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1. Introduction 

Recently, there has been a tremendous boom in the application of descriptive and 
inferential statistical techniques (more popularly known as “machine learning”) in 
a number of fields. The medical industry is using machine learning (ML) and 
healthcare analytics to assist physicians in the clinical decision-making process.1 
Materials scientists are using ML to design molecules that have specific properties 
and function.2 From speech recognition,3 fraud prevention,4 spam email filtering,5 
unmanned vehicle operation,6 finance,7 and even drunk driver detection,8 ML has 
now become an indispensable tool impacting multiple fields and industries.  

Computational chemistry is also reaping benefits from ML and it has been used to 
develop parameters for semi-empirical quantum mechanical (QM) Hamiltonians9 
and for interpolation of ab initio potential energy surfaces.10 The latter application 
is particularly appealing as it provides a route toward rapid evaluation of 
configurational energies and forces using statistical methods that potentially have 
a QM level of accuracy. Further, since most ML methods only rely on the 
underlying training data for prediction (hyperparameters and assumptions of 
statistical distributions aside), they may not suffer the same maladies that plague 
conventional functional forms such as Tersoff bond order potentials that fail at high 
pressure due to discontinuous changes in the bond-order term.11 

ML representations of QM potential energy surfaces have been developed using a 
variety of ab initio methods including density functional theory (DFT) and coupled 
cluster theory for covalently bonded systems. However, for energetic molecular 
crystals of interest to the Army, accurate representation of noncovalent interactions 
is critical. Gao et al.12 used ML to develop van der Waals corrections for DFT. 
McGibbon et al.13 developed a hybrid ML and QM methodology for computation 
of interaction energies where a neural network, trained using coupled cluster 
reference data, was used to correct Moller-Plesset (MP2) interaction energies. 
Using this combined approach, they obtained a 6-fold improvement in accuracy 
relative to conventional MP2.  

Given the importance of noncovalent interactions in energetic molecular crystals, 
Army scientists have focused on development and application of QM approaches 
that can accurately describe weak electron correlations (“dispersion”) between 
molecules. One successful technique uses a combination of DFT and symmetry-
adapted perturbation theory (SAPT) known as SAPT(DFT).14 In SAPT(DFT), the 
intramonomer correlation is treated through the exchange-correlation density 
functional yielding a single perturbative series representing the intermolecular 
interaction which, when combined with resolution of the identity techniques, 
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reduces the computational scaling. Accurate dispersion energies, of particular 
importance for the interlayer interactions in molecular crystals, are obtained via 
application of the generalized Casimir-Polder expression with frequency dependent 
density susceptibilities computed within the coupled Kohn-Sham approach. Given 
its combination of accuracy and efficiency, SAPT(DFT) has been used to develop 
intermolecular potentials for the cyclotrimethylene trinitramine,15 1,1-diamino-2,2-
dinitroethylene,16 and 1,3,5-triamino-2,4,6-trinitrobenzene17 (TATB) energetics 
using conventional functional forms such as exponential-6 (Exp-6).  

In this work, the previously computed SAPT(DFT) reference data for TATB were 
used to develop new intermolecular potentials using 3 ML methods: 

• Support vector regression18 

• Kernel ridge regression19 

• Neural networks20 

These ML models differ from the previous work17 that used a parametric function 
of Exp-6 form to fit the SAPT(DFT) reference data. The Exp-6 potential requires 
168 descriptors for each dimer configuration (144 Cartesian coordinates and 24 
charges) as input. On the contrary, the new ML models use a reduced descriptor set 
and only require 6 input variables: the center of mass separation between monomers 
(R) and 5 Euler angles defining the monomer orientations. The ML models were 
applied to potential energy surface cross sections of minima reported in the 
previous work.17 It is observed that stable dimer configurations are accurately 
described by the ML models and that support vector regression (SVR), kernel ridge 
regression (KRR), and neural networks can be used to accurately interpolate 
SAPT(DFT) surfaces.  

2. Computational Methods  

2.1 Quantum Mechanical Reference Data 

The ML methods were trained using a grid of 880 randomly configured TATB 
dimer configurations computed previously using SAPT(DFT). Full details of the 
SAPT(DFT) calculations are given in Taylor17. In summary, the geometry of the 
TATB monomer (Fig. 1) used in the calculations was taken from the experimental 
unit cell and all interaction energy calculations used an aug-cc-pVDZ basis 
supplemented by a set of 3s(α = 0.9,0.3,0.1) 3p(α = 0.9,0.3,0.1) 2d(α = 0.6,0.2) 
2f(α = 0.6,0.2) “midbond” functions with a PBE0 density functional description of 
the monomers. In the previous work,17 the SAPT(DFT) interaction energies were 
fit to an Exp-6 functional form using the PIKAIA21 genetic algorithm with a 



 

Approved for public release; distribution is unlimited. 
3 

population of 100 individuals that evolved for 500 generations. Fitness scoring of 
the individuals in the population was given by the magnitude of the root mean 
square deviation between the fitted and reference interaction energies.  

 

Fig. 1 Molecular and condensed phase structure of TATB. Carbons are green, nitrogens 
are blue, oxygens are red, and hydrogens are white. 

2.2 Machine Learning Methods 

Using the SAPT(DFT) reference energies, 3 ML potentials were developed using 
SVR, KRR, and a neural network of radial basis functions. The SVR and KRR 
potentials were developed using the sklearn22 modules available in Python and the 
neural network was implemented from scratch using Python code developed by the 
author.  

2.2.1 Support Vector Regression 

SVR is an extension of the support vector classifier and is used for prediction of 
quantitative instead of categorical variables.18 In general, given a set of predictor 
variables x, one wishes to optimize the weights w, and intercept b, of the following 
function: 

 𝑦𝑦(𝑥𝑥) = 𝑤𝑤∅(𝑥𝑥) + 𝑏𝑏 , (1) 
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where ∅(𝑥𝑥) is a transformation of the feature space. The weights and intercept are 
obtained by minimizing the constrained objective function: 

 min
𝑤𝑤

�1
2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)𝑖𝑖 �  

 𝑠𝑠. 𝑡𝑡.�
𝑦𝑦𝑖𝑖 − 𝑤𝑤∅(𝑥𝑥) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖
−𝑦𝑦𝑖𝑖 + 𝑤𝑤∅(𝑥𝑥) + 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗

𝜉𝜉𝑖𝑖 ≥ 0 ;  𝜉𝜉𝑖𝑖∗ ≥ 0
 , 

(2)
 

where C, ε, and ξ collectively control the maximum allowable error. The feature 
space can be expanded by reformulating the above expressions in terms of dot 
products of the predictors x. When written in terms of dot products, one can then 
take advantage of the “kernel trick”, which allows sampling of transformed feature 
spaces of increased dimension (infinite for some kernels) without having to 
explicitly sample the larger space. In this work, the radial basis function kernel was 
used: 

 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥) = 𝑒𝑒−𝛾𝛾‖𝑥𝑥𝑖𝑖−𝑥𝑥‖2 , (3) 

and the parameters C and 𝛾𝛾 in Eqs. 2 and 3, respectively, were determined using 
cross-validation (discussed in Section 2.2.4). 

2.2.2 Kernel Ridge Regression  

KRR can be derived from Eq. 2 by ignoring the bias term b, setting ε = 0, and 
squaring the “slack variables” ξ. This yields the following expression: 

 min
𝑤𝑤

{𝑎𝑎‖𝑤𝑤‖2 + ∑ [𝑦𝑦𝑖𝑖 − 𝑤𝑤∅(𝑥𝑥)]2𝑖𝑖 } , (4) 

where a serves as a regularization parameter. KRR is also amenable to the kernel 
trick, and the radial basis function kernel of Eq. 3 was also used with 
hyperparameters determined by cross-validation.  

2.2.3 Neural Network 

Neural networks generally consist of input and output layers that are separated by 
hidden layers with nodes adjoined by weighted connections (Fig. 2). The weights 
can be determined by minimization of a loss function (squared error for example) 
using back propagation20 for analytically differentiable activation functions or with 
stochastic optimization methods such as genetic algorithms.23 In this work, a feed-
forward network was developed using one hidden layer of radial basis functions, 
centered on the SAPT(DFT) reference configurations, with a vector containing the 
center of mass separation and Euler angles fed into the input layer. When using a 
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single input node and one hidden layer, the weights of the network can be solved 
analytically by inversion of the Gram matrix K(x, x') that is computed using the 
radial basis function kernel in Eq. 3. The exponent γ defining the Gram matrix was 
determined by cross-validation and all basis functions used the same exponent. 

 

Fig. 2 General schematic of a neural network showing input nodes, hidden layer, and 
output node with weighted connections 

2.2.4 Cross Validation 

The hyperparameters for each model were determined by splitting the SAPT(DFT) 
reference data into a training set (766 configurations) and test set (86 
configurations) followed by a grid search over hyperparameters to maximize the 
coefficient of determination (Q2) for the test set. Correlation plots for the test set 
using each ML method are shown in Fig. 3 and the best agreement for this test set 
was obtained using KRR with Q2 = 0.85. The out-of-sample performance for each 
ML potential is deemed acceptable given the paucity of geometric information used 
as input for each configuration. The fits could likely be improved by using the full 
set of Cartesian coordinates for each configuration, thereby increasing the 
dimension of the predictor space. However, given that SAPT(DFT) is a rigid 
monomer, intermolecular theory, the internal coordinates would be somewhat 
extraneous in the current context. 
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Fig. 3 Interaction energy correlation plots for SVR, KRR, and neural network potentials 
on test set with 86 configurations 

3. Potential Energy Surface Characterization  

The ML potentials were used to compute potential energy surface cross sections of 
8 stable configurations of TATB dimers previously identified in Taylor.17 The 
structures and cross sections using the ML potentials, the Exp-6 potential from 
Taylor,17 and the SAPT(DFT) energies are presented in Figs. 4 and 5. As shown, 
the topology of the ML potential energy surfaces are in good agreement with the 
ab initio data and stable minima on the ab initio surface are also present on the ML 
surfaces. Clearly one cannot locate all minima on the surface nor can it be 
guaranteed that all minima on the fitted surfaces correspond to minima on the ab 
initio surface. However, for the configurations presented in Taylor,17 the ab initio 
potential energy surface is well characterized by the ML potentials. 
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Fig. 4 Potential energy surface cross sections for nitro and amine substituent interactions 
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Fig. 5 Potential energy surface cross sections for ring interactions 

4. Conclusion 

Although the ML potentials perform well for the stationary points presented in this 
work, as with any fitted model, there will be regimes where the accuracy is less 
than optimal. As an example, during testing it was observed that at a large 
intermonomer separation (R>12 angstrom) for some sample configurations, the 
SVR potential had a non-zero (but still small) interaction energy of approximately 
–0.1 kcal/mol. This is to be compared to the KRR and RBF potentials that predicted 
energies of magnitude less than 10-10 kcal/mol, as one would generally expect at 
large separation. This is likely due to a diffuse exponent used in the radial basis 
function kernel of the SVR potential that results in non-negligible contributions to 
the interaction energy, even at large separation. In practice, this could be remedied 
by including more asymptotic points in the training set to obtain a better exponent 
for the kernel or by simply using a cutoff for the potential.  

It is possible to re-fit the ML potentials using Cartesian coordinates for the dimers 
instead of the reduced set of descriptors used in this work. Cartesian potentials, and 
the associated forces, could then be used to perform molecular dynamics  
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simulations to determine if the ML potentials can accurately reproduce the 
condensed phase crystal structure. This work is underway and will be the subject 
of a future report.  
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