 

alternatives.  These models are used to predict performance and compare design 

alternatives.  Many reliability models have been developed for the purpose of prediction, 

and they fit into two categories: combinatorial and state space models (Sahner & Trivedi, 

1987).  Common combinatorial methods for system reliability prediction are Reliability 

Block Diagrams (RBDs) and Fault Tree Analyses (FTA), also known as Fault Tree 

Diagrams.  The standard prepared by the International Electrotechnical Commission, 

Technical Committee on Dependability (known as IEC 61165) outlines these reliability 

analysis techniques. “FTA can be used to evaluate the probability of a failure at a given 

instant t in time using Boolean logic.  This logic may not express time or state 

dependencies properly” (IEC, 2006, 25).  These dependencies may not be expressed due 
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to the fact that “in the fault tree, the parts evaluated have to be assumed to be independent 

branches” (IEC, 2006, 25).   

The assumption of state independence applies to RBDs as well.  “A RBD is also a 

technique that may use Boolean logic and therefore has similar limitations to those of 

FTA” (IEC, 2006, 25).  In the case of RBDs, each block represents a component and the 

lines between the components describe the relationships of each component to others 

within the system (often only showing parallel or series structure).  Each block possesses 

a predetermined probability of successful transition.  Consequently, it is said that RBDs 

illustrate the success-oriented states of the system.  

As with any technique intended to model and predict the behavior of the system, 

the assumptions and simplifications made can limit the overall utility of both 

combinatorial techniques.  According to Ascher and Feingold, these methods assume that 

the behavior of each component is independent of other components and that the 

probability remain constant.  This is referred to as the independent and identically 

distributed (iid) assumption.  Consequently, these techniques are limited to use on 

systems whose components are not interdependent and do not change over time.  

Additionally, only recently have extensions to these combinatorial techniques been 

created with sufficient power to model the ability to restore or repair the system.    

There are two generic types of state-space modeling techniques for reliability 

analyses: Petri nets and Markov techniques.  Neither Petri nets nor Markov techniques 

require the assumption that the components are independent or that the system is static 

and therefore are not hindered by the limitations of combinatorial methods.  “Petri nets 
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are a graphical technique for the representation and analysis of complex logical 

interactions among elements in a system” (IEC, 2006, 27).  In comparison to Markov 

techniques, General Stochastic Petri nets, a particular class of Petri nets, “can often be 

described more easily and with a smaller diagram than using Markov techniques” (IEC, 

2006, 27).  However, “for evaluation purposes, the Petri net is converted to its 

corresponding Markov model, which is then analyzed” (IEC, 2006, 27).   

Studies by researchers like Mura and Chew have demonstrated the effectiveness 

of Petri nets for modeling dynamic and interdependent systems for reliability analyses.  

Yet, the statement that the evaluation of a Petri net model begins with its conversion to a 

corresponding Markov model persists.  A complete analysis of reliability evaluation 

techniques centers on a thorough review of Markov techniques.   

Similar to Petri nets, “Markov techniques make use of a state transition diagram 

which is a representation of the reliability, availability, maintainability or safety 

behaviors of a system, from which system performance measures can be calculated” 

(IEC, 2006, 21).  Markov techniques are primarily concerned with the definition of 

system states and the characterization of the transitions between those states.  There are a 

few underlying assumptions of Markov techniques – the most foundational of which is 

described by Butler and Johnson, researchers at the National Aeronautics and Space 

Administration (NASA).  “A Markov process is a stochastic process whose behavior 

depends only upon the current state of the system, and not the particular sequence by 

which the system entered the current state” (Butler & Johnson, 1995).  The Reliability 

Analysis Center (RAC) separates the Markov techniques for reliability analysis into two 
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categories. “There are two basic Markov analysis methods: Markov Chain and Markov 

process.  The Markov chain assumes discrete states and a discrete time parameter; with 

the Markov Process, states are continuous” (RAC, 2003, 2).  Therefore, Markov Chain 

analyses are most often applied to systems where its elements are described as being in 

one of two states: working and failed.   

Additionally, there are subcategories of Markov Chain that are characterized by 

how the states are defined, as well as on the behavior of the transition between those 

states. According to RAC, there exists both homogeneous and non-homogeneous Markov 

Chains.  “A Homogeneous Markov Chain is characterized by constant transition rates 

between the states.  A Non-Homogeneous Markov Chain is characterized by the fact that 

the transition rates between the states are function of a global clock e.g., elapsed mission 

time” (RAC, 2003, 2).  Transition rates are directly related to the previously defined 

hazard function and can follow any number of distributions created to describe reliability.  

The effectiveness of both Homogeneous and Non-Homogeneous Markov Chains to find 

reliability performance measure of both continuous and phased-mission systems have 

been proven by researchers such as Dugan, Chew, and Zhou.  

 These researchers have shown that Petri nets and Markov techniques can be 

effectively used to represent repairable, and interdependent systems as well as be used to 

solve for the numerical solution of reliability distribution functions.  Yet, the complexity 

of some system’s state-space representation make the calculation of its reliability 

distribution functions intractable.  For this reason, methods were developed to simulate 

these complex models.  Chew, Dunnett, and Andrews created a Petri net model and “used 



 

30 

a form of Monte-Carlo simulation to obtain its results” (Chew, Dunnett, & Andrews, 

2007, 219), while researchers like Tiassou applied Discrete Event Simulation (DES) 

techniques to his Stochastic Activity Net (SAN) that described operational aspects of an 

aircraft.  “A stochastic modeling formalism using the basic notions of place, marking and 

transition of Petri nets” (Tiassou, 2013, 56), helped Tiassou predict the operational 

reliability of an aircraft. 

The formalism used by researchers such as Tiassou apply to extremely 

complicated Petri nets and Markov chains.  They can be used to represent repairable and 

interdependent systems and can be simulated to determine system reliability, and in some 

cases their simulation may even be required.  “For large series/ parallel structures, 

approximate expressions are known in the literature.  For very large or complex system, a 

Monte Carlo simulation can become necessary” (IEC, 2006, 41).  The technique known 

as Markov Chain Monte Carlo (MCMC) simulation is a technique used by some 

reliability researchers to randomly sample from a probability distribution based on a 

Markov Chain that is representative of the system under study. 

 The pitfalls of interpreting the results of a system’s state-space representation is 

avoided by understanding the underlying assumptions of the models themselves and 

accounting for their limitations.  As, according to IEC 61165, Petri nets are converted to 

their corresponding Markov model for analysis, Petri nets and Markov models are based 

on similar assumptions and suffer from the same limitations.  The underlying assumption 

of a Markov chain is what is known as the Markov property.  The principle of the 

Markov property is described by Boyd, a NASA reliability research scientist, as a 
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situation where “the future behavior of the simplified stochastic process (i.e. Markov 

model) is dependent only on the present state and not on how or when the process arrived 

at that state” (Boyd, 1998, 7).  

Assuming that the Markov property applies has many benefits, chief 

among them is “that it helps make the evaluation of Markovian models tractable.  

It is something of a mixed blessing, however, in that it is a very restrictive 

assumption that is not always consistent with the reality of real-world system 

behavior” (Boyd, 1997, 7-8). Boyd later identifies further simplifying 

assumptions that only apply to homogeneous Markov chain analyses; the state 

holding times are exponentially distributed and that the transition rates between 

states are assumed as constant (Boyd, 1998, 8).  According to the IEC, “the 

assumption of constant failure rate is reasonably acceptable for components in 

many systems before the wear out period” (IEC, 2006, 23), but should be justified 

by the researcher.   

If the assumption of a constant failure rate is justified for an item prior to 

wear out, the transition rates of repair – that is, the propensity of the unit to be 

repaired in the next small interval of time, given that the unit has failed prior to 

time  – should also be considered as carefully as failure rate.  “If the assumptions 

are too inconsistent with the characteristics of the real system, then any 

dependability estimates…obtained from the model cannot be used to predict the 

behavior of the real system” (Boyd, 1998, 8).  It is these assumptions, and the 

difficulty of creating Markov chains, that the IEC warns,  
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The main problem is that the number of states and possible transitions 

increases rapidly with the number of elements in the system.  The larger 

the number of states and transitions, the more likely it is that there will be 

errors and misrepresentations. (IEC, 2006, 23) 

Despite these limitations, the power of discrete time Markov chains, whether 

homogeneous or non-homogeneous, to model the reliability and dependability of 

repairable systems should not be overlooked.   

The preceding state-space reliability prediction techniques are applicable to the 

Low Cost Attritable Aircraft Technology demonstrator as it is assumed that the LCAAT 

system is a complicated system that: (1) consists of subsystems that are non-repairable 

and exhibit interdependent failure modes, (2) is an attritable, but not expendable, and is 

therefore intended to be pressed to operation after more than one use, and (3) is intended 

to be employed operationally for a short period of time, yet may still undergo all phases 

of lifecycle phases, including burn-in and wearout.  

2.3.4 Reliability Model Development 

 While the preceding section examines the available reliability modeling 

techniques and their limitations, it is critical to any reliability study to take the necessary 

steps to properly develop the model.  IEC 61165 outlines universal considerations for the 

development of a reliability model: 

1) Set the goal of the analysis and define the unit of measurement 

2) Define the system characteristics and the boundary of the analysis  

3) Ensure that the choice in technique is the most appropriate for the task  
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4) Review the model and inputs with field practitioners (IEC, 2006, 29) 

These considerations are similar to those tasks outlined by the Reliability 

Analysis Center’s (RAC) process for Markov modeling as illustrated in Figure 7.  

RAC takes the guidance of IEC one step further by identifying when to use state 

reduction and simplification techniques as well as illustrating the iterative nature 

of reliability model development.  

 

Figure 7: Markov Modeling Process (Source: RAC, 2003) 

 The process outlined in Figure 7 may be specifically tailored to Markov 

techniques, but it is similar to the modeling processes used for other modeling 

techniques.  Tiassou (2013) employed SAN formalisms when he created his model based 

on the Petri nets to predict the reliability of aircraft and his model construction process is 

illustrated in Figure 8.  Figure 8 does not illustrate the iterative nature of reliability 

modeling like Figure 7, yet it is evident that model tuning with up-to-date data is critical 

to yielding accurate results.     
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Figure 8: Operational dependability model construction process (Source: Tiassou, 2013) 

The guidelines and processes outlined by the IEC, RAC, and researchers like 

Tiassou are intended to produce a reliability model that can yield meaningful predictions 

of the real behavior of a system.  The next step in reliability analysis is to use the 

resultant model to meet the goals of the analysis.  As the one of the stated goals of this 

research is to determine the effect that varying attritable system reliability and 

reparability has on the expected costs of a system, the researcher must also understand 

the implications of expected costs for and attritable system.  

2.4 Cost Estimation and Cost Risk  

The need for accurate cost estimation has led to the development of numerous 

techniques; they are tailored to a product’s specific architecture and phase in the 

development cycle.  DoD Instruction (DoDI) 5000.73 Cost Analysis Guidance and 

Procedures (9 June 2015) discusses the importance of employing the proper cost 

estimation technique, based on acquisition phase, data availability, and past experience.  

According to DoD guidance, cost estimation during early system development has an 

effect on the long-term success of the program. “At this formative stage, O&S cost 

considerations support the systems engineering process and influence requirements 

decisions followed by the system design decisions.” (DoDI 5000.73).  Just as Barnard 
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indicated earlier, cost is intrinsically linked to systems engineering and is demonstrated 

by reliability engineering.  Determining the proper cost estimation methodology for early 

reliability and cost trade studies remains the issue.   

Unequivocal guidance on the proper methodology is found in DoD Directive 

5105.84, Director of Cost Assessment and Program Evaluation, which identifies four 

general cost estimation methodologies: 1) Analogy, 2) Parametric (statistical), 3) 

Engineering, 4) and Actual Costs.  The Defense Acquisition University (DAU) illustrates 

the recommended methodology, dependent on lifecycle phase, in Figure 9.  

 

Figure 9: Cost Estimating Methodology (Source: DAU) 

DAU advises that “the analogy method is most often used early in the program when 

little is known about the specific system to be developed.  The parametric technique is 

useful throughout the program, provided there is a database of sufficient size, quality, and 

homogeneity to develop cost estimating relationships (CER)” (DAU, 2016).  Given 

Figure 9, and the lack of cost data for an attritable air vehicle, the most applicable cost 

estimation technique the circumstances is the analogy method.   
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Industry has devoted much effort to characterize the effect of that changing 

reliability can have on cost, and in the instance of early systems they use they also use the 

analogy method to determine cost.  For example, Jirutitijaroen and Singh (2004) develop 

a Markov model to trade design and maintenance parameters and study their effect on 

reliability (even though it is defined as MTTF) and cost.  They then completed a 

sensitivity study on the effect of varying maintenance parameters such as time spent in 

each system state, inspection rate in each state, and probabilities of transition from each 

state.  Their research also specifies an expression for system lifecycle cost as a function 

of failure cost, maintenance cost, and inspection cost.  In their case, they argue that the 

expected total cost is a summation of expected failure and maintenance costs 

(Jirutitijaroen & Singh, 2004, p. 220).  They defined expected failure cost, , as: 

; similarly, expected maintenance cost, , 

is defined as: .   

This concept of expected total cost as a summation of the impact of an event’s 

occurrence and probability of its occurrence is referred to as another term, risk, in case 

the situation outlined by Jirutitijaroen and Singh, cost risk.  “The notion of risk involves 

two concepts: (1) the likelihood that some problematic event will occur, (2) the impact of 

the event if it does occur.  Risk is a joint function of the two; that 

is, ” (Nicholas and Steyn, 2008, p.363).  One half of the 

inputs to determine cost risk is found by using the aforementioned reliability models to 
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determine the probability of failure and repair, also considered maintenance, through the 

multitude of reliability distribution functions.  The other input, impact, can be determined 

by using the analogy cost estimation method suggested by the DoD and previously 

examined.  

2.5 Competing Risks Analysis 

The preceding simplified equation of risk is further complicated by what are 

known as competing risks, i.e. an event whose occurrence alters or even eliminates the 

probability of observing the event of interest (Freels, 2013).  This is applicable to an 

attritable air vehicle as a failure caused by the launch subsystem may drive the 

probability of observing a failure of the electronics or recovery subsystems to zero.  “In a 

competing risks framework once the system has failed due to risk  the 

probability of observing the system fail due to any of the remaining  risks is altered, 

and an informative censoring scheme is required” (Freels, 2013).  However, without prior 

knowledge of each competing risk’s failure time distribution, non-parametric competing 

risk analysis must be used.  According to Freels (2013), there are “two commonly used 

non-parametric estimation techniques in competing risks analysis: the complement of the 

Kaplan-Meier estimator  and the Cumulative Incidence Function (CIF)” 

(Freels). 

The complement of the Kaplan-Meier estimator method has been shown by 

Gooley et al. (1999) and Putter et al. (2007) to be imperfect as it overestimates the rate of 

[1] 
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occurrence of each event.  Thus, Kalbfleish and Prentice’s development of a CIF based 

on the Kaplan-Meier survivor function  where: 

 

and Kalbfleish and Prentice’s notation define the following: 

 

 

 

 
is expressed as:  

 
Where is the largest , such that . 

The CIF is useful as an input to reliability models like Markov chains as it “is a function 

of the hazard rates for both modes making CIF the preferred method of estimating the 

failure probability when competing risks are present” (Freels, 2013).   

2.6 Gap Analysis    

This review of the literature demonstrates the importance of defining reliability in 

terms of operational success according to a given concept of operation.  Explanations for 

the successful employment, as well as the limitations, of modeling reliability techniques 

[2] 



 

39 

and cost estimation methods are were also discussed.  This literature has made great 

contributions to the field of reliability engineering, as it forms the basis for reliability 

engineering of an attritable air vehicle like the Low Cost Attritable Aircraft Technology 

demonstrator.  Employing the previously discussed reliability modeling techniques, 

allows for the determination of an attritable system’s sensitivity to variations in reliability 

and reparability, as well as its effect on the cost risk of changing these parameters.  If 

used correctly, this information serves as a tool to decrease the acquisition and lifecycle 

costs of attritable air vehicles desired by AFRL researchers.  
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3.0  Methodology to Trade Attritable System Reliability and Cost  
3.1 Chapter Overview 

The objective of the Low Cost Attritable Aircraft Technology (LCAAT) 

demonstration is to trade “the relatively high cost of UAV performance, design life, 

reliability, and maintainability” (military aerospace) to achieve a re-usable system 

“whereby virtue of its cost, the loss of the aircraft could be tolerated” (AFRL/RQKP, 

2015, p.1).  According to AFRL, system attributes like design life, reliability, and 

maintainability drive lifecycle costs and therefore, “need to be traded to achieve the 

optimum capability/cost effects” (AFRL/RQKP, 2015, 1).  This research investigates 

reliability modeling techniques that are applicable to attritable air vehicles.  The most 

appropriate technique is used to determine the sensitivity of a similar system, known as 

the baseline system, to variations in subsystem reliability and reparability by examining 

that system’s failure-time data.  Finally, the impact that these trade have on cost risk is  

also calculated as a system’s attritability is a “virtue of its cost” (AFRL/RQKP, 2015, 

p.1). 

 This chapter outlines three important phases necessary to ensure this research of 

trading reliability and reparability for lower cost is bounded, tractable, and repeatable: an 

outline of the simplifying assumptions made to ensure consistency in the analysis of the 

baseline system’s failure-time data and streamline the representation of the system under 

study; the failure-time data is illustrated and the analysis tools are identified; and a step-

by-step description of the analysis activities is provided.  These activities use the failure-

time data gathered on a baseline system and analysis tools as inputs for the investigation 

of reliability and reparability trades.   
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3.2 Assumptions 

According to a 1957 report by the Advisory Group on the Reliability of 

Electronics Engineers (AGREE), reliability is defined as the “probability that a system 

will perform in a satisfactory manner for a given period of time when used under 

specified operating conditions in a given environment” (Hogge, 2012, p.8).  Accordingly, 

the calculation of system reliability only applies to a set instance of satisfactory 

performance, operating condition, and given environment.  To gain valuable results from 

reliability estimation, the parameters of reliability, reparability, and cost risk must be 

accurately defined. 

In the case of unmanned air vehicles, satisfactory system performance is 

commonly considered the successful performance of its mission, without subsystem 

failure, in a manner that allows for its continued operation for the length of its intended 

lifecycle.  However, the application of this assertion to an attritable air vehicle is met 

with many challenges.  The intended length of the attritable air vehicle’s lifecycle is as 

yet undetermined and therefore, no assumptions can be made regarding the period of time 

that the system must perform satisfactorily.  Likewise, the expected mission length is 

undetermined as the system must perform in a range of threat environments – not only 

experiencing removal from the population due to system-level events but also due to 

external factors.   

Additionally, the operational concept of the vision system may prohibit the repair 

of certain subsystems.  For the purposes of failure-time data analysis, it is assumed that 

the failed systems that undergo repair are not repaired to an “as good as new” standard, 

and are instead restored to the standard of “as bad as old” – meaning that only the failed 
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subsystem is repaired or replaced upon failure and the entire system does not undergo full 

restoration. 

The aforementioned baseline vehicle, upon which failure-time data is collected, 

already operates in a range of threat environments for the DoD.  As the vision LCAAT 

system leverages non-developmental subsystems readily available for production, the 

study of this baseline vehicle provides useful insight into the future reliability and cost 

risk of LCAAT.  This research assumes that the LCAAT system and the existing system 

are sufficiently similar that investigation of reliability for the underlying physical 

architecture is appropriate to use as a baseline.  The use of this baseline make the 

calculation of the impact of trading reliability and reparability tractable.  Figure 10 

displays a block definition diagram (bdd) that illustrates the physical architecture of the 

baseline air vehicle.  It is important to note that this research does not consider the 

reliability of the mission payload as it does not affect the performance of the vehicle.  

Omitting the mission payload as a part of the attritable air vehicle architecture simplifies 

the application of the baseline reliability data to the LCAAT vision system.       



 

43 

 

Figure 10: Attritable Air Vehicle UML Object Diagram (Note: System representation excludes mission payload)  

The seven primary subsystems of the baseline system are illustrated in Figure 10.  

They include: the electronics, fuel management subsystem, launcher subsystem, operator, 

propulsion subsystem, recovery subsystem, and structural subsystem.  The baseline 

system’s failure-time data only outlines the failure behavior at the subsystem level of 

abstraction consistently.  Reliability analysis at the component level, a more detailed 

level of abstraction, is prohibitively complicated without this data. Therefore, this 

research is limited to trading the reliability and reparability of these seven previously 

mentioned subsystems.  These subsystems are consistent with the published DoD 

guidance outlined by MIL-STD 881C, Appendix H dated 14 Jan 2011.  This guidance 

provides a generic framework of a Work Breakdown Structure (WBS) of Unmanned 
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Aerial Vehicles (UAVs).  The concordance of the physical architecture is advantageous 

as DoDI 5000.02 states that a WBS is used to track costs for all defense acquisitions 

programs.   

It necessary to discuss the assumptions of the reliability estimation model as this 

research’s objective is to model the impact reliability and reparability variations on 

system survivability and cost risk.  This research employs the Markov chain technique to 

represent the behavior of a system as a state transition diagram.  Specifically, this 

research builds discrete time-nonhomogeneous Markov chains to allow for the variation 

hazard and repair rates over time, according to a global clock.  A single Markov chain 

represents a system as elements “which can assume only one of two states: up or down.  

The system as a whole, however, can assume many different states, each being 

determined by the particular combination of functioning and failed elements” (IEC 

61165, 2006, p.21).   

The IEC gives guidelines for the application of Markov techniques to practical 

situations and stipulates that the number of possible states must be finite and that the sum 

of all states probabilities must also be unity, “i.e. at any instant in time, the system can be 

in one and only one of the states in the state transition diagram” (IEC 61165, 2006, p.23). 

This standard also outlines how a system that includes non-restorable elements, like those  

in the baseline air vehicle, can be specified.  Such a system “can be regarded as a special 

case of a system with restorable elements where the restoration rates are zero (or 

restoration times are infinite)” (IEC 61165, 2006, p.23). 

 The Markov technique is hampered by what Boyd, a NASA reliability engineer 

terms a restrictive assumption: the Markov property.  According to this property, “the 
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future behavior of the simplified stochastic process (i.e. Markov model) is dependent 

only on the present state and not on how or when the process arrived at that state” (Boyd, 

1998, 7).  Thus, a homogenous Markov chain concludes that “the state holding times are 

exponentially distributed and the transition rates between states are assumed as constant” 

(Boyd, 1998, 8).  However, “a non-homogeneous Markov chain is characterized by the 

fact that the transition rates between states are functions of a global clock, e.g. elapsed 

time” (RAC, 2003, p. 2). Therefore, the employment of discrete time-nonhomogeneous 

Markov chains by this research allows for the definition of time dependent transition 

rates, where the transition rates represent either the hazard rate or the repair rate.  This 

allows for the examination of system reliability and reparability throughout the lifecycle, 

instead of only during its useful life when its hazard rate is assumed to be constant.  

Studies of the reliability and reparability for the baseline vehicle are complicated 

by the complicated censoring scheme and competing failure modes that fundamentally 

alter the probability of observing a particular failure mode.  The implications of censoring 

and competing risks on failure-time data, as well as mitigating techniques, are outlined in 

the subsequent section on the specifics of the gathered data.   

3.3 Data and Materials 

The performance, reliability, and system cost data on a baseline air vehicle in the 

DoD are analyzed to determine the effect of varying subsystem reliability and reparability 

on system-level reliability and cost risk.  The System Performance Document outlines the 

performance of the system and also as serves as the requirements document.  A catalog of 

mission performance, dating back to program inception, provides information on unit 

launches, failure mode, and the root cause for over 1100 sorties.  This catalog is shown to 
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be complete enough to cross-reference a separate summary of system failures, and also 

shows that the population of over 300 units are comparable enough to combine into a 

single homogeneous population. 

This data is used to determine each subsystem’s time to failure, based on the 

number of cycles the system underwent, as well as the repair strategy used at the time.  

However, there are complications present in these reliability data.  The random removal 

of units from the population present a unique censoring mechanism that obscures the 

observation of each subsystem’s exact failure time.  Occasionally, external events that are 

a function of the operating environment result in the removal of the unit from the 

population.  This prohibits the observance of the exact failure time of the unit.  This type 

of censoring is referred to as Type I, time, or right censoring and must be accounted for 

in the calculation of reliability distribution functions.   

The failure-time data on the baseline attritable air vehicle offers an added 

complexity, the presence of competing risks.  “A competing risk is an even whose 

occurrence fundamentally alters or altogether eliminates the probability of observing the 

event of interest” (Freels, 2013).  The simplest manifestation of a competing risk for an 

attritable air vehicle is a launch subsystem failure that drives the probability of observing 

a failure of any other subsystem to zero.  According to Freels, “the cumulative incidence 

function (CIF) estimator is a function of the hazard rates for both modes making CIF the 

preferred method of estimating the failure probability when competing risks are present” 

(Freels, 2013). 

To efficiently calculate the CIF of each respective risk, heretofore defined as the 

failure of a given subsystem, this research uses the ‘cmprsk’ package (Gray, 2015) 
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developed for use in R 2.2-7 or later.  R is an open source language and environment that 

is tailored statistical and graphical analysis of data.  This package employs the previously 

defined equations to calculate CIF.  Additionally, as “the cumulative incidence function 

(CIF) estimator is a function of the hazard rates for both modes” (Freels, 2013), it is also 

possible to determine the hazard rate of a given failure mode using the subdistribution 

hazard technique (Gray, 1988). 

The hazard rate, , is defined by Meeker and Escobar (1998) as: .  

Yet, the output of the ‘cmprsk’ function shows that the CIF is directly related to the 

complement of reliability function and represents the probability of a unit’s failure before 

time .  Thus, it can be said that the hazard function  is represented as  

when competing risks are present.  Furthermore, as the failure-time data of the baseline 

air vehicle only yielded failure information at discrete time intervals, i.e. at the 

occurrence of each sortie, , and therefore the derivative of the cumulative incidence 

function is denoted as  - .  Therefore, this research defines 

the hazard function as .  The hazard function is an input to the 

discrete time-nonhomogenous Markov chain models built to determine the probability of 

failure over time.   

In addition to using the ‘cmprsk’ package developed to calculate the CIF 

estimator for situations where competing risks are present, this research also leverages 
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the ‘markovchain’ package (Spedicato et al., 2016).  Developed to perform statistical 

analysis for discrete time Markov chains, this research uses the markovchainList class to 

create a state-transition matrix for each discrete sortie up to the point where there is not 

enough data to create an accurate Markov chain.  According to Meeker and Escobar, the 

data necessary to construct a state-transition matrix is dependent upon the availability of 

a “large” number of samples.  “With censored data…a typical guideline for large is 20 or 

more, but this really depends on the problem and the questions to be answered” (Meeker 

& Escobar, 1998, p. 36).  Therefore, further analysis of the baseline failure-time data will 

only extend to the ninth sortie due to the lack of systems in the population at any 

additional interval of time.     

The baseline air vehicle failure-time data is presented in Table 1.  This table 

presents the number of units in the population at each given sortie – note that the most 

sorties undergone by a unit is 19.  Furthermore, the table presents the failure mode, i.e. 

the subsystem determined to be the root cause of a failure to perform satisfactorily, as 

well as the number of units destroyed after the occurrence of a given failure mode.   
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Table 1: Baseline System Failure-time Data  

 
Sortie Number 

Failure 
Mode 

Sortie 
Outcome 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Electronics  
Subsystem 

Total 9 14 4 5 5 3 2 2 1 1 0 0 0 0 0 0 0 0 0 

Destroyed 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fuel 
Management 

Subsystem 

Total 13 7 5 6 3 3 1 0 1 2 0 0 0 0 0 0 0 0 0 

Destroyed 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Launcher 
Subsystem 

Total 8 5 3 5 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 

Destroyed 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Operator 
Subsystem 

Total 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Destroyed 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Propulsion 
Subsystem 

Total 3 6 4 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

Destroyed 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Recovery 
Subsystem 

Total 4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Destroyed 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Structure 
Subsystem 

Total 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Destroyed 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Type I Censored  275 194 148 97 70 44 32 24 19 12 12 7 6 5 4 2 2 1 1 

Total in Population  313 227 227 116 79 52 37 29 22 15 12 7 6 5 4 3 2 1 1 

 

Analysis of Table 1 uses the ‘cmprsk’ (Gray, 2015) and ‘markovchain’ (Spedicato 

et a., 2016) packages, available open source for R, to determine the sensitivity of an 

attritable system’s reliability to changes in subsystem reliability and reparability.  The 

‘cmprsk’ package produces reliability density functions that are inputs to discrete time-

nonhomogeneous Markov chain lists built using the ‘markovchain’ package.  The state 

probabilities produced by these analyses are then input to calculations of cost risk per 
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sortie.  The detailed methodology for determining these attributes is outlined in the 

subsequent section.     

 

3.4 Processes and Procedures 

The order in which the aforementioned analyses are accomplished is important to 

the overall results of a reliability trade study.  The activity diagram depicted in Figure 11 

illustrates the sequence of activities necessary to determine the effect of trading reliability 

and reparability for an attritable system.  The activity diagram is separated into “swim 

lanes” to signify the division of responsibilities based on the subject matter of each 

respective activity.  Reliability-related analyses include: the analysis of baseline air 

vehicle failure-time data, the variation of attritable air vehicle subsystem reliability – 

represented by its hazard rate,  – and reparability, as well as the construction and 

analysis of the resultant discrete time-nonhomogeneous Markov chain models.  The 

resulting reliability probability functions are used in conjunction with the cost-related 

activities of repair and maintenance cost parameterization to finally calculate cost risk.       
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Figure 11: Methodology for the Study of Reliability and Cost Trades for Attritable Systems  

The first phase of Figure 11 describes the approach to analyze data of a baseline 

fielded attritable air vehicle.  In this analysis, the failure modes that impede satisfactory 

system performance are identified.  Determination of root cause allows for the allocation 

of these failure modes to the subsystem at fault.  Lastly, the calculation of the hazard rate 

of each subsystem’s cumulative incidence function is used to more accurately estimate 

the hazard rate given the existence of competing risks, or failure modes.   



 

52 

The construction phase includes the creation of a reliability model in the form of a 

discrete time-nonhomogeneous Markov Chain model.  A discrete time-nonhomogeneous 

model allows for the variation of the transition probabilities according to a global clock.  

Therefore, a time-nonhomogeneous model is considered a collection of homogeneous 

Markov chains that describe system behavior at discrete points in time.  Figure 12 

illustrates the state-transition diagram of the Markov chains used to create the discrete 

time-homogeneous Markov Chain models used in this research and presented in 

Appendix A.  Note the existence of nine states: operational, destroyed (the absorbing 

state), and the failed states based on the seven subsystems previously identified.  

 

Figure 12: Example Markov Chain Model with Identified Subsystems 

Altering the baseline discrete time-nonhomogeneous Markov Chain model is 

accomplished by varying each respective subsystem’s competing risk hazard rate, as well 
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as varying each subsystem’s reparability – that is, the rate at which the system is restored 

to an operational state from a failed state.  These variations allow for the determination of 

the sensitivity of system-level reliability to these changes.  The decision of which 

reliability and reparability trade excursions to make considers the realistic direction of 

change based on the existence and behavior of similar subsystems in the field.   

Table 2: Direction of Subsystem Hazard Rate Variation and Justification 

Subsystem Direction of 
Variation Justification 

Electronics ▲5% the effect of trading of comprehensively tested MIL-SPEC 
electronics for COTS computers and sensors (with possibly 
lower reliability) is unknown 

Fuel 
Management 

▲5% the effect of trading of comprehensively tested MIL-SPEC 
components for COTS tanks, filters, and pumps (with possibly 
lower reliability) is unknown 

Launcher ▼5% 

The effect of trading of the comparatively high risk method of 
zero-length launch methods for more conventional methods 
(with lower risk) is unknown.   
(This trade excursion assumes that the rest of the vehicle’s 
subsystems remain unchanged – a simplifying assumption as it 
would require reconfiguration of the airframe if implemented) 

Operator ▼5% 
It is unlikely that operator performance could be traded to lower 
cost as policy dictates that the need for skilled operators 
overrides the training costs. Therefore, the effect of increasing 
operator reliability, through means such as training, is explored 

Propulsion ▼5% The impact of trading the baseline attritable system’s jet engine 
which are also used on expendable weapon systems for FAA-
certified engines (with possibly more reliability) is unknown 

Recovery ▼5% 

The effect of trading of the comparatively high risk method of 
parachute recovery for more conventional landing methods 
(with lower risk) is unknown.   
(This trade excursion assumes that the rest of the vehicle’s 
subsystems remain unchanged – a simplifying assumption as it 
would require reconfiguration of the airframe if implemented) 

Structure ▲5% 
Research is ongoing into the effect of trading of 
comprehensively tested MIL-SPEC structural components for 
rapidly manufactured component for COTS Computers and 
Sensors could decrease cost, but also reliability 
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Table 3: Alteration of Subsystem Reparability and Justification 

Subsystem 
Level of  
Baseline 

Reparability 

Level of 
Altered 

Reparability 
Justification 

Electronics reparable no change 
Air vehicle onboard electronics constitute a considerable 
portion of unit cost, yet this subsystem’s repair-to-buy cost 
ratio is considerably low.  The impact of this trade is not the 
subject of ongoing research.  

Fuel 
Management 

reparable no change 
The repair-to-buy cost ratio is relatively high for the Fuel 
Management Subsystem as repairs generally consist of 
replacement.  However, this subsystem constitutes a very 
small portion of unit cost. The impact of this trade is not the 
subject of ongoing research. 

Launcher reparable no change 
Whether the system is reparable after a launch subsystem 
failure is dependent upon the impact to the vehicle as the 
launcher is separate from the vehicle (see Figure 10). The 
impact of this trade is not the subject of ongoing research.  

Operator reparable no change 
Whether the system is reparable after an operator error is 
dependent upon the impact to the vehicle as the operator is 
separate from the vehicle (see Figure 10). The impact of this 
trade is not the subject of ongoing research.   

Propulsion reparable non-
repairable 

The propulsion subsystem represents a high percentage of 
unit cost as well as a high cost to repair (instead of replace). 
The impact of this trade is the subject of ongoing research.     

Recovery reparable no change 
The repair-to-buy cost ratio is relatively high for the 
Recovery Subsystem as repairs generally consist of 
replacement.  However, this subsystem constitutes a very 
small portion of unit cost. The impact of this trade is not the 
subject of ongoing research. 

Structure reparable non-
repairable 

The system structure, or airframe, represents a high 
percentage of unit cost as well as a high cost to repair 
(instead of replace). The impact of this trade is the subject of 
ongoing research.     

 

Tables 2 and 3 show the feasible trades of reliability and reparability possible when 

considering the existence and realistic behavior of similar subsystems in the field.  These 

tables also provide insight into the motivations for each trade excursion.  The excursions 

outlined by these tables are considered in the construction of the appropriate discrete 

time-nonhomogeneous Markov Chain model as well as the determination of the system 

level reliability function for each model.  
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Last, but certainly not least, the final activity in Figure 11 is the prediction of 

absolute cost risk for each of the discrete time-nonhomogeneous Markov chain models.  

This activity uses example regeneration, repair, and average unit flyaway cost (AUFC) to 

veil proprietary cost information but also allow for the calculation of absolute cost risk 

with example changes in subsystem costs.  Finally, these parameters (as well as the 

system level reliability function ascertained from the aforementioned Markov Chain 

models) are used to calculate system cost risk.  The system cost risk is based off of 

Nicholas and Steyn’s (2008) description of risk as the sum of the impact of an event 

multiplied by its probability of occurrence.  The example cost parameters are presented in 

Table 5 and are based on Last Repair Cost (LRC) to Last Acquisition Cost (LAC) ratio 

data for a buy of 100 Unmanned Aerial Vehicles (UAVs) in FY2017.   

Table 4: Example Cost Values Used in Cost Risk Estimation 

Cost Category  Example Cost ($) Repair-to-Buy 
Cost Ratio (%) 

 
45,000 

 
1,000,000 15 

 
50,000 32 

 
540,000 12 

 
N/A N/A 

 
600,000 22 

 
30,000 20 

 
750,000 32 

 

Thus, the absolute system cost risk at a given interval of time is defined as: 

[3] 
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where, 

 

 

  

 

  

  

For the purposes of this research, the cost to regenerate the baseline attritable system is 

considered as the sum of the cost of the consumables used throughout each sortie and the 

cost of labor required to recover, maintain, and pre-launch prepare for the next sortie.  

 The aforementioned failure-time data on the baseline system are presented in 

preceding discourse.  The analyses of these data and how they address this research’s 

investigative questions are presented in proceeding sections and follow the outlined 

methods to develop, evaluate, and modify reliability models of the baseline system.  The 

impacts of changing reliability and reparability of the baseline system on cost risk are 

also presented in proceeding sections.       
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4.0 Data Analysis and Results 

4.1 Chapter Overview 

The interpretation of the time to failure data of the baseline air vehicle provides 

the basis by which this study trades reliability, reparability, and cost. This baseline 

system is fielded by the Department of Defense (DoD) and has accomplished over 1100 

sorties over more than a decade to date.   This failure-time data exhibited two 

characteristics that complicated the determination of system reliability, and the 

calculation of the system’s sensitivity to changes in reliability: a complicated censoring 

scheme and competing failure modes. Both characteristics inherently alter the probability 

of observing a particular failure mode.  This research employs the hazard rate of the 

cumulative incidence function (CIF) as an input into discrete time non-homogeneous 

Markov chain models to account for these complicating factors, and decrease the 

limitations of simplifying assumptions.   

This chapter addresses the three investigative questions previously outlined 

regarding: (1) the suitability of reliability estimation methods for attritable system 

studies, (2) the sensitivity of attritable system reliability to changes in subsystem 

reliability and reparability, as well as (3) the effect of changing subsystem reliability and 

reparability on cost risk.  First, the necessity of the discrete time-nonhomogeneous 

Markov chain model to fit the data is addressed.  Next, the impact that changing hazard 

rate of the CIF, , and reparability (in accordance with Table 2 and 3) has on the 

probability of survival is examined.  Finally, the cost at risk is determined by using the 
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previously determined probabilities in addition to regeneration, repair, and system 

replacements costs.  

4.2 Suitability of the Markov Chain Technique 

The failure-time data of the baseline system is analyzed to determine the 

suitability of the discrete time-nonhomogeneous Markov chain modelling technique to 

the study of attritable air vehicles.  For this technique to be suitable for the analysis of 

this data, the data must be shown to be discrete (i.e. not continuous across time) and time-

nonhomogeneous (i.e. changing its behavior over time).  Several characteristics point to 

the discrete nature of the baseline attritable air vehicle’s failure-time data.  As 

performance data were only consistently collected at discrete intervals (i.e. at the 

beginning and end of each sortie) and not continuously during operation, the failure-time 

data are proven to be discrete.  Therefore, further computation of system reliability over 

time is calculated in terms of , number of sorties undergone by the system. 

Further examination of the discrete and non-constant nature of the failure 

behaviors is accomplished by studying the CIF of each subsystem.  The failure-time data 

exhibits both censoring and competing risks factors, and Figure 13 represents each 

subsystem’s CIF as a step function.  The calculation of subsystem CIF is the first step to 

determine the hazard rate of each subsystem – that is, the propensity of the unit to fail in 

the next small interval of time, given survival to that time  (Meeker & Escobar, 1998, 

28) – and thereby determine if whether the system’s behavior changes with respect to 

time.  
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Figure 13: Cumulative Incidence Function (CIF) of Subsystem Failure Modes 

To illustrate the system susceptibility to failure from a specific failure mode over 

the next time interval, previously defined as , the hazard rate of the discrete CIF 

is:    

 

and can be calculated for each respective subsystem.  Figures 14-20 illustrate the 

changing nature of subsystem hazard rates over time with a 95% confidence interval.  

This confidence interval uses the variance estimate computed in Gray’s ‘cmprsk’ (2014) 

that is based on the estimate of the asymptotic variance of Aalen (1978).  The interval is 

[4] 
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based off of the logit transformation presented in Meeker and Escobar (1998, p.56) to 

increase the confidence interval to make it strictly positive. This transformation 

is implemented using the following equation:  

 

where  

  

Figure 15: Hazard Rate of Electronics Subsystem 

 

Figure 17: Hazard Rate of Launcher Subsystem 

Figure 14: Hazard Rate of Fuel Mgmt Subsystem 

Figure 16: Hazard Rate of Operator 

[5] 
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Figure 19: Hazard Rate of Propulsion Subsystem 

 

Figure 20: Hazard Rate of Structural Subsystem 

The non-continuous and non-constant nature of each respective subsystem’s 

hazards rates are shown Figures 14 - 20.  The discrete nature of subsystem hazard rate is 

demonstrated in Figures 15,17,18,19, and 20 where subsystems experience no hazard 

during some sorties.  The time-nonhomogeneous nature of subsystem hazard rates is 

shown as it is infeasible to assign a constant hazard rate that lies between the 95% 

confidence bounds at every interval in time and for each subsystem.  Therefore, it can be 

said that the subsystem failure mode hazard rates are discrete and – at least graphically – 

change over time.  Yet still, further statistical analysis is necessary to determine if the 

failure-time data could be reasonably simplified to not change with respect to time.   

Figure 18: Hazard Rate of Recovery Subsystem 
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 To test this hypothesis graphically a q-q, also referred to as a quantile-quantile, 

plot is used to compare two probability distributions by plotting each distribution’s 

quantiles against each other.  A simplification of the failure time data would assume that 

the hazard rates remain constant across all time. To test the validity of this assumption the 

sampled quantiles of the CIF data are plotted against the theoretical quantiles of the 

exponential distribution, as this distribution follows this simplifying assumption.  The q-q 

plots of these data sets are illustrated in Figures 21-27.  Graphically, subsystems with 

failure-time data points that do indeed follow the exponential distribution fall 

approximately on the quantile-quantile line in blue that represents the points at which the 

sample quantiles and theoretical quantiles (in this case, the quantiles of the exponential 

distribution) are equal.   

 

Figure 22: Electronics CIF vs. Exponential Q-Q Plot Figure 21: Fuel Mgmt CIF vs. Exponential Q-Q Plot 
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Figure 24: Launcher CIF vs. Exponential Q-Q Plot 

 

Figure 26: Propulsion CIF vs. Exponential Q-Q Plot 

 

Figure 27: Structure CIF vs. Exponential Q-Q Plot 

Graphically, no quantiles of the CIF sample data directly follow the exponential 

distribution quantile line.  Figure 23 especially indicates the poor fit of the theoretical 

exponential distribution to the sample failure-time data.  However, the simplifying effect 

Figure 23: Operator CIF vs. Exponential Q-Q Plot 

Figure 25: Recovery CIF vs. Exponential Q-Q Plot 
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that the one parameter exponential distribution has on the creation of Markov Chain 

models must not be understated.  Therefore, it is necessary to analyze the impact of the 

information lost through implementing this simplifying assumption and using the one 

parameter exponential distribution to represent the failure-time data.  The proceeding 

analyses leverage the Aikake Information Criterion (AIC) metric which estimates the 

amount of information lost when using a model to represent a sample data set.  The 

following distribution comparisons is merely intended to assess the extent of the time-

nonhomogeneous behavior (i.e. how much hazard rate varies dependent upon time) of the 

failure-time data and the subsequent distribution parameters will not be included in the 

subsequent Markov chain models.  

The AIC separates itself as a useful metric for determining relative goodness of fit 

as it penalizes the distribution based on the number of free parameters, but rewards a high 

maximum likelihood value.  The AIC does not provide as sense of a model’s goodness of 

fit in the absolute sense, but instead is used to compare candidate models.  Its inclusion of 

a penalty for the number of free parameters discourages overfitting, i.e. the arbitrary 

increase in model parameters to increase the calculated goodness of fit.  The AIC is 

defined by Aikake (1974) as: 

 

where  is the number of free parameters of the model and  is the maximum value of the 

likelihood function for the model.  The smallest AIC value represents the preferred 

statistical model.   

[6] 
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 Yet, Claeskens and Hjort (2008) found that in instances of small sample size, 

where the number of samples is not many times larger than , the use of AIC as the sole 

model selection metric increases the probability of overfitting.  Anticipating this obstacle, 

Hurvich and Tsai (1989) propose a correction to AIC for instances of finite sample 

sizes that, in practice, further penalizes a distribution for added free parameters.  

This corrected AIC, AICc, is defined as, 

 

Where  represents the sample size of the data and not the number of sorties undergone.   

Table 5 displays the corrected Aikake Information Criterion (AICc), a relative 

estimate of the information lost when a model is used to represent a small data set, of two 

distributions for comparison – the one parameter exponential distribution and the two-

parameter Weibull distribution.  The one parameter exponential distribution adheres to 

the Markov property where the hazard rate is constant, while the Weibull is not hampered 

by this assumption and can therefore represent failure-time behavior that changes over 

time.   

Table 5: Comparison of AICc for Exponential and Weibull Distributions 

SubSystem Exponential 
AICc 

Weibull 
AICc 

Percentage 
Difference 

Preferred 
Distribution 

Electronics -27.16 -30.81 11.85% Weibull 
Fuel Mgmt. -26.86 -29.97 10.37% Weibull 
Launcher -34.55 -40.45 14.59% Weibull 
Operator -10.37 -16.37 36.65% Weibull 

Propulsion -21.86 -27.02 19.10% Weibull 
Recovery -9.58 -18.20 47.39% Weibull 

[7] 
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Structure -38.21 -49.84 (23.33%) Exponential 
 

Table 5 shows that the statistical model that best represents six of the seven failure modes 

is the distribution that allows for variation with respect to time, and the selection of this 

model has been penalized for the added complication of an additional parameter.  

According to Table 5, the failure time data for the structure is best represented by the 

exponential distribution.  It is important to note that the number of failure mode 

observations for this subsystem is much smaller than other subsystems, likely 

contributing to the advantage of the one parameter distribution.      

The preferred statistical model must also consider the application of these CIF 

data to the overall estimation of reliability.  At a higher level of abstraction, the hazard 

rates of these cumulative incidence functions are applied to Markov chain models that 

consists of seven failure modes and nine total states.  The loss of any information 

compounds itself as a single subsystem’s failure-time distribution gets simplified.  This 

ultimately impacts the fidelity of the model and the accuracy of the reliability 

probabilities produced by the Markov chain model. 

The use of discrete time non-homogeneous Markov chain models offers numerous 

benefits over a time homogeneous Markov chain.  A non-homogeneous Markov chain 

model allows for the variation of hazard rate based on a global clock, yet the hazard rate 

need not change.   Additionally, because discrete time-nonhomogeneous Markov Chains 

allow for the definition of repair and reliability at each discrete moment in time.  This 

allows future research to examine the impact of changing repair strategy during the 

system’s operational life.  It can be said that the discrete time-nonhomogeneous Markov 
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Chain modelling technique is the most suitable for the study of this attritable system, 

based on the fact that the failure-time data for a baseline attritable air vehicle is discrete, 

the subsystem hazard rates have been shown to vary with respect to time, and that this 

method affords the greatest flexibility to future reliability and reparability research.   

4.3 Reliability Model Results 

The determination of the sensitivity of an attritable system’s reliability to changes in 

subsystem reliability and reparability is primarily dependent upon the accurate estimation 

of the baseline system’s reliability.  It is shown in the preceding section that the hazard 

rates of the constituent subsystems can vary with respect to time.  Therefore, a Markov 

Chain model is defined for each respective interval of time, known as a discrete time-

nonhomogeneous Markov chain – implemented as a Markov chain list in “markovchain” 

package (Spedicato, 2015) within R.  Figure 28 illustrates the survival function, , of 

a list of Markov chains that adhere to the structure of the state-transition diagram in 

Figure 12 – defined for each time step.  Through the calculation of the probability of 

transitioning to each state for each time step, the system survival function is calculated.  

The survival function is defined as, .  In this case  

represents the probability of entering the absorbing failure state.  Figure 28 illustrates the 

system survival function of the baseline system.  This baseline illustration is used as a 

reference point against which to measure the effect of future reliability and reparability 

trades.   
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Figure 28: Baseline System Survival Function 

In addition to illustrating the probability of unit survival to sortie, , Figure 28 

displays the 95% confidence interval on that probability.  These confidence intervals are 

also defined by the logit transformation presented by Meeker and Escobar that increases 

the interval’s coverage to ensure that it is strictly positive.  Future trades in reliability and 

reparability will vary the discrete time-nonhomogeneous Markov chain model in a 

manner according to Tables 2 and 3 for reliability and reparability variation, respectively.   

4.3.1    Hazard Rate Variation 

 Figures 29-35 illustrate the effect of varying the hazard rates of a failure mode in 

a manner consistent with Table 2.  The hazard rates are varied by a fixed percentage as it 

applies a consistent variation of the hazard rate for all nine time intervals defined in the 
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discrete time-nonhomogeneous Markov chain models.  Based on discussion in previous 

chapters, these models only estimate reliability up to the ninth sortie due to lack of data 

for systems that have undergone ten or more sorties.  The direct specification of hazard 

rate, as opposed to other reliability metrics like mean time between failure (MTBF), 

avoids the pitfalls of simplifying the failure-time data behavior to adhere to the constant 

hazard rate assumption. The impact of this assumption on the fidelity of the reliability 

estimation is addressed in the preceding section.   

  

Figure 30: S(n) with Altered Electronics Subsystem 

 

Figure 32: S(n) with Altered Launcher Subsystem 

Figure 29: S(n) with Altered Fuel Mgmt Subsystem 

Figure 31: S(n) with Altered Operator 
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Figure 34: S(n) with Altered Propulsion Subsystem 

 

Figure 35: S(n) with Altered Structure 

These figures illustrate that the trades outlined in Table 2 do not represent a 

significant impact on overall system survivability.  Their exact impact is illustrated in 

proceeding section, but it important to note that the survival function of a modified 

system, altered such that one of its subsystems fails at an increased hazard rate, correlates 

to a decreased probability of survival to the next interval in time.  Conversely, a system 

that consists of an improved – i.e. a lower hazard rate – subsystem has an increased 

probability of survival to the next sortie.  Figures 29-35 illustrate this intuitive result but 

are critical to the quantification of the sensitivity of the system survival function to 

Figure 33: S(n) with Altered Recovery Subsystem 
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changes in subsystem hazard rate.  Figure 36 illustrates this sensitivity by quantifying the 

percentage change in  for a given change in subsystem hazard rate. 

 

Figure 36: Sensitivity of Trading Subsystem Hazard Rate on Survival Function 

Figure 36 illustrates that the system survival function is most sensitive to fixed 

changes in hazard rate of the subsystems that have the highest hazard rates.  This is 

illustrated by the fact that the system survival function most sensitive to the three 

subsystems with the highest hazard rate – i.e. the fuel management, launcher, and 

electronics subsystem respectively.  However, this illustration of system survival function 

sensitivity demonstrates interesting characteristics for those subsystems with much lower 

sensitivities.  For example, Figure 36 shows that the system survival function is more 

sensitive to changes in the hazard rate of the structure than the propulsion subsystem.  

This is likely because of the fact that system survival is dependent on two transition 
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processes as illustrated in Figure 12.  These two processes are the transition of the system 

from an operational state to a failed, but reparable, state in addition to the transition from 

the failed state to the absorbing failure state, or the destroyed state.  The high probability 

of transitioning to the destroyed state after a structural failure makes  more sensitive 

to increases in the hazard rate of the structure.  Conversely, the high probability of repair 

for a failed propulsion subsystem to be repaired, at least of the baseline system, decreases 

the sensitivity of  to reliability trades for these subsystems.   

This research only examines the sensitivity of the system to trades in subsystem 

failure probability as these transitions most clearly represent the reliability of a system.  

The transitional probability of stepping between a failed state to the destroyed state 

represents a failure’s consequences.  Trades of these probabilities do not trade on 

subsystem reliability, but instead trade on the strategies to mitigate the negative 

consequences of a failure mode. 

4.3.2    Reparability Variation 

 As this research seeks to determine the impact of altering reparability on overall 

system reliability, Figures 37 ad 38 illustrate the marked impact that specifying 

Propulsion subsystem or Structural failures irreparable has on the system survival 

function.  Trading the reparability of these subsystems investigates the utility of attritable 

maintenance decisions under consideration by researchers. These figures illustrate the 

impact of prohibiting the repair of a critical subsystem, such as the propulsion subsystem 

and structure, has on the system-level probability of survival.  Just as in previous figures, 

the baseline cost risk is presented with 95% confidence intervals based off of the upper 
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and lower estimates of Meeker and Escobar’s transformation for the effect of small 

sample sizes.   

 Figure 37 illustrates the noteworthy impact that trading reparability can have for a 

subsystem with comparatively high hazard rates.  It shows that the probability of system 

survival is much less than the estimate and outside of the confidence intervals within 

three sorties.   

 

Figure 37: System Survival Function without Propulsion Subsystem Repair 
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Figure 38: System Survival Function without Structural Repair 

However, Figure 38 illustrates the minor impact of trading reparability for a 

system whose hazard rate is lower.  While there is an estimated decrease in the survival 

function as time goes on, there is no significant decrease in the probability of survival 

until the third sortie.  These figures illustrate the spectrum of effects that trading 

subsystem reparability has on system-level survival.  Trading reparability for a subsystem 

with a high probability of failure significantly decreases probability of survival.  

Meanwhile, trading reparability for a subsystem with a lower hazard rate decreases the 

impact on system probability of survival; yet, the probability of survival decreases all the 

same.  

Lastly, the elimination of a repair action also impacts the estimated cost risk of 

each sortie as a non-repairable subsystem incurs no cost of repair.  Though the system’s 

sensitivity to changes in subsystem reliability and reparability are quantified, the impacts 
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of these trades on system costs are as yet unknown.  The impact of a changing system 

survival function on system cost risk is addressed in proceeding sections.   

4.4 Cost Risk Estimation  

Estimating the impact of subsystem reliability and reparability for the possibility 

of lower cost risk is perhaps the ultimate objective of the Low Cost Attritable Aircraft 

Technology (LCAAT) demonstration program.  This impact could affect the 

implementation of an attritable design alternatives or maintenance decisions as they must 

demonstrate an acquisition, sustainment, or operational advantage.  As previously 

discussed, the calculation of system cost risk uses the state probabilities, an output from 

the aforementioned discrete time-nonhomogeneous Markov chain models, as well as the 

example cost parameters outlined in Table 4.  Thus, the cost risk of each sortie is defined 

by Equation 3. 

 Figure 39 illustrates the baseline attritable air vehicle’s cost risk for each sortie.  

Note that a system’s first sortie cost risk is relatively low, consisting mostly of the 

regeneration cost of the vehicle.  However, as a system undergoes additional sorties the 

probability of failure and subsequent transition to the absorbing failure state, increases.  

This phenomenon of an increased probability of destruction is responsible for the general 

upward trend of the absolute cost risk curve.    
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Figure 39: Absolute System Cost Risk of the Baseline Attritable Air Vehicle 

Yet, there are intermittent decreases in the absolute cost at risk, for example 

between the fourth and fifth sorties of a system.  Here, the effect of the various costs to 

repair a subsystem are illustrated.  Due to specification of hazard rate for each sortie 

individually, the noticeable decrease in the number of failures observed for the fuel 

management, launcher, operator, and recovery subsystems between the fourth and fifth 

sortie decreases the estimated cost risk.  On the absolute scale, this decreased cost risk is 

on the order of a one percent change and does not significantly shift the bounds of the 

confidence interval. 

Figures 40 and 41 present an estimation of cost risk for the cases where the 

reparability of the propulsion subsystem or structure is traded, respectively.  The 

justification for these research excursions are presented in Table 3.  These figures 

differentiate themselves from the calculation of system survival probability, as presented 
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in Figure 37 and 38, as the repair cost of the irreparable subsystem is decreased to zero.  

Therefore, the cost of these subsystems’ repair does not contribute to the cost at risk for a 

given sortie.  Still, the probability of transitioning into the absorbing failure state, , 

increases due to the inability to repair the subsystem.   

 

Figure 40: Absolute Cost Risk per Sortie for Non-Repairable Propulsion Subsystem 

 

Figure 41: Absolute System Cost Risk per Sortie for a Non-Repairable Structure 
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This increase in  increases the cost risk as the increase in  is 

compounded by the greatest cost category, AUFC.  This cost category is an order of 

magnitude greater than the cost to repair or replace a subsystem as it is a collection of 

these other cost categories.  Therefore, any increases in  have a significant effect on 

cost at risk.  Figures 40 and 41 demonstrate the spectrum of consequences that 

prohibiting subsystem repair has on cost risk.  The propulsion subsystem’s hazard rate is 

greater than the structure’s hazard rate and Figure 40 shows that prohibition of propulsion 

repair has the expected effect of significantly increasing cost risk – nearly doubling the 

estimated cost risk by the third sortie.  Conversely, the structural subsystem experiences 

the lowest hazard rate of all seven subsystems.  Yet, Figure 41 illustrates that even 

considering the nullification of structural subsystem repair costs, the decision to prohibit 

structural repair still increases the estimated system cost risk.   

 Calculating the effect that trading reparability on system-level cost risk is basic 

when compared to the comparison of trading hazard rates for multiple design alternatives.  

As discussed in preceding sections, the hazard rates of various subsystem alternatives 

could illustrate hazard rates that differ from the baseline system.  The subsystem 

acquisition cost of these alternatives may also deviate from the baseline subsystem cost. 

These subsystem acquisition cost variations not only impact subsystem repair costs – as 

this is function of the repair-to-buy cost ratio – but also affect the average unit flyaway 

cost (AUFC).  The aggregation of these effects make it difficult to determine whether a 

design alternative has a positive impact on cost risk and AUFC. 
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 This research assesses the impact that these design alternatives have on cost risk 

for two subsystem alternatives, the electronics subsystem and propulsion subsystem.  As 

discussed in Table 2, the effect of using commercially available unmanned aerial vehicle 

flight control systems that do not adhere to MIL-SPEC standards – and thus trade 

attributes like redundancy for decreased cost – is unknown.  Similarly, a baseline system 

modified to accept a commercial-off-the-shelf propulsion system may have a different 

hazard rate as well as a different subsystem acquisition cost.  The comparative abundance 

of design alternatives that meet the requirements for these subsystems lends itself to 

further investigation into which design alternatives present an advantage in acquisition 

cost as well as cost risk.   

To simplify the identification of advantageous design trades the percentage 

decrease in subsystem acquisition cost necessary for a given change in hazard rate to 

place the equivalent amount of cost at is calculated.  This is referred to as the equivalent 

cost risk line in Figures 42 and 43.  A design alternative that falls on this equivalent cost 

risk line places the same amount of cost at risk as the baseline air vehicle, but could 

represent a system with a lower AUFC.  Additionally, the range of percentage change in 

hazard rate evaluated for these two subsystems is dependent upon the specific design 

alternatives under investigation.   

 The range of electronics subsystem hazard rate variation under investigation 

estimates the possible decrease in reliability realized by changing physical attributes such 

as redundancy to decrease cost.  For reference, a five percent increase in hazard rate 

equates to a five percent decrease in Mean Time Between Failure if the related failure-

time data were assumed to have a constant hazard rate. 
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Figure 42: Equivalent Cost Risk for a Trade in Electronics Hazard Rate 

 If a design alternative that falls within the region below the equivalent cost risk 

line where the percentage decrease in subsystem acquisition cost is greater than the 

percentage increase in hazard rate that design alternative trades reliability for a lower 

AUFC and cost risk in an advantageous manner.  The region of beneficial trade space is 

shown in the green regions for Figures 42 and 43.  Conversely, a design alternative that 

falls on the other side of this equivalent cost risk curve represents a reliability trade that 

does not decrease cost risk.  Note that there is a region of this trade space that shows a 

decrease in subsystem acquisition cost, yet an increase in cost risk.  This disadvantageous 

region of trade space is represented by the color red.   
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Figure 43: Equivalent Cost Risk for a Trade in Propulsion Hazard Rate 

 Figure 43 illustrates the equivalent cost risk trade space for the propulsion 

subsystem.  The range under investigation is much wider than for the electronics 

subsystem as there are many existing design alternatives that report a wide spectrum of 

maintenance and failure intervals (many of them reported in MTBF). Analysis of the 

equivalent cost risk line shows that the slopes of the equivalent cost risk lines of Figures 

42 and 43 differ.  The equivalent cost risk line of Figure 43 is much shallower than the 

equivalent cost risk line of Figure 42, even though Figure 43 displays a much wider range 

of variation.  This implies that for a given change in propulsion subsystem hazard rate the 

accompanying necessary percentage change in subsystem acquisition cost is much less 

than is required for a trade of electronics subsystem hazard rate.  Thus, there exists a 
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greater opportunity to make a trade that both decreases cost risk as well as AUFC for the 

propulsion subsystem.  These illustrations of equivalent cost risks are not to intended to 

prioritize one attritable subsystem trade over another, as this requires the consideration of 

many other factors, but instead inform analysts about the point at which a design trade 

becomes advantageous in terms of cost risk.   

4.5 Conclusions 

The method outlined in the proceeding sections uses the hazard rate of the 

cumulative incidence function to create discrete time-nonhomogeneous Markov chains to 

estimate both the system survival function as well as the cost risk of the system.  

Preceding sections also outline the suitability of this method for the analysis of fielded 

attritable system failure-time data as it provides the most flexibility in the specification of 

system reliability and reparability.  Analysis of the cumulative incidence function is 

shown to be the most appropriate for the study of fielded baseline attritable system 

failure-time with competing risks and a unique censoring scheme.  Also, the discrete 

time-nonhomogeneous Markov chain method is shown to more accurately represent the 

failure-time data, in addition to providing the flexibility to trade reliability and 

reparability through the creation of multiple alternate Markov chain models.  Finally, the 

calculation of cost risk is both a metric that is grounded in the literature as well as a true 

estimation of the consequence of a trade in reliability and reparability for the operator.   

Trades in attritable air vehicle subsystem reliability are performed by varying 

subsystem hazard rates and calculating the resultant percentage change in the probability 

of system survival, as illustrated in Figure 36.  This figure shows that variations in hazard 

rate for a subsystem with high probability of failure in the next small interval of time 
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have the greatest impact on system survival .  This figure also demonstrates that 

system survival is impacted not only by a subsystem’s propensity to fail, but also by the 

risk of destruction presented by that failure mode.  The consequences of trading 

subsystem reparability are also presented in Figures 37 and 38.  It is clear that regardless 

of the magnitude of the subsystem’s hazard rate, the decision to trade the ability to restore 

it to an operational state will always decrease the probability of survival to the next sortie.  

The magnitude of this effect is dependent only upon the probability of failure, as this 

trade specifies that a system will always be considered destroyed given a failure of this 

subsystem.     

 Next, the impact of trading reliability and reparability on system cost risk is 

examined, using example costs defined in Table 4.   When trading the ability to repair a 

system the estimated cost risk increases in every case.  Despite the nullification of the 

cost to repair the system, the increased probability of transition to an unrecoverable failed 

state always increases the system cost risk.  The transition to this unrecoverable state has 

the greatest impact on the calculation of cost risk as the average unit flyaway cost is an 

order of magnitude greater than the subsystem acquisition cost or its average cost to 

repair.   

 Finally, the impact of trading subsystem hazard rate on cost risk is examined 

through the study of the electronics and propulsion subsystems.  These subsystems are 

examined as there is a high likelihood that technically acceptable commercially available 

design alternatives exist for these subsystems.  Figures 42 and 43 present the change in 

cost necessary for a given trade in reliability to for a cost risk equivalent to the baseline 
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design.  The determination of the necessary change in cost for a given trade in reliability 

allows designers to assess design alternatives based on their overall impact on cost and 

not just on reliability. 

 The determination of the change in subsystem acquisition cost necessary for an 

equivalent cost risk also illustrates the large design space for trades in reliability (i.e. 

increases in hazard rate) and that some trades that decrease cost risk could also decrease 

average unit flyaway cost.  Design alternatives that fall into the advantageous trade space, 

yet accept a higher subsystem acquisition cost for the accompanying increase in 

reliability are trades that many designers are comfortable with making.  These trades, as 

well as the trades that both increase reliability and decrease subsystem acquisition cost, 

are the trades that are often implemented on survivable system meant for long life.  This 

“Survivable and Maintainable” trade space falls into the second quadrant of Figure 44, a 

representative equivalent cost risk graph.    
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Figure 44: Attritable and Survival Design Spaces based on Equivalent Cost Risk 

However, there exists an alternative design space that both decreases the system 

cost risk and the subsystem acquisition cost, yet allows for decreased reliability for 

reparable systems.  This attritable design space exists in the fourth quadrant of Figure 44, 

where subsystem hazard rate increases yet the subsystem acquisition cost and the system 

cost risk decreases from that of the baseline system.  The identification of this trade space 

for a similar air vehicle meets AFRL’s original objective to trade system attributes like 

reliability and reparability to achieve a decrease in system costs for a system “whereby 

virtue of its cost, the loss of the aircraft could be tolerated” (AFRL/RQKP, 2015, p.1).      
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5.0  Conclusions and Recommendations 

5.1  Chapter Overview 

 The original objective of this research was to express the impact of trading 

subsystem reliability and reparability on system-level reliability and overall cost risk.  

This chapter will review whether the selected research methodology conveys these 

effects by reviewing the investigative questions, ensuring that this research meets its 

objective.   It also discusses the opportunities to extend this method and use the data 

gathered on fielded attritable air vehicles for future efforts.   The chapter concludes with a 

discussion of the research’s significance and outlines how it can be employed to inform 

decision-makers about the value of making trades in the attritable design space.    

5.2  Investigative Question Review 

To express the impact of trading subsystem reliability and reparability in order to 

realize a decrease in system cost, this research defined three primary research questions.   

First, which metrics and methods are suitable for the estimation of reliability and costs 

for attritable systems?  Second, how sensitive is an attritable system’s reliability to 

changes in subsystem reliability and reparability? Finally, what effect does varying 

subsystem reliability and reparability have on the cost at risk of an attritable system?  

Ultimately, the advantageous design space that trades system attributes like reliability and 

reparability is identified by answering these three investigative questions.  

5.2.1 Metrics and Methods Suitable for Attritable System Reliability  

This research discussed the abundance of reliability metrics and modelling 

techniques intended to describe the reliability and maintainability of a system.  Two 
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overarching modelling techniques were identified: combinatorial and state-space 

techniques. It was determined that the requirement for repair of the vision attritable air 

vehicle made combinatorial techniques, such as Reliability Block Diagrams and Fault 

Tree Analyses, unable to model the reliability of such as system.  The ability to model 

dynamic systems made state-space reliability modelling techniques appropriate to apply 

to the study of attritable air vehicles.  However, it was revealed that state-space modelling 

techniques like Markov chains also suffer from an inability to represent reparable systems 

that change over time, complicating the modelling of this system.         

It was also found that legacy reliability metrics often require the application of 

simplifying assumptions which conceal the underlying behavior of the failure-time data 

they are meant to represent.  As is discussed in Section 4.2, the amount of information 

lost by making these assumptions are compounded when these statistics are applied to 

reliability models like Markov chains.  This research overcame these limitations through 

the employment of discrete time-nonhomogeneous Markov chains that vary hazard rate 

directly by defining the probabilities of transitioning between states for each interval in 

time.    

In addition to employing this flexible modelling technique, this research also 

found that the calculation of each failure mode’s cumulative incidence function was the 

most appropriate way overcome the presence of competing risks.  A competing risk, or 

competing failure mode is a failure mode that competes for observation against all other 

failure modes.  The calculation of each subsystem’s hazard rate of the discrete cumulative 

incidence function is used as an input into this research’s discrete time-nonhomogeneous 

Markov chain models.   
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5.2.2 Sensitivities to Variations of Reliability and Reparability  

Once the suitability of the competing risks analysis input into a discrete time-

nonhomogeneous Markov chain method was established, the model was used to calculate 

baseline system sensitivities.  Figure 36 illustrated the maximum percentage change 

in , that is the probability of system survival to that sortie, for a given trade in hazard 

rate.  In addition to quantifying the expected percentage change in , this figure also 

ranks the subsystem sensitivities relative to each other.  It was found that the probability 

of system survival is most sensitive to trades in the hazard rates of the fuel management, 

launcher, electronics, structure, propulsion, recovery, and operator subsystems, 

respectively.  It was also discussed how these sensitivities differed from a simple 

calculation of the order of magnitude of hazard rate due to the fact that  is affected 

by both the propensity of the subsystem to fail, but also the probability of the failure 

mode to transition to an absorbing failure state. 

The second objective of this research’s quest to explore reliability and reparability 

impacts was fulfilled through the creation of discrete time-nonhomogeneous Markov 

chain models that prohibit the repair of the propulsion and structural subsystems.  These 

models negate subsystem reparability, ensuring that the system will always transition to 

the absorbing failure state after a failure of either of these subsystems.  Figures 37 and 38 

illustrate the resultant decrease in the system survival function when the reparability of 

these subsystems are traded.  These subsystems were selected to examine further as these 

are actual trades under consideration by AFRL researchers and they illustrate the 
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spectrum of impact on  as the propulsion system has a relatively high hazard rate 

while the system’s structure has a comparatively low hazard rate.   

Figure 37 illustrated that the probability of system survival to the next sortie is 

markedly decreased when the ability to repair the propulsion subsystem is traded.  Figure 

38 illustrates a similar result, but the effect is less pronounced.  This slight decrease in 

system probability of survival is due to the fact that the structure experiences a hazard 

rate that is the lowest out of all seven subsystems.  Thus, it was determined that the 

probability of system survival to the sortie always decreases when subsystem reparability 

is prohibited. 

5.2.3 Consequences of Trading Reliability and Reparability on Cost Risk 

 In the case of an attritable system, trades in subsystem reliability and reparability 

are ultimately made to hopefully realize some level of savings with regard to system 

costs.  This research accounts for these system level costs through the use of the metric of 

cost risk as well as average unit flyaway cost.  Cost risk is determined by applying the 

example costs identified in Table 4 to the equation defined in Section 3.4.  The baseline 

cost risk of the system is illustrated in Figure 39 while Figures 40 and 41 show the impact 

of trading reparability of the propulsion and structural subsystems, respectively.  They 

show that even though the repair costs for these subsystems are nullified, the estimated 

cost risk increases. 

 The estimation of cost risk for design alternatives is much more complicated as 

existing subsystem alternatives differ in both subsystem reliability and subsystem 

acquisition cost.  Therefore, Figures 42 and 43 illustrate the necessary percentage change 
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in subsystem acquisition cost for a given trade in subsystem hazard rate to place the 

equivalent amount of cost at risk.  Design alternatives that demonstrate cost and 

reliability properties that are below and to the left of the equivalent cost curve present an 

advantageous trade in cost risk over the baseline design.  Conversely, alternative 

subsystems that are that are marginally more reliable, yet much more expensive are 

designs that increase the system cost risk over the baseline.  Design trades that are not 

advantageous fall into the red region of Figures 42 or 43.    

     Furthermore, Figure 44 differentiates between two design spaces shown within 

the advantageous cost risk design space: those for survivable systems and those for 

attritable systems.  Design trades that allow for increased subsystem acquisition cost, a 

subsequently average unit flyaway cost, to realize an increase in system reliability 

represent one of the classic trades made for survivable systems.  In these cases, designers 

have determined that an increase in reliability is worth the increased acquisition cost.  

Yet, Figure 44 also illustrates that there is a design space that allows for a decrease in 

reliability for lower subsystem cost, i.e. the attritable design space, as long as the design 

alternative falls below and to the left of the equivalent cost risk line.  This research allows 

analysts to identify the boundaries of this equivalent cost risk line for the subsystems 

mentioned, thereby allowing them to make these attritable trades.    

5.3 Recommendations for Future Research 

 The method identified in this research can be further refined or expanded for use 

as an analysis tool for attritable system analysts.  One such application is to quantify the 

impacts of decisions under consideration by system designers and maintainers.  The 

discrete time-nonhomogeneous Markov chain technique allows future research to define 
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repair or failure-rates at each respective interval in time.  This fidelity allows maintainers 

to quantify the impacts of altering reparability during the operational life on the 

probability of survival function as well as cost.  Additionally, this flexibility to define 

failure rate at each interval of time also opens the door to examining the impact of 

decreasing acceptance and non-destructive testing may have on infant mortality and cost 

risk. 

This research, which characterizes system-level impacts of varying subsystem 

reliability and reparability, could be expanded for use in fleet-level studies.  These fleet-

level studies, which would require estimates of usage and loss rate due to external 

circumstances, could be used to determine the impact of trading reliability and 

reparability on a fleet.  The system survival probabilities, specified by this research, could 

be used as an input to fleet-level queueing models to determine fleet size requirements.  

Additionally, a queueing model could be built to simulate the effect of fleet-size 

maintenance decisions.  Researchers have sought a way to characterize the effect that 

cannibalization – that is, the reuse of serviceable components taken from a 

decommissioned, or destroyed, system – can have on fleet maintenance and sparing costs 

for such an attritable system.  Future research in this area could further decrease the cost 

risk of attritable air vehicles operations.    

Further research can also be conducted on the operational effects of developing 

and fielding a system whose reliability has been traded for a lower system cost. The 

operational effect of employing fleets of attritable air vehicles must be determined and 

presented to Air Force strategic planners. The probabilities of failure, specified in this 

research, could be used as inputs into both engagement and theatre-level campaign 
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models to determine the effect that trading system reliability and reparability will have on 

the number of attritable air vehicles that need to be launched to achieve a prescribed 

mission.  Additionally, polls of unmanned air vehicle system operators and customers of 

their capabilities can be taken to determine the lower thresholds of availability that their 

missions require.  Such assessments would ease the validation of attritable air vehicle 

fleet suitability and effectiveness. 

Beyond the operational consequences of trading reliability and maintainability, 

further research on methods to incentivize designers and maintainers to follow the 

“attritable” design philosophy is important in the implementation of attritable weapon 

system programs.  Many system designers and maintainers admit their aversion to trading 

key system attributes like reliability and reparability simply to achieve a lower cost.  In 

the case of the baseline air vehicle described throughout this research, the system is 

classified by the DoD as a “contractor supported weapon system.”  This classification 

places the responsibility of maintaining pre-prescribed reliability, maintainability, and 

availability (RAM) metrics solely on the contractor with no motivation to decrease per-

unit or maintenance costs.  As the system is fielded, there is a disincentive for 

maintenance contractors to trade these RAM metrics for lower costs for fear of reneging 

on their contract.  The execution of an attritable weapons system program must take a 

holistic approach to incentivizing this new design philosophy to effectively achieve 

perceptible decreases in cost risk. 

5.4  Significance of Research 

The preceding conclusions of this research advances AFRL’s quest to trade the 

system attributes of reliability and reparability to achieve a such a low cost “whereby 



 

93 

virtue of its cost, the loss of the aircraft could be tolerated” (AFRL/RQKP, 2015, p.1). 

The modelling technique demonstrated by this research provides the most flexibility to 

analyze these trades’ effect on the system as it can model a dynamic system that changes 

with time.  Analysis of these models illustrate the cost of these trades in both system 

probability of survival in addition to cost risk.  By quantifying the effects of these trades, 

decision makers can use this research to guide attritable system development.  Attritable 

systems leveraging the findings of this research will ultimately meet the intent of the 

Third Offset Strategy by delivering a necessary capability at a lower average unit flyaway 

cost, thereby overcoming a numeric disadvantage in the future.   
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Appendix A: Data Analysis in R 

Data_Analysis_Thesis_Turn_in.R 

bry_b 
Sun Jan 29 14:28:37 2017 
#load necessary libraries 
library(SMRD) 
library(etm) 

library(cmprsk) 

library(MASS) 

library(markovchain) 

library(exptest) 

library(fitdistrplus) 

library(diagram) 

####################### 
# Purpose: Data Input 
# inputs: N/A 
# outputs: CIF of all subsystems, Figure 13 
# Author: Bryan Bentz and Joe Berry 
# notes: Please read documentation on 'cmprsk' for background 
####################### 
 
ftime <- c(rep(1,313), 
           rep(2,227), 
           rep(3,165), 
           rep(4,116), 
           rep(5,79), 
           rep(6,52), 
           rep(7,37), 
           rep(8,29), 
           rep(9,22), 
           rep(10,15)) 
 
#taken one past the sortie number where there is less than 20 in population 
 
#using fail codes 1-8 
fstatus <- c(#flight 1 
  rep(1,9),rep(2,13),rep(3,8),rep(4,1), rep(5,3),rep(6,4),rep(7,0),rep(8,275), 
  #flight 2 
  rep(1,14),rep(2,7),rep(3,5),rep(4,0),rep(5,6),rep(6,0),rep(7,1),rep(8,194), 
  #flight 3 
  rep(1,4),rep(2,5),rep(3,3),rep(4,0),rep(5,4),rep(6,0),rep(7,1),rep(8,148), 
  #flight 4 
  rep(1,5),rep(2,6),rep(3,5),rep(4,1),rep(5,0),rep(6,1),rep(7,1),rep(8,97), 
  #flight 5 
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  rep(1,5),rep(2,3),rep(3,1),rep(4,0),rep(5,0),rep(6,0),rep(7,0),rep(8,70), 
  #flight 6 
  rep(1,3),rep(2,3),rep(3,1),rep(4,0),rep(5,0),rep(6,1),rep(7,0),rep(8,44), 
  #flight 7 
  rep(1,2),rep(2,1),rep(3,1),rep(4,0),rep(5,1),rep(6,0),rep(7,0),rep(8,32), 
  #flight 8 
  rep(1,2),rep(2,0),rep(3,1),rep(4,1),rep(5,1),rep(6,0),rep(7,0),rep(8,24), 
  #flight 9 
  rep(1,1),rep(2,1),rep(3,1),rep(4,0),rep(5,0),rep(6,0),rep(7,0),rep(8,19), 
  #flight 10 
  rep(1,1),rep(2,2),rep(3,0),rep(4,0),rep(5,0),rep(6,0),rep(7,0),rep(8,12) 
) 
 
#taken one past the sortie number where there is less than 20 in population  
####################### 
# Purpose: Calculate and plot cumulativie incidence function  
# inputs: data above and 'cmprsk'library of R 
# outputs: CIF plot,CIF$`1 i`$est[n],CIF$`1 i`$var[n] 
# Author: Bryan Bentz and Joe Berry 
####################### 
 
CIF <- cuminc(ftime=ftime,fstatus=fstatus,cencode = 8) 
 
print.cuminc(CIF, ntp=22) 

plot(CIF, curvlab = c("Electronics", "Fuel Management", "Launcher", 
"Operator",  
                      "Propulsion", "Recovery","Structure"),main="Cumulative 
Incidence Functions of  
     Failure Modes", xlab="Sorties", 
     ylab="Probability",ylim = c(0, 0.16), 
     ci.type = "pointwise", col = c(1:6,8), lwd = par('lwd'), lty = 
1:length(CIF), cex = 0.6) 

xticks <- seq(0, 10, 1) 
yticks <- seq(0, 0.16, 0.05) 
axis(1, at = xticks, labels = xticks, las=1, tck=-.01) 

 

####################### 
# Purpose: calculate the hazards rates of subsystem CIF and Conf Intervals  
# inputs: CIF estimates and variances 
# outputs: haz1-haz7, plots of hazard rates with CIs (Figures 14-20 in Thesis 
Doc)  
# notes: CIs based on logit transformation of normal approximation 
# Author: Bryan Bentz and Joe Berry 
####################### 
 
HazConfInt <- function(est,var,times) { 
  i=1 
  haz=rep(0,10) 
  hazup=rep(0,10) 
  hazlow=rep(0,10) 
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  while (i<length(times)) { 
     
    haz[times[i+1]]=(est[i+2]-est[i])/(1-est[i]) 
     
    w2 = exp(1.96*sqrt(var[i+2])/(est[i+2]*(1-est[i+2]))) 
    w1 = exp(1.96*sqrt(var[i])/(est[i]*(1-est[i]))) 
     
    F2up = est[i+2]/(est[i+2]+(1-est[i+2])/w2) 
    F1up = est[i]/(est[i]+(1-est[i])/w2) 
     
    hazup[times[i+1]] = (F2up - F1up) / (1-F1up) 
     
    F2low = est[i+2]/(est[i+2]+(1-est[i+2])*w2) 
    F1low = est[i]/(est[i]+(1-est[i])*w2) 
     
    hazlow[times[i+1]] = (F2low - F1low) / (1-F1low) 
     
    i=i+2 
  }#while  
   
  hazconfint <- data.frame(haz,hazlow,hazup) 
   
  return(hazconfint) 
} 
 
haz1 <- HazConfInt(CIF$`1 1`$est,CIF$`1 1`$var,CIF$`1 1`$time) 
par(col='black') 
yupper=.05 
plot(haz1$haz,ylim=c(0,yupper),main="Failure Mode 1 Hazard from CIF", 
     xlab='Sortie',ylab='Hazard Rate',xlim=c(1,10),axes=F, pch = 19) 
xticks <- seq(0, 10, 1) 
yticks <- seq(0,0.05,0.01) 
axis(1, at = xticks, labels = xticks, las=1, tck=0)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(haz1$hazlow,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 24) 
par(new=TRUE) 
plot(haz1$hazup,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 25) 

 

par(new=FALSE) 
 
haz2 <- HazConfInt(CIF$`1 2`$est,CIF$`1 2`$var,CIF$`1 2`$time) 
par(col='black') 
plot(haz2$haz,ylim=c(0,yupper),main="Failure Mode 2 Hazard from CIF", 
     xlab='Sortie',ylab='Hazard Rate',xlim=c(1,10),axes=F, pch = 19) 
xticks <- seq(0, 10, 1) 
yticks <- seq(0,0.05,0.01) 
axis(1, at = xticks, labels = xticks, las=1, tck=-.01) 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(haz2$hazlow,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 24) 
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par(new=TRUE) 
plot(haz2$hazup,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 25) 

 

par(new=FALSE) 
 
haz3 <- HazConfInt(CIF$`1 3`$est,CIF$`1 3`$var,CIF$`1 3`$time) 
yupper=0.05 # was 0.3 
par(col='black') 
plot(haz3$haz,ylim=c(0,yupper),main="Failure Mode 3 Hazard from CIF", 
     xlab='Sortie',ylab='Hazard Rate',xlim=c(1,10),axes=F, pch = 19) 
xticks <- seq(0, 10, 1) 
yticks <- seq(0,0.05,0.01) 
axis(1, at = xticks, labels = xticks, las=1, tck=-.01) 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(haz3$hazlow,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 24) 
par(new=TRUE) 
plot(haz3$hazup,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 25) 

 

par(new=FALSE) 
 
haz4 <- HazConfInt(CIF$`1 4`$est,CIF$`1 4`$var,CIF$`1 4`$time) 
yupper=0.05 
par(col='black') 
plot(haz4$haz,ylim=c(0,yupper),main="Failure Mode 4 Hazard from CIF", 
     xlab='Sortie',ylab='Hazard Rate',xlim=c(1,10),axes=F, pch = 19) 
xticks <- seq(0, 10, 1) 
yticks <- seq(0,0.05,0.01) 
axis(1, at = xticks, labels = xticks, las=1, tck=-.01) 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(haz4$hazlow,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 24) 
par(new=TRUE) 
plot(haz4$hazup,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 25) 

 

par(new=FALSE) 
 
haz5 <- HazConfInt(CIF$`1 5`$est,CIF$`1 5`$var,CIF$`1 5`$time) 
par(col='black') 
plot(haz5$haz,ylim=c(0,yupper),main="Failure Mode 5 Hazard from CIF", 
     xlab='Sortie',ylab='Hazard Rate',xlim=c(1,10),axes=F, pch = 19) 
xticks <- seq(0, 10, 1) 
yticks <- seq(0,0.05,0.01) 
axis(1, at = xticks, labels = xticks, las=1, tck=-.01) 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(haz5$hazlow,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 24) 
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par(new=TRUE) 
plot(haz5$hazup,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 25) 

 

par(new=FALSE) 
 
haz6 <- HazConfInt(CIF$`1 6`$est,CIF$`1 6`$var,CIF$`1 6`$time) 
par(col='black') 
plot(haz6$haz,ylim=c(0,yupper),main="Failure Mode 6 Hazard from CIF", 
     xlab='Sortie',ylab='Hazard Rate',xlim=c(1,10),axes=F, pch = 19) 
xticks <- seq(0, 10, 1) 
yticks <- seq(0,0.05,0.01) 
axis(1, at = xticks, labels = xticks, las=1, tck=-.01) 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(haz6$hazlow,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 24) 
par(new=TRUE) 
plot(haz6$hazup,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 25) 

 

par(new=FALSE) 
 
haz7 <- HazConfInt(CIF$`1 7`$est,CIF$`1 7`$var,CIF$`1 7`$time) 
par(col='black') 
plot(haz7$haz,ylim=c(0,yupper),main="Failure Mode 7 Hazard from CIF", 
     xlab='Sortie',ylab='Hazard Rate',xlim=c(1,10),axes=F, pch = 19) 
xticks <- seq(0, 10, 1) 
yticks <- seq(0,0.05,0.01) 
axis(1, at = xticks, labels = xticks, las=1, tck=-.01) 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(haz7$hazlow,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 24) 
par(new=TRUE) 
plot(haz7$hazup,ylim=c(0,yupper),ann=F,xlim=c(1,10),axes=F, pch = 25) 

par(new=FALSE) 
####################### 
# Purpose: analyze CIF$`1 1-7`$est to determine which distribution fits CIFs  
# inputs: CIF estimates and variances 
# outputs: Q-Q plots to determine whether CIFs fit exponential distribution 
# notes: CIs based on normal approximation 
# Author: Bryan Bentz 
####################### 
fm1 <- c(CIF$`1 1`$est[3],CIF$`1 1`$est[5],CIF$`1 1`$est[7],CIF$`1 1`$est[9], 
         CIF$`1 1`$est[11],CIF$`1 1`$est[13],CIF$`1 1`$est[15],CIF$`1 
1`$est[17],CIF$`1 1`$est[19], 
         CIF$`1 1`$est[21]) #requires callouts as cmprsk draws step function 
with end and start points 
qqplot(x=qexp(ppoints(length(fm1))), y=fm1, main="Exponential Q-Q Plot",  
       xlab="Theoretical Exponential Quantiles", ylab="Sample Quantiles") 
qqline(fm1, distribution=qexp, col="blue",lty=2) 
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####################### 
 
fm2 <- c(CIF$`1 2`$est[3],CIF$`1 2`$est[5],CIF$`1 2`$est[7],CIF$`1 2`$est[9], 
         CIF$`1 2`$est[11],CIF$`1 2`$est[13],CIF$`1 2`$est[15],CIF$`1 
2`$est[17],CIF$`1 2`$est[19]) 
qqplot(x=qexp(ppoints(length(fm2))), y=fm2, main="Exponential Q-Q Plot",  
       xlab="Theoretical Exponential Quantiles", ylab="Sample Quantiles") 
qqline(fm2, distribution=qexp, col="blue",lty=2) 

####################### 
 
fm3 <- c(CIF$`1 3`$est[3],CIF$`1 3`$est[5],CIF$`1 3`$est[7],CIF$`1 3`$est[9], 
         CIF$`1 3`$est[11],CIF$`1 3`$est[13],CIF$`1 3`$est[15],CIF$`1 
3`$est[17]) 
qqplot(x=qexp(ppoints(length(fm3))), y=fm3, main="Exponential Q-Q Plot",  
       xlab="Theoretical Quantiles", ylab="Sample Quantiles") 
qqline(fm3, distribution=qexp, col="blue",lty=2) 

####################### 
 
fm4 <- c(CIF$`1 4`$est[3],CIF$`1 4`$est[5],CIF$`1 4`$est[7]) 
qqplot(x=qexp(ppoints(length(fm4))), y=fm4, main="Exponential Q-Q Plot",  
       xlab="Theoretical Quantiles", ylab="Sample Quantiles") 
qqline(fm4, distribution=qexp, col="blue",lty=2) 

####################### 
 
fm5 <- c(CIF$`1 5`$est[3],CIF$`1 5`$est[5],CIF$`1 5`$est[7],CIF$`1 5`$est[9],  
         CIF$`1 5`$est[11]) 
qqplot(x=qexp(ppoints(length(fm5))), y=fm5, main="Exponential Q-Q Plot",  
       xlab="Theoretical Quantiles", ylab="Sample Quantiles") 
qqline(fm5, distribution=qexp, col="blue",lty=2) 

####################### 
 
fm6 <- c(CIF$`1 6`$est[3],CIF$`1 6`$est[5],CIF$`1 6`$est[7]) 
qqplot(x=qexp(ppoints(length(fm6))), y=fm6, main="Exponential Q-Q Plot",  
       xlab="Theoretical Quantiles", ylab="Sample Quantiles") 
qqline(fm6, distribution=qexp, col="blue",lty=2) 

####################### 
 
fm7 <- c(CIF$`1 7`$est[3],CIF$`1 7`$est[5],CIF$`1 7`$est[7]) 
qqplot(x=qexp(ppoints(length(fm7))), y=fm7, main="Exponential Q-Q Plot",  
       xlab="Theoretical Quantiles", ylab="Sample Quantiles") 
qqline(fm7, distribution=qexp, col="blue",lty=2) 

####################### 
# Purpose: Determine if a distribution that varies with time would better fit  
# inputs: arrays of fm(i) for all 7 subsystems 
# outputs: Determination of each failure mode's failure-time data relationship 
to Expon. Dist.  
# notes: to avoid overfitting, the AIC penalizes for the amount of 
distribution parameters. 
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#        the AICc corrects AIC for the small sample size. 
#        fit(i)exp$estimate and fit(i)weib$estimate are not used in the 
future.  Only to determine 
#        if hazard rate vary with time.  See section 4.2 of Thesis doc.  
# Author: Bryan Bentz 
####################### 
 
exponparam <-1 #free parameters of exponential distribution 
weibparam <-2 #free parameters of weibull distribution 
 
####################### 
 
fit1exp <- fitdistr(fm1, "exponential") 
fit1weib <- fitdistr(fm1, "weibull") 

## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced 

## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced 
 
## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced 
 
## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced 

AICexp1 <- 2*exponparam-2*fit1exp$loglik 
AICexp1c <- AICexp1 + (2*(exponparam+1)*(exponparam+2))/(length(fm1)-
exponparam-2) 
AICweib1 <- 2*weibparam-2*fit1weib$loglik 
AICweib1c <- AICweib1 + (2*(weibparam+1)*(weibparam+2))/length(fm1)-weibparam-
2 
AICdiff1 <- ((AICweib1c-AICexp1c)/AICweib1c)*100 
 
####################### 
 
fit2exp <- fitdistr(fm2, "exponential") 
fit2weib <- fitdistr(fm2, "weibull") 

AICexp2 <- 2*exponparam-2*fit2exp$loglik 
AICexp2c <- AICexp2 + (2*(exponparam+1)*(exponparam+2))/(length(fm2)-
exponparam-2) 
AICweib2 <- 2*weibparam-2*fit2weib$loglik 
AICweib2c <- AICweib2 + (2*(weibparam+1)*(weibparam+2))/length(fm2)-weibparam-
2 
AICdiff2 <- ((AICweib2c-AICexp2c)/AICweib2c)*100 
 
####################### 
 
fit3exp <- fitdistr(fm3, "exponential") 
fit3weib <- fitdistr(fm3, "weibull") 

AICexp3 <- 2*exponparam-2*fit3exp$loglik 
AICexp3c <- AICexp3 + (2*(exponparam+1)*(exponparam+2))/(length(fm3)-
exponparam-2) 
AICweib3 <- 2*weibparam-2*fit3weib$loglik 
AICweib3c <- AICweib3 + (2*(weibparam+1)*(weibparam+2))/length(fm3)-weibparam-
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2 
AICdiff3 <- ((AICweib3c-AICexp3c)/AICweib3c)*100 
 
####################### 
 
fit4exp <- fitdistr(fm4, "exponential") 
fit4weib <- fitdistr(fm4, "weibull") 

AICexp4 <- 2*exponparam-2*fit4exp$loglik 
AICexp4c <- AICexp4 + (2*(exponparam+1)*(exponparam+2))/(length(fm4)-
exponparam-1) 
AICweib4 <- 2*weibparam-2*fit4weib$loglik 
AICweib4c <- AICweib4 + (2*(weibparam+1)*(weibparam+2))/length(fm4)-weibparam-
2 
AICdiff4 <- ((AICweib4c-AICexp4c)/AICweib4c)*100 
 
####################### 
 
fit5weib <- fitdistr(fm5, "weibull") 

AICweib5 <- 2*weibparam-2*fit5weib$loglik 
AICweib5c <- AICweib5 + (2*(weibparam+1)*(weibparam+2))/length(fm5)-weibparam-
2 
 
fit5exp <- fitdistr(fm5, "exponential") 
AICexp5 <- 2*exponparam-2*fit5exp$loglik 
AICexp5c <- AICexp5 + (2*(exponparam+1)*(exponparam+2))/(length(fm5)-
exponparam-2) 
 
AICdiff5 <- ((AICweib5c-AICexp5c)/AICweib5c)*100 
 
####################### 
 
fit6exp <- fitdistr(fm6, "exponential") 
fit6weib <- fitdistr(fm6, "weibull") 

AICexp6 <- 2*exponparam-2*fit6exp$loglik 
AICexp6c <- AICexp6 + (2*(exponparam+1)*(exponparam+2))/(length(fm6)-
exponparam-1) 
AICweib6 <- 2*weibparam-2*fit6weib$loglik 
AICweib6c <- AICweib6 + (2*(weibparam+1)*(weibparam+2))/length(fm6)-weibparam-
2 
AICdiff6 <- ((AICweib6c-AICexp6c)/AICweib6c)*100 
 
####################### 
 
fm7 <- c(CIF$`1 7`$est[3],CIF$`1 7`$est[5],CIF$`1 7`$est[7]) 
 
fit7weib <- fitdistr(fm7, "weibull") 

AICweib7 <- 2*weibparam-2*fit7weib$loglik 
AICweib7c <- AICweib7 + (2*(weibparam+1)*(weibparam+2))/(length(fm7)-
weibparam-2) 
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fit7exp <- fitdistr(fm7, "exponential") 
AICexp7 <- 2*exponparam-2*fit7exp$loglik 
AICexp7c <- AICexp7 + (2*(exponparam+1)*(exponparam+2))/(length(fm7)-
exponparam-3) 
 
AICdiff7 <- ((AICweib7c-AICexp7c)/AICweib7c)*100 
 
lamdafm7est <- 1/fit7exp$estimate #fm7 hazard rate. Table 5 of thesis puts 
AICc "exp" as best fit 
 
#logit transformation based on 3.16, p. 57 in Meeker & Escobar.  See thesis 
for citation 
fm7low <- c((CIF$`1 7`$est[3]/(CIF$`1 7`$est[3]+(1-CIF$`1 7`$est[3])* 
                     exp((1.96*sqrt(CIF$`1 7`$var[3])/(CIF$`1 7`$est[3]*(1-
CIF$`1 7`$est[3])))))), 
          (CIF$`1 7`$est[5]/(CIF$`1 7`$est[5]+(1-CIF$`1 7`$est[5])* 
                     exp((1.96*sqrt(CIF$`1 7`$var[5])/(CIF$`1 7`$est[5]*(1-
CIF$`1 7`$est[5])))))), 
          (CIF$`1 7`$est[7]/(CIF$`1 7`$est[7]+(1-CIF$`1 7`$est[7])* 
                               exp((1.96*sqrt(CIF$`1 7`$var[7])/(CIF$`1 
7`$est[7]*(1-CIF$`1 7`$est[7]))))))) 
 
fit7lowexp <- fitdistr(fm7low, "exponential") 
lamdafm7low <- 1/fit7lowexp$estimate 
 
#logit transformation based on 3.16, p. 57 in Meeker & Escobar.  See thesis 
for citation 
fm7up <- c((CIF$`1 7`$est[3]/(CIF$`1 7`$est[3]+(1-CIF$`1 7`$est[3])/ 
                                 exp((1.96*sqrt(CIF$`1 7`$var[3])/(CIF$`1 
7`$est[3]*(1-CIF$`1 7`$est[3])))))), 
            (CIF$`1 7`$est[5]/(CIF$`1 7`$est[5]+(1-CIF$`1 7`$est[5])/ 
                                 exp((1.96*sqrt(CIF$`1 7`$var[5])/(CIF$`1 
7`$est[5]*(1-CIF$`1 7`$est[5])))))), 
            (CIF$`1 7`$est[7]/(CIF$`1 7`$est[7]+(1-CIF$`1 7`$est[7])/ 
                                 exp((1.96*sqrt(CIF$`1 7`$var[7])/(CIF$`1 
7`$est[7]*(1-CIF$`1 7`$est[7]))))))) 
 
fit7upexp <- fitdistr(fm7up, "exponential") 
lamdafm7up <- 1/fit7upexp$estimate 
 
####################### 
# Purpose: create information for baseline Markov Chain Models (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9), mcLCASD, finalStatet1-9 
# Author: Bryan Bentz 
####################### 
 
step <- 1 #this will be used calculate the final state probabilities 
initialStatet1 <- c(1,0,0,0,0,0,0,0,0) #assumes that every unit is operational 
upon delivery, t0 
 
#Creates the probability of "regeneration" for the nominal baseline Design 
recursion1 <- 1-
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(haz1$haz[1]+haz2$haz[1]+haz3$haz[1]+haz4$haz[1]+haz5$haz[1]+haz6$haz[1]+lamda
fm7est) 
recursion2 <- 1-
(haz1$haz[2]+haz2$haz[2]+haz3$haz[2]+haz4$haz[2]+haz5$haz[2]+haz6$haz[2]+lamda
fm7est) 
recursion3 <- 1-
(haz1$haz[3]+haz2$haz[3]+haz3$haz[3]+haz4$haz[3]+haz5$haz[3]+haz6$haz[3]+lamda
fm7est) 
recursion4 <- 1-
(haz1$haz[4]+haz2$haz[4]+haz3$haz[4]+haz4$haz[4]+haz5$haz[4]+haz6$haz[4]+lamda
fm7est) 
recursion5 <- 1-
(haz1$haz[5]+haz2$haz[5]+haz3$haz[5]+haz4$haz[5]+haz5$haz[5]+haz6$haz[5]+lamda
fm7est) 
recursion6 <- 1-
(haz1$haz[6]+haz2$haz[6]+haz3$haz[6]+haz4$haz[6]+haz5$haz[6]+haz6$haz[6]+lamda
fm7est) 
recursion7 <- 1-
(haz1$haz[7]+haz2$haz[7]+haz3$haz[7]+haz4$haz[7]+haz5$haz[7]+haz6$haz[7]+lamda
fm7est) 
recursion8 <- 1-
(haz1$haz[8]+haz2$haz[8]+haz3$haz[8]+haz4$haz[8]+haz5$haz[8]+haz6$haz[8]+lamda
fm7est) 
recursion9 <- 1-
(haz1$haz[9]+haz2$haz[9]+haz3$haz[9]+haz4$haz[9]+haz5$haz[9]+haz6$haz[9]+lamda
fm7est) 
 
####################### 
# Purpose: create discrete time non-homogeneous Markov Chain Models (MCM) of 
baseline design at est.  
# inputs: recursion [i], haz1-haz7, probabilities of transition from "failed" 
to destroyed 
# outputs: mcLCASD, a discrete time non-homogeneous MCM 
# Author: Bryan Bentz 
####################### 
 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
P1 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion1,haz1$haz[1],haz2$haz[1],haz3$haz[1],haz4$haz[1],haz5$haz[1
],haz6$haz[1],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
P2 <- new("markovchain", states = stateNames, transitionMatrix =  
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matrix(c(recursion2,haz1$haz[2],haz2$haz[2],haz3$haz[2],haz4$haz[2],haz5$haz[2
],haz6$haz[2],lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
P3 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion3,haz1$haz[3],haz2$haz[3],haz3$haz[3],haz4$haz[3],haz5$haz[3
],haz6$haz[3],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
P4 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion4,haz1$haz[4],haz2$haz[4],haz3$haz[4],haz4$haz[4],haz5$haz[4
],haz6$haz[4],lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
P5 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion5,haz1$haz[5],haz2$haz[5],haz3$haz[5],haz4$haz[5],haz5$haz[5
],haz6$haz[5],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
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"state t5") 
 
P6 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion6,haz1$haz[6],haz2$haz[6],haz3$haz[6],haz4$haz[6],haz5$haz[6
],haz6$haz[6],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
P7 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion7,haz1$haz[7],haz2$haz[7],haz3$haz[7],haz4$haz[7],haz5$haz[7
],haz6$haz[7],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
P8 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion8,haz1$haz[8],haz2$haz[8],haz3$haz[8],haz4$haz[8],haz5$haz[8
],haz6$haz[8],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
P9 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion9,haz1$haz[9],haz2$haz[9],haz3$haz[9],haz4$haz[9],haz5$haz[9
],haz6$haz[9],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
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                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASD <- new("markovchainList",markovchains = 
list(P1,P2,P3,P4,P5,P6,P7,P8,P9),  
               name = "Attritable System Behavior") 
 
#calculating the probability of entering each state for baseline design  
finalStatet1 <- initialStatet1*mcLCASD[[1]]^step 
finalStatet2 <- finalStatet1*mcLCASD[[2]]^step 
finalStatet3 <- finalStatet2*mcLCASD[[3]]^step 
finalStatet4 <- finalStatet3*mcLCASD[[4]]^step 
finalStatet5 <- finalStatet4*mcLCASD[[5]]^step 
finalStatet6 <- finalStatet5*mcLCASD[[6]]^step 
finalStatet7 <- finalStatet6*mcLCASD[[7]]^step 
finalStatet8 <- finalStatet7*mcLCASD[[8]]^step 
finalStatet9 <- finalStatet8*mcLCASD[[9]]^step 
 
####################### 
# Purpose: create information for lower estimate Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)low,mcLCASDlow, FinalStatelowt1-9 because there's one 
for each time step. 
# Author: Bryan Bentz 
####################### 
 
 
#Creates the probability of "regeneration" for the lower 95% estimate of the 
baseline Design 
recursion1low <- 1-
(haz1$hazlow[1]+haz2$hazlow[1]+haz3$hazlow[1]+haz4$hazlow[1]+haz5$hazlow[1]+ha
z6$hazlow[1]+lamdafm7low) 
recursion2low <- 1-
(haz1$hazlow[2]+haz2$hazlow[2]+haz3$hazlow[2]+haz4$hazlow[2]+haz5$hazlow[2]+ha
z6$hazlow[2]+lamdafm7low) 
recursion3low <- 1-
(haz1$hazlow[3]+haz2$hazlow[3]+haz3$hazlow[3]+haz4$hazlow[3]+haz5$hazlow[3]+ha
z6$hazlow[3]+lamdafm7low) 
recursion4low <- 1-
(haz1$hazlow[4]+haz2$hazlow[4]+haz3$hazlow[4]+haz4$hazlow[4]+haz5$hazlow[4]+ha
z6$hazlow[4]+lamdafm7low) 
recursion5low <- 1-
(haz1$hazlow[5]+haz2$hazlow[5]+haz3$hazlow[5]+haz4$hazlow[5]+haz5$hazlow[5]+ha
z6$hazlow[5]+lamdafm7low) 
recursion6low <- 1-
(haz1$hazlow[6]+haz2$hazlow[6]+haz3$hazlow[6]+haz4$hazlow[6]+haz5$hazlow[6]+ha
z6$hazlow[6]+lamdafm7low) 
recursion7low <- 1-
(haz1$hazlow[7]+haz2$hazlow[7]+haz3$hazlow[7]+haz4$hazlow[7]+haz5$hazlow[7]+ha
z6$hazlow[7]+lamdafm7low) 
recursion8low <- 1-
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(haz1$hazlow[8]+haz2$hazlow[8]+haz3$hazlow[8]+haz4$hazlow[8]+haz5$hazlow[8]+ha
z6$hazlow[8]+lamdafm7low) 
recursion9low <- 1-
(haz1$hazlow[9]+haz2$hazlow[9]+haz3$hazlow[9]+haz4$hazlow[9]+haz5$hazlow[9]+ha
z6$hazlow[9]+lamdafm7low) 
 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
Q1 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion1low,haz1$hazlow[1],haz2$hazlow[1],haz3$hazlow[1],haz4$hazlo
w[1],haz5$hazlow[1],haz6$hazlow[1],lamdafm7low, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
Q2 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion2low,haz1$hazlow[2],haz2$hazlow[2],haz3$hazlow[2],haz4$hazlo
w[2],haz5$hazlow[2],haz6$hazlow[2],lamdafm7low, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
Q3 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion3low,haz1$hazlow[3],haz2$hazlow[3],haz3$hazlow[3],haz4$hazlo
w[3],haz5$hazlow[3],haz6$hazlow[3],lamdafm7low, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
Q4 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion4low,haz1$hazlow[4],haz2$hazlow[4],haz3$hazlow[4],haz4$hazlo
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w[4],haz5$hazlow[4],haz6$hazlow[4],lamdafm7low, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
Q5 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion5low,haz1$hazlow[5],haz2$hazlow[5],haz3$hazlow[5],haz4$hazlo
w[5],haz5$hazlow[5],haz6$hazlow[5],lamdafm7low, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
Q6 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion6low,haz1$hazlow[6],haz2$hazlow[6],haz3$hazlow[6],haz4$hazlo
w[6],haz5$hazlow[6],haz6$hazlow[6],lamdafm7low, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
Q7 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion7low,haz1$hazlow[7],haz2$hazlow[7],haz3$hazlow[7],haz4$hazlo
w[7],haz5$hazlow[7],haz6$hazlow[7],lamdafm7low, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
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Q8 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion8low,haz1$hazlow[8],haz2$hazlow[8],haz3$hazlow[8],haz4$hazlo
w[8],haz5$hazlow[8],haz6$hazlow[8],lamdafm7low, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
Q9 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion9low,haz1$hazlow[9],haz2$hazlow[9],haz3$hazlow[9],haz4$hazlo
w[9],haz5$hazlow[9],haz6$hazlow[9],lamdafm7low, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASDlow <- new("markovchainList",markovchains = 
list(Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9),  
                  name = "Attritable System Behavior at Low Estimate") 
 
#calculating the probability of entering each state for baseline design using 
low est of 95% 
finalStatet1low <- initialStatet1*mcLCASDlow[[1]]^step 
finalStatet2low <- finalStatet1low*mcLCASDlow[[2]]^step 
finalStatet3low <- finalStatet2low*mcLCASDlow[[3]]^step 
finalStatet4low <- finalStatet3low*mcLCASDlow[[4]]^step 
finalStatet5low <- finalStatet4low*mcLCASDlow[[5]]^step 
finalStatet6low <- finalStatet5low*mcLCASDlow[[6]]^step 
finalStatet7low <- finalStatet6low*mcLCASDlow[[7]]^step 
finalStatet8low <- finalStatet7low*mcLCASDlow[[8]]^step 
finalStatet9low <- finalStatet8low*mcLCASDlow[[9]]^step 
 
####################### 
# Purpose: create information for lower estimate Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDup, FinalStateupt1-9 because there's one 
for each time step.  
# Author: Bryan Bentz 
####################### 
 
#Creates the probability of "regeneration" for the upper 95% estimate of the 
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baseline Design 
recursion1up <- 1-
(haz1$hazup[1]+haz2$hazup[1]+haz3$hazup[1]+haz4$hazup[1]+haz5$hazup[1]+haz6$ha
zup[1]+lamdafm7up) 
recursion2up <- 1-
(haz1$hazup[2]+haz2$hazup[2]+haz3$hazup[2]+haz4$hazup[2]+haz5$hazup[2]+haz6$ha
zup[2]+lamdafm7up) 
recursion3up <- 1-
(haz1$hazup[3]+haz2$hazup[3]+haz3$hazup[3]+haz4$hazup[3]+haz5$hazup[3]+haz6$ha
zup[3]+lamdafm7up) 
recursion4up <- 1-
(haz1$hazup[4]+haz2$hazup[4]+haz3$hazup[4]+haz4$hazup[4]+haz5$hazup[4]+haz6$ha
zup[4]+lamdafm7up) 
recursion5up <- 1-
(haz1$hazup[5]+haz2$hazup[5]+haz3$hazup[5]+haz4$hazup[5]+haz5$hazup[5]+haz6$ha
zup[5]+lamdafm7up) 
recursion6up <- 1-
(haz1$hazup[6]+haz2$hazup[6]+haz3$hazup[6]+haz4$hazup[6]+haz5$hazup[6]+haz6$ha
zup[6]+lamdafm7up) 
recursion7up <- 1-
(haz1$hazup[7]+haz2$hazup[7]+haz3$hazup[7]+haz4$hazup[7]+haz5$hazup[7]+haz6$ha
zup[7]+lamdafm7up) 
recursion8up <- 1-
(haz1$hazup[8]+haz2$hazup[8]+haz3$hazup[8]+haz4$hazup[8]+haz5$hazup[8]+haz6$ha
zup[8]+lamdafm7up) 
recursion9up <- 1-
(haz1$hazup[9]+haz2$hazup[9]+haz3$hazup[9]+haz4$hazup[9]+haz5$hazup[9]+haz6$ha
zup[9]+lamdafm7up) 
 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
R1 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion1up,haz1$hazup[1],haz2$hazup[1],haz3$hazup[1],haz4$hazup[1],
haz5$hazup[1],haz6$hazup[1],lamdafm7up, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
R2 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion2up,haz1$hazup[2],haz2$hazup[2],haz3$hazup[2],haz4$hazup[2],
haz5$hazup[2],haz6$hazup[2],lamdafm7up, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
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                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
R3 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion3up,haz1$hazup[3],haz2$hazup[3],haz3$hazup[3],haz4$hazup[3],
haz5$hazup[3],haz6$hazup[3],lamdafm7up, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
R4 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion4up,haz1$hazup[4],haz2$hazup[4],haz3$hazup[4],haz4$hazup[4],
haz5$hazup[4],haz6$hazup[4],lamdafm7up, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
R5 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion5up,haz1$hazup[5],haz2$hazup[5],haz3$hazup[5],haz4$hazup[5],
haz5$hazup[5],haz6$hazup[5],lamdafm7up, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
R6 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion6up,haz1$hazup[6],haz2$hazup[6],haz3$hazup[6],haz4$hazup[6],
haz5$hazup[6],haz6$hazup[6],lamdafm7up, 0, 
                     1,0,0,0,0,0,0,0,0, 
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                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
R7 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion7up,haz1$hazup[7],haz2$hazup[7],haz3$hazup[7],haz4$hazup[7],
haz5$hazup[7],haz6$hazup[7],lamdafm7up, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
R8 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion8up,haz1$hazup[8],haz2$hazup[8],haz3$hazup[8],haz4$hazup[8],
haz5$hazup[8],haz6$hazup[8],lamdafm7up, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
R9 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion9up,haz1$hazup[9],haz2$hazup[9],haz3$hazup[9],haz4$hazup[9],
haz5$hazup[9],haz6$hazup[9],lamdafm7up, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASDup <- new("markovchainList",markovchains = 
list(R1,R2,R3,R4,R5,R6,R7,R8,R9),  
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                 name = "Attritable System Behavior at High Estimate") 
 
#calculating the probability of entering each state for baseline design using 
upper est of 95% 
finalStatet1up <- initialStatet1*mcLCASDup[[1]]^step 
finalStatet2up <- finalStatet1up*mcLCASDup[[2]]^step 
finalStatet3up <- finalStatet2up*mcLCASDup[[3]]^step 
finalStatet4up <- finalStatet3up*mcLCASDup[[4]]^step 
finalStatet5up <- finalStatet4up*mcLCASDup[[5]]^step 
finalStatet6up <- finalStatet5up*mcLCASDup[[6]]^step 
finalStatet7up <- finalStatet6up*mcLCASDup[[7]]^step 
finalStatet8up <- finalStatet7up*mcLCASDup[[8]]^step 
finalStatet9up <- finalStatet8up*mcLCASDup[[9]]^step 
 
####################### 
# Purpose: create information for altered FM1 Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDnew1, FinalStatenew1t1-9 because there's 
one for each time step.  
# Author: Bryan Bentz 
####################### 
 
Delta1 = 1.0 #ratio of new hazard rate over old hazard rate 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
S1 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(Delta1*haz1$haz[1]+haz2$haz[1]+haz3$haz[1]+haz4$haz[1]+haz5$haz[1]+haz6$haz[1
]+lamdafm7est),Delta1*haz1$haz[1],haz2$haz[1],haz3$haz[1],haz4$haz[1],haz5$haz
[1],haz6$haz[1],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
S2 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(Delta1*haz1$haz[2]+haz2$haz[2]+haz3$haz[2]+haz4$haz[2]+haz5$haz[2]+haz6$haz[2
]+lamdafm7est),Delta1*haz1$haz[2],haz2$haz[2],haz3$haz[2],haz4$haz[2],haz5$haz
[2],haz6$haz[2],lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
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"state t2") 
 
S3 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(Delta1*haz1$haz[3]+haz2$haz[3]+haz3$haz[3]+haz4$haz[3]+haz5$haz[3]+haz6$haz[3
]+lamdafm7est),Delta1*haz1$haz[3],haz2$haz[3],haz3$haz[3],haz4$haz[3],haz5$haz
[3],haz6$haz[3],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
S4 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(Delta1*haz1$haz[4]+haz2$haz[4]+haz3$haz[4]+haz4$haz[4]+haz5$haz[4]+haz6$haz[4
]+lamdafm7est),Delta1*haz1$haz[4],haz2$haz[4],haz3$haz[4],haz4$haz[4],haz5$haz
[4],haz6$haz[4],lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
S5 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(Delta1*haz1$haz[5]+haz2$haz[5]+haz3$haz[5]+haz4$haz[5]+haz5$haz[5]+haz6$haz[5
]+lamdafm7est),Delta1*haz1$haz[5],haz2$haz[5],haz3$haz[5],haz4$haz[5],haz5$haz
[5],haz6$haz[5],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
S6 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(Delta1*haz1$haz[6]+haz2$haz[6]+haz3$haz[6]+haz4$haz[6]+haz5$haz[6]+haz6$haz[6
]+lamdafm7est),Delta1*haz1$haz[6],haz2$haz[6],haz3$haz[6],haz4$haz[6],haz5$haz
[6],haz6$haz[6],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
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                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
S7 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(Delta1*haz1$haz[7]+haz2$haz[7]+haz3$haz[7]+haz4$haz[7]+haz5$haz[7]+haz6$haz[7
]+lamdafm7est),Delta1*haz1$haz[7],haz2$haz[7],haz3$haz[7],haz4$haz[7],haz5$haz
[7],haz6$haz[7],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
S8 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(Delta1*haz1$haz[8]+haz2$haz[8]+haz3$haz[8]+haz4$haz[8]+haz5$haz[8]+haz6$haz[8
]+lamdafm7est),Delta1*haz1$haz[8],haz2$haz[8],haz3$haz[8],haz4$haz[8],haz5$haz
[8],haz6$haz[8],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
S9 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(Delta1*haz1$haz[9]+haz2$haz[9]+haz3$haz[9]+haz4$haz[9]+haz5$haz[9]+haz6$haz[9
]+lamdafm7est),Delta1*haz1$haz[9],haz2$haz[9],haz3$haz[9],haz4$haz[9],haz5$haz
[9],haz6$haz[9],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
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mcLCASDnew1 <- new("markovchainList",markovchains = 
list(S1,S2,S3,S4,S5,S6,S7,S8,S9),  
                   name = "Attritable System Behavior with altered FM1") 
 
#calculating the probability of entering each state for the new FM1 design 
using % change of baseline 
finalStatet1new1 <- initialStatet1*mcLCASDnew1[[1]]^step 
finalStatet2new1 <- finalStatet1new1*mcLCASDnew1[[2]]^step 
finalStatet3new1 <- finalStatet2new1*mcLCASDnew1[[3]]^step 
finalStatet4new1 <- finalStatet3new1*mcLCASDnew1[[4]]^step 
finalStatet5new1 <- finalStatet4new1*mcLCASDnew1[[5]]^step 
finalStatet6new1 <- finalStatet5new1*mcLCASDnew1[[6]]^step 
finalStatet7new1 <- finalStatet6new1*mcLCASDnew1[[7]]^step 
finalStatet8new1 <- finalStatet7new1*mcLCASDnew1[[8]]^step 
finalStatet9new1 <- finalStatet8new1*mcLCASDnew1[[9]]^step 
 
####################### 
# Purpose: create information for altered FM2 Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDnew2, FinalStatenew2t1-9 because there's 
one for each time step.  
# Author: Bryan Bentz 
####################### 
 
Delta2 = 1.0 #ratio of new hazard rate over old hazard rate 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
T1 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[1]+Delta2*haz2$haz[1]+haz3$haz[1]+haz4$haz[1]+haz5$haz[1]+haz6$haz[1
]+lamdafm7est),haz1$haz[1],Delta2*haz2$haz[1],haz3$haz[1],haz4$haz[1],haz5$haz
[1],haz6$haz[1],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
T2 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[2]+Delta2*haz2$haz[2]+haz3$haz[2]+haz4$haz[2]+haz5$haz[2]+haz6$haz[2
]+lamdafm7est),haz1$haz[2],Delta2*haz2$haz[2],haz3$haz[2],haz4$haz[2],haz5$haz
[2],haz6$haz[2],lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
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                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
T3 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[3]+Delta2*haz2$haz[3]+haz3$haz[3]+haz4$haz[3]+haz5$haz[3]+haz6$haz[3
]+lamdafm7est),haz1$haz[3],Delta2*haz2$haz[3],haz3$haz[3],haz4$haz[3],haz5$haz
[3],haz6$haz[3],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
T4 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[4]+Delta2*haz2$haz[4]+haz3$haz[4]+haz4$haz[4]+haz5$haz[4]+haz6$haz[4
]+lamdafm7est),haz1$haz[4],Delta2*haz2$haz[4],haz3$haz[4],haz4$haz[4],haz5$haz
[4],haz6$haz[4],lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
T5 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[5]+Delta2*haz2$haz[5]+haz3$haz[5]+haz4$haz[5]+haz5$haz[5]+haz6$haz[5
]+lamdafm7est),haz1$haz[5],Delta2*haz2$haz[5],haz3$haz[5],haz4$haz[5],haz5$haz
[5],haz6$haz[5],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
T6 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[6]+Delta2*haz2$haz[6]+haz3$haz[6]+haz4$haz[6]+haz5$haz[6]+haz6$haz[6



 

124 

]+lamdafm7est),haz1$haz[6],Delta2*haz2$haz[6],haz3$haz[6],haz4$haz[6],haz5$haz
[6],haz6$haz[6],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
T7 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[7]+Delta2*haz2$haz[7]+haz3$haz[7]+haz4$haz[7]+haz5$haz[7]+haz6$haz[7
]+lamdafm7est),haz1$haz[7],Delta2*haz2$haz[7],haz3$haz[7],haz4$haz[7],haz5$haz
[7],haz6$haz[7],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
T8 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[8]+Delta2*haz2$haz[8]+haz3$haz[8]+haz4$haz[8]+haz5$haz[8]+haz6$haz[8
]+lamdafm7est),haz1$haz[8],Delta2*haz2$haz[8],haz3$haz[8],haz4$haz[8],haz5$haz
[8],haz6$haz[8],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
T9 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[9]+Delta2*haz2$haz[9]+haz3$haz[9]+haz4$haz[9]+haz5$haz[9]+haz6$haz[9
]+lamdafm7est),haz1$haz[9],Delta2*haz2$haz[9],haz3$haz[9],haz4$haz[9],haz5$haz
[9],haz6$haz[9],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
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                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASDnew2 <- new("markovchainList",markovchains = 
list(T1,T2,T3,T4,T5,T6,T7,T8,T9),  
                   name = "Attritable System Behavior with FM2 changed") 
 
#calculating the probability of entering each state for the new FM2 design 
using % change of baseline 
finalStatet1new2 <- initialStatet1*mcLCASDnew2[[1]]^step 
finalStatet2new2 <- finalStatet1new2*mcLCASDnew2[[2]]^step 
finalStatet3new2 <- finalStatet2new2*mcLCASDnew2[[3]]^step 
finalStatet4new2 <- finalStatet3new2*mcLCASDnew2[[4]]^step 
finalStatet5new2 <- finalStatet4new2*mcLCASDnew2[[5]]^step 
finalStatet6new2 <- finalStatet5new2*mcLCASDnew2[[6]]^step 
finalStatet7new2 <- finalStatet6new2*mcLCASDnew2[[7]]^step 
finalStatet8new2 <- finalStatet7new2*mcLCASDnew2[[8]]^step 
finalStatet9new2 <- finalStatet8new2*mcLCASDnew2[[9]]^step 
 
####################### 
# Purpose: create information for altered FM3 Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDnew3, finalStatenew3t1-9 because there's 
one for each time step.  
# Author: Bryan Bentz 
####################### 
 
Delta3 = 1.0 #ratio of new hazard rate over old hazard rate 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
W1 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[1]+haz2$haz[1]+Delta3*haz3$haz[1]+haz4$haz[1]+haz5$haz[1]+haz6$haz[1
]+lamdafm7est),haz1$haz[1],haz2$haz[1],Delta3*haz3$haz[1],haz4$haz[1],haz5$haz
[1],haz6$haz[1],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
W2 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[2]+haz2$haz[2]+Delta3*haz3$haz[2]+haz4$haz[2]+haz5$haz[2]+haz6$haz[2
]+lamdafm7est),haz1$haz[2],haz2$haz[2],Delta3*haz3$haz[2],haz4$haz[2],haz5$haz
[2],haz6$haz[2],lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 



 

126 

                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
W3 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[3]+haz2$haz[3]+Delta3*haz3$haz[3]+haz4$haz[3]+haz5$haz[3]+haz6$haz[3
]+lamdafm7est),haz1$haz[3],haz2$haz[3],Delta3*haz3$haz[3],haz4$haz[3],haz5$haz
[3],haz6$haz[3],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
W4 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[4]+haz2$haz[4]+Delta3*haz3$haz[4]+haz4$haz[4]+haz5$haz[4]+haz6$haz[4
]+lamdafm7est),haz1$haz[4],haz2$haz[4],Delta3*haz3$haz[4],haz4$haz[4],haz5$haz
[4],haz6$haz[4],lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
W5 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[5]+haz2$haz[5]+Delta3*haz3$haz[5]+haz4$haz[5]+haz5$haz[5]+haz6$haz[5
]+lamdafm7est),haz1$haz[5],haz2$haz[5],Delta3*haz3$haz[5],haz4$haz[5],haz5$haz
[5],haz6$haz[5],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
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W6 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[6]+haz2$haz[6]+Delta3*haz3$haz[6]+haz4$haz[6]+haz5$haz[6]+haz6$haz[6
]+lamdafm7est),haz1$haz[6],haz2$haz[6],Delta3*haz3$haz[6],haz4$haz[6],haz5$haz
[6],haz6$haz[6],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
W7 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[7]+haz2$haz[7]+Delta3*haz3$haz[7]+haz4$haz[7]+haz5$haz[7]+haz6$haz[7
]+lamdafm7est),haz1$haz[7],haz2$haz[7],Delta3*haz3$haz[7],haz4$haz[7],haz5$haz
[7],haz6$haz[7],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
W8 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[8]+haz2$haz[8]+Delta3*haz3$haz[8]+haz4$haz[8]+haz5$haz[8]+haz6$haz[8
]+lamdafm7est),haz1$haz[8],haz2$haz[8],Delta3*haz3$haz[8],haz4$haz[8],haz5$haz
[8],haz6$haz[8],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
W9 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[9]+haz2$haz[9]+Delta3*haz3$haz[9]+haz4$haz[9]+haz5$haz[9]+haz6$haz[9
]+lamdafm7est),haz1$haz[9],haz2$haz[9],Delta3*haz3$haz[9],haz4$haz[9],haz5$haz
[9],haz6$haz[9],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
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                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASDnew3 <- new("markovchainList",markovchains = 
list(W1,W2,W3,W4,W5,W6,W7,W8,W9),  
                   name = "Attritable System Behavior with FM3 changed") 
 
#calculating the probability of entering each state for the new FM3 design 
using % change of baseline 
finalStatet1new3 <- initialStatet1*mcLCASDnew3[[1]]^step 
finalStatet2new3 <- finalStatet1new3*mcLCASDnew3[[2]]^step 
finalStatet3new3 <- finalStatet2new3*mcLCASDnew3[[3]]^step 
finalStatet4new3 <- finalStatet3new3*mcLCASDnew3[[4]]^step 
finalStatet5new3 <- finalStatet4new3*mcLCASDnew3[[5]]^step 
finalStatet6new3 <- finalStatet5new3*mcLCASDnew3[[6]]^step 
finalStatet7new3 <- finalStatet6new3*mcLCASDnew3[[7]]^step 
finalStatet8new3 <- finalStatet7new3*mcLCASDnew3[[8]]^step 
finalStatet9new3 <- finalStatet8new3*mcLCASDnew3[[9]]^step 
 
####################### 
# Purpose: create information for altered FM4 Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDnew4, finalStatenew4t1-9 because there's 
one for each time step.  
# Author: Bryan Bentz 
####################### 
 
Delta4 = 1.0 #ratio of new hazard rate over old hazard rate 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
X1 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[1]+haz2$haz[1]+haz3$haz[1]+Delta4*haz4$haz[1]+haz5$haz[1]+haz6$haz[1
]+lamdafm7est),haz1$haz[1],haz2$haz[1],haz3$haz[1],Delta4*haz4$haz[1],haz5$haz
[1],haz6$haz[1],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
X2 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[2]+haz2$haz[2]+haz3$haz[2]+Delta4*haz4$haz[2]+haz5$haz[2]+haz6$haz[2
]+lamdafm7est),haz1$haz[2],haz2$haz[2],haz3$haz[2],Delta4*haz4$haz[2],haz5$haz
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[2],haz6$haz[2],lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
X3 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[3]+haz2$haz[3]+haz3$haz[3]+Delta4*haz4$haz[3]+haz5$haz[3]+haz6$haz[3
]+lamdafm7est),haz1$haz[3],haz2$haz[3],haz3$haz[3],Delta4*haz4$haz[3],haz5$haz
[3],haz6$haz[3],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
X4 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[4]+haz2$haz[4]+haz3$haz[4]+Delta4*haz4$haz[4]+haz5$haz[4]+haz6$haz[4
]+lamdafm7est),haz1$haz[4],haz2$haz[4],haz3$haz[4],Delta4*haz4$haz[4],haz5$haz
[4],haz6$haz[4],lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
X5 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[5]+haz2$haz[5]+haz3$haz[5]+Delta4*haz4$haz[5]+haz5$haz[5]+haz6$haz[5
]+lamdafm7est),haz1$haz[5],haz2$haz[5],haz3$haz[5],Delta4*haz4$haz[5],haz5$haz
[5],haz6$haz[5],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
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                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
X6 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[6]+haz2$haz[6]+haz3$haz[6]+Delta4*haz4$haz[6]+haz5$haz[6]+haz6$haz[6
]+lamdafm7est),haz1$haz[6],haz2$haz[6],haz3$haz[6],Delta4*haz4$haz[6],haz5$haz
[6],haz6$haz[6],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
X7 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[7]+haz2$haz[7]+haz3$haz[7]+Delta4*haz4$haz[7]+haz5$haz[7]+haz6$haz[7
]+lamdafm7est),haz1$haz[7],haz2$haz[7],haz3$haz[7],Delta4*haz4$haz[7],haz5$haz
[7],haz6$haz[7],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
X8 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[8]+haz2$haz[8]+haz3$haz[8]+Delta4*haz4$haz[8]+haz5$haz[8]+haz6$haz[8
]+lamdafm7est),haz1$haz[8],haz2$haz[8],haz3$haz[8],Delta4*haz4$haz[8],haz5$haz
[8],haz6$haz[8],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
X9 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[9]+haz2$haz[9]+haz3$haz[9]+Delta4*haz4$haz[9]+haz5$haz[9]+haz6$haz[9
]+lamdafm7est),haz1$haz[9],haz2$haz[9],haz3$haz[9],Delta4*haz4$haz[9],haz5$haz
[9],haz6$haz[9],lamdafm7est, 0, 
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                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASDnew4 <- new("markovchainList",markovchains = 
list(X1,X2,X3,X4,X5,X6,X7,X8,X9),  
                   name = "Attritable System Behavior with FM4 changed") 
 
#calculating the probability of entering each state for the new FM4 design 
using % change of baseline 
finalStatet1new4 <- initialStatet1*mcLCASDnew4[[1]]^step 
finalStatet2new4 <- finalStatet1new4*mcLCASDnew4[[2]]^step 
finalStatet3new4 <- finalStatet2new4*mcLCASDnew4[[3]]^step 
finalStatet4new4 <- finalStatet3new4*mcLCASDnew4[[4]]^step 
finalStatet5new4 <- finalStatet4new4*mcLCASDnew4[[5]]^step 
finalStatet6new4 <- finalStatet5new4*mcLCASDnew4[[6]]^step 
finalStatet7new4 <- finalStatet6new4*mcLCASDnew4[[7]]^step 
finalStatet8new4 <- finalStatet7new4*mcLCASDnew4[[8]]^step 
finalStatet9new4 <- finalStatet8new4*mcLCASDnew4[[9]]^step 
 
####################### 
# Purpose: create information for altered FM5 Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDnew5, finalStatenew5t1-9 because there's 
one for each time step.  
# Author: Bryan Bentz 
####################### 
 
Delta5 = 1.0 #ratio of new hazard rate over old hazard rate 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
Y1 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[1]+haz2$haz[1]+haz3$haz[1]+haz4$haz[1]+Delta5*haz5$haz[1]+haz6$haz[1
]+lamdafm7est),haz1$haz[1],haz2$haz[1],haz3$haz[1],haz4$haz[1],Delta5*haz5$haz
[1],haz6$haz[1],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
Y2 <- new("markovchain", states = stateNames, transitionMatrix =  
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            matrix(c(1-
(haz1$haz[2]+haz2$haz[2]+haz3$haz[2]+haz4$haz[2]+Delta5*haz5$haz[2]+haz6$haz[2
]+lamdafm7est),haz1$haz[2],haz2$haz[2],haz3$haz[2],haz4$haz[2],Delta5*haz5$haz
[2],haz6$haz[2],lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
Y3 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[3]+haz2$haz[3]+haz3$haz[3]+haz4$haz[3]+Delta5*haz5$haz[3]+haz6$haz[3
]+lamdafm7est),haz1$haz[3],haz2$haz[3],haz3$haz[3],haz4$haz[3],Delta5*haz5$haz
[3],haz6$haz[3],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
Y4 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[4]+haz2$haz[4]+haz3$haz[4]+haz4$haz[4]+Delta5*haz5$haz[4]+haz6$haz[4
]+lamdafm7est),haz1$haz[4],haz2$haz[4],haz3$haz[4],haz4$haz[4],Delta5*haz5$haz
[4],haz6$haz[4],lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
Y5 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[5]+haz2$haz[5]+haz3$haz[5]+haz4$haz[5]+Delta5*haz5$haz[5]+haz6$haz[5
]+lamdafm7est),haz1$haz[5],haz2$haz[5],haz3$haz[5],haz4$haz[5],Delta5*haz5$haz
[5],haz6$haz[5],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
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                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
Y6 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[6]+haz2$haz[6]+haz3$haz[6]+haz4$haz[6]+Delta5*haz5$haz[6]+haz6$haz[6
]+lamdafm7est),haz1$haz[6],haz2$haz[6],haz3$haz[6],haz4$haz[6],Delta5*haz5$haz
[6],haz6$haz[6],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
Y7 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[7]+haz2$haz[7]+haz3$haz[7]+haz4$haz[7]+Delta5*haz5$haz[7]+haz6$haz[7
]+lamdafm7est),haz1$haz[7],haz2$haz[7],haz3$haz[7],haz4$haz[7],Delta5*haz5$haz
[7],haz6$haz[7],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
Y8 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[8]+haz2$haz[8]+haz3$haz[8]+haz4$haz[8]+Delta5*haz5$haz[8]+haz6$haz[8
]+lamdafm7est),haz1$haz[8],haz2$haz[8],haz3$haz[8],haz4$haz[8],Delta5*haz5$haz
[8],haz6$haz[8],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
Y9 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
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(haz1$haz[9]+haz2$haz[9]+haz3$haz[9]+haz4$haz[9]+Delta5*haz5$haz[9]+haz6$haz[9
]+lamdafm7est),haz1$haz[9],haz2$haz[9],haz3$haz[9],haz4$haz[9],Delta5*haz5$haz
[9],haz6$haz[9],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASDnew5 <- new("markovchainList",markovchains = 
list(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9),  
                   name = "Attritable System Behavior with FM5 changed") 
 
#calculating the probability of entering each state for the new FM5 design 
using % change of baseline 
finalStatet1new5 <- initialStatet1*mcLCASDnew5[[1]]^step 
finalStatet2new5 <- finalStatet1new5*mcLCASDnew5[[2]]^step 
finalStatet3new5 <- finalStatet2new5*mcLCASDnew5[[3]]^step 
finalStatet4new5 <- finalStatet3new5*mcLCASDnew5[[4]]^step 
finalStatet5new5 <- finalStatet4new5*mcLCASDnew5[[5]]^step 
finalStatet6new5 <- finalStatet5new5*mcLCASDnew5[[6]]^step 
finalStatet7new5 <- finalStatet6new5*mcLCASDnew5[[7]]^step 
finalStatet8new5 <- finalStatet7new5*mcLCASDnew5[[8]]^step 
finalStatet9new5 <- finalStatet8new5*mcLCASDnew5[[9]]^step 
 
####################### 
# Purpose: create information for altered FM6 Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDnew6, finalStatenew6t1-9 because there's 
one for each time step.  
# Author: Bryan Bentz 
####################### 
 
Delta6 = 1.0 #ratio of new hazard rate over old hazard rate 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
Z1 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[1]+haz2$haz[1]+haz3$haz[1]+haz4$haz[1]+haz5$haz[1]+Delta6*haz6$haz[1
]+lamdafm7est),haz1$haz[1],haz2$haz[1],haz3$haz[1],haz4$haz[1],haz5$haz[1],Del
ta6*haz6$haz[1],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
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                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
Z2 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[2]+haz2$haz[2]+haz3$haz[2]+haz4$haz[2]+haz5$haz[2]+Delta6*haz6$haz[2
]+lamdafm7est),haz1$haz[2],haz2$haz[2],haz3$haz[2],haz4$haz[2],haz5$haz[2],Del
ta6*haz6$haz[2],lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
Z3 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[3]+haz2$haz[3]+haz3$haz[3]+haz4$haz[3]+haz5$haz[3]+Delta6*haz6$haz[3
]+lamdafm7est),haz1$haz[3],haz2$haz[3],haz3$haz[3],haz4$haz[3],haz5$haz[3],Del
ta6*haz6$haz[3],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
Z4 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[4]+haz2$haz[4]+haz3$haz[4]+haz4$haz[4]+haz5$haz[4]+Delta6*haz6$haz[4
]+lamdafm7est),haz1$haz[4],haz2$haz[4],haz3$haz[4],haz4$haz[4],haz5$haz[4],Del
ta6*haz6$haz[4],lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
Z5 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[5]+haz2$haz[5]+haz3$haz[5]+haz4$haz[5]+haz5$haz[5]+Delta6*haz6$haz[5
]+lamdafm7est),haz1$haz[5],haz2$haz[5],haz3$haz[5],haz4$haz[5],haz5$haz[5],Del
ta6*haz6$haz[5],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
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                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
Z6 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[6]+haz2$haz[6]+haz3$haz[6]+haz4$haz[6]+haz5$haz[6]+Delta6*haz6$haz[6
]+lamdafm7est),haz1$haz[6],haz2$haz[6],haz3$haz[6],haz4$haz[6],haz5$haz[6],Del
ta6*haz6$haz[6],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
Z7 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[7]+haz2$haz[7]+haz3$haz[7]+haz4$haz[7]+haz5$haz[7]+Delta6*haz6$haz[7
]+lamdafm7est),haz1$haz[7],haz2$haz[7],haz3$haz[7],haz4$haz[7],haz5$haz[7],Del
ta6*haz6$haz[7],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
Z8 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[8]+haz2$haz[8]+haz3$haz[8]+haz4$haz[8]+haz5$haz[8]+Delta6*haz6$haz[8
]+lamdafm7est),haz1$haz[8],haz2$haz[8],haz3$haz[8],haz4$haz[8],haz5$haz[8],Del
ta6*haz6$haz[8],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
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Z9 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[9]+haz2$haz[9]+haz3$haz[9]+haz4$haz[9]+haz5$haz[9]+Delta6*haz6$haz[9
]+lamdafm7est),haz1$haz[9],haz2$haz[9],haz3$haz[9],haz4$haz[9],haz5$haz[9],Del
ta6*haz6$haz[9],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASDnew6 <- new("markovchainList",markovchains = 
list(Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9),  
                   name = "Attritable System Behavior with FM6 changed") 
 
#calculating the probability of entering each state for the new FM6 design 
using % change of baseline 
finalStatet1new6 <- initialStatet1*mcLCASDnew6[[1]]^step 
finalStatet2new6 <- finalStatet1new6*mcLCASDnew6[[2]]^step 
finalStatet3new6 <- finalStatet2new6*mcLCASDnew6[[3]]^step 
finalStatet4new6 <- finalStatet3new6*mcLCASDnew6[[4]]^step 
finalStatet5new6 <- finalStatet4new6*mcLCASDnew6[[5]]^step 
finalStatet6new6 <- finalStatet5new6*mcLCASDnew6[[6]]^step 
finalStatet7new6 <- finalStatet6new6*mcLCASDnew6[[7]]^step 
finalStatet8new6 <- finalStatet7new6*mcLCASDnew6[[8]]^step 
finalStatet9new6 <- finalStatet8new6*mcLCASDnew6[[9]]^step 
 
####################### 
# Purpose: create information for altered FM7 Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDnew7, finalStatenew7t1-9 because there's 
one for each time step.  
# Author: Bryan Bentz 
####################### 
 
Delta7 = 1.0 #ratio of new hazard rate over old hazard rate 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
A1 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[1]+haz2$haz[1]+haz3$haz[1]+haz4$haz[1]+haz5$haz[1]+haz6$haz[1]+Delta
7*lamdafm7est),haz1$haz[1],haz2$haz[1],haz3$haz[1],haz4$haz[1],haz5$haz[1],haz
6$haz[1],Delta7*lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
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                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
A2 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[2]+haz2$haz[2]+haz3$haz[2]+haz4$haz[2]+haz5$haz[2]+haz6$haz[2]+Delta
7*lamdafm7est),haz1$haz[2],haz2$haz[2],haz3$haz[2],haz4$haz[2],haz5$haz[2],haz
6$haz[2],Delta7*lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
A3 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[3]+haz2$haz[3]+haz3$haz[3]+haz4$haz[3]+haz5$haz[3]+haz6$haz[3]+Delta
7*lamdafm7est),haz1$haz[3],haz2$haz[3],haz3$haz[3],haz4$haz[3],haz5$haz[3],haz
6$haz[3],Delta7*lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
A4 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[4]+haz2$haz[4]+haz3$haz[4]+haz4$haz[4]+haz5$haz[4]+haz6$haz[4]+Delta
7*lamdafm7est),haz1$haz[4],haz2$haz[4],haz3$haz[4],haz4$haz[4],haz5$haz[4],haz
6$haz[4],Delta7*lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
A5 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[5]+haz2$haz[5]+haz3$haz[5]+haz4$haz[5]+haz5$haz[5]+haz6$haz[5]+Delta



 

139 

7*lamdafm7est),haz1$haz[5],haz2$haz[5],haz3$haz[5],haz4$haz[5],haz5$haz[5],haz
6$haz[5],Delta7*lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
A6 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[6]+haz2$haz[6]+haz3$haz[6]+haz4$haz[6]+haz5$haz[6]+haz6$haz[6]+Delta
7*lamdafm7est),haz1$haz[6],haz2$haz[6],haz3$haz[6],haz4$haz[6],haz5$haz[6],haz
6$haz[6],Delta7*lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
A7 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[7]+haz2$haz[7]+haz3$haz[7]+haz4$haz[7]+haz5$haz[7]+haz6$haz[7]+Delta
7*lamdafm7est),haz1$haz[7],haz2$haz[7],haz3$haz[7],haz4$haz[7],haz5$haz[7],haz
6$haz[7],Delta7*lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
A8 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[8]+haz2$haz[8]+haz3$haz[8]+haz4$haz[8]+haz5$haz[8]+haz6$haz[8]+Delta
7*lamdafm7est),haz1$haz[8],haz2$haz[8],haz3$haz[8],haz4$haz[8],haz5$haz[8],haz
6$haz[8],Delta7*lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
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                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
A9 <- new("markovchain", states = stateNames, transitionMatrix =  
            matrix(c(1-
(haz1$haz[9]+haz2$haz[9]+haz3$haz[9]+haz4$haz[9]+haz5$haz[9]+haz6$haz[9]+Delta
7*lamdafm7est),haz1$haz[9],haz2$haz[9],haz3$haz[9],haz4$haz[9],haz5$haz[9],haz
6$haz[9],Delta7*lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASDnew7 <- new("markovchainList",markovchains = 
list(A1,A2,A3,A4,A5,A6,A7,A8,A9),  
                   name = "Attritable System Behavior with FM7 changed") 
 
#calculating the probability of entering each state for the new FM7 design 
using % change of baseline 
finalStatet1new7 <- initialStatet1*mcLCASDnew7[[1]]^step 
finalStatet2new7 <- finalStatet1new7*mcLCASDnew7[[2]]^step 
finalStatet3new7 <- finalStatet2new7*mcLCASDnew7[[3]]^step 
finalStatet4new7 <- finalStatet3new7*mcLCASDnew7[[4]]^step 
finalStatet5new7 <- finalStatet4new7*mcLCASDnew7[[5]]^step 
finalStatet6new7 <- finalStatet5new7*mcLCASDnew7[[6]]^step 
finalStatet7new7 <- finalStatet6new7*mcLCASDnew7[[7]]^step 
finalStatet8new7 <- finalStatet7new7*mcLCASDnew7[[8]]^step 
finalStatet9new7 <- finalStatet8new7*mcLCASDnew7[[9]]^step 
 
####################### 
# Purpose: Calculate S(t) of baseline design with 95% confidence intervals 
# inputs: finalStatett1-9,finalState(up&low)t1-9,finalStatenew(i)t1-9 
# outputs: yest,ylow,yup,ynew[1-7], vectors of the S(t) at each given time 
step for each Markov Chain 
#           List model 
# Author: Bryan Bentz 
####################### 
 
yest <- c((1-finalStatet1[1,9]),(1-finalStatet2[1,9]),(1-
finalStatet3[1,9]),(1-finalStatet4[1,9]), 
          (1-finalStatet5[1,9]),(1-finalStatet6[1,9]),(1-
finalStatet7[1,9]),(1-finalStatet8[1,9]), 
          (1-finalStatet9[1,9]),(1-finalStatet9[1,9])) 
ylow <- c((1-finalStatet1low[1,9]),(1-finalStatet2low[1,9]),(1-
finalStatet3low[1,9]),(1-finalStatet4low[1,9]), 
          (1-finalStatet5low[1,9]),(1-finalStatet6low[1,9]),(1-
finalStatet7low[1,9]),(1-finalStatet8low[1,9]), 
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          (1-finalStatet9low[1,9]),(1-finalStatet9low[1,9])) 
yup <- c((1-finalStatet1up[1,9]),(1-finalStatet2up[1,9]),(1-
finalStatet3up[1,9]),(1-finalStatet4up[1,9]), 
         (1-finalStatet5up[1,9]),(1-finalStatet6up[1,9]),(1-
finalStatet7up[1,9]),(1-finalStatet8up[1,9]), 
         (1-finalStatet9up[1,9]),(1-finalStatet9up[1,9])) 
ynew1 <- c((1-finalStatet1new1[1,9]),(1-finalStatet2new1[1,9]),(1-
finalStatet3new1[1,9]),(1-finalStatet4new1[1,9]), 
           (1-finalStatet5new1[1,9]),(1-finalStatet6new1[1,9]),(1-
finalStatet7new1[1,9]),(1-finalStatet8new1[1,9]), 
           (1-finalStatet9new1[1,9]),(1-finalStatet9new1[1,9])) 
ynew2 <- c((1-finalStatet1new2[1,9]),(1-finalStatet2new2[1,9]),(1-
finalStatet3new2[1,9]),(1-finalStatet4new2[1,9]), 
           (1-finalStatet5new2[1,9]),(1-finalStatet6new2[1,9]),(1-
finalStatet7new2[1,9]),(1-finalStatet8new2[1,9]), 
           (1-finalStatet9new2[1,9]),(1-finalStatet9new2[1,9])) 
ynew3 <- c((1-finalStatet1new3[1,9]),(1-finalStatet2new3[1,9]),(1-
finalStatet3new3[1,9]),(1-finalStatet4new3[1,9]), 
           (1-finalStatet5new3[1,9]),(1-finalStatet6new3[1,9]),(1-
finalStatet7new3[1,9]),(1-finalStatet8new3[1,9]), 
           (1-finalStatet9new3[1,9]),(1-finalStatet9new3[1,9])) 
ynew4 <- c((1-finalStatet1new4[1,9]),(1-finalStatet2new4[1,9]),(1-
finalStatet3new4[1,9]),(1-finalStatet4new4[1,9]), 
           (1-finalStatet5new4[1,9]),(1-finalStatet6new4[1,9]),(1-
finalStatet7new4[1,9]),(1-finalStatet8new4[1,9]), 
           (1-finalStatet9new4[1,9]),(1-finalStatet9new4[1,9])) 
ynew5 <- c((1-finalStatet1new5[1,9]),(1-finalStatet2new5[1,9]),(1-
finalStatet3new5[1,9]),(1-finalStatet4new5[1,9]), 
           (1-finalStatet5new5[1,9]),(1-finalStatet6new5[1,9]),(1-
finalStatet7new5[1,9]),(1-finalStatet8new5[1,9]), 
           (1-finalStatet9new5[1,9]),(1-finalStatet9new5[1,9])) 
ynew6 <- c((1-finalStatet1new6[1,9]),(1-finalStatet2new6[1,9]),(1-
finalStatet3new6[1,9]),(1-finalStatet4new6[1,9]), 
           (1-finalStatet5new6[1,9]),(1-finalStatet6new6[1,9]),(1-
finalStatet7new6[1,9]),(1-finalStatet8new6[1,9]), 
           (1-finalStatet9new6[1,9]),(1-finalStatet9new6[1,9])) 
ynew7 <- c((1-finalStatet1new7[1,9]),(1-finalStatet2new7[1,9]),(1-
finalStatet3new7[1,9]),(1-finalStatet4new7[1,9]), 
           (1-finalStatet5new7[1,9]),(1-finalStatet6new7[1,9]),(1-
finalStatet7new7[1,9]),(1-finalStatet8new7[1,9]), 
           (1-finalStatet9new7[1,9]),(1-finalStatet9new7[1,9])) 
 
####################### 
# Purpose: Plot S(t) of designs with baseline 95% confidence intervals 
# inputs: mcLCASD - a markovchainList, initialState, steps 
# outputs: plot of S(t) over t for every altered hazard rate. Figures 30-35 
# Author: Bryan Bentz 
####################### 
 
##baseline design### 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.965 
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plot(x=x, y=yest,ylim=c(ylower,1),main="Survival Function of Baseline System", 
     xlab='Sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.965,1,0.005) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 

 

par(new=FALSE) 
 
##fm1 hazard rate change## 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.965 
plot(x=x, y=yest,ylim=c(ylower,1),main="Survival Function of FM1 Altered 
System", 
     xlab='Sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.965,1,0.005) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 
par(new=TRUE) 
plot(x=x, y=ynew1,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, col = 'red', pch 
= 19) 

 

par(new=FALSE) 
 
##fm2 hazard rate change##etc... 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.965 
plot(x=x, y=yest,ylim=c(ylower,1),main="Survival Function of FM2 Altered 
System", 
     xlab='Sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.965,1,0.005) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 
par(new=TRUE) 
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plot(x=x, y=ynew2,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, col = 'red', pch 
= 19) 

 

par(new=FALSE) 
 
######################## 
 
##fm3 hazard rate change##etc... 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.965 
plot(x=x, y=yest,ylim=c(ylower,1),main="Survival Function of FM3 Altered 
System", 
     xlab='Sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.965,1,0.005) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 
par(new=TRUE) 
plot(x=x, y=ynew3,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, col = 'red', pch 
= 19) 

 

par(new=FALSE) 
 
######################## 
 
##fm4 hazard rate change##etc... 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.965 
plot(x=x, y=yest,ylim=c(ylower,1),main="Survival Function of FM4 Altered 
System", 
     xlab='Sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.965,1,0.005) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 
par(new=TRUE) 
plot(x=x, y=ynew4,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, col = 'red', pch 
= 19) 
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par(new=FALSE) 
 
######################## 
 
##fm5 hazard rate change##etc... 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.965 
plot(x=x, y=yest,ylim=c(ylower,1),main="Survival Function of FM5 Altered 
System", 
     xlab='Sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.965,1,0.005) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 
par(new=TRUE) 
plot(x=x, y=ynew5,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, col = 'red', pch 
= 19) 

 

par(new=FALSE) 
 
######################## 
 
##fm6 hazard rate change##etc... 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.965 
plot(x=x, y=yest,ylim=c(ylower,1),main="Survival Function of FM6 Altered 
System", 
     xlab='Sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.965,1,0.005) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 
par(new=TRUE) 
plot(x=x, y=ynew6,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, col = 'red', pch 
= 19) 

 

par(new=FALSE) 
 
######################## 
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##fm7 hazard rate change##etc... 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.965 
plot(x=x, y=yest,ylim=c(ylower,1),main="Survival Function of FM7 Altered 
System", 
     xlab='Sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.965,1,0.005) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 
par(new=TRUE) 
plot(x=x, y=ynew7,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, col = 'red', pch 
= 19) 

 

par(new=FALSE) 
 
####################### 
# Purpose: Calculate the percentage changein S(t) of after the 9th sortie.   
# inputs: yest[1-9], ynew(i)[1-10] 
# outputs: maxStdeltafm1-7, this is used to create Figure 36 
# Author: Bryan Bentz 
####################### 
 
Stdeltafm1 <- c(((yest[10]-ynew1[10])/yest[10])*100) 
 
Stdeltafm2 <- c(((yest[10]-ynew2[10])/yest[10])*100) 
 
Stdeltafm3 <- c(((yest[10]-ynew3[10])/yest[10])*100) 
 
Stdeltafm4 <- c(((yest[10]-ynew4[10])/yest[10])*100) 
 
Stdeltafm5 <- c(((yest[10]-ynew5[10])/yest[10])*100) 
 
Stdeltafm6 <- c(((yest[10]-ynew6[10])/yest[10])*100) 
 
Stdeltafm7 <- c(((yest[10]-ynew7[10])/yest[10])*100) 
 
maxStdeltafm1 <- max(abs(Stdeltafm1)) 
maxStdeltafm1 

## [1] 0 

maxStdeltafm2 <- max(abs(Stdeltafm2)) 
maxStdeltafm2 

## [1] 0 
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maxStdeltafm3 <- max(abs(Stdeltafm3)) 
maxStdeltafm3 

## [1] 0 

maxStdeltafm4 <- max(abs(Stdeltafm4)) 
maxStdeltafm4 

## [1] 0 

maxStdeltafm5 <- max(abs(Stdeltafm5)) 
maxStdeltafm5 

## [1] 0 

maxStdeltafm6 <- max(abs(Stdeltafm6)) 
maxStdeltafm6 

## [1] 0 

maxStdeltafm7 <- max(abs(Stdeltafm7)) 
maxStdeltafm7 

## [1] 0 

####################### 
# Purpose: create information for an unrepairable FM5 Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDnonrep5, finalStatenonrep5t1-9 because 
there's one for each time step.  
# Author: Bryan Bentz 
####################### 
 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
                "Propulsion","Recovery","Structure","Destroyed") 
U1 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion1,haz1$haz[1],haz2$haz[1],haz3$haz[1],haz4$haz[1],haz5$haz[1
],haz6$haz[1],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1, 
                     .75,0,0,0,0,0,0,0,.25, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
U2 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion2,haz1$haz[2],haz2$haz[2],haz3$haz[2],haz4$haz[2],haz5$haz[2
],haz6$haz[2],lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
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                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
U3 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion3,haz1$haz[3],haz2$haz[3],haz3$haz[3],haz4$haz[3],haz5$haz[3
],haz6$haz[3],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
U4 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion4,haz1$haz[4],haz2$haz[4],haz3$haz[4],haz4$haz[4],haz5$haz[4
],haz6$haz[4],lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
U5 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion5,haz1$haz[5],haz2$haz[5],haz3$haz[5],haz4$haz[5],haz5$haz[5
],haz6$haz[5],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
U6 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion6,haz1$haz[6],haz2$haz[6],haz3$haz[6],haz4$haz[6],haz5$haz[6
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],haz6$haz[6],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
U7 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion7,haz1$haz[7],haz2$haz[7],haz3$haz[7],haz4$haz[7],haz5$haz[7
],haz6$haz[7],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
U8 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion8,haz1$haz[8],haz2$haz[8],haz3$haz[8],haz4$haz[8],haz5$haz[8
],haz6$haz[8],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
U9 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion9,haz1$haz[9],haz2$haz[9],haz3$haz[9],haz4$haz[9],haz5$haz[9
],haz6$haz[9],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
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mcLCASDnonrep5 <- new("markovchainList",markovchains = 
list(U1,U2,U3,U4,U5,U6,U7,U8,U9),  
                      name = "Attritable System Behavior with FM5 not 
repairable") 
 
finalStatet1nonrep5 <- initialStatet1*mcLCASDnonrep5[[1]]^step 
finalStatet2nonrep5 <- finalStatet1nonrep5*mcLCASDnonrep5[[2]]^step 
finalStatet3nonrep5 <- finalStatet2nonrep5*mcLCASDnonrep5[[3]]^step 
finalStatet4nonrep5 <- finalStatet3nonrep5*mcLCASDnonrep5[[4]]^step 
finalStatet5nonrep5 <- finalStatet4nonrep5*mcLCASDnonrep5[[5]]^step 
finalStatet6nonrep5 <- finalStatet5nonrep5*mcLCASDnonrep5[[6]]^step 
finalStatet7nonrep5 <- finalStatet6nonrep5*mcLCASDnonrep5[[7]]^step 
finalStatet8nonrep5 <- finalStatet7nonrep5*mcLCASDnonrep5[[8]]^step 
finalStatet9nonrep5 <- finalStatet8nonrep5*mcLCASDnonrep5[[9]]^step 
 
ynonrep5 <- c((1-finalStatet1nonrep5[1,9]),(1-finalStatet2nonrep5[1,9]),(1-
finalStatet3nonrep5[1,9]),(1-finalStatet4nonrep5[1,9]), 
              (1-finalStatet5nonrep5[1,9]),(1-finalStatet6nonrep5[1,9]),(1-
finalStatet7nonrep5[1,9]),(1-finalStatet8nonrep5[1,9]), 
              (1-finalStatet9nonrep5[1,9]),(1-finalStatet9nonrep5[1,9])) 
 
 
##fm5 non-repairable change##etc... 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.95 
plot(x=x, y=yest,ylim=c(ylower,1),main="S(t) without Propulsion Repair", 
     xlab='sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.95,1,0.01) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 
par(new=TRUE) 
plot(x=x, y=ynonrep5,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, col = 'blue', 
pch = 15) 

 

par(new=FALSE) 
 
####################### 
# Purpose: create information for an unrepairable FM7 Markov Chain Model (MCM) 
# inputs: haz1-haz7 
# outputs: recursion(1-9)up, mcLCASDnonrep7, finalStatenonrep7t1-9 because 
there's one for each time step.  
# Author: Bryan Bentz 
####################### 
 
stateNames <- c("Operational", "Electronics Bay", "Fuel 
Management","Launcher","Operator", 
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                "Propulsion","Recovery","Structure","Destroyed") 
V1 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion1,haz1$haz[1],haz2$haz[1],haz3$haz[1],haz4$haz[1],haz5$haz[1
],haz6$haz[1],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (12/13),0,0,0,0,0,0,0,(1/13), 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     1,0,0,0,0,0,0,0,0, 
                     .75,0,0,0,0,0,0,0,.25, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t1") 
V2 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion2,haz1$haz[2],haz2$haz[2],haz3$haz[2],haz4$haz[2],haz5$haz[2
],haz6$haz[2],lamdafm7est, 0, 
                     (13/14),0,0,0,0,0,0,0,(1/14), 
                     (6/7),0,0,0,0,0,0,0,(1/7), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (5/6),0,0,0,0,0,0,0,(1/6), 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t2") 
 
V3 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion3,haz1$haz[3],haz2$haz[3],haz3$haz[3],haz4$haz[3],haz5$haz[3
],haz6$haz[3],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t3") 
 
V4 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion4,haz1$haz[4],haz2$haz[4],haz3$haz[4],haz4$haz[4],haz5$haz[4
],haz6$haz[4],lamdafm7est, 0, 
                     (4/5),0,0,0,0,0,0,0,(1/5), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
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                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t4") 
 
V5 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion5,haz1$haz[5],haz2$haz[5],haz3$haz[5],haz4$haz[5],haz5$haz[5
],haz6$haz[5],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t5") 
 
V6 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion6,haz1$haz[6],haz2$haz[6],haz3$haz[6],haz4$haz[6],haz5$haz[6
],haz6$haz[6],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     (2/3),0,0,0,0,0,0,0,(1/3), 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t6") 
 
V7 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion7,haz1$haz[7],haz2$haz[7],haz3$haz[7],haz4$haz[7],haz5$haz[7
],haz6$haz[7],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t7") 
 
V8 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion8,haz1$haz[8],haz2$haz[8],haz3$haz[8],haz4$haz[8],haz5$haz[8
],haz6$haz[8],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
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                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t8") 
 
V9 <- new("markovchain", states = stateNames, transitionMatrix =  
            
matrix(c(recursion9,haz1$haz[9],haz2$haz[9],haz3$haz[9],haz4$haz[9],haz5$haz[9
],haz6$haz[9],lamdafm7est, 0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     1,0,0,0,0,0,0,0,0, 
                     0,0,0,0,0,0,0,0,1, 
                     0,0,0,0,0,0,0,0,1), byrow = TRUE, nrow = 9), name = 
"state t9") 
 
mcLCASDnonrep7 <- new("markovchainList",markovchains = 
list(V1,V2,V3,V4,V5,V6,V7,V8,V9),  
                      name = "System Behavior with FM7 not repairable") 
 
finalStatet1nonrep7 <- initialStatet1*mcLCASDnonrep7[[1]]^step 
finalStatet2nonrep7 <- finalStatet1nonrep7*mcLCASDnonrep7[[2]]^step 
finalStatet3nonrep7 <- finalStatet2nonrep7*mcLCASDnonrep7[[3]]^step 
finalStatet4nonrep7 <- finalStatet3nonrep7*mcLCASDnonrep7[[4]]^step 
finalStatet5nonrep7 <- finalStatet4nonrep7*mcLCASDnonrep7[[5]]^step 
finalStatet6nonrep7 <- finalStatet5nonrep7*mcLCASDnonrep7[[6]]^step 
finalStatet7nonrep7 <- finalStatet6nonrep7*mcLCASDnonrep7[[7]]^step 
finalStatet8nonrep7 <- finalStatet7nonrep7*mcLCASDnonrep7[[8]]^step 
finalStatet9nonrep7 <- finalStatet8nonrep7*mcLCASDnonrep7[[9]]^step 
 
ynonrep7 <- c((1-finalStatet1nonrep7[1,9]),(1-finalStatet2nonrep7[1,9]),(1-
finalStatet3nonrep7[1,9]),(1-finalStatet4nonrep7[1,9]), 
              (1-finalStatet5nonrep7[1,9]),(1-finalStatet6nonrep7[1,9]),(1-
finalStatet7nonrep7[1,9]),(1-finalStatet8nonrep7[1,9]), 
              (1-finalStatet9nonrep7[1,9]),(1-finalStatet9nonrep7[1,9]-
(finalStatet8nonrep7[1,9]-finalStatet7nonrep7[1,9]))) 
 
 
##fm7 non-repairable change##etc... 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
ylower=.95 
plot(x=x, y=yest,ylim=c(ylower,1),main="S(t) without Structural Repair", 
     xlab='sortie',ylab='Prob of Survival',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(0.95,1,0.01) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
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plot(x=x, y=ylow,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 25) 
par(new=TRUE) 
plot(x=x, y=yup,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, pch = 24) 
par(new=TRUE) 
plot(x=x, y=ynonrep7,ylim=c(ylower,1),ann=F,xlim=c(0,9),axes=F, col = 'green', 
pch = 18) 

 

par(new=FALSE) 
 
############################################ 
######Absolute Cost Risk Calculations####### 
############################################ 
 
####################### 
# Purpose: Data input of example subsystem costs of acquisition, repair, regen 
costs.  See Table 4 in Thesis. 
# inputs: N/A 
# outputs: Regeneration Cost, Average Per Unit Flyaway Costs, Absolute Costs 
of each Markov Chain Transition    
# Author: Bryan Bentz 
####################### 
 
#example subsystem costs of based on LRC to LAC ratio of buy of 100 UAVs.  See 
Table 4 
 
fm1cost1 <- 1000000 
fm1cost2 <- 1000000 #Assessment of FM1 design alternative cost 
fm2cost <- 50000 
fm3cost <- 540000 
fm4cost <- 0 
fm5cost1 <- 600000 
fm5cost2 <- 600000 #Assessment of FM5 design alternative cost 
fm6cost <- 30000 
fm7cost <- 750000 
consumablescost <- 36000 #cost of consumables per sortie 
laborcost <- 9000 #estimated cost of labor to regenerate 
 
#####Cost to buy ratios based on input from Campanile, RQQC 
fm1cbr <- 0.15 
fm2cbr <- 0.32 
fm3cbr <- 0.12 
fm4cbr <- 0 
fm5cbr <- 0.22 
fm6cbr <- 0.20 
fm7cbr <- 0.32 
 
#Regeneration Costs.  See Section 3.4 for explanation 
 
rbrabscost <- (consumablescost+laborcost) 
 
#Average Per Unit Flyaway Cost Calculations 
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flyawaycost1 <- fm1cost1+fm2cost+fm5cost1+fm6cost+fm7cost 
flyawaycost2fm1 <- fm1cost2+fm2cost+fm5cost1+fm6cost+fm7cost 
flyawaycost2fm5 <- fm1cost1+fm2cost+fm5cost2+fm6cost+fm7cost 
 
#Absolute Costs of each Markov Chain transition 
 
fm1abscost1 <- rbrabscost+(fm1cost1*fm1cbr) 
fm1abscost2 <- rbrabscost+(fm1cost2*fm1cbr) 
fm2abscost <- rbrabscost+(fm2cost*fm2cbr) 
fm3abscost <- rbrabscost+(fm3cost*fm3cbr) 
fm4abscost <- rbrabscost+(fm4cost*fm4cbr) 
fm5abscost1 <- rbrabscost+(fm5cost1*fm5cbr) 
fm5abscost2 <- rbrabscost+(fm5cost2*fm5cbr) 
fm6abscost <- rbrabscost+(fm6cost*fm6cbr) 
fm7abscost <- rbrabscost+(fm7cost*fm7cbr) 
 
####################### 
# Purpose: Calculate absolute cost risks at each interval in time for all 
design alternatives 
# inputs: N/A 
# outputs: 7 vectors describing absolute cost risk at each interval in time 
for all alternatives.  
# Author: Bryan Bentz 
# Notes: the cost of repair are nullified for nonrep5 and nonrep7 calculations 
#   the new1 and new5 vectors calculate cost risk using the different 
acquisition and flyaway costs 
####################### 
 
abscostriskt1est <- 
(finalStatet1[1,1]*rbrabscost+finalStatet1[1,2]*fm1abscost1+finalStatet1[1,3]*
fm2abscost+finalStatet1[1,4]*fm3abscost 
                     + 
finalStatet1[1,5]*fm4abscost+finalStatet1[1,6]*fm5abscost1+finalStatet1[1,7]*f
m6abscost+finalStatet1[1,8]*fm7abscost 
                     + finalStatet1[1,9]*flyawaycost1) 
abscostriskt2est <- 
(finalStatet2[1,1]*rbrabscost+finalStatet2[1,2]*fm1abscost1+finalStatet2[1,3]*
fm2abscost+finalStatet2[1,4]*fm3abscost 
                     + 
finalStatet2[1,5]*fm4abscost+finalStatet2[1,6]*fm5abscost1+finalStatet2[1,7]*f
m6abscost+finalStatet2[1,8]*fm7abscost 
                     + finalStatet2[1,9]*flyawaycost1) 
abscostriskt3est <- 
(finalStatet3[1,1]*rbrabscost+finalStatet3[1,2]*fm1abscost1+finalStatet3[1,3]*
fm2abscost+finalStatet3[1,4]*fm3abscost 
                     + 
finalStatet3[1,5]*fm4abscost+finalStatet3[1,6]*fm5abscost1+finalStatet3[1,7]*f
m6abscost+finalStatet3[1,8]*fm7abscost 
                     + finalStatet3[1,9]*flyawaycost1) 
abscostriskt4est <- 
(finalStatet4[1,1]*rbrabscost+finalStatet4[1,2]*fm1abscost1+finalStatet4[1,3]*
fm2abscost+finalStatet4[1,4]*fm3abscost 
                     + 
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finalStatet4[1,5]*fm4abscost+finalStatet4[1,6]*fm5abscost1+finalStatet4[1,7]*f
m6abscost+finalStatet4[1,8]*fm7abscost 
                     + finalStatet4[1,9]*flyawaycost1) 
abscostriskt5est <- 
(finalStatet5[1,1]*rbrabscost+finalStatet5[1,2]*fm1abscost1+finalStatet5[1,3]*
fm2abscost+finalStatet5[1,4]*fm3abscost 
                     + 
finalStatet5[1,5]*fm4abscost+finalStatet5[1,6]*fm5abscost1+finalStatet5[1,7]*f
m6abscost+finalStatet5[1,8]*fm7abscost 
                     + finalStatet5[1,9]*flyawaycost1) 
abscostriskt6est <- 
(finalStatet6[1,1]*rbrabscost+finalStatet6[1,2]*fm1abscost1+finalStatet6[1,3]*
fm2abscost+finalStatet6[1,4]*fm3abscost 
                     + 
finalStatet6[1,5]*fm4abscost+finalStatet6[1,6]*fm5abscost1+finalStatet6[1,7]*f
m6abscost+finalStatet6[1,8]*fm7abscost 
                     + finalStatet6[1,9]*flyawaycost1) 
abscostriskt7est <- 
(finalStatet7[1,1]*rbrabscost+finalStatet7[1,2]*fm1abscost1+finalStatet7[1,3]*
fm2abscost+finalStatet7[1,4]*fm3abscost 
                     + 
finalStatet7[1,5]*fm4abscost+finalStatet7[1,6]*fm5abscost1+finalStatet7[1,7]*f
m6abscost+finalStatet7[1,8]*fm7abscost 
                     + finalStatet7[1,9]*flyawaycost1) 
abscostriskt8est <- 
(finalStatet8[1,1]*rbrabscost+finalStatet8[1,2]*fm1abscost1+finalStatet8[1,3]*
fm2abscost+finalStatet8[1,4]*fm3abscost 
                     + 
finalStatet8[1,5]*fm4abscost+finalStatet8[1,6]*fm5abscost1+finalStatet8[1,7]*f
m6abscost+finalStatet8[1,8]*fm7abscost 
                     + finalStatet8[1,9]*flyawaycost1) 
abscostriskt9est <- 
(finalStatet9[1,1]*rbrabscost+finalStatet9[1,2]*fm1abscost1+finalStatet9[1,3]*
fm2abscost+finalStatet9[1,4]*fm3abscost 
                     + 
finalStatet9[1,5]*fm4abscost+finalStatet9[1,6]*fm5abscost1+finalStatet9[1,7]*f
m6abscost+finalStatet9[1,8]*fm7abscost 
                     + finalStatet9[1,9]*flyawaycost1) 
abscostriskest <- c(0, 
abscostriskt1est,abscostriskt2est,abscostriskt3est,abscostriskt4est,abscostris
kt5est,abscostriskt6est,abscostriskt7est, 
                    abscostriskt8est,abscostriskt9est) 
 
############################ 
 
abscostriskt1nonrep5 <- 
(finalStatet1nonrep5[1,1]*rbrabscost+finalStatet1nonrep5[1,2]*fm1abscost1+fina
lStatet1nonrep5[1,3]*fm2abscost+finalStatet1nonrep5[1,4]*fm3abscost 
                         + 
finalStatet1nonrep5[1,5]*fm4abscost+finalStatet1nonrep5[1,6]*0+finalStatet1non
rep5[1,7]*fm6abscost+finalStatet1nonrep5[1,8]*fm7abscost 
                         + finalStatet1nonrep5[1,9]*flyawaycost1) 
abscostriskt2nonrep5 <- 
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(finalStatet2nonrep5[1,1]*rbrabscost+finalStatet2nonrep5[1,2]*fm1abscost1+fina
lStatet2nonrep5[1,3]*fm2abscost+finalStatet2nonrep5[1,4]*fm3abscost 
                         + 
finalStatet2nonrep5[1,5]*fm4abscost+finalStatet2nonrep5[1,6]*0+finalStatet2non
rep5[1,7]*fm6abscost+finalStatet2nonrep5[1,8]*fm7abscost 
                         + finalStatet2nonrep5[1,9]*flyawaycost1) 
abscostriskt3nonrep5 <- 
(finalStatet3nonrep5[1,1]*rbrabscost+finalStatet3nonrep5[1,2]*fm1abscost1+fina
lStatet3nonrep5[1,3]*fm2abscost+finalStatet3nonrep5[1,4]*fm3abscost 
                         + 
finalStatet3nonrep5[1,5]*fm4abscost+finalStatet3nonrep5[1,6]*0+finalStatet3non
rep5[1,7]*fm6abscost+finalStatet3nonrep5[1,8]*fm7abscost 
                         + finalStatet3nonrep5[1,9]*flyawaycost1) 
abscostriskt4nonrep5 <- 
(finalStatet4nonrep5[1,1]*rbrabscost+finalStatet4nonrep5[1,2]*fm1abscost1+fina
lStatet4nonrep5[1,3]*fm2abscost+finalStatet4nonrep5[1,4]*fm3abscost 
                         + 
finalStatet4nonrep5[1,5]*fm4abscost+finalStatet4nonrep5[1,6]*0+finalStatet4non
rep5[1,7]*fm6abscost+finalStatet4nonrep5[1,8]*fm7abscost 
                         + finalStatet4nonrep5[1,9]*flyawaycost1) 
abscostriskt5nonrep5 <- 
(finalStatet5nonrep5[1,1]*rbrabscost+finalStatet5nonrep5[1,2]*fm1abscost1+fina
lStatet5nonrep5[1,3]*fm2abscost+finalStatet5nonrep5[1,4]*fm3abscost 
                         + 
finalStatet5nonrep5[1,5]*fm4abscost+finalStatet5nonrep5[1,6]*0+finalStatet5non
rep5[1,7]*fm6abscost+finalStatet5nonrep5[1,8]*fm7abscost 
                         + finalStatet5nonrep5[1,9]*flyawaycost1) 
abscostriskt6nonrep5 <- 
(finalStatet6nonrep5[1,1]*rbrabscost+finalStatet6nonrep5[1,2]*fm1abscost1+fina
lStatet6nonrep5[1,3]*fm2abscost+finalStatet6nonrep5[1,4]*fm3abscost 
                         + 
finalStatet6nonrep5[1,5]*fm4abscost+finalStatet6nonrep5[1,6]*0+finalStatet6non
rep5[1,7]*fm6abscost+finalStatet6nonrep5[1,8]*fm7abscost 
                         + finalStatet6nonrep5[1,9]*flyawaycost1) 
abscostriskt7nonrep5 <- 
(finalStatet7nonrep5[1,1]*rbrabscost+finalStatet7nonrep5[1,2]*fm1abscost1+fina
lStatet7nonrep5[1,3]*fm2abscost+finalStatet7nonrep5[1,4]*fm3abscost 
                         + 
finalStatet7nonrep5[1,5]*fm4abscost+finalStatet7nonrep5[1,6]*0+finalStatet7non
rep5[1,7]*fm6abscost+finalStatet7nonrep5[1,8]*fm7abscost 
                         + finalStatet7nonrep5[1,9]*flyawaycost1) 
abscostriskt8nonrep5 <- 
(finalStatet8nonrep5[1,1]*rbrabscost+finalStatet8nonrep5[1,2]*fm1abscost1+fina
lStatet8nonrep5[1,3]*fm2abscost+finalStatet8nonrep5[1,4]*fm3abscost 
                         + 
finalStatet8nonrep5[1,5]*fm4abscost+finalStatet8nonrep5[1,6]*0+finalStatet8non
rep5[1,7]*fm6abscost+finalStatet8nonrep5[1,8]*fm7abscost 
                         + finalStatet8nonrep5[1,9]*flyawaycost1) 
abscostriskt9nonrep5 <- 
(finalStatet9nonrep5[1,1]*rbrabscost+finalStatet9nonrep5[1,2]*fm1abscost1+fina
lStatet9nonrep5[1,3]*fm2abscost+finalStatet9nonrep5[1,4]*fm3abscost 
                         + 
finalStatet9nonrep5[1,5]*fm4abscost+finalStatet9nonrep5[1,6]*0+finalStatet9non
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rep5[1,7]*fm6abscost+finalStatet9nonrep5[1,8]*fm7abscost 
                         + finalStatet9nonrep5[1,9]*flyawaycost1) 
abscostrisknonrep5 <- c(0, 
abscostriskt1nonrep5,abscostriskt2nonrep5,abscostriskt3nonrep5,abscostriskt4no
nrep5,abscostriskt5nonrep5,abscostriskt6nonrep5,abscostriskt7nonrep5, 
                        abscostriskt8nonrep5,abscostriskt9nonrep5) 
 
################################### 
abscostriskt1nonrep7 <- 
(finalStatet1nonrep7[1,1]*rbrabscost+finalStatet1nonrep7[1,2]*fm1abscost1+fina
lStatet1nonrep7[1,3]*fm2abscost+finalStatet1nonrep7[1,4]*fm3abscost 
                         + 
finalStatet1nonrep7[1,5]*fm4abscost+finalStatet1nonrep7[1,6]*fm5abscost1+final
Statet1nonrep7[1,7]*fm6abscost+finalStatet1nonrep7[1,8]*0 
                         + finalStatet1nonrep7[1,9]*flyawaycost1) 
abscostriskt2nonrep7 <- 
(finalStatet2nonrep7[1,1]*rbrabscost+finalStatet2nonrep7[1,2]*fm1abscost1+fina
lStatet2nonrep7[1,3]*fm2abscost+finalStatet2nonrep7[1,4]*fm3abscost 
                         + 
finalStatet2nonrep7[1,5]*fm4abscost+finalStatet2nonrep7[1,6]*fm5abscost1+final
Statet2nonrep7[1,7]*fm6abscost+finalStatet2nonrep7[1,8]*0 
                         + finalStatet2nonrep7[1,9]*flyawaycost1) 
abscostriskt3nonrep7 <- 
(finalStatet3nonrep7[1,1]*rbrabscost+finalStatet3nonrep7[1,2]*fm1abscost1+fina
lStatet3nonrep7[1,3]*fm2abscost+finalStatet3nonrep7[1,4]*fm3abscost 
                         + 
finalStatet3nonrep7[1,5]*fm4abscost+finalStatet3nonrep7[1,6]*fm5abscost1+final
Statet3nonrep7[1,7]*fm6abscost+finalStatet3nonrep7[1,8]*0 
                         + finalStatet3nonrep7[1,9]*flyawaycost1) 
abscostriskt4nonrep7 <- 
(finalStatet4nonrep7[1,1]*rbrabscost+finalStatet4nonrep7[1,2]*fm1abscost1+fina
lStatet4nonrep7[1,3]*fm2abscost+finalStatet4nonrep7[1,4]*fm3abscost 
                         + 
finalStatet4nonrep7[1,5]*fm4abscost+finalStatet4nonrep7[1,6]*fm5abscost1+final
Statet4nonrep7[1,7]*fm6abscost+finalStatet4nonrep7[1,8]*0 
                         + finalStatet4nonrep7[1,9]*flyawaycost1) 
abscostriskt5nonrep7 <- 
(finalStatet5nonrep7[1,1]*rbrabscost+finalStatet5nonrep7[1,2]*fm1abscost1+fina
lStatet5nonrep7[1,3]*fm2abscost+finalStatet5nonrep7[1,4]*fm3abscost 
                         + 
finalStatet5nonrep7[1,5]*fm4abscost+finalStatet5nonrep7[1,6]*fm5abscost1+final
Statet5nonrep7[1,7]*fm6abscost+finalStatet5nonrep7[1,8]*0 
                         + finalStatet5nonrep7[1,9]*flyawaycost1) 
abscostriskt6nonrep7 <- 
(finalStatet6nonrep7[1,1]*rbrabscost+finalStatet6nonrep7[1,2]*fm1abscost1+fina
lStatet6nonrep7[1,3]*fm2abscost+finalStatet6nonrep7[1,4]*fm3abscost 
                         + 
finalStatet6nonrep7[1,5]*fm4abscost+finalStatet6nonrep7[1,6]*fm5abscost1+final
Statet6nonrep7[1,7]*fm6abscost+finalStatet6nonrep7[1,8]*0 
                         + finalStatet6nonrep7[1,9]*flyawaycost1) 
abscostriskt7nonrep7 <- 
(finalStatet7nonrep7[1,1]*rbrabscost+finalStatet7nonrep7[1,2]*fm1abscost1+fina
lStatet7nonrep7[1,3]*fm2abscost+finalStatet7nonrep7[1,4]*fm3abscost 
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                         + 
finalStatet7nonrep7[1,5]*fm4abscost+finalStatet7nonrep7[1,6]*fm5abscost1+final
Statet7nonrep7[1,7]*fm6abscost+finalStatet7nonrep7[1,8]*0 
                         + finalStatet7nonrep7[1,9]*flyawaycost1) 
abscostriskt8nonrep7 <- 
(finalStatet8nonrep7[1,1]*rbrabscost+finalStatet8nonrep7[1,2]*fm1abscost1+fina
lStatet8nonrep7[1,3]*fm2abscost+finalStatet8nonrep7[1,4]*fm3abscost 
                         + 
finalStatet8nonrep7[1,5]*fm4abscost+finalStatet8nonrep7[1,6]*fm5abscost1+final
Statet8nonrep7[1,7]*fm6abscost+finalStatet8nonrep7[1,8]*0 
                         + finalStatet8nonrep7[1,9]*flyawaycost1) 
abscostriskt9nonrep7 <- 
(finalStatet9nonrep7[1,1]*rbrabscost+finalStatet9nonrep7[1,2]*fm1abscost1+fina
lStatet9nonrep7[1,3]*fm2abscost+finalStatet9nonrep7[1,4]*fm3abscost 
                         + 
finalStatet9nonrep7[1,5]*fm4abscost+finalStatet9nonrep7[1,6]*fm5abscost1+final
Statet9nonrep7[1,7]*fm6abscost+finalStatet9nonrep7[1,8]*0 
                         + finalStatet9nonrep7[1,9]*flyawaycost1) 
abscostrisknonrep7 <- c(0, 
abscostriskt1nonrep7,abscostriskt2nonrep7,abscostriskt3nonrep7,abscostriskt4no
nrep7,abscostriskt5nonrep7,abscostriskt6nonrep7,abscostriskt7nonrep7, 
                        abscostriskt8nonrep7,abscostriskt9nonrep7) 
 
 
################################### 
 
abscostriskt1low <- 
(finalStatet1low[1,1]*rbrabscost+finalStatet1low[1,2]*fm1abscost1+finalStatet1
low[1,3]*fm2abscost+finalStatet1low[1,4]*fm3abscost 
                     + 
finalStatet1low[1,5]*fm4abscost+finalStatet1low[1,6]*fm5abscost1+finalStatet1l
ow[1,7]*fm6abscost+finalStatet1low[1,8]*fm7abscost 
                     + finalStatet1low[1,9]*flyawaycost1) 
abscostriskt2low <- 
(finalStatet2low[1,1]*rbrabscost+finalStatet2low[1,2]*fm1abscost1+finalStatet2
low[1,3]*fm2abscost+finalStatet2low[1,4]*fm3abscost 
                     + 
finalStatet2low[1,5]*fm4abscost+finalStatet2low[1,6]*fm5abscost1+finalStatet2l
ow[1,7]*fm6abscost+finalStatet2low[1,8]*fm7abscost 
                     + finalStatet2low[1,9]*flyawaycost1) 
abscostriskt3low <- 
(finalStatet3low[1,1]*rbrabscost+finalStatet3low[1,2]*fm1abscost1+finalStatet3
low[1,3]*fm2abscost+finalStatet3low[1,4]*fm3abscost 
                     + 
finalStatet3low[1,5]*fm4abscost+finalStatet3low[1,6]*fm5abscost1+finalStatet3l
ow[1,7]*fm6abscost+finalStatet3low[1,8]*fm7abscost 
                     + finalStatet3low[1,9]*flyawaycost1) 
abscostriskt4low <- 
(finalStatet4low[1,1]*rbrabscost+finalStatet4low[1,2]*fm1abscost1+finalStatet4
low[1,3]*fm2abscost+finalStatet4low[1,4]*fm3abscost 
                     + 
finalStatet4low[1,5]*fm4abscost+finalStatet4low[1,6]*fm5abscost1+finalStatet4l
ow[1,7]*fm6abscost+finalStatet4low[1,8]*fm7abscost 
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                     + finalStatet4low[1,9]*flyawaycost1) 
abscostriskt5low <- 
(finalStatet5low[1,1]*rbrabscost+finalStatet5low[1,2]*fm1abscost1+finalStatet5
low[1,3]*fm2abscost+finalStatet5low[1,4]*fm3abscost 
                     + 
finalStatet5low[1,5]*fm4abscost+finalStatet5low[1,6]*fm5abscost1+finalStatet5l
ow[1,7]*fm6abscost+finalStatet5low[1,8]*fm7abscost 
                     + finalStatet5low[1,9]*flyawaycost1) 
abscostriskt6low <- 
(finalStatet6low[1,1]*rbrabscost+finalStatet6low[1,2]*fm1abscost1+finalStatet6
low[1,3]*fm2abscost+finalStatet6low[1,4]*fm3abscost 
                     + 
finalStatet6low[1,5]*fm4abscost+finalStatet6low[1,6]*fm5abscost1+finalStatet6l
ow[1,7]*fm6abscost+finalStatet6low[1,8]*fm7abscost 
                     + finalStatet6low[1,9]*flyawaycost1) 
abscostriskt7low <- 
(finalStatet7low[1,1]*rbrabscost+finalStatet7low[1,2]*fm1abscost1+finalStatet7
low[1,3]*fm2abscost+finalStatet7low[1,4]*fm3abscost 
                     + 
finalStatet7low[1,5]*fm4abscost+finalStatet7low[1,6]*fm5abscost1+finalStatet7l
ow[1,7]*fm6abscost+finalStatet7low[1,8]*fm7abscost 
                     + finalStatet7low[1,9]*flyawaycost1) 
abscostriskt8low <- 
(finalStatet8low[1,1]*rbrabscost+finalStatet8low[1,2]*fm1abscost1+finalStatet8
low[1,3]*fm2abscost+finalStatet8low[1,4]*fm3abscost 
                     + 
finalStatet8low[1,5]*fm4abscost+finalStatet8low[1,6]*fm5abscost1+finalStatet8l
ow[1,7]*fm6abscost+finalStatet8low[1,8]*fm7abscost 
                     + finalStatet8low[1,9]*flyawaycost1) 
abscostriskt9low <- 
(finalStatet9low[1,1]*rbrabscost+finalStatet9low[1,2]*fm1abscost1+finalStatet9
low[1,3]*fm2abscost+finalStatet9low[1,4]*fm3abscost 
                     + 
finalStatet9low[1,5]*fm4abscost+finalStatet9low[1,6]*fm5abscost1+finalStatet9l
ow[1,7]*fm6abscost+finalStatet9low[1,8]*fm7abscost 
                     + finalStatet9low[1,9]*flyawaycost1) 
abscostrisklow <- c(0, 
abscostriskt1low,abscostriskt2low,abscostriskt3low,abscostriskt4low,abscostris
kt5low,abscostriskt6low,abscostriskt7low, 
                    abscostriskt8low,abscostriskt9low) 
 
#################################### 
 
abscostriskt1up <- 
(finalStatet1up[1,1]*rbrabscost+finalStatet1up[1,2]*fm1abscost1+finalStatet1[1
,3]*fm2abscost+finalStatet1up[1,4]*fm3abscost 
                    + 
finalStatet1up[1,5]*fm4abscost+finalStatet1up[1,6]*fm5abscost1+finalStatet1[1,
7]*fm6abscost+finalStatet1up[1,8]*fm7abscost 
                    + finalStatet1up[1,9]*flyawaycost1) 
abscostriskt2up <- 
(finalStatet2up[1,1]*rbrabscost+finalStatet2up[1,2]*fm1abscost1+finalStatet2[1
,3]*fm2abscost+finalStatet2up[1,4]*fm3abscost 
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                    + 
finalStatet2up[1,5]*fm4abscost+finalStatet2up[1,6]*fm5abscost1+finalStatet2[1,
7]*fm6abscost+finalStatet2up[1,8]*fm7abscost 
                    + finalStatet2up[1,9]*flyawaycost1) 
abscostriskt3up <- 
(finalStatet3up[1,1]*rbrabscost+finalStatet3up[1,2]*fm1abscost1+finalStatet3up
[1,3]*fm2abscost+finalStatet3up[1,4]*fm3abscost 
                    + 
finalStatet3up[1,5]*fm4abscost+finalStatet3up[1,6]*fm5abscost1+finalStatet3up[
1,7]*fm6abscost+finalStatet3up[1,8]*fm7abscost 
                    + finalStatet3up[1,9]*flyawaycost1) 
abscostriskt4up <- 
(finalStatet4up[1,1]*rbrabscost+finalStatet4up[1,2]*fm1abscost1+finalStatet4up
[1,3]*fm2abscost+finalStatet4up[1,4]*fm3abscost 
                    + 
finalStatet4up[1,5]*fm4abscost+finalStatet4up[1,6]*fm5abscost1+finalStatet4up[
1,7]*fm6abscost+finalStatet4up[1,8]*fm7abscost 
                    + finalStatet4up[1,9]*flyawaycost1) 
abscostriskt5up <- 
(finalStatet5up[1,1]*rbrabscost+finalStatet5up[1,2]*fm1abscost1+finalStatet5up
[1,3]*fm2abscost+finalStatet5up[1,4]*fm3abscost 
                    + 
finalStatet5up[1,5]*fm4abscost+finalStatet5up[1,6]*fm5abscost1+finalStatet5up[
1,7]*fm6abscost+finalStatet5up[1,8]*fm7abscost 
                    + finalStatet5up[1,9]*flyawaycost1) 
abscostriskt6up <- 
(finalStatet6up[1,1]*rbrabscost+finalStatet6up[1,2]*fm1abscost1+finalStatet6up
[1,3]*fm2abscost+finalStatet6up[1,4]*fm3abscost 
                    + 
finalStatet6up[1,5]*fm4abscost+finalStatet6up[1,6]*fm5abscost1+finalStatet6up[
1,7]*fm6abscost+finalStatet6up[1,8]*fm7abscost 
                    + finalStatet6up[1,9]*flyawaycost1) 
abscostriskt7up <- 
(finalStatet7up[1,1]*rbrabscost+finalStatet7up[1,2]*fm1abscost1+finalStatet7up
[1,3]*fm2abscost+finalStatet7up[1,4]*fm3abscost 
                    + 
finalStatet7up[1,5]*fm4abscost+finalStatet7up[1,6]*fm5abscost1+finalStatet7up[
1,7]*fm6abscost+finalStatet7up[1,8]*fm7abscost 
                    + finalStatet7up[1,9]*flyawaycost1) 
abscostriskt8up <- 
(finalStatet8up[1,1]*rbrabscost+finalStatet8up[1,2]*fm1abscost1+finalStatet8up
[1,3]*fm2abscost+finalStatet8up[1,4]*fm3abscost 
                    + 
finalStatet8up[1,5]*fm4abscost+finalStatet8up[1,6]*fm5abscost1+finalStatet8up[
1,7]*fm6abscost+finalStatet8up[1,8]*fm7abscost 
                    + finalStatet8up[1,9]*flyawaycost1) 
abscostriskt9up <- 
(finalStatet9up[1,1]*rbrabscost+finalStatet9up[1,2]*fm1abscost1+finalStatet9up
[1,3]*fm2abscost+finalStatet9up[1,4]*fm3abscost 
                    + 
finalStatet9up[1,5]*fm4abscost+finalStatet9up[1,6]*fm5abscost1+finalStatet9up[
1,7]*fm6abscost+finalStatet9up[1,8]*fm7abscost 
                    + finalStatet9up[1,9]*flyawaycost1) 
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abscostriskup <- c(0, 
abscostriskt1up,abscostriskt2up,abscostriskt3up,abscostriskt4up,abscostriskt5u
p,abscostriskt6up,abscostriskt7up, 
                   abscostriskt8up,abscostriskt9up) 
 
################################## 
abscostriskt1new1 <- 
(finalStatet1new1[1,1]*rbrabscost+finalStatet1new1[1,2]*fm1abscost2+finalState
t1new1[1,3]*fm2abscost+finalStatet1new1[1,4]*fm3abscost 
                      + 
finalStatet1new1[1,5]*fm4abscost+finalStatet1new1[1,6]*fm5abscost1+finalStatet
1new1[1,7]*fm6abscost+finalStatet1new1[1,8]*fm7abscost 
                      + finalStatet1new1[1,9]*flyawaycost2fm1) 
abscostriskt2new1 <- 
(finalStatet2new1[1,1]*rbrabscost+finalStatet2new1[1,2]*fm1abscost2+finalState
t2new1[1,3]*fm2abscost+finalStatet2new1[1,4]*fm3abscost 
                      + 
finalStatet2new1[1,5]*fm4abscost+finalStatet2new1[1,6]*fm5abscost1+finalStatet
2new1[1,7]*fm6abscost+finalStatet2new1[1,8]*fm7abscost 
                      + finalStatet2new1[1,9]*flyawaycost2fm1) 
abscostriskt3new1 <- 
(finalStatet3new1[1,1]*rbrabscost+finalStatet3new1[1,2]*fm1abscost2+finalState
t3new1[1,3]*fm2abscost+finalStatet3new1[1,4]*fm3abscost 
                      + 
finalStatet3new1[1,5]*fm4abscost+finalStatet3new1[1,6]*fm5abscost1+finalStatet
3new1[1,7]*fm6abscost+finalStatet3new1[1,8]*fm7abscost 
                      + finalStatet3new1[1,9]*flyawaycost2fm1) 
abscostriskt4new1 <- 
(finalStatet4new1[1,1]*rbrabscost+finalStatet4new1[1,2]*fm1abscost2+finalState
t4new1[1,3]*fm2abscost+finalStatet4new1[1,4]*fm3abscost 
                      + 
finalStatet4new1[1,5]*fm4abscost+finalStatet4new1[1,6]*fm5abscost1+finalStatet
4new1[1,7]*fm6abscost+finalStatet4new1[1,8]*fm7abscost 
                      + finalStatet4new1[1,9]*flyawaycost2fm1) 
abscostriskt5new1 <- 
(finalStatet5new1[1,1]*rbrabscost+finalStatet5new1[1,2]*fm1abscost2+finalState
t5new1[1,3]*fm2abscost+finalStatet5new1[1,4]*fm3abscost 
                      + 
finalStatet5new1[1,5]*fm4abscost+finalStatet5new1[1,6]*fm5abscost1+finalStatet
5new1[1,7]*fm6abscost+finalStatet5new1[1,8]*fm7abscost 
                      + finalStatet5new1[1,9]*flyawaycost2fm1) 
abscostriskt6new1 <- 
(finalStatet6new1[1,1]*rbrabscost+finalStatet6new1[1,2]*fm1abscost2+finalState
t6new1[1,3]*fm2abscost+finalStatet6new1[1,4]*fm3abscost 
                      + 
finalStatet6new1[1,5]*fm4abscost+finalStatet6new1[1,6]*fm5abscost1+finalStatet
6new1[1,7]*fm6abscost+finalStatet6new1[1,8]*fm7abscost 
                      + finalStatet6new1[1,9]*flyawaycost2fm1) 
abscostriskt7new1 <- 
(finalStatet7new1[1,1]*rbrabscost+finalStatet7new1[1,2]*fm1abscost2+finalState
t7new1[1,3]*fm2abscost+finalStatet7new1[1,4]*fm3abscost 
                      + 
finalStatet7new1[1,5]*fm4abscost+finalStatet7new1[1,6]*fm5abscost1+finalStatet
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7new1[1,7]*fm6abscost+finalStatet7new1[1,8]*fm7abscost 
                      + finalStatet7new1[1,9]*flyawaycost2fm1) 
abscostriskt8new1 <- 
(finalStatet8new1[1,1]*rbrabscost+finalStatet8new1[1,2]*fm1abscost2+finalState
t8new1[1,3]*fm2abscost+finalStatet8new1[1,4]*fm3abscost 
                      + 
finalStatet8new1[1,5]*fm4abscost+finalStatet8new1[1,6]*fm5abscost1+finalStatet
8new1[1,7]*fm6abscost+finalStatet8new1[1,8]*fm7abscost 
                      + finalStatet8new1[1,9]*flyawaycost2fm1) 
abscostriskt9new1 <- 
(finalStatet9new1[1,1]*rbrabscost+finalStatet9new1[1,2]*fm1abscost2+finalState
t9new1[1,3]*fm2abscost+finalStatet9new1[1,4]*fm3abscost 
                      + 
finalStatet9new1[1,5]*fm4abscost+finalStatet9new1[1,6]*fm5abscost1+finalStatet
9new1[1,7]*fm6abscost+finalStatet9new1[1,8]*fm7abscost 
                      + finalStatet9new1[1,9]*flyawaycost2fm1) 
abscostrisknew1 <- c(0, 
abscostriskt1new1,abscostriskt2new1,abscostriskt3new1,abscostriskt4new1,abscos
triskt5new1,abscostriskt6new1,abscostriskt7new1, 
                     abscostriskt8new1,abscostriskt9new1) 
 
################################## 
abscostriskt1new5 <- 
(finalStatet1new5[1,1]*rbrabscost+finalStatet1new5[1,2]*fm1abscost1+finalState
t1new5[1,3]*fm2abscost+finalStatet1new5[1,4]*fm3abscost 
                      + 
finalStatet1new5[1,5]*fm4abscost+finalStatet1new5[1,6]*fm5abscost2+finalStatet
1new5[1,7]*fm6abscost+finalStatet1new5[1,8]*fm7abscost 
                      + finalStatet1new5[1,9]*flyawaycost2fm5) 
abscostriskt2new5 <- 
(finalStatet2new5[1,1]*rbrabscost+finalStatet2new5[1,2]*fm1abscost1+finalState
t2new5[1,3]*fm2abscost+finalStatet2new5[1,4]*fm3abscost 
                      + 
finalStatet2new5[1,5]*fm4abscost+finalStatet2new5[1,6]*fm5abscost2+finalStatet
2new5[1,7]*fm6abscost+finalStatet2new5[1,8]*fm7abscost 
                      + finalStatet2new5[1,9]*flyawaycost2fm5) 
abscostriskt3new5 <- 
(finalStatet3new5[1,1]*rbrabscost+finalStatet3new5[1,2]*fm1abscost1+finalState
t3new5[1,3]*fm2abscost+finalStatet3new5[1,4]*fm3abscost 
                      + 
finalStatet3new5[1,5]*fm4abscost+finalStatet3new5[1,6]*fm5abscost2+finalStatet
3new5[1,7]*fm6abscost+finalStatet3new5[1,8]*fm7abscost 
                      + finalStatet3new5[1,9]*flyawaycost2fm5) 
abscostriskt4new5 <- 
(finalStatet4new5[1,1]*rbrabscost+finalStatet4new5[1,2]*fm1abscost1+finalState
t4new5[1,3]*fm2abscost+finalStatet4new5[1,4]*fm3abscost 
                      + 
finalStatet4new5[1,5]*fm4abscost+finalStatet4new5[1,6]*fm5abscost2+finalStatet
4new5[1,7]*fm6abscost+finalStatet4new5[1,8]*fm7abscost 
                      + finalStatet4new5[1,9]*flyawaycost2fm5) 
abscostriskt5new5 <- 
(finalStatet5new5[1,1]*rbrabscost+finalStatet5new5[1,2]*fm1abscost1+finalState
t5new5[1,3]*fm2abscost+finalStatet5new5[1,4]*fm3abscost 
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                      + 
finalStatet5new5[1,5]*fm4abscost+finalStatet5new5[1,6]*fm5abscost2+finalStatet
5new5[1,7]*fm6abscost+finalStatet5new5[1,8]*fm7abscost 
                      + finalStatet5new5[1,9]*flyawaycost2fm5) 
abscostriskt6new5 <- 
(finalStatet6new5[1,1]*rbrabscost+finalStatet6new5[1,2]*fm1abscost1+finalState
t6new5[1,3]*fm2abscost+finalStatet6new5[1,4]*fm3abscost 
                      + 
finalStatet6new5[1,5]*fm4abscost+finalStatet6new5[1,6]*fm5abscost2+finalStatet
6new5[1,7]*fm6abscost+finalStatet6new5[1,8]*fm7abscost 
                      + finalStatet6new5[1,9]*flyawaycost2fm5) 
abscostriskt7new5 <- 
(finalStatet7new5[1,1]*rbrabscost+finalStatet7new5[1,2]*fm1abscost1+finalState
t7new5[1,3]*fm2abscost+finalStatet7new5[1,4]*fm3abscost 
                      + 
finalStatet7new5[1,5]*fm4abscost+finalStatet7new5[1,6]*fm5abscost2+finalStatet
7new5[1,7]*fm6abscost+finalStatet7new5[1,8]*fm7abscost 
                      + finalStatet7new5[1,9]*flyawaycost2fm5) 
abscostriskt8new5 <- 
(finalStatet8new5[1,1]*rbrabscost+finalStatet8new5[1,2]*fm1abscost1+finalState
t8new5[1,3]*fm2abscost+finalStatet8new5[1,4]*fm3abscost 
                      + 
finalStatet8new5[1,5]*fm4abscost+finalStatet8new5[1,6]*fm5abscost2+finalStatet
8new5[1,7]*fm6abscost+finalStatet8new5[1,8]*fm7abscost 
                      + finalStatet8new5[1,9]*flyawaycost2fm5) 
abscostriskt9new5 <- 
(finalStatet9new5[1,1]*rbrabscost+finalStatet9new5[1,2]*fm1abscost1+finalState
t9new5[1,3]*fm2abscost+finalStatet9new5[1,4]*fm3abscost 
                      + 
finalStatet9new5[1,5]*fm4abscost+finalStatet9new5[1,6]*fm5abscost2+finalStatet
9new5[1,7]*fm6abscost+finalStatet9new5[1,8]*fm7abscost 
                      + finalStatet9new5[1,9]*flyawaycost2fm5) 
abscostrisknew5 <- c(0, 
abscostriskt1new5,abscostriskt2new5,abscostriskt3new5,abscostriskt4new5,abscos
triskt5new5,abscostriskt6new5,abscostriskt7new5, 
                     abscostriskt8new5,abscostriskt9new5) 
 
####################### 
# Purpose: Calculate the average cost delta between the estimate and the new 
design alternative 
# inputs: abscostriskest[1-9], abscostrisknew1[1-9], abscostrisknew5[1-9] 
# outputs: avgcostdeltafm1, avgcostdeltafm5  
# Author: Bryan Bentz 
# Notes: I printed this onto the graphs of abscostrisk for new fm1 and new 
fm5.   
#        By evaluating the cost risk section to minimize the costriskdelta's I 
found the costs 
#        that each subsystem must be based on the Delta1 and Delta5.   
#        This added in the generation of Figures 40-44.  
####################### 
 
costdeltafm1 <- c((abscostriskest[1]-abscostrisknew1[1]), 
                  (abscostriskest[2]-abscostrisknew1[2]), 



 

164 

                  (abscostriskest[3]-abscostrisknew1[3]), 
                  (abscostriskest[4]-abscostrisknew1[4]), 
                  (abscostriskest[5]-abscostrisknew1[5]), 
                  (abscostriskest[6]-abscostrisknew1[6]), 
                  (abscostriskest[7]-abscostrisknew1[7]), 
                  (abscostriskest[8]-abscostrisknew1[8]), 
                  (abscostriskest[9]-abscostrisknew1[9])) 
 
averagecostdeltafm1 <- sum(costdeltafm1)/length(costdeltafm1) 
 
costdeltafm5 <- c((abscostriskest[1]-abscostrisknew5[1]), 
                  (abscostriskest[2]-abscostrisknew5[2]), 
                  (abscostriskest[3]-abscostrisknew5[3]), 
                  (abscostriskest[4]-abscostrisknew5[4]), 
                  (abscostriskest[5]-abscostrisknew5[5]), 
                  (abscostriskest[6]-abscostrisknew5[6]), 
                  (abscostriskest[7]-abscostrisknew5[7]), 
                  (abscostriskest[8]-abscostrisknew5[8]), 
                  (abscostriskest[9]-abscostrisknew5[9])) 
 
averagecostdeltafm5 <- sum(costdeltafm5)/length(costdeltafm5) 
 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
plot(x=x, y=abscostriskest,ylim=c(40000,160000),main="Baseline Absolute Cost 
Risk", 
     xlab='Sortie',ylab='Cost at Risk ($)',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(40000,160000,10000) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=abscostrisklow,ylim=c(40000,160000),ann=F,xlim=c(0,9),axes=F, pch 
= 24) 
par(new=TRUE) 
plot(x=x, y=abscostriskup,ylim=c(40000,160000),ann=F,xlim=c(0,9),axes=F, pch = 
25) 

 

par(new=FALSE) 
 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
plot(x=x, y=abscostriskest,ylim=c(40000,160000),main="Absolute Cost Risk with 
Non-Repairable Propulsion", 
     xlab='Sortie',ylab='Cost at Risk ($)',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(40000,160000,10000) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=abscostrisklow,ylim=c(40000,160000),ann=F,xlim=c(0,9),axes=F, pch 
= 24) 
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par(new=TRUE) 
plot(x=x, y=abscostriskup,ylim=c(40000,160000),ann=F,xlim=c(0,9),axes=F, pch = 
25) 
par(new=TRUE) 
plot(x=x, 
y=abscostrisknonrep5,ylim=c(40000,160000),ann=F,xlim=c(0,9),axes=F,col = 
'blue', pch = 15) 

 

x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
plot(x=x, y=abscostriskest,ylim=c(40000,160000),main="Absolute Cost Risk with 
Non-Repairable Structure", 
     xlab='Sortie',ylab='Cost at Risk ($)',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(40000,160000,10000) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=abscostrisklow,ylim=c(40000,160000),ann=F,xlim=c(0,9),axes=F, pch 
= 24) 
par(new=TRUE) 
plot(x=x, y=abscostriskup,ylim=c(40000,160000),ann=F,xlim=c(0,9),axes=F, pch = 
25) 
par(new=TRUE) 
plot(x=x, 
y=abscostrisknonrep7,ylim=c(40000,160000),ann=F,xlim=c(0,9),axes=F,col = 
'green', pch = 18) 

 

x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
plot(x=x, y=abscostriskest,ylim=c(40000,120000),main="Absolute Cost Risk w/ 
Altered Electronics h(t) and $$", 
     xlab='Sortie',ylab='Cost at Risk ($)',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(40000,120000,10000) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=abscostrisklow,ylim=c(40000,120000),ann=F,xlim=c(0,9),axes=F, pch 
= 24) 
par(new=TRUE) 
plot(x=x, y=abscostriskup,ylim=c(40000,120000),ann=F,xlim=c(0,9),axes=F, pch = 
25) 
par(new=TRUE) 
plot(x=x, y=abscostrisknew1,ylim=c(40000,120000),ann=F,xlim=c(0,9),axes=F, col 
= 'red', pch = 19) 
par(new=TRUE) 
mylabel <- bquote(italic(avgdeltacostrisk) == .(format(averagecostdeltafm1, 
digits = 2))) 
legend('bottomright', legend = mylabel, bty='n') 



 

166 

 

par(new=FALSE) 
 
x=c(0,1,2,3,4,5,6,7,8,9) 
par(col='black') 
plot(x=x, y=abscostriskest,ylim=c(40000,120000),main="Absolute Cost Risk w/ 
Altered Propulsion h(t) and $$", 
     xlab='Sortie',ylab='Cost at Risk ($)',xlim=c(0,9),axes=F, pch = 19) 
xticks <- seq(0, 9, 1) 
yticks <- seq(40000,120000,10000) 
axis(1, at = xticks, labels = xticks, las=1, tck=-0.01)#was -0.01 
axis(2,las=1,at=yticks,labels=yticks) 
par(new=TRUE) 
plot(x=x, y=abscostrisklow,ylim=c(40000,120000),ann=F,xlim=c(0,9),axes=F, pch 
= 24) 
par(new=TRUE) 
plot(x=x, y=abscostriskup,ylim=c(40000,120000),ann=F,xlim=c(0,9),axes=F, pch = 
25) 
par(new=TRUE) 
plot(x=x, y=abscostrisknew5,ylim=c(40000,120000),ann=F,xlim=c(0,9),axes=F, col 
= 'blue', pch = 19) 
par(new=TRUE) 
mylabel <- bquote(italic(avgdeltacostrisk) == .(format(averagecostdeltafm5, 
digits = 2))) 
legend('bottomright', legend = mylabel, bty='n') 

 

par(new=FALSE) 
 
####################### 
# Purpose: Visual Representation of Markov Chains to come 
# inputs: N/A 
# outputs: Example Markov Chain Model with Identified Subsystems, Figure 12 
# Author: Bryan Bentz 
# notes:  
####################### 
 
Mat2 <- matrix(NA, nrow = 9, ncol = 9) 
 
AA <- as.data.frame(Mat2) 
AA[[1,2]] <- 'F[1:0]' 
AA[[1,3]] <- 'F[2:0]' 
AA[[1,4]] <- 'F[3:0]' 
AA[[1,5]] <- 'F[4:0]' 
AA[[1,6]] <- 'F[5:0]' 
AA[[1,7]] <- 'F[6:0]' 
AA[[1,8]] <- 'F[7:0]' 
AA[[2,1]] <- 'F[0:1]' 
AA[[3,1]] <- 'F[0:2]' 
AA[[4,1]] <- 'F[0:3]' 
AA[[5,1]] <- 'F[0:4]' 
AA[[6,1]] <- 'F[0:5]' 
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AA[[7,1]] <- 'F[0:6]' 
AA[[8,1]] <- 'F[0:7]' 
AA[[9,2]] <- 'F[1:8]' 
AA[[9,3]] <- 'F[2:8]' 
AA[[9,4]] <- 'F[3:8]' 
AA[[9,5]] <- 'F[4:8]' 
AA[[9,6]] <- 'F[5:8]' 
AA[[9,7]] <- 'F[6:8]' 
AA[[9,8]] <- 'F[7:8]' 
AA[[9,9]] <- 'F[8:8]' 
AA[[1,1]] <- 'F[0:0]' 
 
AA <- as.data.frame(Mat2) 
AA[[1,2]] <- '' 
AA[[1,3]] <- 'Repair' 
AA[[1,4]] <- 'Repair' 
AA[[1,5]] <- 'Repair' 
AA[[1,6]] <- 'Repair' 
AA[[1,7]] <- 'Repair' 
AA[[1,8]] <- 'Repair' 
AA[[2,1]] <- '' 
AA[[3,1]] <- 'Failure' 
AA[[4,1]] <- 'Failure' 
AA[[5,1]] <- 'Failure' 
AA[[6,1]] <- 'Failure' 
AA[[7,1]] <- 'Failure' 
AA[[8,1]] <- 'Failure' 
AA[[9,2]] <- 'Destruction' 
AA[[9,3]] <- 'Destruction' 
AA[[9,4]] <- 'Destruction' 
AA[[9,5]] <- 'Destruction' 
AA[[9,6]] <- 'Destruction' 
AA[[9,7]] <- 'Destruction' 
AA[[9,8]] <- '' 
AA[[9,9]] <- 'Destroyed' 
AA[[1,1]] <- 'Regen' 
 
names <- c('Operational','Electronics','Fuel 
Mgmt','Launcher','Operator','Propulsion','Recovery', 
           'Structure','Failed') 
 
par(family='serif', mar = c(0,0,0,0)) 
 
diagram::plotmat(A = AA, pos = 9, curve = .65,  
                 name = names, lwd =1, arr.len = 0.3,  
                 arr.width = 0.15, my = 0, box.size = 0.05,  
                 arr.type = 'triangle', dtext = -1.0, 
                 relsize=.9,box.cex=0.7,cex=1) 
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Appendix B: MTBF Results if Simplification is Acceptable 

This research discusses the weaknesses of mean time between failures (MTBF) as 

a sole reliability metric as the use of the mean assumes a constant hazard rate which 

masks the manner in which failures actually occur over time.  This hides failures due to 

infant mortality and failure due to wear out.  The use of reliability metrics are often 

inputs for other decision makers – especially those responsible for tasks such as cost 

estimation.  In these situations, true estimates of MTBF based on failure data are more 

useful than estimates from the manufacturer or other systems.  However, based on 

analysis presented in Table 5 the failure-time data generated through the assumption of a 

constant hazard rate, and its representation in terms of  MTBF, could be as much as 47% 

off from a metric that is allowed to vary with time. If this disadvantage is deemed 

acceptable in order to achieve a data-based estimate to include for cost estimation 

purposes, the cumulative incidence functions can be fit to a one parameter exponential 

distribution using fitdistr in R.  In this case the parameter, , is defined as the inverse of 

the MTBF.  Applying this analysis to the baseline system’s failure-time data yields: 

Table 6: Estimated MTBF of Seven Subsystems 

Subsystem Mean Sorties Between Failure 
Electronics 62.3 Sorties 

Fuel Management 88.05 Sorties 
Launcher 111.8 Sorties 
Operator 616.1 Sorties 

Propulsion 244.3 Sorties 
Recovery 775.5 Sorties 
Structural 1594.95 Sorties 
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These estimates must be used cautiously as they predict MTBFs of sixty or more sorties, 

yet the failure-time data for this research was only complete enough to use out to nine sorties.  It 

is likely that only increases the error induced by accepting the constant hazard rate assumption.  

Furthermore, if these disadavantages are still acceptable, these MTBFs can be combined as the 

exponential distributions of the subsystems can be added to determine the MTBF of the system as 

a whole.  It was determined that the system-level MTBF was 22.7 Sorties.  This statistic accounts 

for the nature of the competing failure modes as well as the right censoring scheme to determine 

the system’s MTBF for failures of these seven subsystems.   
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