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1. Introduction 

Machine learning (ML), broadly defined, is a class of computer algorithms that 
automatically optimize parameters to process a given input and yield a desired 
output. A classic example of ML is linear regression whereby a line is found that 
optimally fits (passes through) a set of points. A more recent example of ML is a 
classification task such as labeling a million-pixel image with a single word like 
“cat”. 

For many applications, ML accomplishes the same tasks that a human could do just 
as well. However, ML shines in 2 cases: 1) when the number of tasks is unwieldy, 
say, in the millions, and/or 2) the dimensionality of the problem is beyond the 
understanding of the human mind. A simple example of a task that a human could 
do, but would be too difficult, is to simultaneously monitor thousands of security 
cameras in real time looking for suspicious behaviors. Perhaps an ML approach 
could spot anomalous events and share only those video clips with human watchers. 
Better yet, the anomalous images could be tentatively labeled with words such as 
“masked intruder at Entrance #1” to aid the security guard in only focusing on 
pertinent information. 

In addition to reducing the burden for humans, ML can piece together complex 
interconnections that a human might not recognize. For example, an ML algorithm 
could detect that out of a million bank accounts, 5 of them seem to have transactions 
in sync with each other even though they are not sending or receiving money to 
each other or to a common third party. 

Given ever-increasing computational resources for both handheld and stationary 
devices, it behooves us to imagine where ML can transform how wars are fought. 
Certainly ML is already having an impact on scientific research within the US 
Army, but one can also easily imagine operational applications such as autonomous 
vehicles and improved surveillance.  

The primary goal of this document is to inspire personnel within the Army and 
Department of Defense to think about what could be possible with ML and what 
research investments may be fruitful to achieve those possibilities. 

2. A Quick Tour of Machine Learning Algorithms 

For the purposes of our discussion, ML methods can be roughly divided into 4 
categories: supervised learning, unsupervised learning, semi-supervised learning, 
and reinforcement learning. 
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2.1 Supervised Learning 

In supervised learning, training data has labels that are considered true statements 
(a.k.a. ground truth). An example of labeled data would be a series of pictures of 
dogs and cats where each picture has a corresponding notation as “dog” or “cat”. A 
machine learning algorithm, once trained, would attempt to determine the correct 
label based on just looking at the picture (i.e., pixel values). Many of the rapid 
advances in recent years for machine learning have resided in the realm of 
supervised learning. 

One specific advance is deep neural networks (a.k.a. deep learning). Essentially, 
complex mathematical functions (i.e., artificial neural networks or ANNs, for short) 
are optimized (trained) to convert high-dimensional data (e.g., an image) into 
something as simple as a label. This would be an example of a classification task. 

2.1.1 Decision Trees 

Decision trees (DTs)1 are a supervised learning method used for classification and 
regression. Earlier uses of DTs were in operations research and as analytical 
decision support tools. A DT appears more like an inverted tree. A decision process 
starts at the ground level and can reach, via different branches, any leaf that 
represents the final decision. However, in practice a DT works like a flow chart 
with many decision nodes and paths comprising the decision processes for arriving 
at the final decisions. Decision trees are thus multiclass classifiers. They can handle 
both real and binary data and are simple to interpret and visualize. DTs are used to 
give statistical interpretation by combining the probabilities along the decision 
paths and in the process are used to discover critical events. Other scenarios can be 
added easily and DTs can be combined. 

Among drawbacks, DTs can become unstable even with small variations in the data 
where completely different DTs can emerge. They can become large and complex 
and are prone to overfitting. Furthermore, if some events dominate, the DTs can 
also become biased. The cost of using a DT is exponential in the number of decision 
points. ID3 is a popular algorithm and the decision events are chosen on the basis 
of maximum possible information gain.2 Greedy algorithms are used with emphasis 
on local knowledge at the internal nodes to reduce cost.3 Unfortunately, globally 
optimal DTs elude such a process. Still, multiple suboptimal DTs can be postulated 
and combined as classifiers in an ensemble learning. 

Although a DT can be thought of as a navigator through a maze of decision events, 
DTs are put to use in designing complex industrial plant operation systems, aircraft 
navigation systems, self-driving cars, and so on. An example, cited in Russell and 
Norvig,4 illustrates how an automated flight controller for a Cessna was designed 
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and why it performed better than humans. Faced with the choice of designing from 
the unwieldy application of the first principles of flight controls, aerodynamics, 
blade propulsion, and so on, the designers turned to test pilots who put the plane 
through a set of maneuvers and mapped the results back to learn the science of 
flying. The flight control DT was extracted using the C4.5 system.5 

2.1.2 Bayesian Learning 

In Bayesian Learning (BL), the most probable hypothesis, h, is sought given data, 
D, and some domain knowledge.6 The familiar Bayesian theorem, 

 
, (1) 

gives the maximum a posteriori hypothesis and is difficult to use. Most often the 
maximum likelihood hypothesis, P (D|h), is used and sought assuming a uniform 
prior, P (h). If the error in the known output space is Gaussian, then the likelihood 
hypothesis assures an error minimization in the sense of the sum of the squared 
error (similar to linear regression). Therefore, conventional back propagation, 
gradient descent methods, and even regularization efforts to control the variance in 
neural nets are seen as a particular application of BL. 

Because BL deals in probabilities, computing confidence levels is easy for both the 
regression and classification outputs. In fact, BL is applied to develop the neural 
networks (NNs) and study their results in the model space (M) addressing the 
following issues in a rigorous manner: 

• the distribution of weights given the data (D) is analyzed over a set of 
models (M), P (w|D, M), 

• the distribution of outputs given the data (D) is analyzed over a set of 
models (M), P (y|D, M), 

• and the distribution of models given the data, P (M|D). 

The maximum a posteriori hypothesis is also interpreted using information theory 
as a sum of 2 lengths: 

• a length representing the miscalculation error in the model, and 

• the length representing complexity in the NN model (or size of the 
hypothesis). 

There are many proposed algorithms called “Minimum Description Length” to 
handle the tradeoff in the model prediction error and model complexity.7 
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BL methods are applied in medical research and molecular biology where data is 
sparse. This may be because of the experimental protocols. Although useful for 
assessing many aspects of the ML algorithms, BL methods are difficult to apply 
directly and are combined with simulation-based Monte Carlo–like techniques. In 
general problems, noise is not always Gaussian. Other probability distributions are 
complex to arrive at and numerical integration over a large number of input variable 
space or parameter space becomes difficult. Researchers are using Monte Carlo 
simulations to overcome this difficulty. 

2.1.3 Bayesian Inference and Belief Networks 

Bayesian inference was used first8 in Bayesian networks (BNs) to arrive at the 
probability for a final decision. The architecture for a BN looks a lot like that of 
any NN, but it does not work quite in the same way as in an NN. BNs are edges in 
a Bayesian probability-informed DT. BNs are pruned by invoking the inference 
from the conditional probability independence, drastically removing many decision 
events that feed into the decision path. As one traverses along the path of the 
decision events, a probability dependence is implied on the prior events but not a 
physical dependence. Because of the pruning done, there is always a finite but low 
probability for a negative decision. In practice, many decision events are not binary. 

Probability inference can jump over decision events, like C depends on B and B 
depends on A but C also depends on A (directly), that is, not sequentially. Also, 
new conditional events can feed into the decision events partway on the BN 
decision paths. So BN graphs are topological and acyclical. BNs are therefore 
called graphical models or belief networks.9 While a strong prior knowledge is a 
must for the construction of BNs, it also alleviates the difficulty of overcoming 
sparsity of knowledge on some decision events. BNs are used to dynamically 
update the probability distribution as new evidence comes in. 

BNs are implemented via hidden Markov models (HMMs) in speech recognition 
and text processing. Central to the development of HMMs is the assumption that 
the transition probability for the next transient state in a Markov chain depends only 
upon the current state and not the previous ones. Discarding prior dependencies 
makes predicting the future state difficult, but the training is continued under the 
assumption that the statistical nature of the state remains time invariant. A 
description of HMMs can be found in Jurafsky and Martin.10 BNs are now used in 
many other fields as well, such as engineering, physical sciences, medicine, sports, 
and law. 
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2.1.4 Naïve Bayes 

While BNs give the probability for a final event using the conditional probability 
of the many prior events, a reverse application of the Bayesian principle is used 
with great success in classification problems via Naïve Bayes. Assuming all 
attributes in the final event are independent of each other, then the reverse 
application allows for an updating of the classification (maximum a posteriori 
value) for the prior event given a new sample of the attributes’ values.  

It appears very simple and widely used in consumer enterprises and social network 
enterprises; however, because probabilities for some attributes can become zero, 
updating can become tenuous at times. The individual attribute probabilities must 
be smoothed out to avoid making a null classification. Naïve Bayes started 
originally in text retrieval.11 It is now also used in automated medical diagnosis 
systems. 

2.1.5 Regression 

While linear regression leads to quantitative outcomes (e.g., fitting a line through a 
set of points), logistic regression is used for binary classification. The former 
method can be made to work for the multiclass classification by channeling the 
quantitative outcome into selected ranges. 

There are 2 issues in applying linear regression in ML. The first one is overfitting, 
which occurs when the number of features drop down to 10 or less per weight from 
the hypothesis. The second one is the computation, which when the number of 
features runs into millions can become challenging. To overcome these issues, 
regularization techniques have been developed which, in addition to reducing the 
model prediction error, also seek to reduce the numerical values of the computed 
coefficients. Added to the cost function in a Ridge regression is a penalty equal to 
the sum of the square magnitude of the coefficients (L2-regularization), and, in a 
Lasso regression, the sum of the absolute values of the coefficients  
(L1-regularization.) 

Coefficient shrinkage prevents overfitting in Ridge regression. Because there is a 
possibility for some coefficients to drop down to zero, Lasso regression also allows 
for a sparse hypotheses by enabling some feature dropping. These regressions are 
preferred in ML communities over stepwise regression techniques to identify the 
feature space in the hypothesis proposals because the otherwise combinatorial 
choice of relevant parameters is automatically obtained from optimization. 
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2.1.6 Similarity Learning 

Similarity learning (a.k.a. distance metric learning) is a straightforward ML 
approach that classifies input by its closeness to previously classified objects. 
Simplicity is the method’s strong point; however, if there are too many database 
objects the method can become slow. Ideas to speed up the method include 
dimensionality reduction (described in Section 2.5.2), sparsification, and hashing.12 

2.2 Information Theory 

Although information theory started in the 1940s from the seminal work of 
Shannon as a way to minimize noise in communications,13 today the theory finds 
wide applications in machine learning, genetics, neurobiology, particle physics, 
statistics, and so on. Even though it is widely used for achieving lossless JPEG-like 
compression, the theory gives fundamentally correct abstractions not only for 
comparing communication or data streams, but even the belief systems themselves. 

Traditionally a machine learning algorithm is said to be properly trained if 
overfitting is eliminated (by reaching a balance between the bias and variance in 
the predictions.) But this is unsatisfactory in many fields; for example, in the 
medical field the false negatives are sought to be minimized and the true positives 
are sought to be maximized. So the basic question is what benefit is it to have a 
90% correct prediction versus an 85% one? This brings to the fore the concepts of 
information theory into machine learning and the issues such as 1) Is the machine 
learning algorithm actually working? and 2) Can it be improved further? 

These issues are examined not in relationship to the algorithmic details, but rather 
in relation to how the predictions are used further down the line. As quoted in Hu, 
“. . . learning is an entropy-decreasing process and pattern recognition is ‘a quest 
for minimum entropy’. The principle behind entropy criteria is to transform 
disordered data into ordered one (or pattern). . . ”14 

Furthermore, using the entropy concept from the information theory13 and joint and 
marginal distributions of the predicted and target results, Hu proposed the following 
learning measures: 1) joint information, 2) mutual information, 3) conditional 
entropy, 4) cross entropy, and 5) Kullback-Leibler divergence to probe the issues 
of similarity and symmetry instead of the traditional empirical learning criteria 
(such as an error rate, an error bound, a cost measure, a classification margin, etc.). 
Some of the information theory informed machine learning algorithms15 are 
proposed as follows: 

1) Information theoretic clustering 

a) Mutual information criterion 
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b) Information bottleneck method 

c) Information theoretic co-clustering 

2) Information theoretic semi-supervised learning 

a) Entropy-based approaches 

b) Information rate-based approach 

3) Information theoretic feature selection 

a) Mutual information-based feature selection 

b) Maximum-relevance minimum-redundancy 

c) Joint mutual information 

d) Information fragments 

e) Conditional mutual information maximization 

f) Other information theoretic measures 

4) Information theoretic metric learning 

a) Minimizing an information theoretic distance measure 

b) Coding length-based approach 

c) Application in information retrieval 

d) Factor graph 

2.3 Graph-Based Machine Learning 

Graph-based ML is a semi-supervised learning used for understanding how groups 
form in various domains such as social networks, biological clusters, and brain 
networks. A class of data that maps into a graph of clusters showing dense 
connections within the clusters and sparse connections between the clusters is best 
served by graph-based ML. 

Deploying unsupervised clustering on “big data” problems is made difficult by the 
fact that the number of optimal clusters is unknown, clusters can dynamically form 
and unform, there is uncertain variance in the data samples, and the challenge in 
coming up with a cost function to describe the situation. 

Most data such as video, image, text, and social are often unlabeled or multilabeled. 
For example, many semi-supervised learning tasks deal with data points that can 
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naturally belong to multiple labels (e.g., an image with a mountain can be labeled 
under “adventure” and “west”). Therefore, correlations exist among the multiple 
labels that the algorithms have to deal with. 

Data are often mapped into a graph of nodes and edges, such that the nodes 
correspond to labeled and unlabeled data points, and the edges reflect the 
similarities between data points. Formal solutions to these graphs are intractable 
because graph properties and spatial relations are not available to begin with. 

Graphs come in all sizes and shapes, and can be combined from multiple sources 
and from multiple types of data representations (e.g., image pixels, object 
categories, and chat response messages). Graph-based semi-supervised learning is 
deployed to seek a function to describe the graph with the following properties: 1) 
it should be close to the given labels on the labeled examples, 2) it should be smooth 
on the whole graph, and 3) it should be consistent with the label correlations.16 
Algorithms such as agglomerative clustering require knowledge of first-degree 
neighbors and incremental merging of nodes. Factors like a cluster population, how 
some nodes are widely connected within a cluster, and how some nodes have 
external connections to other clusters, help to incrementally optimize the cluster 
graph. 

2.4  Nonparametric Machine Learning Algorithms 

Parameters are the weights in a machine learning algorithm, and a machine learning 
algorithm is called a parametric algorithm if the number of weights used in it is 
fixed up front. Therefore, a linear curve used to fit a dataset may be termed a 2-
parameter machine learning algorithm. Examples of parametric algorithms in 
machine learning are NNs, Naïve Bayes, logistic regression, linear discriminant 
analysis, and so on. Although these models have the benefit of being simpler in 
scope and speedier in results delivery, they suffer from oversimplifying 
assumptions and poor fit as more data becomes available over time. Algorithms 
such as k-nearest neighbors, decision trees such as CART and C4.5, and radial basis 
function (RBF) kernel support vector machines (SVM) do not make any functional 
mapping assumptions to label the data and belong to the class of machine learning 
algorithms called “nonparametric”.17,18 

2.4.1 Kernel Function Methods and Support Vector Machines 

Support vector machines use a linear kernel and thus belong to a class of kernel 
function methods that are used to separate a 2-way labeled N-dimensional dataset 
into 2, separated from each other by the largest margin possible using an (N −1)-
dimensional hyper plane.19,20 For nonlinear classification, a kernel trick is used that 
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maps a given dataset into an even higher dimensional space to achieve clearer 
classification. SVMs do not directly provide probability estimates; these are 
calculated using 5-fold cross-validations, which are expensive. SVMs lead to 
overlapping target classes when the dataset has more noise. Let n equal the number 
of features and m, the number of samples, then, the following recommendations are 
made: 

• for n > m, use logistic regression or SVM without a kernel (linear kernel), 

• for n ≈ m, use SVM with Gaussian kernel, 

• for n < m, introduce more features and use logistic regression or SVM 
without a kernel, and 

• for n >> m, SVMs lead to poor predictions. 

SVMs are used as classifiers but may also be used for regression and anomaly 
detection. SVMs are used in many fields as follows: 

• Display advertising, image-based gender detection, content-based image 
retrieval, large-scale image classification, image segmentation systems, 
facial expression classification, 

• Handwritten characters recognition, text and hypertext categorization, 
texture classification, 

• Protein-fold and remote homology detection, protein classification, human 
splice site recognition, identification of alternative exons and chemotherapy 
effect on survival rate, 

• Generalized predictive control (SVM-based) method to the problem of 
controlling chaotic dynamics in plants with small parameter perturbations, 
dynamic reconstruction of chaotic systems from interspike intervals using 
least squares SVMs, 

• Inverse geosounding problem, seismic liquefaction potential, underground 
cable temperature, and land cover classifier, 

• Data classification using SVM, 

• SVM and decision-tree modeling, 

• Personal recommendation system for news websites, 

• Intrusion detection and detecting steganography in digital images,  

• Particle and quark-flavor identification in high-energy physics, and 
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• Object detection and 3-D object recognition. 

2.4.2 Ensemble Bagging, Boosting, and Stacking 

Many classifiers such as naïve Bayes, logistic regression, and shallow decision trees 
are weak learners. They are low variance type and do not overfit or high bias type, 
therefore, cannot easily learn hard learning problems. However, because they do 
well on parts of the input feature map, taken together, a bunch of weak classifiers 
can do a better job overall than a single classifier. The challenge here is to select 
classifiers suitable for different parts of the input features space and then tally the 
votes of the different classifiers. While this addresses the divide and conquer 
approach to an input map, other issues remain such as data fusion, confidence 
estimation for the outputs, if all the statistical information from the input map is 
thoroughly wrung out or not, and the ever-present issue of reduction of 
computational cost. These issues are discussed at length by Dietterich.21 Ensemble 
methods seek improved outcomes, often using a number of ML models. These 
models are often proposed with slight architecture variations to the same ML 
algorithm that is at task, but this is done in a manner that ensures a model-related 
statistical interpretation for the outcomes. Ensemble methods are used for spam 
filtering. Boosting and bagging ensemble methods include AdaBoost, gradient tree 
boosting, and XGBoost. 

2.4.3 Boosting 

Boosting is implemented in 2 stages. In the first stage, subsets of the original data 
are created that were known to contain features prone to misclassification. In the 
second stage, a series of weak classifiers are deployed and their results are 
combined using a weighted majority vote-based cost function. The classifiers are 
sequentially deployed with each classifier receiving improved outcomes from the 
previous classifiers in an iterative manner. The implementation resembles a logistic 
regression. The loss functions are replaced by the product of the hypotheses of the 
underlying classifiers and the confidence levels in their classifications. Gradient 
descent method is used to obtain a better overall classification by incrementally 
improving upon the votes in the subclassifiers. 

2.4.4 Bagging 

Bagging, which stands for bootstrap aggregating, seeks to decrease the variance in 
the prediction.22 Some samples in the training dataset are linearly combined and 
added back to the training dataset. This approach allows one to tweak the already 
expected classification and improve the stability and accuracy of machine learning 
algorithms used in statistical classification and regression. 
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2.4.5 Stacking 

In stacking, several models are applied to the bootstrapped samples of the training 
data to identify the specific portions of the input data for which different models 
have difficulties predicting the desired outcome.23 The outputs of these models are 
then used to train a Tier-2-type classifier to correct the misses in the first set of 
outcomes. A logistic regression is employed on the subclassifiers to arrive at the 
final classification. 

2.4.6 Instance-Based Learning 

Instance-based learning (IBL) (also called memory-based learning, lazy learning, 
and case-based learning)24,25 covers a family of algorithms that do not strive to do 
ML on each and every new data sample. The algorithms instead rely on memory. 
Some earlier instances of data samples and outputs are stored in memory, and on 
the new instance of a data sample, they rely on a comparison of the new sample 
with the stored samples to come up with a prediction. Algorithms like IBL are used 
to predict on a new data sample by computing the distances or similarities between 
this instance and the stored instances and by averaging some selected k-nearest 
neighbors. Locally weighted linear regression is another algorithm and RBF 
network is another implementation. Naturally, the computational complexity of 
classifying a sample becomes O(N) where N is the number of samples stored in the 
memory. Thus, the advantages for the IBL depends upon the data domain, data size, 
and noise in the data. 

These networks also evolve and adapt by having some old samples replaced by the 
new ones if new results are deemed better, but at the risk of introducing some drift 
over the time in the model. Examples of IBL are the k-nearest neighbor algorithm, 
kernel machines, and RBF networks. IBL is used as a second-opinion diagnostic 
tool in the medical field for knowledge discovery. Most IBL methods work only 
for real inputs and, unlike DTs and Bayes classifiers, do not need a training phase. 
IBL is nonparametric, that is, it has no prior model assumptions. 

2.4.7 Computational Learning Theory 

Machine learning is a form of inductive learning. The learning depends upon the 
previously learned outcomes to label the new data samples. While any learning 
algorithm seeks to learn as fast as possible and with as few misses as possible, there 
remains the issues of uniqueness of the algorithm, time of learning, and feasibility 
of learning. These are the issues studied under computational learning theory 
(CLT). 
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For computational theorists, an algorithm is feasible if the learning by it is done in 
a polynomial time of computation, that is, O(Nk), where N is the problem size and 
k is some polynomial power. These algorithms are said to belong to the polynomial 
time class or simply “P”. The other kind are said to belong to the class of “NP” or 
nondeterministic polynomial time class. Essentially, if an algorithm belongs to a 
“P” class, its learning can be verified in polynomial time, but if it belongs to the 
“NP” class, then its learning will be hard to verify. 

Many approaches are proposed using different data agglomeration techniques to 
augment the limited available datasets and inference principles such as variations 
of probability theory (frequency based, Bayesian, etc.). Specific CLT approaches 
include exact learning, probably approximately correct (PAC) learning, Vapnik-
Chervonenkis (VC) theory, Bayesian inference, algorithmic learning theory, and 
online machine learning. CLT led to many practical algorithms, for example, PAC 
theory inspired boosting, VC theory led to SVMs, and Bayesian inference led to 
belief networks. 

2.4.8 Artificial Neural Networks: A Versatile Strategy Born of Simplified 
Neuroscience 

An artificial neural network (ANN) is a brain-inspired model to process 
information. The first ANN was created by Warren McCulloch and Walter Pitts in 
1943. It was a very simplistic model resulting in logic functions such as “a or b” 
and “a and b”.26 In this section of the report, we discuss a variety of ANNs and what 
their potential use cases are. These ANNs include deep learning networks, 
convolutional neural networks, recurrent neural networks, and autoencoders. 

Feed Forward Neural Networks The algorithms for the simple regression and 
classification problems are easily implemented with a feed forward neural network 
(FFNN) architecture in which stacked layers of neurons (or compute nodes) are 
assumed. This architecture is also called a multilayer perceptron.27 

A data sample is input to the neurons in the left-most layer and the results of the 
FFNN are extracted from the neurons in the right-most layer. Connections are not 
assumed among neurons belonging to any one layer, but neurons belonging to 
adjacent layers are fully connected. Information coming into a neuron from neurons 
on the left side via these connections is amplified via weights, and the set of weights 
for the entire FFNN is called the parameter space. These parameters are initially set 
to a set of random values and are updated as the FFNN is updated in the learning 
process. The amplified input is presented to the activation functions at the neurons 
and outputs generated are fed to the neurons in the layer to the right. Depending 
upon the overall problem, known logistic or regression functions are selected as 



 

Approved for public release; distribution is unlimited. 
19 

activation functions for the neurons. All the functions in the entire network are said 
to belong to what is called a feature map. As the output travels to the neurons in the 
right-most layer, the results are compared with the expected values in a supervised 
learning and an error or a cost function is computed. This function is minimized by 
either propagating the error to the neurons in the layers to the left via the back 
propagation algorithm28 or via stochastic gradient descent methods.29 After this 
step, the randomly initialized parameters get updated and the learning continues by 
presenting another data sample to the network. 

Even though the computational cost in an FFNN depends on the number of layers 
and the number of neurons in it, the learning objective repeatedly leads to the 
selection of the architecture. More than the architecture, the learning process 
selected for the FFNNs is frequently more important. Since FFNNs often try to 
extract results from datasets that are statistical in nature, the learning process should 
guard against introducing unnecessary bias and variance in the results. The FFNNs 
are trained, guarding against this issue by carefully selected training and testing 
protocols, and by trying to minimize a second error called the cross-validation error. 
Unlike in numerical physical simulations in which the convergence is sought by a 
monotonic decrease in some error, learning in FFNNs are evaluated against the bias 
error and variance error to eliminate an overfit of the data. 

As topics in ML increased from text recognition, speech processing, video 
processing, sequence modeling, threat detection, threat posture, anomaly detection, 
and so on, input data is processed to present only the salient features to the FFNNs. 
The FFNNs themselves are given new architectures by making/unmaking new 
neural connections. Information and feedback is held in memories at the level of 
the neurons. The memory is used to make new decisions in the learning process. 
The NNs described in the remainder of this section highlight these features. 

Hopfield Networks Hopfield networks (HNs) emulate the associative memory 
function of a human brain.30 HNs are trained to learn one or more patterns. Given 
a new data sample approximating an already learned pattern, the HN is able to 
recollect the correct pattern. The network is able to do this even when the new 
sample is corrupted with noise or even if some connections in it are broken. As 
noted in Russell and Norvig 19754 (p. 571), if an HN is trained on a set of 
photographs, then afterwards, the HN will recognize every photo even if a piece of 
one of the photographs is presented. The network is able to do this, not by storing 
the original set of photographs in its memory, but by having the weights trained on 
the original set alone. HN can be used to recognize or classify features from text, 
voice, and images that are already trained into its memory. HNs are also used to 
solve combinatorial optimization problems such as the “traveling salesperson 
problem”. 
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HN is an ergodic network because any node in an HN can be reached from any 
other node directly. All nodes are initially input. The nodes exist in 2 states: “fired” 
or “not fired”. All nodes are fully interconnected to each other and output from a 
node is routed to all other nodes as input, so firing of one node can set off different 
patterns. The sign function is used as an activation function with the activation 
levels set to be either +1 or –1. If there are N nodes, there will be N2 weights and 
the training can get computationally expensive. Unlike a human brain, which is able 
to recollect a whole image from only a few stored features, an HN seeks to 
remember every pixel input to it. To reduce the dimensions and cost of training, the 
input may be transformed into principle component analysis (PCA)-based feature 
extractors. An HN can store up to 0.15 N images, where N is the number of neurons 
in the network. 

Boltzmann Machines Boltzmann machines (BMs) are similar to HNs in that 
they have an extra layer or a group of hidden nodes that are never shown any of the 
initial input.31 Neurons are in a binary state and output from one is fed to all others 
as input. Learning starts with random weights, but unlike in an HN where learning 
evolves deterministically, learning in a BM continues stochastically using 
probability-based contrastive divergence using Markov chains. BMs are inspired 
by the Boltzmann distribution often found in real physical systems. BMs undergo 
state transitions that resemble a simulated annealing search for the configuration 
that best approximates the training set. Because firing of neurons occurs in a 
nondeterministic manner, the network will not settle in one stable state and a 
probability distribution of activation patterns can be ascertained. BMs are trained 
to recognize gray images or probability distributions. It is reported in Russel and 
Norvig4 (p. 596) that BMs are a special case of belief networks.32 

Convolutional Neural Networks Convolutions are familiar in physical 
sciences. For example, a time series is convoluted with a kernel in Fourier transform 
(FT) to obtain its frequency content. Similarly, in the realm of ML, convolutions 
are employed to reduce the input datasets to obtain feature maps that are fed into 
ML algorithms. Thus, convolutional neural networks (CNNs), or deep CNNs, are 
used for image processing but can also be used for text and speech processing. 
CNNs have a long history starting with the observation that the visual cortex in the 
brain responds to small overlapping regions in the visual field before a final image 
is recognized. After many attempts, the modern implementation of CNN started 
emerging from the seminal work of LeCun et al.33 

Before an image’s pixel values are input to the ML classifiers, the input is reduced 
through a series of convolutions and pooling operations. The convolution step tries 
to extract features such as lines or edges from the input image, that is, the spatial 
relationships in the input images. For this purpose, small chunks of an input pixel 
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matrix are convoluted (i.e., dot product) with a selected convolution filter, which is 
a matrix much smaller in size than the input matrix. The pixel dataset is usually 
large, for example, there are 10,000 pixels in a 100 × 100 pixel image. A 
convolution filter with a very small size, say 5 × 5 pixels, is used to convolute with 
equal-sized chunks of the input matrix. As the convolution operations are 
performed, sliding from left to right and top to bottom with a stride on the input 
matrix, what emerges are a matrix of values, called a feature map, which is slightly 
smaller in size than the input matrix. This feature map is repeatedly subjected to 
convolutions with different filters to arrive at the final feature map that is much 
smaller in size than the original matrix. 

In between the convolution operations, the feature maps are downsampled with yet 
another step called pooling. Similar to the convolution operations, a small chunk of 
the matrix of a feature map is selected and the most dominant information from that 
chunk is determined using pooling types such as maximum, average, summation, 
and softmax. This operation is completed again by sliding across the feature map 
with a stride. Nonlinearity is often introduced into the feature map via an operation 
called ReLU (rectified linear unit), which selects only the positive values in the 
matrices. 

This final feature map is input to one or more fully connected layers leading to 
classifiers. The neural network classifiers for CNNs are designed to exploit the local 
nature of the features in the image, meaning that a feature such as an edge 
somewhere in an image is not necessarily the same as another edge somewhere else 
in the image. This spatial locality is assured by not allowing connections from a 
neuron in one layer to all the neurons in the next layer but only to a few. 

Deep Learning CNNs’ ability in learning feature representations from large 
datasets have been generalized as priors and used to obtain body part classifiers and 
pose regressors in sequence modeling, object detection, and pose and intent 
recognition. Intent recognition requires, in addition, establishing a deeper 
understanding of the interplay between the identified smaller objects in an image 
like, for example, among an elbow, a baseball mitt, and the baseball. Deep 
architectures are proposed with hidden layers, containing smaller NNs, in parallel 
for these problems. Researchers have trained a cascade of regression-based CNNs 
for human pose estimation and combined those using weak spatial NNs in deep 
learning architectures. Correspondence becomes an issue for these NNs, which is 
established in some NNs via the “intra-class alignment”, that is, alignment of parts 
identified within a class, and “key point identification”, an issue which is learning 
the intent of parts within a class are important to overall learning. 
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Deep learning affords the ability to create complex manifolds with hierarchical 
structure.34 The issues in designing a CNN are types of convolution filters, when to 
introduce nonlinearity, pooling types, and the neural net local connections. A great 
many deep learning CNNs have been developed since the 1990s. However, 
beginning in 2012, the following nets have perked up interest in the ML 
community: AlexNet,35 ZFNet,36 VGGNet,37 GoogLeNet,38 ResNets,39 and 
DenseNet.40 

Generative Adversarial Networks Generative adversarial networks (GANs) or 
deconvolution GANs are a class of networks developed in the last few years.41 
These networks learn from an input dataset of images representing an object class. 
Later, the network is able to reproduce or reconstruct images typical of that object 
class without ever needing any of the images from the dataset as input. In essence, 
the network has learned the object class and is able to reconstruct images that can 
easily pass for those in the class. Instead of a complete image, a brush stroke like a 
sketch is input to generate real-looking objects. 

Learning in these networks uses a game between 2 adversaries: a generator network 
that tries to generate realistic objects, and a discriminator network that attempts to 
identify if it came from an input from the object class or from the generative model. 
As the game concludes, the generator reproduces the feature distribution of the 
object class so exactly that the discriminator network is unable to differentiate the 
generated object from the real one. Both parts of the network are usually trained 
using stochastic gradient descent with exact gradients computed by maximum 
likelihood. 

The tug between the generator network and the discriminator network makes it, 
although not a GAN, a reinforced learner too. GANs are extended beyond images 
to video streams and robot behaviors, but their true calling is in reconstructing 
super-resolution high-definition images. Super-resolution GANs are proposed to 
recover realistic textures and fine-grained details from images that have been 
heavily downsampled. 

Long Short-Term Memory Networks, Gated Recurrent Units Long short-
term memory (LSTM) networks are a special type of recurrent neural networks 
(RNNs) that solve the so-called “vanishing gradient problem”. When the input 
dataset is large, the tendency is to propose a network with many hidden layers and 
neurons. In training such a network, the gradient can become vanishing/exploding 
at some neurons. The LSTM algorithm was developed42 mainly for solving the 
vanishing gradient problem. Each neuron has a memory cell and 3 gates: input, 
output, and forget. The input gate determines how much of the information from 
the previous layer gets stored in the current neuron. The output gate determines 
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how much of the next layer gets in on the current neuron. The forget gate altogether 
enables dropping of the current neuron to overcome bottlenecks in the learning 
process. This long-term memory capturing feature of the neurons is what enables 
the LSTMs their sequence modeling capability. They are used successfully in many 
fields, especially when data are sequential, for example, language processing, 
speech recognition, machine translation, image captioning, video classification, and 
even bioinformatics. By combining with CNN-enabled priors, LSTMs are used for 
generating captions for the images. 

Recently, gated recurrent units (GRUs) were developed and are similar to LSTM.43 
The difference is that the GRUs have one less gate and are wired separately. For 
each neuron, they have an update gate that determines how much information to 
keep from the last state, and how much information to let in from the previous layer, 
and a reset gate that is wired differently. They always send out their full state, and 
they do not have an output gate. Another difference and simplification is that GRUs 
do not have a memory (cell) state. The memory is associated with the state from 
previous steps. GRUs are easier to train and less expensive than LSTMs. 

Bidirectional LSTMS and GRUs  Memory in neurons in the LSTMs44 and 
GRUs is stored from the past states. Unlike this situation, neurons in the 
bidirectional LSTMs and bidirectional GRUs use information from the future, like 
in autofilling a text, and updates the neurons on the backward pass. So instead of 
advancing on features such as on an edge, these bidirectional LSTMS and GRUs 
do things like filling in a hole. 

Using Wavelets to Preprocess Input Just as an FT is used to extract the 
frequency content in a time series, wavelets are constructed as kernel functions for 
convolution with not only time signals, but also images. Unlike the kernel in the FT 
that extends from negative to positive infinity, kernels are selected for wavelets to 
be active within specific temporal or spatial windows to extract local features. Thus, 
wavelets readily provide both time and frequency information45 and start appearing 
in signal processing and signal compression applications. 

Once convolutions started appearing in CNNs, wavelets became an attractive 
choice for building the feature libraries for the images as well. For natural images, 
Olhausen and Field46 showed that the most common image features allow for sparse 
linear representations by a redundant dictionary of basis functions that resemble 
Gabor wavelets. By redundant, it is meant that the number of basis functions 
available exceeds the pixel count in the images. This allows for more stable 
representations for the common image features, which can be represented by a few 
nonzero coefficients irrespective of the locality of the features in the image, and are 
also invariant with respect to translation, magnification, and rotation. The 
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dictionaries are learned by minimizing the feature rebuild error with a sparsity-
inducing penalty. Learning algorithms are developed that go by the name “Sparse 
Frame” for implementing this approach47 under Defense Advanced Research 
Projects Agency (DARPA) funding. The dictionaries are useful for tasks such as 
image recovery, image classification, image compression, image reconstruction via 
super-resolution, and biomedical imaging (MRI and tomography). 

The time localization extraction ability of the wavelets is also exploited for 
denoising human brain signals and accurately identifying the spikes to input to 
brain activity classifiers.48 

2.5 Unsupervised Learning 

In unsupervised learning, the input data is unlabeled (i.e., there are no ground truths 
to train against). Imagine that in the example of image classification, the “dog” and 
“cat” labels are missing, and all that is available is a randomly assorted series of 
dog and cat pictures. What can a computer do with this information? For one thing, 
it can assume that it is being given a bunch of images of N classes of objects and it 
needs to sort those images into one of those N classes. Even the variable N 
(denoting the number of classes) could be an unknown quantity. So, the computer 
simply sees a series of images and tries to bin them on their similarities and 
differences of each picture to each other. The method described here is loosely 
called “clustering” and is one of the primary classes of methods in unsupervised 
learning. Another major class of unsupervised learning algorithms involves 
converting high-dimensional data (e.g., the pixel values of an image) into a lower-
dimensional manifold (e.g., a small set of classifiers). 

2.5.1 Clustering 

Clustering is an unsupervised learning approach to finding similar subsets of data. 
There are 2 traditional types of clustering algorithms: k-means and hierarchical.  

K-means The k-means clustering method aims to find k number of clusters for a 
given set of multidimensional points, where the variable, k, is given by the user. It 
is best used when the data has compact groups of data, rather than long-stretched-
out groups. 

Hierarchical Hierarchical clustering sequentially aggregates groups of points 
together until there are essentially a few groups comprising all of the data. With 
further heuristic measures, the number of clusters can be ascertained from the data 
rather than being specified by the user. 
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2.5.2 Manifold Learning 

Manifold learning is also an important form unsupervised learning, whereby high-
dimensional data (e.g., a million pixels of an image) is converted to low-
dimensional data (e.g., a small vector of numbers describing the mathematic traits 
of the image). Traditionally, input data is considered as a set of N-dimensional 
vectors and output is a set of M-dimension vectors, where M can be as small as 2 
to 3. 

Dimensionality Reduction Dimensionality reduction (DR) is a transformation of 
high-dimensional data into a lower dimensional space. Manifold learning is the 
automated process of achieving dimensionality reduction, of which there are many 
methods. 

PCA A common DR algorithm in this regard is principal component analysis 
(PCA), whereby the most important dimensions are extracted. Mathematically, this 
corresponds to obtaining the largest eigenvalues and eigenvectors of the covariance 
matrix between the input vectors. In layman’s terms, PCA asks, “What are the most 
distinguishing characteristics of a group of objects?” and then plotting the objects 
along those dimensions only. The distinguishing (i.e., first) component could be a 
mixture of qualities. For example, in describing human body shapes the most 
differentiating component could be the sum of the height and weight of the person. 

kPCA To make PCA more generalizable to a wider class of problems, it might 
make sense to transform one or more of an input vector’s elements prior to 
computing the covariance matrix. In this case, we are modifying the kernel and 
hence the term, kernel-PCA, or kPCA.49 

Isomap While it is outside the scope of this document to consider every 
manifold learning algorithm out there, it is worth mentioning a few that potentially 
offer superior solutions for certain datasets. Isomap50 uses neighborhood clustering 
to build graphs and measure connective distances. This permits nonlinear manifolds 
to emerge as principal components. 

Sparse Dictionary Learning Sparse dictionary learning is an unsupervised 
method of feature extraction. Imagine we divided up a series of images into 8 × 8 
blocks of pixels. The most common 8 × 8 blocks would fill out a dictionary of 
features common among the collection of images. This dictionary could be used, 
for example, to come up with a compression scheme, whereby the images could be 
written as a combination of common dictionary blocks. Popular methods include 
orthogonal matching pursuit. 
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2.5.3 Autoencoders 

Advances in supervised deep learning can be transferred to the field of 
unsupervised learning using a special ANN called an autoencoder (AE).51,52 
Essentially, an autoencoder optimizes a function of input data that maps its output 
to the input data (a.k.a. an identity function). What distinguishes AEs from the 
identity function is that the network layers are bottlenecked so that the data is forced 
to be compressed in some way. Types of bottlenecks include 1) using a smaller 
number of nodes in the middle, 2) imposing sparsity in the middle nodes, and 3) 
imposing some kind of constraint on the middle node’s weights (e.g., L2-norm). 
This ensures that given enough training data, there is no way that the bottleneck 
layer of the AE NN will end up being simply the identity operator. Instead, the AE 
becomes a lower dimensional representation of a higher dimensional manifold 
(namely, the input data). 

AEs are primarily used to encode, that is, to compress, a dataset and recreate it 
back.51,53 AEs are also used to extract many features in a dataset and use such 
extracted features as priors in a convolutional NN. AEs are often symmetric with 
respect to the layered nature of the network. The hidden layers are designed with 
progressively reduced nodes to the middle layer of the network. AEs are trained to 
predict the input. Sparse AEs, variational AEs, and denoising AEs are some 
variations of the AEs. HNs and BMs are simple classifiers and so are the AEs, but 
their purpose is to identify specific objects in large datasets, like a cat in a photo. 

Once a good feature representation is given, a supervised learning algorithm can do 
well. But what happens if there are too many features/objects in an input, and if 
their meaning changes out of sequence? In domains such as computer vision and 
speech and natural language processing, these issues are apparent. Because priors/ 
features help, and there are an abundance of such priors/features in the natural 
world, the question becomes, “Are there algorithms that can automatically learn 
feature representations and improve upon them in subsequent iterations?” Sparse 
AEs54 do surprisingly well in this regard. Unlike in AEs, the number of neurons 
increase hidden layer by hidden layer as one moves into the center of the network. 
The network is still symmetric between the input layer and the output layer. The 
input is encoded in more neurons at the center. On the back pass from the output 
side, instead of passing the input, it is spiked with some noise that forces some 
neurons to drop out, thus the term sparse, and, thus the ability to code more features 
comes into play. 

2.5.4 Variational AEs 

Variational AEs employ the same network structure as regular AEs, but they learn 
an approximated probability distribution in the input data.55 They employ Bayesian 
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inference and independence information to rule out some dependence in the 
features in the data and drop connections between neurons in the neighboring layers 
in the learning process. 

2.5.5 Denoising AEs 

Denoising AEs are AEs for which the input data is fed with some noise but require 
the AE to still learn the original input and reproduce it without noise.56 This makes 
the network learn the broader details in the input sample while the smaller details 
are drowned out by the noise and become difficult to learn. 

2.5.6 General Applications of UL 

While unsupervised learning (UL) methods may not be as advanced as supervised 
learning (SL) approaches, the simple fact is that most data out there, especially as 
regards Army research, is unlabeled. Thus, the question becomes, “How can 
unlabeled data be learned?” One common idea is determining to what extent 
different input features are correlated with each other (a.k.a. regression.) This could 
affect the experimenter’s choice of which data to regularly record and which to 
discard. Another aspect of identified correlations is that it implies a similar 
underlying principle for those features. For example, 2 microphones placed on 
opposite sides of a vehicle picking up the same frequency hum may indicate a 
similar source point of that signal that might be triangulated based on phase delays 
and relative amplitudes (similar to the way our hearing localizes sound sources). 
Another value of UL, as alluded to earlier, is grouping of similar data packets, 
leading to labeling. Suppose we collected a series of animal images and found that 
a cluster of them had similar properties. This cluster could then be labeled by a 
human (or intelligent agent) as “cat”. Moreover, UL can be used to deduce 
connectivity (i.e., graphs/networks/trees). For example, the series of animal 
pictures could group large and small animals, and under large animals, find 2 
subclusters of elephants and lions. Finally, UL can be used to parse source signals 
from mixed input (e.g., the cocktail party problem, whereby we want to extract a 
voice from the din via 2 or more microphones). 

2.6 Semi-Supervised Learning 

We have been introduced to both supervised learning and unsupervised learning. It 
is natural to ask the question, “Is it possible to improve the performance of a 
supervised learner if one can provide additional data, even if they are unlabeled?” 
Semi-supervised learning57 is an attempt to answer this question in the positive. In 
short, semi-supervised learning attempts to solve the same kind of problem as 
supervised learning—predict the labels of unseen data, but attempts to exploit any 
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unlabeled data that may exist in addition to labeled data. Incorporating unlabeled 
data is important, since it is frequently the case that can easily access unlabeled data 
with which one can augment one’s labeled data. 

Including unlabeled data can improve the accuracy of classification or regression, 
but there are a few key assumptions that must be met for semi-supervised learning 
to be applicable: 

• The label function f(x)—that is, the function we are trying to learn—is 
smooth in regions in which we have a high density of sample points. This 

results in  for some small for classification 
problems. 

• If one forms clusters with a distance metric d(x, y), then points that belong 
to the same cluster are likely to have the same class. Equivalently, the 
separation boundaries between classes must lie in a low density region. 

• The data lie in a low-dimensional manifold, even if it is embedded in a high-
dimensional space. 

These assumptions arise from the typical approaches to semi-supervised learning. 
Assuming the label function is smooth allows one to infer class labels onto 
unlabeled points from nearby labeled neighbors; the motivation for the cluster 
assumption is similar. The manifold assumption arises from the curse of 
dimensionality: as the dimensionality rises, pairwise distances become more 
similar—and therefore less useful for discrimination—unless the data lies in a low-
dimensional manifold. 

2.7 Reinforcement Learning 

Reinforcement learning may be described simply as “learning what to do”58—that 
is, a learning agent is placed in an environment with the ability to make 
observations, perform actions, and measure rewards. The goal of the learner is to 
maximize its reward for its actions, and it is to learn how to do that through trial-
and-error search of its environment. One should notice that the concept of reward 
is defined loosely; rewards may be immediate or delayed. 

Reinforcement learning may be conceptualized as an approach to characterizing 
learning problems. In this conceptualization, reinforcement learning is somewhat 
distinct from both SL and UL, though both approaches bear some similarity to 
reinforcement learning. Perhaps the most important distinction is that SL and UL 
are concerned with determining the best categories for data objects, but do not 
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consider how that categorization fits into a larger problem of how to act. On the 
other hand, reinforcement learning explicitly treats the problem of choosing actions 
to maximize rewards. Thus, a reinforcement learning problem may contain 
subproblems that resemble SL or UL. 

A conundrum that arises in learning how to choose actions is the balancing of 
exploration and exploitation. Maximizing rewards requires exploitation of 
solutions from experience that have provided good rewards in the past; 
nevertheless, exploiting past solutions precludes learning new solutions. A learner 
could easily become trapped in a locally optimal solution if it does not explore the 
solution space to discover new approaches. This balancing of exploration and 
exploitation is not typically considered in classical supervised learning approaches. 

3. Currently Available Software and Tools for Machine 
Learning 

1) Caffe59 supports many different types of deep learning architectures (CNN, 
RNN, LSTM, and fully-connected) and is geared toward image 
classification and image segmentation. It also supports graphics processing 
unit (GPU)-based acceleration using the CuDNN library from Nvidia. 

2) Deeplearning4j60 is a deep learning programming library written for Java 
with wide support for deep learning algorithms. These algorithms all 
include distributed parallel versions that integrate with Apache Hadoop and 
Spark. 

3) TensorFlow61 is a library for machine learning across a range of tasks. It 
was originally developed by Google to meet their needs for systems capable 
of building and training NNs to detect and decipher patterns and 
correlations, analogous to the learning and reasoning, which humans use. 

4) Theano62 is a numerical computation library for Python, where 
computations are expressed using a NumPy syntax and compiled to run 
efficiently on either CPU or GPU architectures. 

5) Keras63 is a library that contains numerous implementations of commonly 
used NN building blocks such as layers, objectives, activation functions, 
optimizers, and a selection of tools to facilitate working with image and text 
data. It is essentially a front end to Deeplearning4j, Tensorflow, or Theano. 

6) Microsoft Cognitive Toolkit64 is a deep learning framework developed by 
Microsoft Research. Microsoft Cognitive Toolkit describes NNs as a series 
of computational steps via a directed graph. 
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7) MXNet65 is a scalable deep learning framework used to train and deploy 
deep NNs. It can be used with multiple languages including C++, Python, 
Julia, MATLAB, JavaScript, Go, R, Scala, Perl, and Wolfram. 

8) Scikit-learn66 is a Python module with a variety of unsupervised and 
supervised learning approaches. 

9) Torch67 is a scientific computing framework with support for machine 
learning algorithms, with primary emphasis on using GPUs. It has a 
convenient scripting language, LuaJIT, and an underlying C/CUDA 
implementation. PyTorch extends Torch capabilities to Python. 

10) Dlib-ML68 is a C++ toolkit containing machine learning algorithms. 

11) Chainer69 is a Python-based deep learning framework that includes 
automatic differentiation application programming interfaces (APIs) based 
on dynamic computational graphs as well as object-oriented high-level 
APIs to build and train NNs. 

12) Neon70 is Intel Nervana’s reference deep learning framework, similar in 
ease of use to Keras. 

4. Potential ML-Enabled Army-Relevant Applications 
Encountered in Our Lab during First Year of Study 

This report is a product of our project from the fiscal year 2017. The other related 
deliverable is the analysis of how current machine learning tools can be applied to 
various US Army Research Laboratory (ARL) and Army-relevant problems. While 
Sections 4.1 through 4.10 are only a minuscule representative of the potential 
applications, they hint to the wide reach that ML may be able to impact Army 
research and operations. 

4.1  Assessment of Planetary Gear Health 

In collaboration with Dr Adrian Hood (ARL/Vehicle Technology Directorate), we 
are trying to identify the progression of damage in helicopter transmission gears 
by observing accelerometer signals. One of the main challenges of condition-based 
maintenance of vehicles (air and ground) is how to convert sensor signals (e.g., 
accelerometers and microphones) into information about the current health of each 
part/system. The current state of the art is usually to apply an FT and then sum up 
the peaks to create a metric of vibration.71 The next steps for analysis might be to 
use convolutional filters to better decompose the raw signal. Furthermore, it is an 
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open question whether deep learning can be used to correlate the hierarchical 
frequency/temporal nature of the vibrations to known damage states. 

4.2 Assessment of Fatigue and Cracking in Vibrating Load Tests 
(Maneuver Sciences Campaign) 

Pitch/catch ultrasound is a nondestructive method that can localize crack formation 
in materials. While there are already physics-motivated estimation techniques,72 we 
were curious if the output signals could be directly fed into a neural network and 
correlated with emerging crack length. The POC for this research is Dr Robert 
Haynes (ARL/Vehicle Technology Directorate). 

4.3 Automated 3-D Tissue/Organ Segmentation from CT Scans 
for Soldier Protection 

Medical images such as CT (computed tomography) scans and MRIs (magnetic 
resonance images) can be obtained fairly rapidly, but the subsequent analysis and 
conversion into useful information is a bottleneck. For example, a group at ARL 
(POC: Dr Sikhanda Satapathy/WMRD) uses 3-D organ models segmented from 
CT scans to simulate, via finite elements, the effects of various ballistics and loads. 
Obtaining the 3-D segmented tissues via CT scans is a laborious process, taking 
roughly 24 man-hours. We propose that unsupervised and/or supervised learning 
could accelerate this task without sacrificing the accuracy obtained by an expert 
modeler. 

Automatic segmentation for recreating 3-D representations of biological data from 
2-D scans has been pursued in the medical community for some time. Utilizing an 
unsupervised clustering approach to solve this problem, a goal would be to create 
a system that can take in an image sequence from something like a CT or MRI 
dataset and generate a 3-D representation of the data using automatic segmentation. 
In this case the subject will focus on segmentation of medical images; however, 
this method could theoretically apply to any scan datasets for use in reproducing an 
accurate 3-D representation. One of the primary goals of this project is separation 
of each tissue type. The primary types of tissues include soft tissue such as skin, 
organs, brain tissue, and bone, including the skull. 

The first attempt at achieving this is comparing what is possible using just image 
thresholding alone to remove any data above a particular threshold value. This 
works well to pull out just the bone alone. However, thresholding allows any other 
objects to remain behind that may be in a similar range of values, including part of 
the machine. With models generated by clustering, it is possible to separate the 
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bone from the other objects in the image. Currently, the clustering model we are 
using (DBSCAN) includes some noise that needs to be cleaned up. This is a future 
problem that this project is working to correct. Another problem that is introduced 
by thresholding is that any material that is located inside of another object is not 
possible to separate using only thresholding. For example, brain tissue would be 
lost if done only using thresholding. By utilizing clustering methods, the brain 
tissue or any soft tissue can be separated from the skull; however, there is still the 
issue of noise being included in the final model.  

The clustering method used here affords an additional benefit of providing each 
cluster as a separate 3-D model. This allows for each cluster to be viewed to see 
each different part of the model that was generated. Using something like 
thresholding will only provide a single solution according to the initial parameters. 
Clustering and thresholding, together, could be the best “unsupervised” solution. 
Supervised learning, with sufficient ground truth data, may be the ultimate, most 
robust solution. 

4.4  Machine Learning for Armor Mechanics Problems 

Better understanding of armor mechanics allows for lighter and more efficient 
protection of Army personnel and equipment. Machine learning is applicable both 
for discovery of armor mechanics at high rates, and for optimization of protection 
packages. These 2 problems are intertwined. Unsupervised learning can detect 
interesting behaviors of materials from empirical data; for example, the change in 
penetration as one transitions from ballistic rates to hypervelocity rates, or 
nonhomogeneous material properties in rolled homogeneous armor steel of 
sufficient thickness. Supervised learning could show the independent variables that 
best predict protection to effect better armor designs, and can even be used to 
automatically optimize a protection package given a set of constraints. 

4.5  Automated Optical,  Thermal,  and Acoustic Monitoring of 
the Additive Manufacturing Process 

Additive manufacturing (AM) (e.g., 3-D printing) has the potential to improve 
sustainment by providing replacement parts more quickly than the traditional 
logistics chain. The current limitation of AM is durability and reliability of the 
printed part. ML could be used to monitor the layer-by-layer build process and 
detect problems before it is too late to fix them. Reinforcement learning could then 
be used to apply the appropriate fix before continuing the programmed deposition. 
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4.6 Supervised and Unsupervised Learning of Soldier Personnel 
Databases 

The Army Study to Assess Risk and Resilience in Servicemembers (STARRS) 
program is an ongoing study to understand, in part, the factors related to suicide.73 

As such, the data collected hold a treasure trove of information that may be of 
interest to Army leaders regarding Readiness and Sustainment. To fully tap into the 
data will require ML to find the deep connections between various factors. 

4.7 Automated First-Pass Analysis of Video Streaming Data 

Data analysts can only process so much data in a given time period. As the “flash 
flood” of data increases exponentially over time, ML-enabled processes will be 
needed to ferret out significant from nonsignificant data. In the case of video 
streams, an ML-based tool could be used to select only frames or intervals where 
certain desired objects are identified. As long as false negatives are low, this should 
greatly ease the burden of human operators without the risk of overlooking 
important data. 

4.8  Evaluation  of Human-Annotated Maintenance Reports 
Toward Sensor-Based Anomaly Detection in Vehicles 

Currently acquired data in the field is likely incomplete in being able to detect when 
unplanned maintenance events will occur in Army systems. The question is whether 
(with current data) we can predict when problems will likely occur, before they 
actually occur, to improve readiness. 

4.9 Use of ML  to Assess Whether Specific CPU  Processes Are 
Malicious or Friendly 

Cybersecurity is an increasing concern for the Army, especially as it relates to the 
unique environments that it must endure; specifically, the contested 
electromagnetic spectrum and constant targeted assault from the adversary. Toward 
this end, we think that the latest tools in ML, such as RNNs and deep reinforcement 
learning, will help correctly detect and ameliorate intrusive threats that may not be 
easily detectable by traditional pattern recognition. Furthermore, we foresee 
reasoning processes developed with deep reinforcement learning will ease the 
burden of human cyber defense agents. 
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4.10 Use of ML  as a Mechanism  for Information Dispersal in a 
Contested Environment 

Traditional network coding uses linear transformation to divide, distribute, and 
disperse information from sender to receiver. We believe that it may be possible to 
use nonlinear transformations derived from ML to divide, encrypt, and compress 
data for reduced bandwidth environments while improving data integrity.  

5. ARL Research Using Machine Learning 

Machine learning is either currently being used, or could be used, in many research 
projects at the ARL. Using data collected from the posters presented at the 
November 2016 ARL Open Campus Open House (see Appendix), we list some of 
the research projects that either use ML or might be able to benefit from it. Our list 
of ML-related ARL research efforts is by no means complete. 

6. Army Operational Applications 

While machine learning has technically been around since the early 19th century 
with the invention of linear regression by Gauss, we believe that the newest 
advances in ML will impact the Army in ways we cannot currently imagine. In this 
section, we outline the many areas of Army operations that we think will be 
enhanced and what kinds of ML methods might be employed. 

6.1  Military Intelligence 

Military intelligence encompasses information gathering and analysis as it pertains 
to what commanders need to make the best decisions. Processing must be 
automated as ever larger amounts of data are collected. The main problems to 
consider are the volume, velocity, veracity, and variety of data. Large volume 
(a.k.a. big data) requires smart distribution of the data over many compute nodes. 
Velocity requires fast computing and networking connected to the data streams. 
Veracity is a question of trust in the source of the information and anomaly 
detection. Variety amounts to the application of different trained models using 
many different ML algorithms. We outline the different types of data and analysis 
requirements in this subsection.  

6.1.1 Natural Language Processing 

There are big benefits to having computers distill out important concepts and 
sections of text from large databases of text gleaned from various media sources. 
Another recently reported ML breakthrough is accurate text translation between 
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different languages.74 A challenge unique to the Army is translating from languages 
that are not common, and therefore have fewer professional translators. In the realm 
of artificial general intelligence (AGI), it is professed by some groups that natural 
language processing will be a foundation of human-like cognition.75 

6.1.2 Data Mining 

Given the proliferation of data generated by humans, sensors, and agents, a big 
question is what residual value that data contains beyond the immediate use 
justifying its collection. Data mining can be both a statistical and machine learning 
effort to find patterns in the data that otherwise would have been missed by human 
operators.76 

6.1.3 Anomaly Detection 

Traditionally, anomaly detection is performed by first identifying clusters of known 
data and characterizing the distribution that the data falls under. Then, as new inputs 
are processed, they are either identified as falling into or outside of the original 
distributions. If they are outside of the known distributions, they are considered 
anomalies. Many of the following types of anomaly detection systems could be 
useful to the Army: 

• Cyber intrusion detection:  network traffic that is out of the ordinary. 
McPAD and PAYL77 are 2 such examples of software currently in use that 
use anomaly detection. 

• Pattern of life anomalies: visuals and biometrics of people acting in ways 
different from the norm, suggesting that they may be performing some 
adversarial action. 

• Condition-based maintenance: signals that are not typical for the material/ 
system at its age in current lifecycle. 

• Soldier anomalies: reasons to believe soldier biometrics are out of the 
ordinary. 

• Foreign item detection: visuals of objects not recognized in a database of 
known materiel. 
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6.2 Autonomy 

6.2.1 Automated Target Recognition 

Automated target recognition (ATR) is a very mature field that has been using 
machine learning for decades.76,78–84 Some relevant questions going forward are as 
follows: 

1) To what extent will current advances in deep learning enhance ATR? 

2) Will more sophisticated algorithms require more complex/power-hungry 
onboard computing? 

3) Can ML be robust against various deceptive obfuscations of the target? 

4) To what extent could reinforcement learning be used to make real-time 
trajectory adjustments? 

6.2.2 Robotics 

The use of machine learning in robotics is also such a vast field as to require a 
document unto itself. The areas where ML continues to make sense include sensing, 
navigation, locomotion, and decision-making. Sensing, at present, will benefit from 
all of the advances in computer vision. Navigation, besides use of standard GPS, 
could benefit from egomotion,85 that is, motion estimation based upon its own 
perceptions. Locomotion could be learned, not programmed, which would lead to 
not only faster development times, but also the ability to rehabituate under new 
environments or damaged modalities (e.g., losing 1 of 4 legs). Finally, as the 
number of robots exceeds the number of human operators, it will be necessary for 
robots to make decisions on their own on how to carry out their defined missions. 
It will have to make calls such as, “Do I go back to home base because battery is 
low?” or “Do I continue onward a little and then self-destruct?” 

6.2.3 Self-Healing 

Besides robotics, it is ultimately desired to have any system correct itself when 
damaged or not working at full capacity. This requires intelligence at some level to 
autonomously diagnose deficiencies and problems and rectify those issues with the 
resources available to it. 

6.2.4 Ethics 

To the extent that autonomy is learned through machine learning, the question will 
be, “How will the autonomous system respond to situation X?” The problem here 
is with a system that has potentially lethal force, how can we be sure that it will 
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only use its force correctly and lawfully?84 We surmise that there will have to be 
extensive testing of a machine-learned algorithm before it will possess the actual 
ability to use lethal force, even if it is tied with human-in-the-loop decision-making. 

6.3 Training Intelligent Agents through Playing Games 

A flurry of research in recent years has been looking at using machine learning to 
autonomously play various video games. In some cases the reported algorithm now 
exceeds human game playing. In other cases there are still challenges dealing with 
long-term memory. For the US Air Force, intelligent agents have been successfully 
trained on combat-centric flight simulators that closely mimic real life.86 The 
questions for the Army include the following: 

• Can intelligent agents be attached to robotic platforms? 

• To what extent can intelligence be general enough to deal with the diverse 
set of situations encountered in real life versus a video game? 

• Can we trust the action of a trained agent when we may not understand its 
logic? 

• To what extent will an agent be able to work with a human? 

6.4 Cybersecurity 

Machine learning has played an integral role in cybersecurity over the last 
decade.13,16,77,87–91 Specifically, ML can be used for anomaly detection, detecting 
specific patterns indicative of known threats, and discerning network behavior as 
potentially being produced by malicious agents. As the field continues to intensify, 
the question will be whether ML will keep security one step ahead of the adversary 
who may use ML to obfuscate detection.92 

6.5  Prognostic and Structural  Health Monitoring 

A long-term vision is that every mechanical system in use by the Army will have 
some amount of internal sensing regarding the current and projected health of the 
system. The relevant questions are as follows: 

• Can we discern the current health of a system or system component from a 
limited number of sensors? 

• Can onboard ML predict the health of a system or system component after 
exposure to a specific environmental or ballistic insult? 
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6.6 Health/Bioinformatics 

6.6.1 Sequence Mining 

As the number of genome sequences continues to grow exponentially, the 
computational effort required to compare sequences obtained in the field may 
become unmanageable. Machine learning can reduce the necessary comparisons by 
classifying the sequence at various levels of taxonomy. 

6.6.2 Medical Diagnosis 

Artificial intelligence has long held the promise of transforming medicine.93 In 
recent years, machine learning is already making great strides in detecting 
malignancies in various tissues.94 It could just as well be used to describe traumatic 
injury or post-traumatic stress disorder (PTSD)95 with a plan of treatment. 

6.7 Analysis 

A significant component of the Army focuses on the analysis of operations, 
systems, and research and testing. Traditionally, analysts use a large swath of tools, 
including machine learning, in the form of multidimensional regression, clustering, 
and dimension reduction. With the emergence of deep learning, a new set of tools 
should be possible that allow for more efficient processing of larger datasets that 
require more sophisticated models. For example, it should be possible to extract 
features and physical properties from video streams taken during a test that might 
exceed current standard practices. 

6.8 Other Uses for Machine Learning 

• Adaptive User Interfaces (AUIs) and Affective Computing: ML could be 
used to determine the mental and/or emotional state of the user and offer up 
an interface suitable to that state. In addition, variable AUIs could serve 
variations in users. For example, some users might prefer audio feedback 
versus visual feedback. 

• Recommender Systems: One of the most popular recommendation systems 
is the one that chooses the next movie that a user wants to watch based on 
ratings from previously watched movies (e.g., the so-called “Netflix 
problem”). For Army purposes, recommendations for logistics resupply 
could be made based on feedback from previous usage and inventory 
accounting. 
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• Search Engines/Information Retrieval: Traditionally, search engines return 
document “hits.” The new paradigm is to answer the user’s question in a 
concise form rather than simple pattern matching. 

• Sentiment Analysis: Traffic on both social media and various sensors 
trained on environments could detect not just critical keywords or the 
presence of specific objects, but also deduce the likelihood of a possible 
attack. 

• Tailored Propaganda: Traditionally done by dispersing leaflets, propaganda 
these days can be distributed through social media. The ML angle is how 
to target propaganda to the right demographics with the most convincing 
message. Also, it is important to quickly detect and subvert propaganda 
from adversaries targeted to our own personnel/people. 

7. Research Gaps in Machine Learning 

One of the goals of this study is to identify gaps in current research that could limit 
the full potential of ML for use both in Army research and operations. This section 
borrows from the strategic planning work of ARL Campaign Scientists Dr Brian 
Henz and Dr Tien Pham (unpublished). 

7.1  How to Fit Army Data/Questions into Current Methods 

Traditionally, half the battle in employing ML to a particular domain is figuring out 
how to adapt available tools and algorithms. This is more acute for a lot of the 
problems that the Army faces that might be unique compared to other academic, 
commercial, or governmental uses. The first problem that any data analyst faces is 
adapting the data to the statistical or ML model they want to use. Not all data uses 
continuous variables or is a time-series. Discrete/labeled data can be very tricky to 
manage since the labels may not easily be converted into something mathematical. 
An example of this in natural language processing is how words are often converted 
into high dimensional one-hot vectors. Another example might be how to convert 
large amounts of maintenance reports into predictions about how a particular 
vehicle will fare over time. 

In addition, Army requirements go beyond the typical commercial sector use in 
terms of needing to detect not just objects and people, but also their intent and 
posture. This will require the development of new models. Another big requirement 
is explainability, as outlined by a recent DARPA program: what were the factors 
that led an ML algorithm to make a specific decision? In a real-life event, if an ML 
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algorithm were to proclaim the presence of an important target without human 
verification, could we trust that determination?96 

7.2 High-Performance Computing 

As computationally demanding ML tasks are envisioned, developers are using 
multithreaded, parallel, and heterogeneous architectures (GPU, many-core) to 
speed up calculations. Distributed implementations of ML are far less common than 
GPU versions because of the inherent network bottlenecks associated with 
internode communication in distributed computing and the substantial advantage 
of GPUs versus CPUs in terms of single precision floating point performance. 
Besides a strong current reliance on GPUs, bio-inspired neural computing aims to 
find non-von Neumann architectures to perform ML more efficiently and 
potentially faster. An example of this is the IBM neuromorphic chip.97 Future 
research should focus on how to distribute ML processing such that network 
communication is minimized between nodes. Also, to what extent can unsupervised 
learning algorithms like clustering can be mapped to neural networks? 

Other things to consider: 

• Current ML software (specific neural networks) performs best with a small 
cluster of GPUs. 

• Most nonneural network-based ML algorithms are not highly parallel or not 
parallel at all. 

• Another Army specific challenge is analyzing largely unlabeled datasets 
(e.g., with unsupervised learning). Manually labeling clusters would be a 
form of semi-supervised learning. 

7.3 Unique Size, Weight, Power, Time, and Network Constraints 

With travel into remote areas or any area far from a friendly base, the Army must 
limit the size, weight, and power of systems. Furthermore, in the “heat of battle,” 
time is critical. For example, one cannot wait for an operational simulation to finish 
while they are being fired at. Finally, network bandwidth can be highly constrained 
in regions where other commercial transmitters dominate, or in situations where 
limiting radio communication improves stealth. 

In this multiply constrained environment, machine learning will need to be 
performed efficiently and often in an isolated fashion. The diametric opposite 
condition would be training a large neural network using a large data repository, 
which is often the case for state-of-the-art machine learning feats. The commercial 
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sector is developing self-driving vehicles, which will presumably use low-power 
computational devices (e.g., field-programmable gate arrays, mobile GPU) for 
autonomous driving, road/obstacle detection, and navigation. However, the Army 
will have a lot more requirements including autonomous sensors and actuators, 
situational awareness/understanding, communication/ cooperation with humans, 
and a wide range of battlefield devices. This will require several factors more 
computing power and algorithm-specific hardware for optimal miniaturization and 
low power consumption.98 

7.4  Training/Evaluating Models with Cluttered or Deceptive 
Data 

Operational environments are expected to have higher than usual density of static 
and dynamic objects in a chaotic environment. Furthermore, one fully expects 
active deception to avoid notice. We also want to be able to develop algorithms that 
are robust enough to at least be aware of deception and dial down their certainty 
estimates accordingly. 

7.5 Training a Model  with  Small and Sparse Data 

Breakthroughs in CNN-based target classification can be attributed, in part, to the 
availability of thousands of examples of each object class. In Army scenarios there 
may be limited data for certain people and objects. One ultimately will need one-
shot99 or multishot classifiers where a few representative data entries are sufficient 
to learn a new class. The best option so far is “knowledge transfer”, by which new 
classes are learned by tweaking a subset of all of the parameters of previously 
trained models. The idea is that with fewer parameters to optimize, less data would 
be required to modify those parameters. 

7.6  Training Models Specifically for Army-Relevant Targets 

Even for object classes that we can generate plenty of imagery (e.g., friendly 
objects), we need to train our own models to recognize Army-relevant classes from 
potentially thousands of images per class. The Army also uses other sensing 
modalities not typically found in commercial vehicles (e.g., thermal and radar). 
Thus, models need to be trained for these atypical sensing devices. Fundamentally, 
atypical sensing devices may require novel neural network topologies for optimal 
accuracy and compactness. 
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7.7  Incorporating Physics in Reasoning 

One interesting area worth pursuing is combining model and simulation with 
machine learning. There are many ways this could be done. For example, ML can 
be used to derive the starting parameters for a simulation. In addition, ML can be 
used to process the output of simulations. An intriguing new area is developing 
physics-based or physics-like simulation that uses ML-like models/equations. One 
such application would be predicting “What if?” scenarios. For example, “What if 
I run over this tree? What will happen next?” 

7.8  Soft Artificial Intelligence 

Machine learning is traditionally thought of as hard (i.e., mathematical) 
manifestations of artificial intelligence. It is possible that eventually, all AI tasks 
will be reduced to mathematics. For now, however, some intelligent tasks appear 
to be more reasoning- or emotion-based. For tasks in the previously described 
methods, ML does not adequately address the following soft AI characteristics.  

7.8.1 Human-like Reasoning 

Humans do not always reason completely logically, but they also have the ability 
to piece together incomplete information and make “best guess” decisions. 
Encoding this behavior has been a challenge for a several decades.100 

7.8.2 Emotions 

Emotions appear to be motivation/objective functions that drive humans to certain 
ends. For example, happiness may lead to inactivity or a pursuit of productive 
creativity. Fear, on the other hand, may lead to holding back. Do computers need 
emotions to operate more effectively or are they better off having 100% objectivity? 
This is both a philosophical question and a future research direction. For now 
though, there is no question that in the context of human-agent teaming, computers 
will need to accurately interpret human emotion to achieve the best group 
outcome.101 

7.8.3 Social Communication 

Interactivity with humans is a foremost concern for Army research going forward. 
A similar issue is how communication will occur between different computer 
systems that are not necessarily designed by the same laboratory. One area of 
research has been using computers to teach social communication in people who 
have difficulties in this area.102 Once again, for human-agent teaming, agents will 
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need to be able to participate in social interactions and follow social norms in the 
company of humans. 

7.8.4 Creativity 

Creativity is often thought of as a random merging of ideas combined with novel 
elements whereby a discrimination function decides on the functionality and/or 
aesthetics of the newly created items. In some ways, creativity is already being 
demonstrated by certain computer laboratories. For example, computers can be 
imbued with certain aspects of creativity for the purpose of design.103 

7.8.5 General Intelligence 

The ultimate goal of AI is the merging of many narrow intelligence algorithms into 
a unified intelligence, much like a human mind.75 It is likely that even early so-
called artificial general intelligences (AGI) will have some superhuman abilities 
given that many narrow AI tasks are already better than human for certain tasks. 
One major goal of AGI is to automate certain tasks currently performed by humans. 

7.8.6 Artificial Super Intelligence 
A machine learning study would not be complete without mentioning the 
speculation of many philosophers that machine learning will eventually be able to 
improve its own programming leading to an exponential improvement in capability, 
perhaps far exceeding human intelligence. These visions are both utopian104 and 
dystopian.105 The hope is that super intelligence will solve many of the world’s 
current problems. 

8. Conclusion 

In this work we reviewed the different classes of machine learning and described 
some of the more commonly used methods. We then noted a small subset of 
examples of how ML is being used at ARL. Finally, we prognosticated where ML 
could be applied to various Army domains in the future and outlined some of the 
challenges that need to be addressed to achieve this outcome. We hope that this 
document will inspire future researchers and decision makers to continue to invest 
in research and development to fully utilize ML to help advance the US Army.  
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Appendix. Technical Posters from the 2016 ARL Open Campus 
Open House that Referenced Machine Learning  
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A.1 Analysis & Assessment 

Grynovicki, J., “Human System Integration Modeling for Improved Performance”  
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/AA07.pdf) 

• Combining modeling and actual data acquired from experiments, we foresee 
as being a future ML / uncertainty quantification task. 

Acosta, J., “Augmenting Threat Analysis Capabilities Using Intelligent Threat 
Agents”  
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/AA09.pdf) 

• The core of intelligent agents may be deep learning models. 

Montoya, J., “Tools for EO/IR Sensing System Performance Analysis” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/AA14.pdf) 

• Improved sensing to the point of classification, is inherently a supervised 
learning task. 

A.2 Human Sciences 

Marathe, A., “Continuous Multifaceted Soldier Characterization for Adaptive 
Technologies” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS01.pdf) 

• Dynamic learning to predict Soldier state function is potentially a 
reinforcement learning endeavor. 

Vettel, J., “Individual Differences in Human Variability for Translational 
Neuroscience” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS02.pdf) 

• Unsupervised learning can be used to cluster and characterize the space of 
human variability 

Boynton, A., “Field Assessment of Dismounted Soldier Performance” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS05.pdf)  

and  

DeCostanza, A., “Real-Time Assessment of Group Dynamics” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS08.pdf) 

• Sensor data and various metrics could be used to predict performance 
(regression) and assign appropriate workloads (classification) 

Gaston, J., “Real-World Perceptual Augmentation” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS12.pdf) 
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• Localization algorithms could be used, for example, to convert field of view 
into descriptive labels and highlighted points of interest. 

Diego, M., “Distributed Soldier Representation” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS16.pdf) 

• ML can be used to reduce the information from simulations to bite-sized 
chunks suitable for engaged Soldiers. 

Oie, K., “Human System Integration-Cybernetics” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS20.pdf), 

Evans, William A., “Human-Robot Interaction” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS22.pdf), 

Davis, T., “Manned and Unmanned Collaborative Systems Integration” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS23.pdf), 

and  

Chen, J., “Human-Robot Interaction & Human-Agent Teaming” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS24.pdf), 

• Machine learning is often used to translate input from language/format to 
another. 

• This may be useful for improving human-system interactions, and 
appropriately reducing the burden on Soldiers to interpret inputs from an 
ever-increasing array of systems. 

Dickerson, K., “Similarity Metrics for Multimodal Cueing” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS21.pdf) 

• ML may provide unique means for fusing multimodal data optimized for 
human consumption. 

A.3 Information Sciences 

Scanlon, M., “Acoustic Sensors & Processing” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS04.pdf) 

• Supervised learning may allow classification-type tasks in the realm of 
acoustic inputs. 

Sullivan, A., “Radar Technology for Detection of Concealed Targets” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS05.pdf) 

• Generative deep learning can be used to develop realistic models. 

https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/HS22.pdf
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Rao, R. and Shuowen Hu, “Cross-Modal and Extended Range Face Recognition” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS08.pdf) 

• This project uses supervised learning on visible and IR facial images. 

Rao, R., “Human Detection in the Wild” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS09.pdf) 

• This work extends the state-of-the-art in pedestrian detection via various ML 
algorithms. 

Srour, N., “Sensor, Data and Information Processing, and Fusion for Situational 
Understanding” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS10.pdf) 

• Supervised learning on multimodal data 

Suri, N., “Intelligent Information Management for the Battlefield” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS11.pdf) 

• Perhaps, reinforcement learning could be used to prioritize information 
management? 

Klavans, J., “Social Computing” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS12.pdf) 

• The key here is combining the multilingual technologies developed in-house 
with some of the big data strategies currently being used for machine 
translation. 

Young, S., “Computational Intelligence” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS13.pdf) and 

Summers-Stay, D., “Reasoning Under Uncertainty” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS14.pdf) 

• While traditionally we think of supervised and reinforcement learning, the 
next step in autonomy is where agents and vehicles can have higher levels 
of intelligence (e.g., reasoning) 

Kwon, H., “Joint Text & Video Analytics”, 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS15.pdf) 

• The poster’s abstract says it best: "Develop methods for enhancing 
situational awareness through joint Natural Language (NL) Text and Video 
analytics for: NL summarization of video, visual question-answering, 
ontology-supported activity recognition, multimodal representation of event 
semantics" 
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Raglin, A., “Discovery Mechanisms for Engendering Creative Decision Making” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS17.pdf) 

• The ability of an intelligent to serve up the right information at the right time 
may be enhanced by the use of reinforcement learning (e.g., "was this 
helpful?") 

Moore, T., “Data-Driven Analysis of Collaboration Structure and Evolution” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS19.pdf) 

• Different unsupervised learning algorithms may be part of the workflow for 
studying this area. 

Sadler, B., “Mobility & Cognitive Networking in Harsh Environments” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS21.pdf) and 

Tobin, R., “Wireless Networking in Resource Constrained Environments” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS22.pdf) 

• Autonomous agents, which underpin the cognitive network, may benefit 
from supervised and reinforcement learning. 

Harang, R., “Characterizing Burstiness in Intrusion Detection” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS24.pdf), 

Erbacher, R., “Cognitive Foundations of Cyber Analysts” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS25.pdf),  

and 

Cam, H., “Risk Model Roadmap from Events to Parameters” 
(https://www.arl.arm y.mil/www/apps/ocoh-tech-followup/posters/IS26.pdf) 

• Work in this area requires ML algorithms yet to be discovered appropriate 
for training on limited data. 

A.4 Sciences for Maneuver 

Berman, “Energy For Maneuver”  
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/MAS02.pdf) 
and 

Lee, I., “Self-Sustaining Energy for Robotics and Autonomous Systems” 
(https://w ww.arl.army.mil/www/apps/ocoh-tech-followup/posters/MAS04.pdf) 

• Autonomous, intelligent agents will likely be used in a lot of the decision 
making for future self-sustaining energy systems. 

https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/IS25.pdf
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Riggs, M. and Hood, A., “Probabilistic-Diagnostic Informed Innovations for Power 
Transmission Light weighting” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/MAS13.pdf) 
and 

Hall, A., “Virtual Risk-informed Agile Maneuver Sustainment (VRAMS)” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/MAS28.pdf) 

• Supervised learning with diagnostic data will lead to deeper situational 
awareness on the health state of a system. 

Fields, M., “Meta-Cognition, Self-Reflection and Proprioception” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/MAS22.pdf) 

• This work tackles some of the more far-reaching goals of AI/machine 
learning necessary to allow agents to truly be peers with their human 
counterparts. 

Owens, J., “Semantic Spatial Understanding” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/MAS23.pdf) 

• This work relies on principles of supervised and reinforcement learning. 

A.5 Sciences for Lethality & Protection 

Satapathy, S., “Modeling Brain Response to Blast and Ballistic Loading” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/SL03.pdf) 

• We have been looking at using unsupervised learning algorithm to 
automatically yield the 3-D segments required for this project’s simulations. 

Allik, B., “Vision Based Navigation” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/SL14.pdf) 

• Automatic target recognition has always been a major consumer of ML 
algorithms. 

• From the poster: "Technical challenges include low frame rates, blur, 
latency, gun survivability, dynamic range, resolution, etc." 

A.6 Materials Research 

Holmes, L., “Additive Manufacturing Research” 
(https://www.arl.army.mil/www/apps/ocoh-tech-followup/posters/MS14.pdf) 

• One long-term goal is to use machine learning to expedite the application of 
additive manufacturing to the Army.  
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional 

3-D 3-dimensional 

AE autoencoder 

AGI artificial general intelligence 

AI artificial intelligence 

AM additive manufacturing 

ANN artificial neural network 

API application program interface 

ARL US Army Research Laboratory 

ATR automated target recognition 

AUI adaptive user interfaces 

BL Bayesian learning 

BM Boltzmann machines 

BN Bayesian network 

C4.5 a decision-tree generation algorithm 

CART classification and regression trees for machine learning 

CISD Computational and Information Sciences Directorate 

CLT computational learning theory 

CNN convolutional neural network 

CPU central processing unit 

CT computed tomography 

DARPA Defense Advanced Research Projects Agency 

DBSCAN density-based spatial clustering of applications with noise 

DOD Department of Defense 

DR dimensionality reduction 

DT decision tree 
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FFNN feed forward neural network 

FPGA field-programmable gate array 

FT Fourier transform 

GAN generative adversarial network 

GPS global positioning system 

GPU graphics processing unit 

GRU gated recurrent unit 

HMM hidden Markov model 

HN Hopfield networks 

HPC high-performance computing 

HRED Human Research and Engineering Directorate 

IBL instance-based learning 

kPCA kernel principal component analysis 

LSTM long short-term memory 

ML machine learning 

MRI magnetic resonance imaging 

NN neural network 

NP nondeterministic polynomial 

P probability 

P polynomial 

PAC probably approximately correct 

PCA principal component analysis 

POC point of contact 

PTSD post-traumatic stress disorder 

RBF radial basis function 

ReLU rectified linear unit 

RNN recurrent neural network 



 

Approved for public release; distribution is unlimited. 

61 

SEDD Sensors and Electron Devices Directorate 

SL supervised learning 

SLAD Survivability and Lethality Directorate 

STARRS Study to Assess Risk & Resilience in Servicemembers 

SVM support vector machine 

UL unsupervised learning 

VTD Vehicle Technology Directorate 

VC Vapnik-Chervonenkis 

WMRD Weapon and Materials Research Directorate
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