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Statement of the problem studied 

 

A group of theoretical and mathematical biologists gathered in Salt Lake 

City on Dec 13-14, 2015 to take on the official charge of establishing 

the fundamental principles of mathematical biology and set the course 

for the field for the remainder of this century. 

 

Summary of the most important results 

 

The theme that emerged was that of stochasticity, whether rightly called 

noise, variability, or unpredictability, and its effects on the 

availability and storage of information.  This variability is rarely 

just unstructured noise imposed by the external environment.  Some is 

generated by organisms or cells themselves, for example when plants 

modulate the rates and magnitudes of system-resetting fires, or when 

cells use stochasticity in production of RNA transcripts or protein 

molecules to generate phenotypic diversity in their genetically 

identical descendents.  Furthermore, variability has structure in the 

form of predictable ranges of temporal frequencies and spatial scales, 

as with ocean waves, pulses of odor in a turbulent plume, and daily or 

seasonal cycles.  The sizes of organisms and cells and the temporal 

scales at which they function determine how the stochastic and 

predictable variation in their world affects them, and which they in 

turn can affect.  

 

The challenges and opportunities of noise and variability influence all 

living beings, including the mathematical biologists who think about 

them. Clear thinking about how life persists and flourishes in a noisy 

world demands that we develop new methods to capture these mechanisms 

without being overwhelmed by real or apparent complexity. 

 

We discussed many ways that living beings cope with or capitalize on 

noise, each of which raises new challenges for modelers.  Networks can 

be compartmentalized to contain error propagation, tasks can be 

outsourced to other organisms, such as our gut bacteria, to let them 

suffer the consequences of errors, and dynamics can be tuned, through 

such newly understood mechanisms like miRNA, to produce novel forms of 

robustness.  Responding appropriately depends on gathering information 

from a recalcitrant world, with many mechanisms falling under an 

umbrella related to the Brownian ratchet, searching physical or 

information space through a random walk, but with periodic evaluation to 

effectively control randomness, and organismal control over the timing 

and magnitude of steps.  For example, small organisms can capitalize on 

micro-scale information in fluids and biochemistry, and cells can use 

diffusion as a source of information when patterns are sharpened through 

filters and positive feedbacks. 

 

As scientists, we must formulate principles and models that capture 

stochasticity as part of the process, rather than as extrinsic noise. 

In some sense, like all organisms, we must continually solve inverse 

problems, extracting information even when we know that details and 

specific mechanisms are non-identifiable or lost in the haze of the 

past.  The ease of collecting huge biological datasets at all scales 

raises an acute problem: what mechanistic parameters can, even in 



principle, be determined and from what types of data? We cannot simply 

assume that sufficient data can resolve any biological problem, because 

there are already examples of massive data collection efforts that are 

provably unable to distinguish between alternative underlying processes. 

Mathematically, we can approach these challenges with methods to predict 

the dynamics of distributions, not just individuals, and ideally 

understanding informative underlying patterns such as the relationship 

of sample means to sample variances.  Alternatively, we can seek 

simplicity amidst the complexity through finding how networks are built 

from relatively simple network motifs to create robust dynamics. 

 

These issues have implications beyond basic scientific understanding. 

If ensembles, ranging from groups of cells to collections of 

individuals, provide one way to cope with noise and integrate 

information, they create problems of their own regarding maintenance of 

cooperation, including avoiding the tragedy of the commons and breakdown 

of collective regulation, such as in cancer.  The hidden potential of 

those individuals can backfire, such as when cancer cells recall the 

tricks they used as single-celled organisms to survive the challenges of 

an unpredictable environment to evade the controls of the whole 

organism. 

 

Addressing these challenges demands not just new techniques or even new 

ways of thinking, but also new structures to support progress and new 

ways to frame the goals of our enterprise.  We tend to think of 

scientific success in terms of identifying a novel mathematical approach 

that makes sense of stochasticity and making predictions that could not 

be made before, ideally while simultaneously elucidating new mechanisms 

and proposing new experiments.  The meeting concluded with a discussion 

of new approaches to these challenges, ranging from working more closely 

with engineering methods to high throughput data. 
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