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Training Opportunities:  This grant has supported part of the PhD thesis work on Chieh Chen.

This grant has provided training for two other graduate students.



The PI has been collaborating extensively with a former post-doc, Catherine Kublik, who is now a junior faculty in 
University of Dayton, Ohio. The collaboration provided her with professional development, which is important for 
her up coming tenure in her university.

Through interaction with Kublik, the PI also indirectly provide training for an undergraduate student for analyzing 
point cloud data at Kublik's institute.

Results Dissemination:  Results funded by this grant has been disseminated in the following manners:

1) Invited lectures in major conferences and workshop 

2) Invited lectures in research seminars and colloquiums

3) Social media

4) Outreach activities



In (1), the PI has given lectures related to the funded results in various international conferences and workshops. 
The following is a selection of the PI's relevant activities.



• Plenary  speaker in the 2016 Annual Meeting of the Taiwan Society for Industrial and Applied Mathematics, May 
28 2016

• Invited speaker in International Conference on Applied Mathematics (ICAM), May 2016

• Invited speaker in “Shape Analysis and Learning by Geometry and Machine”, Institute of Pure and Applied 
Mathematics (IPAM), Feb 2016

• Invited speaker in “Frontiers of Applied and Computational Mathematics”, Peking University, July 2015 

• Invited speaker, Sanya, China, March 2014

• Banff, Canada, March 31-April 5, 2013

• Algorithms for Threat Detection Workshop, Nov 28, 2012



In (2): the footprints of the PI presenting the funded results include:

• KTH Royal Institute of Technology, Sweden, 2017

• University of Coimbra, Portugal 2017

• National Ciao-Tung University and National Center for Theoretical Sciences, Taiwan, 2016

• Georgia Tech, Colloquium, March 13, 2015

• Umeå Universitet, Sweden, 06/09-06/10, 2014

• National Geospatial-Intelligence Agency, Dec 4, 2013



In (3): The PI actively maintains a representation on Google Scholar, ResearchGate, as well as a personal 
homepage hosted by The University of Texas. Particularly in the latter two media, the PI has created dedicated 
pages for the ARO project.



In (4), The PI has presented the findings of this project to undergraduate students at UT and in Taiwan, in outreach 
forums.
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Project	summary	
•  Objec4ves:		

–  Formulate	and	analyze	metrics	for	missions	that	require	
achieving	“op4mal”	visibility	(lines-of-sight)	in	a	domain	

–  Quan4fy	the	sensi4vity	of	such	metrics	to	perturba4on		
–  Design	algorithms	based	on	these	metrics		

•  Approach:	
–  Level	set	formula4on	(natural	for	the	extensive	Boolean	
opera4ons	on	the	occlusion	sets)	

–  Formulate	suitable	energies	from	integra4ons	over	the	
(boundary	of)	occlusion	sets	

–  Shape	calculus:	shape	deriva4ves	and	topological	deriva4ves	
•  Novelty:		

–  Systema4c,	volumetric,	and	varia4onal	approach,	allowing	the	
use	of	calculus,	to	problems	typically	tackled	(with	difficulty)	by	
approaches	typically	involving	triangula4ons	



Project	summary	

•  Educa4on:		
– Supported	2	PhD	students.		
–  Involved	2	PhD	students	from	other	university.	

•  Dissemina4on:	Seminar	at	NGA	and	
presenta4on	in	the	Algorithm	Workshop	(NSF	
and	DTRA),	and	other	universi4es.	

•  Publica4ons:	one	publica4on	under	revision,	
one	under	construc4on.	

•  Honors:	The	PI	was	awarded	a	Simons	
Founda4on	Fellowhsip	for	2013-2014.		



Project	summary	

•  Mathema4cal	results:	
–  Formulated	and	implemented	metrics	based	on	
“viewing	angles”	and	the	corresponding	visibility	
fluxes	across	the	occlusion	boundaries.	

– Derived	explicit	formulae	for	the	sensi4vity	of	the	
metrics	with	respect	to	perturba4on	of	the	obstacles,	
and	to	distance	to	the	vantage	point	

–  Formulate	problems	involving	uncertainty	in	the	
scene.	Some	preliminary	analysis	is	conducted.	

•  Computa4onal	results:	
–  Fully	automated,	robust,	and	efficient	simula4ons	for	
complicated	real	3D	scenes.	



Explora4on	of	an	unknown	domain	

“Ground	truth”:	the	MOUT	site	 Domain	es4mated	from	11	vantage	points	

Itera4ve	algorithm:	determine	an	op4mal	loca4on	to	explore	the	unknown	part	of	the	domain	
Input:	the	views	of	a	domain	(in	point	clouds)	from	previous	k	vantage	points	
Output:	coordinates	of	an	op4mal	vantage	point	for	viewing	the	unexplored	region	



Algorithm	was	able	to	discover	complicated	scenes	with	minimal	resolu4on	and	
small	number	of	vantage	points.	



The	MOUT	site	and	the	geometry	learned	by	views	from	20	vantage	points		



Summation of point clouds

Richard Tsai

 
The University of Texas at Austin, USA

Research supported by NSF, ARO



Points sampled from imaging devices

What are the total length of the cables?
The total area of flat surfaces?

The electrical field generated from the cable?

Underlying objects have different dimensions



Setup

• Consider surfaces/curves as point sets  
(no parameterization) 

• Closest point map 

• contains a lot of information 

• can be computed easily 

• How do we extract or infer information about      ?  
Information such as surface areas, curvatures, etc.

�N ⇢ �

P�N (x) := arg min
y2�N

|x� y|

�



In this talk
The summation to be discussed:

is the distance to the data set

Algorithm’s complexity for N data points:⇠ (
✏

�x

)dN

S

N

= S(�
N

, ✏, h, d

0) =
X

{xj2hZd:�N (xj)<✏}

!(x
j

, h, d

0
,P�N )

�N (x) = |x� P�Nx|



Base formulation

Z

�
g(x)dS =

Z

R3

g(P�(x))
d0Y

j=1

�j(x)K✏,d0(��(x))dx

d0 is the Hausdorff dimension of �

Theorem: [Kublik, T: 2015]

�j(x) P 0
�(x)is the jth singular value of the matrix

smooth surface (with boundary)�



Simple quadratures

Central differencing matrix:

Mapping to the closest point in the given point set:

P�N : r 2 Rd 7! �N

Dh
0P�N (r) :=

1

2h
(P�N (r+ he1)� P�N (r� he1),P�N (r+ he2)� P�N (r� he2))

SN = S(�N , ✏, h, d0) :=
X

r2hZd,dist(�N ,r)✏

!(r)⇧d0

j=1�j(D
h
0P�N r)



Parametrizion by parallel level sets

I(0) =

Z

�
f(x)dS =

Z

�⌘

f(P�x
0)J(x0)dS0 = I(⌘)

�N

�

J⌘ds

dsx

x

0



Average the identical integrals

I(0) =

Z ✏

0
I(0)K✏(⌘)d⌘ =

Z ✏

0
I(⌘)K✏(⌘)d⌘

[Kublik-Tanushev-T:2013]

=

Z

Rd

f(P�x)J�(x)K✏ � ��(x)dx



The role of singular values

J�(x) =�1�2(P 0
�(x))

=1 + ⌘H(x) + ⌘2G(x)

Geometrical meaning easily seen by a convenient local coordinate system

[T2013, Kublik-T2015]

�1 = (1� ⌘ cos ✓)�1

Surfaces:

Curves:

distance to the manifold

⌘ = |x� P�x|

�1�2(x) = 0, x 2 @�



Other applications 

• Implicit Boundary Integral Methods (IBIMs): 
 
Solve boundary integral equations volumetrically, without 
parametrization 

• High order nonlinear interface dynamics driven by bulk 
diffusion [Chen-Kublik-T] 

• Wave scattering with sound-hard boundaries:  
new regularization for hyper-sinuglar kernels [Chen-T] 

• Possible generalization to higher dimensions via Weyl’s tube 
formula



A fluke?
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SN = S(�N , ✏, h, d0) :=
X

r2hZd,dist(�N ,r)✏

!(r)⇧d0

j=1�j(D
h
0P�N r)



Summation over point clouds

−1 0 1 −1
0

1−1

−0.5

0

0.5

1

Figure 4: Coil and the 0.2 level surface of the distance function.

Example: integrating over point clouds randomly sampled from a quarter of a

sphere

• 30×30 uniformly distributed point clouds sampling in spherical coordinate the quarter
sphere patch.

• 50× 50× 50 uniform Cartesian grid discretizing [−1, 1]3.

• Relative error using ϵ = 0.05 = dx: −0.56.

• Relative error using ϵ = 0.2 = 4dx: −0.061.

• See Figure 6

Example: integrating over noisy point clouds randomly sampled from a quarter

of a sphere

• 101× 101× 101 uniform grid discretizing [−1.25, 1.25]3.

• 2000 uniformly distributed points sampling in spherical coordinate the quarter sphere
patch. (No noise in the normal directions)

• 100 uniformly distributed points sampled from [−1.25, 1.25]3 are added to the cloud.

• See Figure 7

• Our formulation filters out any lower dimensional part of the data set, without any

modification.

6

Even though                    has improved regularity, but that is not the reason.{d�N = ⌘}

�N ⇢ ⌃



Different regimes for the point density

•     is the spacing of data points 

•              is the spacing of grid nodes        

•          :     the closest points of the grid nodes 

•             : cloud is dense relative to the mesh 

•             : fully discrete setting

� = 0

� ⌧ �x

� > �x

�N

�

h = �x



Interpretations of an ill-posed problem
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Analyze the central difference matrix

Central differencing matrix:

Mapping to the closest point in the given point set:

P�N : r 2 Rd 7! �N

Dh
0P�N (r) :=

1

2h
(P�N (r+ he1)� P�N (r� he1),P�N (r+ he2)� P�N (r� he2))



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3: Grid nodes (red dots) with nonzero first singular value (compared with Voronoi
graph).
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Figure 4: Left: Triangles that are calculated in the algorithm. Right: Grid nodes with
nonzero first and second singular value (green dots) plotted against the Voronoi cells of the
point set.

10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3: Grid nodes (red dots) with nonzero first singular value (compared with Voronoi
graph).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4: Left: Triangles that are calculated in the algorithm. Right: Grid nodes with
nonzero first and second singular value (green dots) plotted against the Voronoi cells of the
point set.

10

�1�2 = area of the triangle/ 
quadrilateral

↵ = 1,
p
2,
p
3

�1 =
p

1 + ↵2 |qi � qk|
�2 = 0

↵ = 0, 1

Connectivity of points related to their Voronoi diagram

2↵

Singular values again



Relating to length and area

Dh
0P�N = (~v1,~v2)

•rank=2:

•rank=1:

|~v1| � |~v2| �1�2 = h|~v1|

~v1

~v2

h

�1 = ↵|~v1|

�1 =
p

|~v1|2 + |~v2|2 +O(h2)



The first singular value

qN

qW

qS qE

•

•
qi

qk

Dh
0P�N = (~v1,~v2)

~v1 = ±~v2 = ±(qi � qk)

�1 = ↵|~v1|, ↵ = 1,
p
2• rank=1:



The first singular value

Dh
0P�N = (~v1,~v2)

• rank=2:

q1
~v1

~v2

h

q2

q3

h depends on the curvature of the underlying curve.

• Similar properties in 3D.

�1 =
p

|q1 � q2|2 + |q2 � q3|2 +O(h2)

�1 ⇡ |q1 � q2|+ |q2 � q3|+O(h2)



Concentration of the first singular value
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An algorithm that we disliked

• For the regime:  

• Build a directed graph, connecting the data points based on the 
analysis by the singular values 

• Sum the length of the edges or the area of triangles defined by 
the graph 

• Sums are exact for “nice” data sets: 

• More general data require further (ad-hoc) surgeries to the graph

� > �x

�
max

< ✏ < �1

�x ⌧ �min

[T-Wu:2015]



The proposed “quadrature”

S

N

=
X

{xj2hZd:�N (xj)<✏}

↵(r,�1, · · · ,�d

)K
✏

(|r�P�N r|)
d

0Y

j=1

�

j

(D�x

0 P�N r)�x

3



Total length of 100 filaments
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Total length of 100 filaments
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Surface area of a sphere

800 points randomly sampled in the spherical coordinates
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Uniformly sampled ellipse
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Summary and discussion

• This is an on-going investigation. Much to be improved. 

• An algorithm derived from volume integral formulation of line/
surface integrals 

• Use closest point mapping, and the singular values of its derivative 

• A finite difference stencil on a grid is used to explore the data 

•                                      measures with weights discussed above as 

• Use such insights to improve the summation algorithm 

• Solve integral equations/PDEs on point clouds directly?

�x ! 0�1(D
h
0P�N ) * ↵�V



Point Clouds

September 29, 2017

1 Analysis of the continuous KTT scheme

1.1 Some results on the continuous KTT for dense point

clouds

Let � be a curve or a surface and let �
N

be its sampled version. Also we let D0
h

denote the approximation of the Jacobian matrix of the closest point mapping
P� using central differencing.

Lemma 1. Let � be a straight line with angle 0  ✓ < ⇡

2 from the horizontal.

Then the non zero singular value of D0
h

(P�) is �1= 1.

Proof. We have

D0
h

(P�(·)) =
✓
P�(xi+1,j)� P�(xi�1,j)

2h
,
P�(xi,j+1)� P�(xi,j�1)

2h

◆

=

1

2h

⇣
~AB, ~CD

⌘
,

where the point A is the projection of x
i�1,j , B is the projection of x

i+1,j ,
C is the projection of x

i,j�1 and D is the projection of x
i,j+1. We denote the

distance between the point where the line crosses a vertical grid line and its
adjacent grid node above is ↵h with 0 < ↵ < 1. We need a picture here. Now

| ~G3A| = h(1 + ↵� tan ✓) sin ✓

| ~G2D| = (2h+ ↵h) sin ✓

|G2C| = ↵h sin ✓

| ~G1B| = (2h+ h tan ✓ � (1� ↵)h) sin ✓

| ~BG2| =
h

cos ✓
� | ~G1B|

| ~CG3| =
h

cos ✓
� | ~G2C|

| ~G3D| = | ~G2D|� h

cos ✓
.
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Now since | ~AB| = | ~AG3|+ | ~G2G3|+ | ~G2B| and | ~CD| = | ~CG3|+ | ~G3D|, we
obtain

| ~AB| = h(1 + ↵� tan ✓) sin ✓ +
2h

cos ✓
� (2h� h tan ✓ � (1� ↵)h) sin ✓

= �2h tan ✓ sin ✓ +
2h

cos ✓
= 2h cos ✓,

and

| ~CD| = h

cos ✓
� ↵h sin ✓ + (2h+ ↵h) sin ✓ � h

cos ✓
= 2h sin ✓.

Thus, if we let ~u =

✓
cos ✓
sin ✓

◆
be the direction of the line, we have

D0
h

(P�(·)) =
1

2h

⇣
~AB, tan ✓ ~AB

⌘
.

It follows that the non zero singular value of D0
h

(P�(·)) is

1

2h

p
1 + tan

2 ✓| ~AB| = 1

2h

1

| cos ✓|2h cos ✓ = 1,

since 0  ✓ < ⇡

2 . For a line, the non zero singular value of P 0
� is also 1. Thus,

if we have a curve with no curvature, the non singular value of the approximate
D0

h

(P�) is the same as the non zero singular value of the exact P 0
� .

Lemma 2. Let � be a straight line with angle 0  ✓ < ⇡

2 from the horizontal

and suppose that we have N points sampled from � . We denote that point set

by �

N

. In addition, we assume that the average distance between points in the

point set is � > 0. Then the non zero singular value of D0
h

(P�N ) is

1 +O

✓
�

h

◆
.

Proof. Let ~u =

✓
cos ✓
sin ✓

◆
be the direction of the line. Then we have

P�N (x
i+1,j) = P�(xi+1,j) + µ1~u

P�N (x
i�1,j) = P�(xi�1,j) + µ2~u

P�N (x
i,j+1) = P�(xi,j+1) + µ3~u

P�N (x
i,j�1) = P�(xi,j�1) + µ4~u.

Then

P�N (x
i+1,j)� P�N (x

i�1,j)

2h
=

P�(xi+1,j)� P�(xi�1,j)

2h
+

µ1 � µ2

2h
~u,
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and

P�N (x
i,j+1)� P�N (x

i,j�1)

2h
=

P�(xi,j+1)� P�(xi,j�1)

2h
+

µ3 � µ4

2h
~u.

Thu

D0
h

(P�N (x
i,j

)) =

 
~AB

2h
+

µ1 � µ2

2h
~u,

~CD

2h
+

µ3 � µ4

2h
~u

!

=

1

2h

⇣
~AB + (µ1 � µ2)~u, tan ✓ ~AB + (µ3 � µ4)~u

⌘

=

1

2h
((2h cos ✓ + (µ1 � µ2))~u,(2h sin ✓ + (µ3 � µ4))~u)

=

✓✓
cos ✓ +

µ1 � µ2

2h

◆
~u,

✓
sin ✓ +

µ3 � µ4

2h

◆
~u

◆
.

Thus, the non zero value of D0
h

(P�N (x
i,j

)) is

�1 =

s

(cos

2 ✓ + sin

2 ✓)(

✓
cos ✓ +

µ1 � µ2

2h

◆2

+

✓
sin ✓ +

µ3 � µ4

2h

◆2

)

=

s

1 +

µ1 � µ2

h
cos ✓ +

µ3 � µ4

h
sin ✓ +

✓
µ1 � µ2

2h

◆2

+

✓
µ3 � µ4

2h

◆2

.

We have µ
i

< � for 1  i  4. Now if we assume that � ⌧ h, i.e. if the
point cloud is dense with respect to the grid, then µ1�µ2

2h < �

h

⌧ 1. Similarly
for µ3�µ4

h

. Thus we can do a Taylor series expansion of �1 above to obtain

�1 = 1 +

1

2

cos ✓
µ1 � µ2

h
+

1

2

sin ✓
µ3 � µ4

h
+O

✓
�

h

◆2

⇡ 1 +O

✓
�

h

◆
.

Now if h < �, then the stencil will tend to see discrete points instead of the
underlying curve. Mathematically, this means that the Taylor expansion is not
valid and there is a larger error between the exact singular value (which is 1)
and �1.

Lemma 3. Let � be the semi circle centered at the origin with radius R. Then

the non zero singular value of D0
h

(P�) is

�1 =

R

R+ ⌘
+O(h2

),

where the non zero singula value of P 0
� is

R

R+⌘

.

Proof. For simplicity in the calculations and WLOG we take the grid node x
i,j

to be the point (0, R+⌘). Then we have P�(xi,j�1) = P�(xi,j+1) = (0, R). Also
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we have

P�(xi�1,j) =

✓
R sin

✓
arctan

✓
h

R+ h

◆◆
, R cos

✓
arctan

✓
h

R+ h

◆◆◆

P�(xi+1.j) =

✓
�R sin

✓
arctan

✓
h

R+ h

◆◆
, R cos

✓
arctan

✓
h

R+ h

◆◆◆
,

which can be rewritten as

P�(xi�1,j) =

 
Rhp

(R+ ⌘)2 + h2
,

R2
+R⌘p

(R+ ⌘)2 + h2

!

P�(xi+1.j) =

 
�Rhp

(R+ ⌘)2 + h2
,

R2
+R⌘p

(R+ ⌘)2 + h2

!
,

leading to

P�(xi+1,j)� P�(xi�1,j) =

 
2Rhp

(R+⌘)2+h

2

0

!
,

and therefore to

D0
h

(P�(xi,j

)) =

 
Rp

(R+⌘)2+h

2
0

0 0

!
.

Thus the non zero singular value of D0
h

(P�(xi,j

)) is

�1 =

Rp
(R+ ⌘)2 + h2

.

Since h ! 0, we can use a Taylor expansion on �1 to obtain

�1 =

R

R+ ⌘

✓
1� 1

2

h2

(R+ ⌘)2
+O(h4

)

◆
=

R

R+ ⌘
+O(h2

).

Lemma 4. Let � be the semi circle centered at the origin with radius R and

suppose that we have N points sampled from �. We denote that point set by �

N

.

In addition, we assume that the average distance between points in the point set

is � > 0. Then the non zero singular value of D0
h

(P�N ) is

�1 ⇡ R

R+ ⌘
+O(h2

) +O

✓
�

h

◆
.

Proof. For simplicity in the calculations and WLOG we take the grid node x
i,j

to be the point (0, R + ⌘). ⌘ also corresponds to the distance between the grid
point x

i,j

and �. Then we have P�N (x
i,j�1) = P�N (x

i,j+1) = P�(xi,j�1) + µ1~v,
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where ~v is a unit vector the direction of which is the same as the vector
between the point P�(xi,j�1) which is the exact closest point to either x

i,j�1 or
x
i,j+1 and the closest point on the point set P�N (x

i,j�1) (or P�N (x
i,j+1)).

We also have

P�N (x
i+1,j) = P�(xi+1,j) + µ2 ~w,

P�N (x
i�1,j) = P�(xi�1,j) + µ3~z,

where both ~w and ~z are unit vectors the direction of which is the same
as the direction of the vector between the point P�N (x

i+1,j) and P�(xi+1,j)

(respectively between P�N (x
i�1,j) and P�(xi�1,j)). Thus

P�N (x
i+1,j)� P�N (x

i�1,j)

2h
=

P�(xi+1,j)� P�(xi�1,j)

2h
+ µ2 ~w � µ3~z,

P�N (x
i,j+1)� P�N (x

i,j�1)

2h
=

~
0.

Note that µ2 is the length along a straight line between P�N (x
i+1,j) and

P�(xi+1,j), and similarly for µ3. If we want to know the length between P�N (x
i+1,j)

and P�(xi+1,j) along the curve (here the semi circle) we can use the Al Kashi
Theorem to obtain

s2 = R arccos

✓
1� µ2

2

2R2

◆
.

Since µ2 is small, we can do a Taylor expansion of that expression to obtain

s2 =

r
2

µ2
2

2R2
+O

�
µ3
2

�
= µ2 +O(µ3

2),

which is good because we expect s2 to be of order µ2. Same result for µ3

and s3. Thus we don’t lose any relevant information by looking at distances
along straight lines instead of along the curve.

Now let ~w =

✓
w1

w2

◆
and ~z =

✓
z1
z2

◆
. Then we can write

D0
h

(P�N (x
i,j

)) =

 
Rp

(R+⌘)2+h

2
+

1
2h (µ2w1 � µ2z1) 0

µ2w2�µ3z2

2h 0

!
.

It follows that the non zero singular value of D0
h

(P�N (x
i,j

)) can be written
as

�1 =

vuut
 

Rp
(R+ ⌘)2 + h2

+

1

2h
(µ2w1 � µ2z1)

!2

+

✓
µ2w2 � µ3z2

2h

◆2

=

vuut
 

Rp
(R+ ⌘)2 + h2

!2

+ 2

Rp
(R+ ⌘)2 + h2

1

2h
(µ2w1 � µ2z1) +

✓
µ2w1 � µ3z1

2h

◆2

+

✓
µ2w2 � µ3z2

2h

◆2

=

Rp
(R+ ⌘)2 + h2

vuut
1 +

µ2w1 � µ3z1
hR

p
(R+ ⌘)2 + h2

+

(R+ ⌘)2 + h2

R2

 ✓
µ2w1 � µ3z1

2h

◆2

+

✓
µ2w2 � µ3z2

2h

◆2
!
.
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If we assume that the point cloud is dense relative to the grid, i.e. µ
i

⌧ h,
we can use a Taylor series expansion to simplify the above formula and see the
dominating term. In that case, we obtain

�1 ⇡ Rp
(R+ ⌘)2 + h2

 
1 +

1

2

 
µ2w1 � µ3z1

hR

p
(R+ ⌘)2 + h2

+

(R+ ⌘)2 + h2

R2

 ✓
µ2w1 � µ3z1

2h

◆2

+

✓
µ2w2 � µ3z2

2h

◆2
!!!

⇡ Rp
(R+ ⌘)2 + h2

+

µ2w1 � µ3z1
2h

⇡ R

R+ ⌘
+O(h2

) +O

✓
�

h

◆
,

since µ
i

are of the same order as �, the average distance between points in the
clouds. Of course, if h > µ

i

, then the above Taylor expansion does not hold.

Lemma 5. Let � be the semi circle centered at the origin with radius R and

suppose that we have N points sampled from �. We denote that point set by �

N

.

In addition, we assume that the average distance between points in the point set

is � > 0 and that the point set is dense with respect to the grid, i.e. � ⌧ h.
Then the error in the KTT formulation is

O(h2
) +O

✓
�

h

◆
.

Proof. For �, the KTT formulation can be written as

h2
X

x:d(x)✏

f(d(x))�(x)K
✏

(d(x)),

where ✏ > 0 represents the half width of the tubular neighborhood around �,
f is the function we are integrating along � , d is the distance function to � ,
�(x) is the non zero singular value of the Jacobian matrix of the closest point
mapping at x and K

✏

is an averaging kernel. For the point set �

N

we will be
summing all grid points that are located at a distance less or equal to the point
set. In general, this will not be a tube around the point cloud but if the pont
cloud is dense enough (which is our assumption) it will. We have the following:

K
✏

(d(x)) =
1

✏
K

✓
d(x)

✏

◆
,

where K : [0, 1] 7! R is bounded. Now at any grid point, from the previous
theorem we know that

�(x
i,j

) = �1 =

R

R+ ⌘
+O(h2

) +O

✓
�

h

◆
,
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thus it follows that if we assume f is continuous, we have

KTT ⇡ h2

✏

X

xi:d(xi)✏

�1

⇡ h2

✏

X

xi:d(xi)✏

✓
R

R+ ⌘
+O(h2

) +O

✓
�

h

◆◆
.

Now how many points do we have in the “tubular neighborhood” of �
N

? Let n
g

be the number of grid points in the set . If we assume that the point cloud is
dense with respect to the grid size h, then can consider the tube around �

N

to
be similar to the tube around �. Then in that case (since we have a semi circle),
we have

2✏2⇡R+ ⇡✏2 ⇡ n
g

h2,

and thus n
g

⇡ O
�

✏

h

2

�
+O

⇣
✏

2

h

2

⌘
. If we assume that ✏ = O(h), then ✏

h

2 dominates
and thus

n
g

⇡ O
⇣ ✏

h2

⌘
.

Thus we obtain

KTT ⇡ h2

✏

0

@
X

xi:d(xi)✏

R

R+ ⌘
+

✏

h2

✓
O(h2

) +O

✓
�

h

◆◆1

A ⇡ h2

✏

X

xi:d(xi)✏

R

R+ ⌘
+O(h2

)+O(

�

h
).

1.2 Looking at a hole in 2D

We are in the regime h < � < ✏.

1.2.1 A line

Suppose now that � is a line and consider two points in the point set �

N

. We
want to estimate the order of accuracy of KTT for grid points that see those two
points. WLOG, we assume x1 = (� �

2 , 0) and x2 = (

�

2 , 0). Since the search radius
is ✏ > �, the grid points that see these two points will be inside the intersection
of the circle C1 centered at x1 with radius ✏ and the circle C2 centered at x2

with radius ✏. We want to estimate the number of grid points that only see the
two points x1 and x2, i.e. the grid points that straddle the Voronoi boundary
between the Voronoi cell that contains x1 and the Voronoi cell that contains
x2. For the line, the Voronoi boundary will be the line perpendicular to the line
segment x1x2. To estimate the number of grid points that straddle this Voronoi
boundary we first estimate the area of the region inside C1 \ C2 centered at
(0, 0) and with width h in the horizontal direction. This area can be calculated
as
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A =

Z
h

0

r
✏2 � (x+

�

2

)

2dx

=

✏2

2

✓
arcsin

✓
h

✏
+

�

2✏

◆
� arcsin

✓
�

2✏

◆◆
+

✏2

4

✓
sin

✓
2 arcsin

✓
h

✏
+

�

2✏

◆◆
� sin

✓
2 arcsin

✓
�

2✏

◆◆◆

Note that this area A is only a quarter of the total area where the grid points
straddling the Voronoi boundary are located. Thus, an estimate for the number
of grid points straddling the Voronoi boundary is

N =

�
4A

h2

⌫
.

Now, since h < � < ✏, we have h

✏

< 1 and �

✏

< 1. Suppose that h < � < ✏ are
such that h

✏

+

�

2✏ < 1, then we use the following series expansions

arcsin(x) = x+O(x3
) sin(2 arcsin(x)) = 2x+O(x3

),

we obtain the following estimate for A :

A =

✏2

2

 
h

✏
+

�

2✏
� �

2✏
+O

 ✓
�

✏

◆3
!!

+

✏2

4

✓
2

✓
h

✏
+

�

2✏

◆
� 2

�

2✏
+O

✓
�3

✏

◆◆
= ✏h+O

✓
�3

✏

◆

Thus an estimate for the number of grid points is

N = 4

�
✏

h
+O

✓
�3

h2✏

◆⌫
.

Now it is easy to see that the non zero singular value of D0
h

(P�N (x
i,j

)) is

�1 =

| ~BA|
2h

,

where x
i,j

is a grid point straddling the Voronoi boundary. Thus when using
KTT we obtain the following estimate

KTT = O

✓
h2

✏
�1N

◆
= O

✓
h2

✏

�

h

✏

h

◆
= O(�).

So KTT calculates an expression of order � which is the length of the line
between those two points x1 and x2.

1.2.2 A circle of radius R

Now we want to look at the same situation of a hole but with a curve that
has curvature. For simplicity, let’s consider � to be a circle of radius R, and
consider two consecutive points on the point set �

N

. Assume that the length of

8



the line segment between x1 and x2 is �. We will try to estimate the number
of points that only see those two points on �

N

. The Voronoi boundary is part
of the semi-line perpenticular to the line segment x1x2 starting at the center
of the circle. To estimate the number of grid points that straddle the Voronoi
boundary as again estimate the area of the region where these grid points are
located. Note that the calculation is the same as previously for the area that is
“outside” the circle. For the area “inside” the circle, it is a little bit different if
R < ✏, i.e. the search radius is larger than the curvature of the curve.

If R > ✏, then the calculations are the same as above and the calculations
at these grid points using KTT are O(�).

If R < ✏, then we need to alter our calculations of the area “inside” the circle.
In that case, instead of looking at the circles of radius ✏ centered at x1 and x2

, we look at the circles of radius R centered at x1 and x2.
The calculations are thus similar as above but ✏ is now replaced by R. Thus

we get the following estimate for the total area (corresponding to 4A for the
line):

A = 2✏h+ 2Rh+O

✓
�3

✏

◆
.

Thus an estimate for the number of grid points that straddle the Voronoi
boundary is

N =

�
A

h2

⌫
= 2

✏

h
+ 2

R

h
+O

✓✓
�3

✏h2

◆◆
.

Now, similar to the case of a line (since the grid points do not see the
curvature of the underlying curve), the non zero singular value of D0

h

(P�N (x
i,j

))

is still

�1 =

| ~BA|
2h

,

where x
i,j

is a grid point straddling the Voronoi boundary. Thus when using
KTT, we obtain the following estimate

KTT = O

✓
h2

✏
�1N

◆
= O

✓
h2

✏

�

h

✓
✏

h
+

R

h

◆◆
= O (�) +O

✓
�R

✏

◆
.

Since R < ✏, we have that R

✏

< 1 and therefore

KTT = O(�)

just like the line. So even with curvature, KTT calculates an expression of
order � which is the length of the line between the two points x1 and x2 on the
point set �

N

.
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