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Co-Prime Frequency and Aperture Design for HF Surveillance,  
Wideband Radar Imaging, and Nonstationary Array Processing 

 
 

1. Executive Summary 
 
This report presents the results of the research performed under Office of Naval Research 

(ONR) grant number N00014-13-1-0061 over the period of January 1, 2013 to December 31, 2017. 
The research team working on this project consists of Prof. Moeness Amin (PI, Villanova 
University), Prof. Yimin D. Zhang (Co-PI, Villanova University; moved to Temple University in 
2015), and Prof. Fauzia Ahmad (Co-PI, Villanova University; moved to Temple University in 
2016). This project supported two full-time Ph.D. students, Si Qin and Elie BouDaher, at Villanova 
University.  We have also collaborated with Prof. Ahmad Hoorfar (Villanova University), Prof. 
Abdelhak M. Zoubir (Darmstadt University of Technology, Germany), Prof. Fulvio Gini 
(University of Pisa, Italy), Prof. Elias Aboutanios (University of New South Wale, Australia), Prof. 
Wei Liu (University of Sheffield, United Kingdom), Prof. Panos Markopoulos (Rochester Institute 
of Technology), and Prof. Xiangrong Wang (Beihang University, China).  

The research objectives are to develop novel co-prime sampling and array design strategies 
that achieve high-resolution estimation of spectral power distributions and signal direction-of-
arrivals (DOAs), and their applications in various surveillance, radar imaging applications, and 
array processing. The focus of our studies has been in the following five areas: (i) Generalized co-
prime array design; (ii) Wideband DOA estimation and radar sensing; (iii) Active sensing using 
co-prime arrays; (iv) Mutual coupling effect and mitigation; (v) Spectrum estimation based on co-
prime sampling. These efforts resulted in 12 journal papers and 27 conference papers.  

Below is a summary of the research accomplishments in each of these individual areas. A list 
of the publications generated under the support of this project is provided in Section 2. The full 
text of selected journal publications are included in Section 3.   

 

 

1.1.  Generalized Co-Prime Array Design 

A co-prime array uses two uniform linear subarrays to construct an effective difference coarray 
with certain desirable characteristics, such as a high number of degrees-of-freedom for DOA 
estimation. We have generalize the co-prime array concept with two operations [1]. The first 
operation is through the compression of the inter-element spacing of one subarray and the resulting 
structure treats the existing variations of co-prime array configurations as well as the nested array 
structure as its special cases. The second operation exploits two displaced subarrays, and the 
resulting co-prime array structure allows the minimum inter-element spacing to be much larger 
than the typical half-wavelength requirement, making them useful in applications where a small 
interelement spacing is infeasible. We have derived the analytical expressions for the coarray 
aperture, the achievable number of unique lags, and the maximum number of consecutive lags for 
quantitative evaluation, comparison, and design of co-prime arrays.  
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1.2. Wideband DOA Estimation and Radar Sensing 

The co-prime array, which utilizes a co-prime pair of uniform linear sub-arrays, provides a 
systematical means for sparse array construction. On the other hand, utilizing spectrum bandwidth 
in co-prime array can achieve a number of advantages. (a) Utilizing multiple frequencies 
equivalently provides multiple virtual arrays to achieve a higher number of degrees of freedom; 
(b) Fusing multi-frequency signals improves the robustness of DOA estimation; and (c) The use 
of signal bandwidth and co-prime array provides DOA-range resolution for target localization. In 
one of our proposed schemes [2], a co-prime array is operated at multiple frequencies in order to 
fill the missing coarray elements, thereby enabling the co-prime array to form consecutive coarray 
lags and effectively utilize all of the offered degrees of freedom (DOFs) with subspace based DOA 
estimation methods. In another proposed scheme [3], a single sparse uniform linear array is used 
to exploit two or more continuous-wave signals whose frequencies satisfy a co-prime relationship. 
This extends the co-prime array and filtering to a joint spatio-spectral domain, thereby achieving 
high flexibility in array structure design to meet system complexity constraints. The DOA 
estimation is obtained using group sparsity-based compressive sensing techniques. The achievable 
number of DOFs is derived for the two-frequency case, and an upper bound of the available DOFs 
is provided for multi-frequency scenarios. In the third scheme [4], we considered the frequency 
diverse array (FDA) radar which offers a range-dependent beampattern capability. The spatial and 
range resolutions of an FDA radar are fundamentally limited by the array geometry and the 
frequency offset. We overcome this limitation by introducing a novel sparsity-based multi-target 
localization approach incorporating both coprime arrays and coprime frequency offsets. The 
covariance matrix of the received signals corresponding to all sensors and employed frequencies 
is formulated to generate a space-frequency virtual difference coarrays. The joint DOA and range 
estimation is cast as a two-dimensional sparse reconstruction problem and is solved within the 
Bayesian compressive sensing framework. The superiority of the proposed approach in terms of 
DOA-range resolution, localization accuracy, and the number of resolvable targets were evidently 
demonstrated. 
 

1.3. Active Sensing Using Co-Prime Array 

We performed DOA estimation of a mixture of coherent and uncorrelated targets using sparse 
reconstruction and active nonuniform arrays [5]. The data measurements from multiple transmit 
and receive elements can be considered as observations from the sum coarray corresponding to the 
physical transmit/receive arrays. The vectorized covariance matrix of the sum coarray observations 
emulates the received data at a virtual array whose elements are given by the difference coarray of 
the sum coarray. Sparse reconstruction is used to fully exploit the significantly enhanced degrees-
of-freedom offered by the difference coarray of the sum coarray for DOA estimation. Simulated 
data from multiple-input multiple-output minimum redundancy arrays and transmit/receive co-
prime arrays were used for performance evaluation of the proposed sparsity-based active sensing 
approach. 

 
1.4. Mutual Coupling Effect and Reduction 

We have investigated the effect of mutual coupling on DOA estimation using non-uniform arrays 
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[6]. We compared and contrasted the DOA estimation accuracy in the presence of mutual coupling 
for three different non-uniform array geometries, namely, minimum redundancy arrays, nested 
arrays, and co-prime arrays, and for two antenna types, namely dipole antennas and microstrip 
antennas. We demonstrated through numerical simulations that the mutual coupling, if 
unaccounted for, can, in general, lead to performance degradation, with the minimum redundancy 
array faring better against mutual coupling than the other two non-uniform structures for both 
antenna types. We also proposed two methods that can compensate for the detrimental effects of 
mutual coupling, leading to accurate and reliable DOA estimation.  

 

1.5. Spectrum Estimation Based on Co-Prime Sampling 

Increased demand on spectrum sensing over a broad frequency band requires a high sampling rate 
and thus leads to a prohibitive volume of data samples. In some applications, such as spectrum 
estimation, only the second-order statistics are required. In this case, we may use a reduced data 
sampling rate by exploiting a low-dimensional representation of the original high dimensional 
signals. In particular, the covariance matrix can be reconstructed from compressed data by utilizing 
its specific structure, e.g., the Toeplitz property. Among a number of techniques for compressive 
covariance sampler design, the coprime sampler is considered attractive because it enables a 
systematic design capability with a significantly reduced sampling rate. We have proposed a 
general coprime sampling scheme that implements effective compression of Toeplitz covariance 
matrices [7]. Given a fixed number of data samples, we examined different schemes on covariance 
matrix acquisition for performance evaluation, comparison and optimal design, based on 
segmented data sequences. 

 

1.6. References 
 
[1] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime array configurations for 
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1377-1390, March 2015.  

[2] E. BouDaher, Y. Jia, F. Ahmad, and M. G.  Amin, “Multi-frequency co-prime arrays for high-
resolution direction-of-arrival estimation,” IEEE Transactions on Signal Processing, vol. 63, 
no.14, pp. 3797–3808, July 2015. 

[3] S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, “DOA estimation exploiting a uniform 
linear array with multiple co-prime frequencies,” Signal Processing, vol. 130, pp. 37-46, Jan. 
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3.1. Generalized Coprime Array Configurations for

Direction-of-Arrival Estimation

Abstract

A coprime array uses two uniform linear subarrays to construct an effective difference coarray with

certain desirable characteristics, such as a high number of degrees-of-freedom for direction-of-arrival

(DOA) estimation. In this paper, we generalize the coprime array concept with two operations. The

first operation is through the compression of the inter-element spacing of one subarray and the resulting

structure treats the existing variations of coprime array configurations as well as the nested array structure

as its special cases. The second operation exploits two displaced subarrays, and the resulting coprime array

structure allows the minimum inter-element spacing to be much larger than the typical half-wavelength

requirement, making them useful in applications where a small inter-element spacing is infeasible. The

performance of the generalized coarray structures is evaluated using their difference coarray equivalence.

In particular, we derive the analytical expressions for the coarray aperture, the achievable number of

unique lags, and the maximum number of consecutive lags for quantitative evaluation, comparison, and

design of coprime arrays. The usefulness of these results is demonstrated using examples applied for

DOA estimations utilizing both subspace-based and sparse signal reconstruction techniques.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation, which determines the spatial spectra of the impinging electro-

magnetic waves, is an important application area of antenna arrays. It is well known that conventional

subspace-based DOA estimation methods, such as MUSIC and ESPRIT [3], [4], resolve up to N − 1

sources with an N -element array. However, the problem of detecting more sources than the number of

sensors is of tremendous interest in various applications [5], [6]. Toward this purpose, a higher number of

degrees-of-freedom (DOFs) is usually achieved by exploiting a sparse array under the coarray equivalence.

For example, the minimum redundancy array (MRA) [7] is a linear array structure that, for a given number

of physical sensors, maximizes the number of consecutive virtual sensors in the resulting difference

coarray. The minimum hole array (also known as the Golomb array) minimizes the number of holes in

the difference coarray [8]. However, there are no general expressions for the MRA and Golomb array

configurations as well as the achievable DOFs for an arbitrary number of sensors. Therefore, the optimum

design and performance analysis of such arrays are not easy in general. In addition, finding the suitable

10



covariance matrix corresponding to a large array requires a rather complicated time-consuming iterative

process.

Recently, several array configurations have been proposed as attractive alternatives for sparse array

construction. The nested array [9], which is obtained by combining two uniform linear subarrays, in

which one subarray has a unit inter-element spacing, can resolve O(N2) sources with N sensors. Unlike

the MRA, the nested array configuration is easy to construct and it is possible to obtain the exact

expressions of the sensor locations and the available DOFs for a given number of the sensors. The total

aperture and the number of unique and consecutive coarray sensors can be subsequently obtained [9].

Note that, as some of the sensors in a nested array are closely located, the mutual coupling effects

between antennas may become significant and thus compromise the coarray reconstruction capability and

the DOA estimation performance [10], [11]. The recently developed coprime array [12], which is referred

to as the prototype coprime array in this paper, utilizes a coprime pair of uniform linear subarrays, where

one is of M sensors with an inter-element spacing of N units, whereas the other is of N elements with an

inter-element spacing of M units. By choosing the integer numbers M and N to be coprime, a coprime

array can resolve O(MN) sources with M + N − 1 sensors. This is attractive when it is necessary to

reduce mutual coupling between elements. A different coprime array structure was proposed in [13] by

extending the number of elements in one subarray. The result is a larger number of consecutive virtual

sensors under the coarray equivalence. By considering the difference coarray of N + 2M − 1 sensors,

they demonstrated that continuous correlation lags can be created from −MN to MN .

A close examination of the extended coprime configuration reveals that there is at least one pair of

adjacent sensors that is separated only by the unit spacing, which is typically half wavelength to avoid the

grating lobe problem. In addition to the mutual coupling effect as described above, there are situations

that such half-wavelength minimum spacing is infeasible or impractical. One of the examples is when

the physical size of the antenna sensors is larger than half-wavelength (e.g., [14]). Indeed, many parabola

antennas are designed to have a large size for enhanced directivity [15]. This problem is alleviated through

an effective array configuration design in which the minimum inter-element spacing is much larger than

the typical half-wavelength requirement [1].

In this paper, we propose the generalization of the coprime array concept, which comprises two opera-

tions. The first operation is the compression of the inter-element spacing of one constituting subarray in

the coprime array by a positive integer. The resulting coarray structure is referred to as coprime array with

compressed inter-element spacing (CACIS). As such, the coprime array structure developed in [13], which

doubles the number of sensors in a constituting subarray, becomes a special case of the proposed CACIS

structure. The second operation introduces a displacement between the two subarrays, yielding a coprime

11



array with displaced subarrays (CADiS). The resulting CADiS structure allows the minimum inter-

element spacing to be much larger than the typical half-wavelength requirement. These two operations

can be performed separately or jointly. We evaluate the performance of each individual generalized

coarray structure corresponding to these operations using their respective difference coarray equivalence.

In particular, we derive the analytical expressions of the coarray aperture, the achievable number of

unique lags, and the maximum number of consecutive lags for quantitative evaluation, comparison, and

optimal design.

It is noted that the focus of this paper is the examination of the generalized coprime array structures in

the context of narrowband DOA estimation. Wideband or multi-frequency signals may further permit the

utilization of frequency-domain DOFs for enhanced DOA estimation capability. For example, it is shown

in [16] that coprime arrays that handle wideband signals can benefit from frequency diversity to achieve

improved DOA estimation performance. On the other hand, the exploitation of two coprime frequencies

in a uniform linear array can generate an equivalent coprime array with an increased number of DOFs

[17], [18].

The rest of the paper is organized as follows. In Section II, we first review the coprime array concept

based on the difference coarray concept. Then two different DOA estimation approaches, which are

respectively based on the MUSIC algorithm and compressive sensing (CS) techniques, exploiting coprime

arrays are summarized in Section III. The two generalized coprime array structures, i.e., CACIS and

CADiS, are respectively described in Sections IV and V with the analytical expressions of array aperture,

unique coarray lags, and consecutive coarray lags. Different nested array structures are clarified and

compared in Section VI. Simulation results are provided in Section VII to numerically compare the

performance of the different generalized coprime array configurations with the two DOA estimation

techniques. Such results reaffirm and demonstrate the usefulness of the results presented in Sections IV

and V. Section VIII concludes this paper.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IN

denotes the N ×N identity matrix. (.)∗ implies complex conjugation, whereas (.)T and (.)H respectively

denote the transpose and conjugate transpose of a matrix or vector. vec(·) denotes the vectorization

operator that turns a matrix into a vector by stacking all columns on top of the another, and diag(x)

denotes a diagonal matrix that uses the elements of x as its diagonal elements. ‖·‖2 and ||·||1 respectively

denote the Euclidean (l2) and l1 norms, and E(·) is the statistical expectation operator.
⊗

denotes the

Kronecker product, and real(·) and imag(·) represent the real and imaginary part operations. CN(a,B)

denotes joint complex Gaussian distribution with mean vector a and covariance matrix B.
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Fig. 1. The prototype coprime array configuration.

II. COPRIME ARRAY CONCEPT

A. Prototype coprime array structure

A prototype coprime array [12], as described in the previous section, is illustrated in Fig. 1, where

M and N are coprime integers. Without loss of generality, we assume M < N . The unit inter-element

spacing d is set to λ/2, where λ denotes the wavelength. The array sensors are positioned at

P = {Mnd| 0 ≤ n ≤ N − 1} ∪ {Nmd| 0 ≤ m ≤ M − 1}. (1)

Because the two subarrays share the first sensor at the zeroth position, the total number of the sensors

used in the coprime array is M +N − 1. Note that the minimum inter-element spacing in this coprime

array is λ/2.

Denote p = [p1, ..., pM+N−1]
T as the positions of the array sensors where pi ∈ P, i = 1, ...,M+N−1,

and the first sensor is assumed as the reference, i.e., p1 = 0. Assume that Q uncorrelated signals impinging

on the array from angles Θ = [θ1, ..., θQ]
T , and their discretized baseband waveforms are expressed as

sq(t), t = 1, ..., T , for q = 1, ..., Q. Then, the data vector received at the coprime array is expressed as,

x(t) =

Q∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (2)

where

a(θq) =
[
1, ej

2πp2
λ

sin(θq), ..., ej
2πpM+N−1

λ
sin(θq)

]T
(3)

is the steering vector of the array corresponding to θq, A = [a(θ1), ...,a(θQ)], and s(t) = [s1(t), ..., sQ(t)]
T .

The elements of the noise vector n(t) are assumed to be independent and identically distributed (i.i.d.)

random variables following the complex Gaussian distribution CN(0, σ2
nIM+N−1).
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The covariance matrix of data vector x(t) is obtained as

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

nIM+N−1

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ2
nIM+N−1,

(4)

where Rss = E[s(t)sH(t)] = diag([σ2
1, ..., σ

2
Q]) is the source covariance matrix, with σ2

q denoting the

input signal power of the qth source, q = 1, ..., Q. In practice, the covariance matrix is estimated using

the T available samples, i.e.,

R̂xx =
1

T

T∑
t=1

x(t)xH(t). (5)

From a pair of antennas located at the ith and kth positions in p, the correlation E[xi(t)x
∗
k(t)] yields the

(i, k)th entry in Rxx with lag pi−pk. As such, all the available values of i and k, where 0 ≤ i ≤ M+N−1

and 0 ≤ k ≤ M +N − 1, yield virtual sensors of the following difference coarray:

CP = {z | z = u− v,u ∈ P,v ∈ P}. (6)

The significance of the difference coarray is that the correlation of the received signal can be calculated

at all differences in set CP . Any application which depends only on such correlation (e.g., DOA

estimation) can exploit all the DOFs offered by the resulting coarray structure. Using a part or the

entire set of the distinct auto-correlation terms in set CP , instead of the original array, to perform DOA

estimation, we can increase the number of detectable sources by the array. The maximum number of the

DOFs is determined by the number of unique elements in the following set

LP = {lP | lPd ∈ CP }. (7)

To gain more insights about the difference coarrays, we separately consider the self-differences of the

two subarrays and their cross-differences. Since the coarray is obtained from the Hermitian matrix Rxx,

the self-difference in the coarray has positions

Ls = {ls| ls = Mn} ∪ {ls| ls = Nm}, (8)

and the corresponding mirrored positions L−
s = {−ls| ls ∈ Ls}, whereas the cross-difference has positions

Lc = {lc| lc = Nm−Mn}, (9)

and the corresponding mirrored positions L−
c = {−lc| lc ∈ Lc}, for 0 ≤ n ≤ N −1 and 0 ≤ m ≤ M −1.

Consequently, the full set of lags in the virtual array is given by,

LP = Ls ∪ L−
s ∪ Lc ∪ L−

c . (10)
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An example is illustrated in Fig. 2, where M=6 and N=7. Fig. 2(a) show the self- and cross-lags

described in (8) and (9). If we include the negative mirror of the above set, then the full set of lags

becomes symmetric, as shown in Fig. 2(b). Notice that some “holes”, e.g., ±13,±19,±20, still exist in

the difference coarray and are indicated by × in this figure. The total number of lags in the symmetric

set gives a global upper bound of the achievable DOFs.

−35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35

�s �c Holes

(a)

−35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35

Lags Holes

(b)

Fig. 2. An example of prototype coprime configuration coarrays, where M=6 and N=7. (a) The set Ls and Lc. (b) The lag

positions in full set LP

III. DOA ESTIMATION TECHNIQUES

To better understand the significance of the performance metrics to be examined, i.e., the coarray

aperture, the number of consecutive coarray lags, and the number of unique lags of coarray lags, we briefly

review the two representative DOA estimation techniques that are recently developed for coprime array

configurations. The first one is based on the well-known MUSIC algorithm, and the spatial smoothing

technique [19], [20], [21] is applied to construct a suitable covariance matrix from the virtual sensor output

prior to performing MUSIC spectrum estimation [12], [13]. Notice that, while the use of virtual sensors

substantially increases the available number of DOFs, the application of spatial smoothing essentially

halves the number of available virtual sensors. A different approach to perform DOA estimation exploiting

coprime arrays is through sparse signal reconstruction by taking advantages of the fact that the spatial

signal spectra are sparse. Such sparse signal reconstruction is achieved using the recently developed

compressive sensing techniques [22], [23]. These two DOA estimation techniques are summarized below.

A. MUSIC Algorithm

Vectorizing Rxx in (4) yields

z = vec(Rxx) = Ãb+ σ2
nĨ = Br, (11)
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where Ã = [ã(θ1), ..., ã(θQ)], ã(θq) = a∗(θq)
⊗

a(θq), b = [σ2
1, ..., σ

2
Q]

T , Ĩ = vec(IM+N−1). In

addition, B = [Ã, Ĩ] and r = [bT , σ2
n]

T = [σ2
1, ..., σ

2
Q, σ

2
n] are used for notational simplicity. The vector z

amounts to the received data from a virtual array with an extended coarray aperture whose corresponding

steering matrix is defined by Ã. However, the virtual source signal becomes a single snapshot of b. In

addition, the rank of the noise-free covariance matrix of z, Rzz = zzH , is one. As such, the problem

is similar to handling fully coherent sources, and subspace-based DOA estimation techniques, such as

MUSIC, fail to yield reliable DOA estimates when multiple signals impinge to the array.

To overcome this problem, it is proposed in [13] to apply spatial smoothing technique to the covariance

matrix so that its rank can be restored. Since spatial smoothing requires a consecutive difference lag set

so that every subarray has similar manifold, we extract all the consecutive lag samples of z and form a

new vector z1. Denote [−lξ, lξ] as the consecutive lag range in LP . Then, z1 can be expressed as

z1 = Ã1b+ σ2
nĨ1, (12)

where Ã1 is identical to the manifold of a uniform linear array (ULA) with 2lξ +1 sensors located from

−lξd to lξd and Ĩ1 is a (2lξ + 1)× 1 vector of all zeros except a 1 at the (lξ + 1)th position. We divide

this virtual array into lξ + 1 overlapping subarrays, z1i, i = 1, . . . , lξ + 1, each with lξ + 1 elements,

where the ith subarray has sensors located at (−i+ 1+ k)d, with k = 0, 1, . . . , lξ denoting the index of

the overlap subarray used in the spatial smoothing.

Define

Ri = z1iz
H
1i . (13)

Taking the average of Ri over all i, we obtain

R′
zz =

1

lξ + 1

lξ+1∑
i=1

Ri, (14)

which yields a full-rank covariance matrix so that the MUSIC algorithm can be performed for DOA

estimation directly. As a result, lξ DOFs are achieved, which are roughly equal to half of the available

consecutive lags of the resulting coarray.

B. Compressive Sensing Approach

Alternatively, (11) can be solved using the CS approach [23]. The desired result of b, whose elements

are the first Q entries of vector r, can be obtained from the solution to the following constrained l0-norm

minimization problem

r̂◦ = argmin
r◦

||r◦||0 s.t. ||z−B◦r◦||2 < ε, (15)
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where ε is a user-specific bound, B◦ is a sensing matrix consisting of the searching steering vectors and

ĩ, whereas r◦ is the sparse entries in these search grids to be determined. The sensing matrix B◦ and

the entry vector r◦ are defined over a finite grid θg1 , ..., θ
g
G, where G � Q. The last entry of r◦ denotes

the estimate of σ2
n, whereas the positions and values of the non-zero entries in the other elements of r◦

represent the estimated DOAs and the corresponding signal power.

This type of problems has been the objective of intensive studies in the area of CS, and a number of

effective numerical computation methods have been developed [24], [25], [26], [27], [28]. In [23], the

batch Lasso method was used, but other methods may also be used. The objective function of the Lasso

algorithm is defined as

r̂◦ = argmin
r◦

[
1

2
||z−B◦r◦||2 + λt||r◦||1

]
, (16)

where the l2 norm in the objective function denotes the ordinary least-squares (OLS) cost function, and

the l1 norm involves the sparsity constraint. In addition, λt is a penalty parameter which can be tuned to

trade off the OLS error for the number of nonzero entries (degree of sparsity) in the estimates [24]. The

above Lasso objective is convex in r◦, and can be optimized using linear programming techniques [29].

IV. COPRIME ARRAY WITH COMPRESSED INTER-ELEMENT SPACING

Now we present our main results that generalize coarray structures in two operations, i.e., CACIS

and CADiS. The CACIS is presented in this section, whereas the CADiS is examined in the following

section.

We consider two subarrays with M and N sensors, where M and N are coprime. Note that, in the

sequel, the condition that M < N is no longer assumed. Unlike the prototype coprime array, an integer

compression factor p is introduced for changing the inter-element spacing of one subarray. Assume that

M can be expressed as a product of two positive integers p and M̆ , i.e.,

M = pM̆, (17)

for some p that takes a value between 2 and M . It is easy to confirm that M̆ and N are also coprime

since M and N do not have common factors other than unity. As shown in Fig. 3, in the generalized

coprime array, the M -element subarray has an inter-element spacing of Nd, whereas the N -element

subarray has an inter-element space of M̆d = Md/p. As such, the generalized coprime array can be

considered that the inter-element spacing of one constituting subarray is compressed by an integer factor

of p, thus comes the term of coprime array with compressed inter-element spacing (CACIS). Note that

all arrays consist of the same M + N − 1 physical antenna sensors and their aperture is (M − 1)N ,
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Fig. 3. The CACIS configuration.

regardless the value of p. It is shown that the variation of the coprime array configuration used in [13]

is a special case of the CACIS configuration by choosing p = 2.

In this array configuration, the self-lags of the two subarrays are given by the following set 1,

L̃s = {l̃s| l̃s = M̆n} ∪ {l̃s| l̃s = Nm}, (18)

and the corresponding mirrored positions L̃−
s , whereas the cross-lags between the two subarrays are given

by

L̃c = {l̃c| l̃c = Nm− M̆n}, (19)

and the corresponding L̃−
c , where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1.

To completely exploit the DOFs of the CACIS configuration, we summarize the properties of L̃s and

L̃c in the following proposition.

Proposition 1: The following facts hold for the CACIS:

(a) There are MN distinct integers in set L̃c.

(b) L̃c contains all the contiguous integers in the range −(N − 1) ≤ l̃c ≤ MN − M̆(N − 1)− 1.

(c) The negative values form a subset of the flipped positive values in set L̃c, i.e.,

{l̃c| l̃c < 0, l̃c ∈ L̃c} � {–l̃c| l̃c > 0, l̃c ∈ L̃c}.

(d) The self-lags form a subset of the cross-lags, i.e., (L̃−
s ∪ L̃s) � (L̃−

c ∪ L̃c).

(e) There are “holes” located at both positive range and negative ranges of L̃c. The holes falling in the

negative range are located at −(aM̆ + bN), where a ≥ 0, b > 0 are integers.

The proof is provided in Appendix A.

1(̃·) is used to emphasize variables corresponding to the CACIS structure.
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Based on the properties (c) and (d) of Proposition 1, the entire lag set in the virtual array defined in

(10) consists of {l̃c| l̃c ≥ 0, l̃c ∈ L̃c} ∪ {−l̃c| l̃c ≥ 0, l̃c ∈ L̃c}, thus resulting in Proposition 2.

Proposition 2: The CACIS configuration defined in equation (17) yields a virtual array such that:

(a) It contains 2MN − (M̆ + 1)(N − 1)− 1 unique lags of virtual sensors;

(b) Among the unique lags, there are 2MN − 2M̆(N − 1) − 1 consecutive integers within the range

[−MN + M̆(N − 1) + 1, MN − M̆(N − 1)− 1].

The proof is provided in Appendix B. In Fig. 4, M = 2M̆ is considered as an illustrative example of

above properties. It is equivalent to the configuration proposed in [13]. In this case, the virtual array

consists of 3M̆N + M̆ −N unique lags, among which [−M̆N − M̆ +1, M̆N + M̆ − 1] are consecutive.

Note that our result contains more consecutive lags and is more precise than the result provided in [13],

which is [−M̆N + 1, M̆N − 1]. The difference, which is based on property (b) of Proposition 1, is

clarified in Appendix A.

−15 −10 −5 0 5 10 15 20 25 30 35

�̃s �̃c Holes

(a)

−35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35

Lags Holes

(b)

Fig. 4. An example of CACIS configuration coarrays, where M̆=3, p=2 and N=7. (a) The set L̃s and L̃c. (b) The full set L̃P .

According to Proposition 2, we can draw a conculsion that, for a specific pair of M and N , smaller

values of M̆ led to more unique and consecutive coarray lags. In other words, both numbers increase

with the compression factor p. The minimum value that M̆ can take is 1. In this case, the CACIS

configuration becomes a nested array structure, which provides the highest numbers of the unique and

consecutive virtual sensors. More detailed discussions about nested array configurations will be given in

Section VI.

V. COPRIME ARRAY WITH DISPLACED SUBARRAYS

Sharing the same property as MRA, the prototype coprime array and the CACIS structure provide

sparse configurations in which the minimum inter-element spacing remains the unit spacing, which is
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typically half wavelength, to avoid the grating lobe problem. In addition to the aforementioned challenges

associated with half wavelength minimum spacing in regards of antenna size and mutual coupling, there

is a high number of overlapping between the self- and cross-lags. This is the case for both the prototype

coprime array and the CACIS structures and is consequence of the collocated subarray placement. By

introducing a proper displacement between the two subarrays, the new coprime array structure achieves a

larger minimum inter-element spacing, a higher number of unique lags, and a larger virtual array aperture.

As we will see, however, the number of consecutive lags is reduced because the positive and negative

lags are no longer connected.

Consider two collinearly located uniform linear subarrays, as depicted in Fig. 5, where one consists

of N antennas and the other with M − 1 antennas. As such, the total number of the sensors is kept to

M +N −1. We refer to this coprime array structure as coprime array with displaced subarrays (CADiS).

Similar to the CACIS configuration, we assume M and N are coprime. The N -element subarray has an

inter-element spacing of M̆d, and the (M − 1)-element subarray has an inter-element spacing of Nd,

where, as indicated in (17), M = pM̆ . The difference to the CASIS structure lies in the fact that these

two subarrays in the CADiS structure are placed collinearly with the closest spacing between the two

subarrays set to Ld, where L ≥ min{M̆,N}. Note that M̆ > 1 is required to guarantee the minimum

inter-element spacing to be larger than unit spacing, but the nested structure under this configuration, i.e.,

M̆ = 1, will also be discussed later as a special case. The total number of array sensors in the CADiS

structure remains M + N − 1, which is the same as the CACIS configuration discussed earlier. Note

that the minimum inter-element spacing in the CADiS is min{M̆,N}d, as compared to d in the CACIS

structure. In addition, the total array aperture of the CADiS is (MN + M̆N − M̆ − 2N + L)d, which

is much larger than the (M − 1)Nd of the CACIS. In practical application, however, a small value of

displacement L should be chosen to avoid false peaks.

0 1 0 1

Ld

1N 2M

Subarray1 Subarray2

NdMd

Fig. 5. The CADiS configuration.
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For the CADiS configuration, the corresponding self-lags l̄s and cross-lags l̄c are respectively given

by2

L̄s = {l̄s| l̄s = Nm} ∪ {l̄s| l̄s = M̆n}, (20)

L̄c = {l̄c| l̄c = M̆(N − 1) +Nm− M̆n+ L}, (21)

and their corresponding mirrored positions L̄−
s and L̄−

c , respectively, where 0 ≤ m ≤ M − 2 and

0 ≤ n ≤ N − 1.

The following proposition reveals the properties of the resulting virtual sensors of the CADiS confi-

guration.

Proposition 3: Set L̄s and L̄c have the following properties in the CADiS configuration:

(a) There are (M − 1)N distinct integers in set L̄c.

(b) L̄c contains all the contiguous integers in the range (M̆ − 1)(N − 1)+L ≤ l̄c ≤ MN −N − 1+L.

(c) There are “holes” located at M̆(N−1)−(aM̆+bN)+L in set L̄c, where a ≥ 0, b > 0 are integers.

(d) (L̄−
s ∪ L̄s) � (L̄−

c ∪ L̄c).

The proof is provided in Appendix C.

In the CACIS configuration, the negative lags form a subset of the flipped positive counterpart.

Therefore, only non-negative lags in L̃c are used. In the CADiS configuration, however, the negative lags

do not generally overlap with the flipped positive lags because of the displacement between two subarrays,

necessitating the consideration of both positive and negative lags. As such, the CADiS configuration enjoys

a higher number of unique lags than the CACIS because of the utilization of negative lags. In addition,

the self-lags are less likely to coincide with the cross-lags in the CADiS configuration. Consequently,

the CADiS offers a larger virtual array aperture and a higher number of virtual sensors. The role of the

displacement L is as follows. On one hand, it reduces the overlaps between the self- and cross-lags.

On the other hand, because L̄c has holes located at M̆(N − 1) − (aM̆ + bN) + L for integers a ≥ 0

and b > 0, the number of consecutive lags can be extended by choosing an approximate value of L so

that some self-lags are aligned to the cross-lag holes. For illustrative purpose, we consider the case of

p = 2, M̆ = 3, N = 7 and L = M̆ + N as an example. The corresponding L̄s and L̄c are shown in

Fig. 6. It is clear that some holes in L̄c (12, 14, 15, 18 and 21) are aligned by elements of L̄s. The

following proposition describes the selection of the value of L that maximizes the number of unique and

consecutive lags.

2(̄·) is used to emphasize variables corresponding to the CADiS structure.
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Fig. 6. An example of CADiS configuration coarrays, where p = 2, M̆ = 3, N = 7 and L = M̆ +N .

Proposition 4: For the CADiS configuration,

(a) The maximum number of unique lags 2MN + 2M − 5 can be achieved with L > N(M − 2).

(b) L = M̆ +N is the choice that yields the largest number of consecutive lags. In this case, there are

2MN + 2M̆ − 1 unique lags, among which the range [(M̆ − 1)(N − 1),MN + M̆ − 1] and its

corresponding negative range [−MN − M̆ + 1,−(M̆ − 1)(N − 1)] are respectively consecutive.

The proof is provided in Appendix D. Based on property (2) of Proposition 4, it is clear that the number of

unique lags increases as M̆ increases, whereas the number of the consecutive lags decreases. Particularly,

for the nested array structure, i.e., M̆ = 1, the positive range of consecutive lags is [0,MN ] and its

corresponding negative range becomes [−MN, 0], resulting in all unique lags to be consecutive.

For comparison, we enlist in Table I the coarray aperture, the maximum number of unique and

consecutive lags for both proposed configurations. As the results show, for a given coprime pair of

M and N , the nested structure achieves the maximum number of consecutive and unique lags when

using CACIS configurations. In other word, it offers the highest number of DOFs for DOA estimation.

As for CADiS, the nested structure provides the highest number only for the consecutive lags. The number

of its unique lags, 2MN + 1, on the other hand, is less than that of the CADiS structure with a large

separation between the two subarrays. That is, the nested CADiS provides the highest number of DOFs

only when MUSIC or other subspace based methods are used for DOA estimation, but it becomes less

effective when CS based DOA estimation methods are applied. It is noted that, to estimate DOAs of up

to MN sources, the nested CADiS structure requires only M +N −1 sensors, which are much less than

the result of 2M +N − 1 sensors as exploited in [13].

VI. COMPARISON OF DIFFERENT NESTED STRUCTURES

The nested structure is referred to a structure consisting of two uniform linear subarrays, where one

subarray has a unit inter-element spacing [9]. A nested array is usually designed such that the virtual

sensors in the resulting coarray are all contiguous. The nested structure proposed in [9], as shown in Fig.

7, consists of an inner N1-element subarray with a unit spacing d and an outer N2-element subarray with

spacing (N1 + 1)d, resulting in 2N2(N1 + 1) − 1 contiguous lags. Note that the nested array concept
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TABLE I

COMPARISON OF THE COARRAY APERTURE, NUMBER OF UNIQUE LAGS, AND NUMBER OF CONSECUTIVE LAGS

Coarray aperture Maximum number of unique lags Maximum number of consecutive lags

CACIS (M − 1)N 2MN − M̆(N − 1)−N 2MN − 2M̆(N − 1)− 1

CADiS (M̆ > 1) (N − 1)M̆ 2MN + 2M − 5 MN − (M̆ − 1)(N − 2) + 1

+(M − 2)N + L

(displacement L) (arbitrary L) (L > N(M − 2)) (L = M̆ +N)

Nested CADiS (M̆ = 1) MN 2MN + 1 2MN + 1

(displacement L) (L = N + 1) (L = N + 1) (L = N + 1)

TABLE II

OPTIMUM SOLUTION FOR DIFFERENT NESTED STRUCTURES THAT MAXIMIZES THE DOFS

Number of physical sensors Optimal values Maximum number of DOFs

K is even M =
K + 2

2
, N =

K

2
(M − 1)N =

K2

4
CACIS K = M +N − 1

K is odd M =
K + 1

2
, N =

K + 1

2
(M − 1)N =

K2 − 1

4

K is even M =
K + 2

2
, N =

K

2
MN =

K2 + 2K

4
CADiS K = M +N − 1

K is odd M =
K + 1

2
, N =

K + 1

2
MN =

K2 + 2K + 1

4

K is even N1 =
K

2
, N2 =

K

2
N2(N1 + 1)− 1 =

K2 + 2K − 4

4
Configuration K = N1 +N2

in [9] K is odd N1 =
K − 1

2
, N2 =

K + 1

2
N2(N1 + 1)− 1 =

K2 + 2K − 3

4
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does not require a coprimality between N1 and N2. It is also important to note that, in the extension of

the generalized coprime array framework, different nested array configurations can be defined, by setting

M̆ to be one to the CACIS and CADiS structures. These different nested configurations yield different

numbers of DOFs. For comparison of the three nested array structures, we consider the same number, K,

of physical sensors, and optimize the array configuration for each structure to maximize the respective

number of DOFs. Such optimal solutions are summarized in Table II. It is clear that the structure in [9]

offers a higher number of DOFs than the nested CACIS structure, but less than the nested CADiS.

0 1  0 1  

  

Subarray 1 Subarray 2 

Fig. 7. The nested configuration proposed in [9].

For better illustrative purposes, we compare three different optimized nested configurations with K = 8

physical sensors in Fig. 8. Fig. 8(a) shows the optimized nested CACIS configuration. One subarray is

of N = 4 sensors with an inter-element spacing of M̆d = d, whereas the other is of M = 5 elements

with an inter-element spacing of Nd = 4d. In addition, the two subarrays share the first sensor at the

zeroth position and form a coarrys with 33 lag positions. The nested CADiS structure is illustrated in

Fig. 8(b). One 4-element subarray has an inter-element spacing of M̆d = d, and the other subarray has

an inter-element spacing of Nd = 4d. In addition, there is a displacement Ld = (M̆+N)d = 5d between

the two subarrays. As a result, its coarray has 41 lag positions. Finally, the nested array configuration

proposed in [9] is depicted in Fig. 8(c), where the inner subarray has N1 = 4 elements with spacing d

and the outer subarray has N2 = 4 elements with spacing (N1 + 1)d = 5d. In this case, the coarray has

39 lag positions. As a result, the nested CADiS structure achieves a higher number of DOFs.

VII. SIMULATION RESULTS

For illustrative purposes, we consider M = 6 and N = 7 with different values of the compression

factor p of the two configurations, i.e., CACIS and CADiS. L = M̆ +N are considered for the CADiS

configuration for the convenience of performance comparison between both MUSIC and CS techniques.
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Fig. 8. Three different optimized nested configurations and their coarrays (K=8). (a) The nested CACIS. (b) The nested CADiS.

(c) The nested configuration proposed in [9].

All configurations consist of M+N−1 = 12 physical antenna sensors and the unit inter-element spacing

is d = λ/2.

A. Array Configurations

The virtual sensors corresponding to the CACIS and CADiS structures are respectively shown in Fig.

9 and Fig. 10. Fig. 9(a) depicts the CACIS configuration example for p = 2, where the coprime array

form a virtual array with 59 unique lags, among which 47 lags within [−23, 23] are consecutive. Fig.

9(b) shows for the case of p = 3, and the resulting virtual array has 65 unique lags, among which 59 lags

within [−29, 29] are consecutive. When p = M = 6, i.e., M̆ = 1, as shown in Fig. 9(c), the coprime array

becomes the nested array structure with 71 unique lags, which are all consecutive. It is clear that both

numbers of the unique and consecutive lags increase with p, and the nested array achieves the maximum

number for both. For the CADiS configuration with L = M̆ +N , the case of p = 2 is presented in Fig.

10(a). In this case, the entire virtual array has 89 unique lags, among which lags within [−44,−12] and

[12, 44] are respectively consecutive. For p = 3, there are 87 distinct lags, resulting consecutive lags in
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−35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35

(a)

−35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35

(b)

−35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35

(c)

Fig. 9. CACIS configuration coarrays, for different compression factor p (M=6 and N=7). (a) p = 2 and M̆ = 3. (b) p = 3

and M̆ = 2. (c) p = 6 and M̆ = 1.

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(a)

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(b)

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(c)

Fig. 10. CADiS configuration coarrays with displacement L = M̆ + N , corresponding the compression factor p (M=6 and

N=7). (a) p = 2, M̆ = 3 and L = 10. (b) p = 3, M̆ = 2 and L = 9. (c) p = 6, M̆ = 1 and L = 8.

[−43,−6] and in [6, 43] as shown in Fig. 10(b). In Fig. 10(c), the nested CADiS with p = 6 and M̆ = 1

is considered as a special case. It is noted that all 85 lags in the full symmetric set of [−42, 42] are

consecutive.
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B. MUSIC and CS Spectra

In Figs. 11 and 12, we present numerical examples to demonstrate the number of achievable DOFs for

DOA estimation using the generalized coprime arrays. As the virtual sensor lags are obtained from the

estimated covariance matrix based on the received data samples as in (5), the virtual steering matrix is

sensitive to the noise contamination. To clearly demonstrate the number of achievable DOFs, therefore,

we use 2000 noise-free snapshots to obtain a relatively clean covariance matrix. Q = 33 uncorrelated

narrowband sources are considered, which are uniformly distributed between −60◦ and 60◦. For the

MUSIC algorithm which requires consecutive lags, we respectively obtain 23, 29 and 35 DOFs of CACIS

configuration for p = 2, p = 3 and p = 6 as shown in Figs. 11(a), 11(c) and 11(e). On the other hand,

17, 19 and 42 DOFs are obtained using the CADiS configuration as shown in Figs. 11(b), 11(d) and

11(f). Note that only the nested structures have a sufficient number of DOFs to resolve all 33 impinging

signals. This is verified in Fig. 11 in which only the cases of p = 6 resolve all the 33 signals for both

configurations, whereas not all sources are correctly identified for the cases of p = 2 and p = 3. In

addition, it is evident that the “nested CADiS” has better performance than “nested CACIS” due to the

higher DOFs of the former. When the CS technique is applied for DOA estimation, a higher number of

DOFs is achieved because all unique lags are exploited. The results obtained from the Lasso are shown

in Fig. 12, where a grid interval of θgi = 0.25◦ and the penalty parameter of λt = 0.85 are used. It is

clearly shown that only the nested structure can recover all 33 sources using the CACIS configuration,

whereas all these signals can be detected for all the CADiS configurations examined in Fig. 12 due to

their higher unique lags. In addition, the CS based technique results in better estimated spectra, when

comparing the MUSIC spectra depicted in Fig. 11.

To compare the performance between the CACIS and CADiS structures as well as between the MUSIC

and CS methods, we use the respective nested structures and compute the results in the presence of noise

with a 0 dB SNR for all signals, and the number of snapshots is reduced to 500. In this case, the

perturbation in the covariance matrix becomes higher due to noise and the limited number of samples,

and the resulting DOA estimation performance degrades. The DOA estimation results are compared in

Fig. 13 for Q = 33 sources, which is smaller than the available DOFs for both array configurations. It

is evident that the nested CADiS outperforms the nested CACIS, and the CS based method achieves a

better spatial spectrum estimation performance.

C. Root Mean Square Error versus SNR and Number of Snapshots

We further compare the DOA estimation performance of different CACIS and CADiS configurations

through Monte Carlo simulations. The average root mean square error (RMSE) of the estimated DOAs,
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expressed as

RMSE =

√√√√√
I∑

i=1

Q∑
q=1

(θ̂q(i)− θq)2

IQ
,

is used as the performance metric, where θ̂q(i) is the estimate of θq for the ith Monte Carlo trial,

i = 1, . . . , I . We use I = 500 independent trials in all simulations.

To enable comparison, we consider Q = 16 narrowband uncorrelated sources, which are lower than

the available DOFs for all cases with both MUSIC and CS techniques. Fig. 14 compares the RMSE

performance as a function of the input SNR, where 500 snapshots are used. In Fig. 15, we compare

the performance of different array configurations and DOA techniques with respect to the number of

snapshots, where the input SNR is set to 0 dB. It is evident that the DOA estimation performance is

improved with the increase of the input SNR and the number of snapshots. For the CACIS structure, the

performance of both MUSIC and CS approaches improves as the compression factor p increases because

of the increased number of consecutive and unique lags. As a result, the nested array structure achieves

the best performance. For CADiS, MUSIC-based DOA estimation for non-nested CADiS structures

suffers from significant performance degradation because of the disconnected coarray lags. As such, the

nested array is the preferred CADiS structure when the MUSIC algorithm is used for DOA estimation.

Furthermore, the nested CADiS slightly outperforms the nested CACIS as a result of higher number of

consecutive lags. However, because it has the fewest unique lags, the nested structure is least effective

among the three CADiS array structures when the CS technique is exploited. As a conclusion, the CS-

based method obtains better performance than the MUSIC counterparts. In addition, when the CS-based

technique is used, the CADiS outperforms the corresponding CACIS structures.

VIII. CONCLUSIONS

We have proposed the generalized coprime array concept in two aspects: compression of the inter-

element of spacing of one constituting subarray, and the displacement of the two subarrays. The first

operation yields flexibility of trading-off between unique lags and consecutive lags for effective direction-

of-arrival (DOA) estimation based on different algorithms, whereas the second operation further allows a

larger minimum inter-element spacing beyond the typical half-wavelength requirement. The performance

of the generalized coarray structures was evaluated using their difference coarray equivalence, and the

analytical expressions of the coarray aperture, the achievable number of unique lags, and the maximum

number of consecutive lags were derived for quantitative evaluation, comparison, and optimal design.

The usefulness of these results was demonstrated using examples applied for DOA estimations.
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Fig. 11. Spatial spectra estimated using MUSIC for both configurations (Q=33, M = 6 and N = 7). (a) CACIS with p=2. (b)

CADiS with p=2. (c) CACIS with p=3. (d) CADiS with p=3. (e) CACIS with p=6. (f) CADiS with p=6.
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Fig. 12. Spatial spectra estimated using Lasso for both configurations (Q=33, M = 6 and N = 7). (a) CACIS with p=2. (b)

CADiS with p=2. (c) CACIS with p=3. (d) CADiS with p=3. (e) CACIS with p=6. (f) CADiS with p=6.

X. APPENDIX

A. Proof of Proposition 1

(a) We prove it using contradiction. Denote l̃c1 = Nm1−M̆n1 and l̃c2 = Nm2−M̆n2 as two arbitrary
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Fig. 13. Estimated spatial spectra (SNR=0 dB, 500 snapshots, Q=33). (a) MUSIC with nested CACIS. (b) MUSIC with nested

CADiS. (c) LASSO with nested CACIS. (d) LASSO with nested CADiS.

lags in set L̃c, where 0 ≤ m1 ≤ M − 1, 0 ≤ m2 ≤ M − 1, 0 ≤ n1 ≤ N − 1 and 0 ≤ n2 ≤ N − 1.

Had l̃c1 = l̃c2 been held, we would have

M̆

N
=

m1 −m2

n1 − n2
. (22)

Since n1 − n2 < N , (22) cannot be hold due to the coprimality of M̆ and N . That is, l̃c1 and l̃c2

cannot be equal. Thus, L̃c has MN distinct integers.

(b) Given an arbitrary integer l̃c in set L̃c satisfying

−(N − 1) ≤ l̃c ≤ MN − M̆(N − 1)− 1, (23)

we need to prove that there exist integers m ∈ [0,M−1] and n ∈ [0, N−1] such that l̃c = Nm−M̆n

holds. The requirement n ∈ [0, N − 1] is equivalent to

0 ≤ M̆n ≤ M̆(N − 1). (24)
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Because Nm = l̃c + M̆n, we obtain the following relationship by combining (23) and (24),

−(N − 1) ≤ Nm ≤ MN − 1. (25)

This result can be equivalently expressed as −N < Nm < MN, which implies −1 < m < M .

Because m is an integer, this requirement is equivalent to

0 ≤ m ≤ M − 1, (26)

which is satisfied in the underlying coprime array.

Remark: The configuration proposed in [13] becomes a special case of CACIS configuration, as

M = 2M̆ . As a result, the set L̃c contains all the integers in the range −(N−1) ≤ l̃c ≤ M̆N+M̆−1.

Apparently, our result contains more consecutive lags and more precise than the results provided in

[13] using the same configuration. In [13], they only count the consecutive l̃c in the range [0, M̆N ].

(c) Given an arbitrary integer in set L̃c satisfying l̃c = Nm − M̆n < 0, where m ∈ [0,M − 1] and

n ∈ [0, N − 1], the following relationship can be obtained

0 ≤ Nm < M̆n ≤ M̆(N − 1) < M̆N. (27)

Consequently, the set L̃c− , which consists of the negative elements in L̃c, can be expressed as

L̃c− = {l̃c| l̃c = Nm− M̆n,Nm < M̆n}, (28)

where 0 ≤ m ≤ M̆ − 1 and 0 < n ≤ N − 1.

Considering an arbitrary integer l̃c1 = Nm1−M̆n1 in set L̃c− , where Nm1 < M̆n1, m1 ∈ [0, M̆−1]

and n1 ∈ (0, N − 1], then we need to prove that there always exists l̃c2 in set L̃c to satisfy

l̃c2 = Nm2 − M̆n2 = −l̃c1 = M̆n1 −Nm1, (29)

where integers m2 ∈ [0,M − 1] and n2 ∈ [0, N − 1].

Then the relationship
M̆

N
=

m1 +m2

n1 + n2
, (30)

must be valid. Since n1+n2 ∈ (0, 2N) and M̆ and N are coprime, it is indicated that M̆/N cannot

be reduced to a ratio of smaller integers. As a result, the requirement is equivalent to

m2 = M̆ −m1,

n2 = N − n1, (31)

It is clear that there always exists m2 ∈ [1, M̆ ] � [0,M − 1] and n2 ∈ [0, N − 1] to satisfy (31).
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(d) Because the two subarrays share the first sensor at the zeroth position, the self-lags can be taken

as cross-lags between every sensor of one subarray and the first sensor of the other subarray. Thus,

(L̃−
s ∪ L̃s) � (L̃−

c ∪ L̃c).

(e) We prove the proposition by contradiction. Based on (28), we suppose Nm− M̆n = −(aM̆ + bN)

holds for some integers m ∈ (0, M̆) and n ∈ (0, N), where a ≥ 0 and b > 0 are integers, then

relationship
M̆

N
=

m+ b

n− a
(32)

must be valid. From 0 < n < N and a ≥ 0, we find n − a < N . As such, due to the coprimality

between M̆ and N , we cannot find an integer m that satisfies (32). Therefore, Nm − M̆n �=
−(aM̆ + bN), i.e., there are holes at −(aM̆ + bN) in set L̃c.

B. Proof of Proposition 2

(a) In line with the property (d) of Proposition 1, the full symmetric set of lags which defined in (10)

can be expressed as

L̃P = L̃−
c ∪ L̃c. (33)

Because L̃c can be denoted as

L̃c = {l̃c| l̃c ≥ 0, l̃c ∈ L̃c} ∪ {l̃c| l̃c < 0, l̃c ∈ L̃c}, (34)

(33) is equivalent to

L̃P = {±l̃c| l̃c ≥ 0, l̃c ∈ L̃c} ∪ {±l̃c| l̃c < 0, l̃c ∈ L̃c}. (35)

Based on the property (c) of Proposition 1, the negative values form a subset of the flipped positive

values in set L̃c. It is indicated that {l̃c| l̃c < 0, l̃c ∈ L̃c} � {–l̃c| l̃c > 0, l̃c ∈ L̃c} and {−l̃c|
l̃c < 0, l̃c ∈ L̃c} � {l̃c| l̃c > 0, l̃c ∈ L̃c}. Finally, the set L̃P becomes

L̃P = {l̃c| l̃c ≥ 0, l̃c ∈ L̃c} ∪ {−l̃c| l̃c ≥ 0, l̃c ∈ L̃c}, (36)

Denote η̃c and η̃c− as the number of distinct lags in set L̃c and L̃c− , respectively. As a result of

(36), the number of distinct lags in set L̃P can be expressed as

η̃P = 2(η̃c − η̃c−)− 1, (37)

where η̃c − η̃c− represents the number of non-negative lags in set L̃c.

Due to the property (a) of Proposition 1, there are MN distinct integers in set L̃c. It is easy to

confirm that

η̃c = MN. (38)
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η̃P can be obtained easily if given η̃c− . Next, the derivation of η̃c− is given as follows.

According to the definition of L̃c− defined in (28),

L̃c− = {l̃c| l̃c = Nm− M̆n,Nm < M̆n},

where 0 ≤ m ≤ M̆ − 1 and 0 < n ≤ N − 1.

For illustration, the geometry distribution of m and n, is shown in Fig. 16. As such, the boundary

and interior of the shadow part R1 represents all elements in L̃c− . Since M̆ and N are coprime,

there is no integer point on the diagonal line between OB. In addition, the shadow part R1 is

symmetric with R2. As a consequence, for obtaining the number of elements in set L̃c− , we can

first calculate the number of integer points in the rectangle within [0, M̆ ] and [1, N − 1] and then

get the half of that number.

There are (M̆ +1) and (N − 1) integers in the range [0, M̆ ] and [1, N − 1], respectively, thus, we

obtain

η̃c− =
(M̆ + 1)(N − 1)

2
, (39)

Finally, substituting (38) and (39) into (37),

η̃P = 2MN − (M̆ + 1)(N − 1)− 1, (40)

is derived analytically.

(b) On the basis of property (b) of Proposition 1, L̃c contains all the contiguous integers in the range

−(N − 1) ≤ l̃c ≤ MN − M̆(N − 1) − 1. Then, it is easy to confirm that L̃P contains 2MN −
2M̆(N − 1)− 1 consecutive integers in the range [−MN + M̆(N − 1)+ 1, MN − M̆(N − 1)− 1]

in terms of (36).

C. Proof of Proposition 3

(a) The proof can be extended from the proof of property (a) of Proposition 1, i.e., two arbitrary lags

l̄c1 and l̄c2 in set L̄c cannot be equal. Thus, L̄c has (M − 1)N distinct integers.

(b) The set L̄c can be rewritten as

L̄c = {l̄c| l̄c = M̆(N − 1) + z + L}, (41)

where 0 ≤ m ≤ M − 2 and 0 ≤ n ≤ N − 1, for different values of z that falls into the following

set,

Z = {z| z = Nm− M̆n, 0 ≤ m ≤ M − 2, 0 ≤ n ≤ N − 1}. (42)
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Extended from the proof of the property (b) of Proposition 1, we can conclude that z is consecutive

in the range

−(N − 1) ≤ z ≤ MN − M̆(N − 1)−N − 1. (43)

Combining (41) and (43), L̄c contains all the contiguous integers in the range

(M̆ − 1)(N − 1) + L ≤ l̄c ≤ MN −N − 1 + L. (44)

(c) Based on the the proof of property (e) of Proposition 1, it is easy to confirm that there are some

holes located at −(aM̆ + bN) in the negative range of set Z, where a � 0, b > 0 are integers. Then

we can draw a conclusion that there are holes located at M̆(N − 1)− (aM̆ + bN) +L in set L̄c by

combining (41) and (42).

(d) Due to the displacement, the two subarray do not share the first sensor any more. Considering

the elements in set L̄s, 0 �∈ L̄c because the minimum value in L̄c is L, which is larger than 1.

Consequently, (L̄−
s ∪ L̄s) � (L̄−

c ∪ L̄c).

D. Proof of Proposition 4

(a) Denote η̄s and η̄c as the number of the distinct lags in sets L̄s and L̄c, respectively, and η̄o as the

number of overlaps between the L̄s and L̄c. Based on the definition of L̄P and L̄s in (21), all lags

in these sets are positive. As a consequence of this, the number of full symmetric set of lags in the

virtual array can be expressed as

η̄P = 2(η̄s + η̄c − η̄o)− 1. (45)

Because of the coprimality of M̆ and N , M̆n �= Nm for n ∈ (0, N − 1] and m ∈ (0,M − 2]. As

such,

η̄s = M +N − 2. (46)

In line with the property (a) of Proposition 1, we can obtain

η̄c = (M − 1)N. (47)

Substituting (46) and (47) into (45), the relationship is equivalent to

η̄P = 2(MN +M − 2− η̄o)− 1. (48)

When L > N(M − 2), the maximum value in L̄s is less than the minimum value in L̄c. It signifies

that there is no overlap between l̄s and l̄c, i.e., η̄o = 0. Then the maximum number of unique lags,

which is 2MN + 2M − 5, can be achieved.
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(b) Due to the coprimality of M̆ and N , any integer value for displacement, L, can be realized by an

appropriate choice of integers c1 and c2, i.e., [30]

L = c1M̆ + c2N. (49)

Based on the property (c) of the Proposition 3, there are holes located at M̆(N−1)−(aM̆+bN)+L

in set L̄c, where with a and b are integers and a ∈ [0,∞), b ∈ (0,∞). If some holes are aligned by

the elements in L̄s, the following relationship

M̆(N − 1)− (aM̆ + bN) + L = Nm, (50)

or

M̆(N − 1)− (aM̆ + bN) + L = M̆n (51)

must be valid. Substituting (49) into (50) and (51), the requirement is equivalent to

M̆N + (c1 − a− 1)M̆ + (c2 − b)N = Nm,

or

M̆N + (c1 − a− 1)M̆ + (c2 − b)N = M̆n,

i.e.,

c1 = a+ 1 or c2 = b. (52)

Then the requirement further becomes

c1 = 1 or c2 = 1, (53)

so that the first hole (a = 0 and b = 1), which is outside the consecutive range of L̄c, can be aligned.

When c1 = 1, i.e., L = M̆ + c2N , the holes, where a = 0 and arbitrary b > 0,

M̆(N − 1)− bN + L

=M̆(N − 1)− bN + M̆ + c2N

=(M̆ − b+ c2)N, (54)

are aligned.

When c2 = 1, i.e., L = c1M̆ +N , the holes, where arbitrary a � 0 and b = 1,

M̆(N − 1)− (aM̆ +N) + L

=M̆(N − 1)− (aM̆ +N) + c1M̆ +N

=(N − 1− a+ c1)M̆,
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are aligned.

Thus, c1 = c2 = 1, i.e., L = M̆ +N , is the optimal choice since all above holes can be aligned. In

this case, the holes, where a = 0 and b = 1, a = 0 and b = 2, a = 1 and b = 1, are aligned. As

a result, the first hole outside the consecutive range of L̄c becomes M̆(N − 1) − (M̆ + 2N) + L

where a = 1 and b = 2. Then, the set L̄c contains all the consecutive integers in the range

M̆(N − 1)− (M̆ + 2N − 1) + L ≤ l̄c ≤ MN −N − 1 + L, (55)

where L = M̆ +N .

It is simplified as,

(M̆ − 1)(N − 1) ≤ l̄c ≤ MN + M̆ − 1. (56)

Next, we give the proof of the number of the unique lags when L = M̆ + N . The following

relationship

M̆(N − 1) + (Nm1 − M̆n1) + M̆ +N = Nm2, (57)

or

M̆(N − 1) + (Nm1 − M̆n1) + M̆ +N = M̆n2, (58)

must be valid if L̄s overlaps with L̄c. It is equivalent to

M̆ +m1 + 1− n1
M̆

N
= m2, (59)

or

N − n1 + (m1 + 1)
N

M̆
= n2. (60)

In (59), n1 must be equal to 0 because m2 is an integer, yielding

M̆ +m1 + 1 = m2. (61)

It is clear to confirm m2 ∈ [0,M − M̆ − 3] since m1 ∈ [0,M − 2]. This suggests that the number

of the overlaps in (59) is M − M̆ − 2. Similarly, we can show the number of overlaps in (60) is 0.

Hence,

η̄o = M − M̆ − 2. (62)

Substituting (62) into (48), we can obtain the number of unique lags η̄P to be

η̄P = 2MN + 2M̆ − 1. (63)
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Fig. 14. RMSE versus SNR (500 snapshots, Q=16). (a) The CACIS configurations. (b) The CADiS configurations.
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Fig. 15. RMSE versus the number of snapshots (SNR=0 dB, Q=16). (a) The CACIS configurations. (b) The CADiS

configurations.
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3.3. DOA Estimation Exploiting A Uniform Linear Array with

Multiple Co-prime Frequencies

Abstract

The co-prime array, which utilizes a co-prime pair of uniform linear sub-arrays, provides a syste-

matical means for sparse array construction. By choosing two co-prime integers M and N , O(MN)

co-array elements can be formed from only O(M +N) physical sensors. As such, a higher number of

degrees-of-freedom (DOFs) is achieved, enabling direction-of-arrival (DOA) estimation of more targets

than the number of physical sensors. In this paper, we propose an alternative structure to implement

co-prime arrays. A single sparse uniform linear array is used to exploit two or more continuous-wave

signals whose frequencies satisfy a co-prime relationship. This extends the co-prime array and filtering to

a joint spatio-spectral domain, thereby achieving high flexibility in array structure design to meet system

complexity constraints. The DOA estimation is obtained using group sparsity-based compressive sensing

techniques. In particular, we use the recently developed complex multitask Bayesian compressive sensing

for group sparse signal reconstruction. The achievable number of DOFs is derived for the two-frequency

case, and an upper bound of the available DOFs is provided for multi-frequency scenarios. Simulation

results demonstrate the effectiveness of the proposed technique and verify the analysis results.

I. INTRODUCTION

An important application of array signal processing is direction-of-arrival (DOA) estimation, which

determines the spatial spectrum of the impinging electromagnetic waves. It is well known that an N -

element uniform linear array (ULA) has N − 1 degrees-of-freedom (DOFs), i.e., it resolves up to N − 1

sources or targets by using conventional DOA estimation methods, such as MUSIC and ESPRIT [3, 4].

On the other hand, a higher number of DOFs can be achieved to resolve more targets by using the same

number of array sensors if they are sparsely placed [5, 6]. An increased number of DOFs is usually

achieved by exploiting the extended difference co-array whose virtual sensor positions are determined by

the lag differences between the physical sensors.

Among a number of techniques that are available for sparse array construction, co-prime array [7] is

considered attractive due to its capability of the systematic sparse array design. By choosing two integer

numbers M and N to be co-prime, O(MN) targets can be resolved with M+N−1 physical sensors [8].

This co-prime array concept can be generalized by introducing an integer factor that compresses the inter-

element spacing of one constituting sub-array, thereby achieving increased DOFs [9, 11]. In addition,

76



by placing the two sub-arrays co-linearly instead of co-located, the number of unique virtual sensors

is further increased, which benefits DOA estimation based on sparse signal reconstruction techniques

[10, 11].

While the co-prime array concept has been developed using physical uniform linear sub-arrays, we

propose in this paper an effective scheme that implements co-prime array configurations using a single

sparse ULA with two or more co-prime frequencies. As such, the ULA, whose inter-element spacing

is respectively M1 and M2 half-wavelengths of the two respective frequencies, with M1 and M2 to be

mutually co-prime integers, acts as virtual sub-arrays, resulting in an equivalent structure to co-prime

arrays. In essence, the proposed approach integrates the concept of co-prime array and co-prime filter to

reduce complexity and achieve high system performance. Unlike co-prime arrays, wherein the numbers

of sub-array sensors and the inter-element spacings have to satisfy the co-prime relationship, only the

frequencies are required to be co-prime in the proposed scheme.

The proposed scheme can be adopted for both passive and active radar systems. The former requires

filtering the signal arrivals at the employed co-prime frequencies, whereas the latter requires emitting

those frequencies from a single antenna or a phased array and receiving the target backscattering with

ULA. The transmitter and receiver can be located or widely separated. For active sensing, sum co-array of

the transmit and receive arrays replaces the difference co-array of the two structures which is associated

with receive only operations [12].

In this paper, we derive the analytical expression of the available number of DOFs as a function of the

number of physical sensors, L, and the selected co-prime frequencies for the two-frequency case. The

results resemble those derived in [9, 11] for a physical co-prime array. The key difference lies in the fact

that, unlike the co-prime array where each sub-array uses a different number of sensors, the two virtual

sub-arrays in the underlying structure refer to the same physical ULA and thus share the same number

of sensors. In addition, the number of physical sensors is not tied to the co-prime frequency multipliers

M1 and M2. The property enables a higher flexibility in array design and operation. In particular, for

a fixed number of physical array sensors, L, we demonstrate that a high number of DOFs, proportional

to L2, can be achieved with large values of M1 and M2. When K mutually co-prime frequencies are

used, each pair of these frequencies can form a virtual co-prime array as discussed above. Accordingly,

O(K2L2) DOFs can be achieved.

It is shown that, in the proposed scheme, the self-lags in the co-array corresponding to each sub-array

form a subset of the sub-array cross-lags. As such, the available DOFs are solely determined by the

number of cross-lags between the two sub-arrays. Because of the frequency-dependent characteristics of

the source, channel and target radar cross section (RCS), the received signal vectors corresponding to the
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different frequencies have a common spatial support, i.e., DOA, but generally have distinct coefficients.

Thus, DOA estimations become a group sparse signal reconstruction problem. In this case, the self-lags

obtained for each sub-array can also be exploited for possible performance improvement.

A large number of compressive sensing (CS) techniques have been proposed to deal with this problem.

In this paper, we consider the problem under the Bayesian compressive sensing (BCS) or sparse Bayesian

learning framework [13–17], which generally achieves a better reconstruction performance over those on

the basis of the greedy algorithms and dynamic programming approaches, such as the orthogonal matching

pursuit (OMP) [18] and the least absolute shrinkage and selection operator (LASSO) [19] algorithms. In

particular, we use the complex multitask Bayesian compressive sensing (CMT-BCS) algorithm [20] to

determine the DOAs of group sparse complex signals. This algorithm jointly treats the real and imaginary

components of a complex value, in lieu of decomposing them into independent real and imaginary

components. As a result, the sparsity of the estimated weight vectors can be improved, yielding better

signal recovery. Group sparsity treatments for real and imaginary entries have been reported in, e.g.,

[21, 22].

The remainder of the paper is organized as follows. In Section II, we first review the co-prime array

concept based on the difference co-array. Then, the array signal model exploiting co-prime frequencies is

summarized in Section III. Analytical expressions of array aperture and the number of DOFs are derived

in Section IV with respect to two and multiple co-prime frequencies. Sparsity-based DOA estimation

exploiting the CMT-BCS is described in Section V. Simulation results are provided in Section VI to

compare the performance of DOA estimation for different scenarios and validate the usefulness of the

results presented in Section V. Section VII concludes this paper.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IN

denotes the N ×N identity matrix. (.)∗ implies complex conjugation, whereas (.)T and (.)H respectively

denote the transpose and conjugate transpose of a matrix or vector. vec(·) denotes the vectorization

operator that turns a matrix into a vector by stacking all columns on top of each other, and diag(x) denotes

a diagonal matrix that uses the elements of x as its diagonal elements. ‖·‖2 and || · ||1 respectively denote

the Euclidean (l2) and l1 norms, and E(·) is the statistical expectation operator.
⊗

denotes the Kronecker

product, and 
·� denotes the floor function and returns the largest integer not exceeding the argument.

Pr(·) denotes the probability density function (pdf), and N (x|a, b) denotes that random variable x follows

a Gaussian distribution with mean a and variance b. Re(x) and Im(x) denote the real and imaginary parts

of complex element x, respectively.
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II. CO-PRIME ARRAY CONCEPT

In this section, we first review the co-prime array configuration that achieves a higher number of DOFs

based on the difference co-array concept. A co-prime array [7] is illustrated in Fig. 1, where M and N

are co-prime integers, i.e., their greatest common divisor is one. Without loss of generality, we assume

M < N . The unit inter-element spacing d is typically set to λ/2, where λ denotes the wavelength. The

array sensors are positioned at

P = {Mnd| 0 ≤ n ≤ N − 1} ∪ {Nmd| 0 ≤ m ≤ M − 1}. (1)

Because the two sub-arrays share the first sensor at the zeroth position, the total number of sensors used

in the co-prime array is M +N − 1. Note that the minimum inter-element spacing in this co-prime array

is d = λ/2.

Denote p = [p1, ..., pM+N−1]
T as the positions of the array sensors, where pi ∈ P, i = 1, ...,M+N−1,

and the first sensor, located at p1 = 0, is assumed as the reference. Assume that Q uncorrelated signals

impinging on the array from angles Θ = [θ1, ..., θQ]
T , and their discretized baseband waveforms are

expressed as sq(t), t = 1, ..., T , for q = 1, ..., Q. Then, the data vector received at the co-prime array is

expressed as,

x(t) =

Q∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (2)

where

a(θq) =
[
1, ej

2πp2
λ

sin(θq), ..., ej
2πpM+N−1

λ
sin(θq)

]T
(3)

is the steering vector of the array corresponding to θq, A = [a(θ1), ...,a(θQ)], and s(t) = [s1(t), ..., sQ(t)]
T .

The elements of the noise vector n(t) are assumed to be independent and identically distributed (i.i.d.)

random variables following the complex Gaussian distribution CN(0, σ2
nIM+N−1).

The covariance matrix of the data vector x(t) is obtained as

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

nIM+N−1

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ2
nIM+N−1,

(4)

where Rss = E[s(t)sH(t)] = diag([σ2
1, ..., σ

2
Q]) with σ2

q denoting the input signal power of the qth target,

q = 1, ..., Q. In practice, the covariance matrix is estimated using the T available samples, i.e.,

R̂xx =
1

T

T∑
t=1

x(t)xH(t). (5)

By vectorizing the matrix R̂xx, we obtain the following measurement vector:

z = vec(R̂xx) = Ãb+ σ2
ni, (6)
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where Ã = [ã(θ1), . . . , ã(θQ)], ã(θq) = a∗(θq)
⊗

a(θq), for 1 ≤ q ≤ Q. In addition, b = [σ2
1, . . . , σ

2
Q]

T

and i = vec(IM+N−1). Benefiting from the Vandermonde vector a(θq), we can regard z as a received

signal from a single snapshot b and the matrix Ã behaves as the manifold matrix of a larger virtual array

which has sensors located at the lags between two sub-arrays. From a pair of antennas located at the ith

and kth positions in p, the correlation E[xi(t)x
∗
k(t)] yields the (i, k)th entry in Rxx with lag pi − pk.

As such, all the available values of i and k, where 0 ≤ i ≤ M +N − 1 and 0 ≤ k ≤ M +N − 1, yield

virtual sensors of the following difference co-array:

CP = {z | z = u− v,u ∈ P,v ∈ P}. (7)

The significance of the difference co-array is that the correlation of the received signal can be calculated

at all lags in the set CP . Any application which depends only on such correlation (e.g., DOA estimation)

can exploit all the DOFs offered by the resulting co-array structure. Using a part or the entire set of

the distinct lag entries in the set CP , instead of the original physical array, to perform DOA estimation,

we can increase the parameter identifiability. The maximum number of the DOFs is determined by the

number of unique elements in the following set

LP = {lP | lPd ∈ CP }. (8)

III. SYSTEM MODEL

As described in the previous section, a higher number of DOFs is achieved using a co-prime array.

Such a co-prime array structure was originally developed using two physical uniform linear sub-arrays

with co-prime inter-element spacing [7]. In this paper, we extend that concept to a sparse ULA with

two or multiple co-prime frequencies, offering improved capabilities and flexibilities to achieve better

performance using a single ULA.

Assume K continuous-wave (CW) signals with co-prime frequencies are received at an L-element ULA

with inter-element spacing D. By co-prime frequencies, we mean that the ratio between carrier frequencies

equals the ratio between co-prime integers. For a CW waveform with frequency fk, k = 1, . . . ,K, the

return signal from the Q far-field targets, located at DOAs θq, q = 1, 2, · · · , Q, are expressed in a vector

form as

x̆k(t) = exp(j2πfkt)

Q∑
q=1

ρkq(t)ak(θq) + n̆k(t), k = 1, . . . ,K, (9)

where ρkq(t) is the complex envelop of the signal q corresponding to fk, which does not vary with the

receive antennas, but is in general frequency-dependent due to the different propagation phase delays.

We assume ρkq(t) to be uncorrelated for different targets over one scan due to target motion or RCS
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fluctuations (Swerling II). In addition, ak(θq) is the steering vector corresponding to θq for frequency fk,

expressed as

ak(θq) =
[
1, e

−j 2πD

λk
sin(θq), ..., e

−j 2π(L−1)D

λk
sin(θq)

]T
, (10)

where λk = c/fk denotes the wavelength corresponding to fk, and c is the velocity of wave propagation.

Furthermore, n̆k(t) is the additive noise vector whose elements are assumed to be spatially and temporally

white, and are independent of the target signals.

After converting the received signal vector to baseband using the respective frequencies, followed by

low-pass filtering, we obtain

xk(t) =

Q∑
q=1

ρkq(t)ak(θq) + nk(t) = Aksk(t) + nk(t), k = 1, . . . ,K, (11)

where Ak = [ak(θ1), · · · ,ak(θQ)] and sk(t) = [ρk1(t), · · · , ρkQ(t)]T . We denote the noise variance at

the filter output as σ2
nk

.

For convenience, Mk, k = 1, . . . ,K, are denoted as mutually co-prime integers. Without loss of

generality, we assume that they are sorted in a descending order, i.e., M1 < M2 < . . . < MK . In

addition, we assume that D is integer multiples of the half-wavelengths of all frequencies, such that

Mk = 2D/λk, k = 1, . . . ,K. As such, the ULA is sparse (spatially undersampled) at each frequency by

a factor of Mk. In this case and for clarity, we can rewrite the steering vectors in a frequency-independent

form, expressed as

ak(θq) =
[
1, e−jMkπ sin(θq), ..., e−jMk(L−1)π sin(θq)

]T
. (12)

It is clear that the DOA estimation problem is similar to the co-prime arrays considered in [7, 11]. There

are K uniform linear sub-arrays with a respective co-prime inter-element spacing. It is noted, however,

that unlike a co-prime array, in which the numbers of sub-array sensors are different, all sub-arrays in the

underlying virtual co-prime array structure share the same number of sensors, L. In addition, the DOA

estimation method needs to account for the fact that signals corresponding to different virtual arrays have

distinct phases. In the next two sections, we respectively analyze the achievable DOFs and describe group

sparse CS-based DOA estimation technique.

IV. ANALYSIS OF ACHIEVABLE DOFS

Similar to the co-prime array, the parameter identifiability can be improved using correlation-aware

techniques. In this section, we consider the virtual array constructed by exploiting multiple co-prime

frequencies and derive the analytical expressions of the number of DOFs.
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A. Analysis of DOFs with two co-prime frequencies

We first consider the problem when two frequencies M1 and M2, M1 < M2, are used. As shown in

Fig. 2, the sensors of the two equivalent sub-arrays are located at

P̃ = {M1l1d0|0 ≤ l1 ≤ L− 1}
⋃

{M2l2d0|0 ≤ l2 ≤ L− 1}, (13)

where d0 denotes a half-wavelength unit inter-element spacing in a normalized frequency sense (i.e.,

no specific frequency is referred to), and l1 and l2 are the respective indices of the sensor positions

of the two equivalent sub-arrays. As such, the aperture of this equivalent co-prime array structure is

M2(L − 1)d0. In addition, the two uniform linear sub-arrays in the underlying problem have the same

L sensors, which align in the zeroth position and whenever l2/M2 is an integer. Therefore, there are

2L− 1−
(L− 1)/M2� equivalent sensors. It is noted that, when M2 < L, there are overlaps among the

equivalent sensors, resulting in a reduced number of DOFs. Therefore, we only consider the M2 ≥ L

case in the remainder of this paper.

Because each sub-array is linear and uniformly spaced and the two sub-arrays share the first sensor

at the zeroth position, a self-lag position of a sub-array can always be taken as the cross-lag position

between a sensor of this sub-array and the first sensor of the other sub-array. In other words, the self-

lag positions form a subset of the cross-lag positions [11]. Therefore, we only consider the cross-lags

when determining the number of DOFs. In this array configuration, the cross-lags of the two equivalent

sub-arrays are given by the following set,

L̃c = {l̃c|l̃c = M1l1 −M2l2}, (14)

and the corresponding mirrored set,

L̃−
c = {l̃c|l̃c = M2l2 −M1l1} = {−l̃c|l̃c ∈ L̃c}, (15)

where 0 ≤ l1 ≤ L − 1 and 0 ≤ l2 ≤ L − 1. The achievable DOFs from the difference co-array is

determined by the unique elements in the following set

L̃P = L̃c

⋃
L̃−
c . (16)

Overall, there are 2L2 lags in the set L̃P , which contains both non-overlapping and overlapping lags. To

obtain a higher number of DOFs, which is determined by the number of unique lags in the set L̃P , we

can choose different pairs of M1 and M2 to reduce the redundancies in both L̃c and L̃−
c , as well as the

overlapping lags between L̃c and L̃−
c .

Denote η as the number of unique lags in the set L̃P . The following proposition reveals the analytical

relationship between η and different choice of M1 and M2.
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Proposition 1: For a virtual array constructed from a ULA with inter-element spacing D using two

co-prime frequencies with D = 1
2M1λ1 =

1
2M2λ2, the number of unique lags is given by

η = 2L2 − 1−max{0, 2L− 1−M2}min{M1 + 1, 2L− 1−M1}. (17)

It can be expressed for three different cases:

(a) For M2 ≥ 2L− 1, η = 2L2 − 1;

(b) For L ≤ M2 < 2L− 1 and L ≤ M1 < M2, η = 2L2 − 1− (2L− 1−M2)(2L− 1−M1);

(c) For L ≤ M2 < 2L− 1 and 1 ≤ M1 < L, η = 2L2 − 1− (2L− 1−M2)(M1 + 1).

The proof is provided in Appendix A.

The number of DOFs in the co-array can be obtained as (η + 1)/2 [23]. It indicates that η achieves

the maximum value of 2L2 − 1 in case (a), irrespective of M1, provided that M1 < M2 is satisfied. In

practice, however, a large value of M2 would increase the number of missing positions, i.e., holes in the

difference co-array. For cases (b) and (c), η depends on the values of both M1 and M2 and is maximized

when M1 = 1 or M1 = M2−1. The latter case yields a smaller frequency separation between f1 and f2,

whereas the former configuration represents a nested structure [24]. A nested array is usually designed

such that the virtual sensors in the resulting co-array are all contiguous and is considered as a special

case of the generalized co-prime array in [11].

For an illustrative purpose, examples for different pairs of M1 and M2 are presented in Fig. 3 and

Fig. 4, where the physical ULA has 4 sensors in all cases. The equivalent sensor positions are illustrated

in Fig. 3, whereas the respective co-arrays are presented in Fig. 4. Note that the holes are indicated by

“× ”. It is clear that the difference co-arrays for all cases have more virtual sensors than the number of

physical sensors in the original ULA. Compared to the other examples, there are more duplications in the

M1 = 2 and M2 = 3 < L case depicted in Fig. 3(a), leading to a reduction of the DOFs in the co-array,

as shown in Fig. 4(a). Also, there are 19 unique lags for the M1 = 3 and L < M2 = 4 < 2L − 1 case

in Fig. 4(b), whereas it increases to 31 in Fig. 4 (c) for M1 = 6 and M2 = 7 ≥ 2L − 1, due to fewer

overlapping lags between L̃c and L̃−
c . The nested structure with M1 = 1 and M2 = L = 4 is depicted in

Fig. 4(d) as a special case of L ≤ M2 < 2L−1. It is evident that, in this case, all 25 lags are contiguous.

B. Analysis of DOFs with multiple co-prime frequencies

When more than two mutually co-prime frequencies are used, each co-prime frequency pair forms

a virtual co-prime array corresponding to the two frequencies. Therefore, for K mutually co-prime

frequencies, there are
(
K
2

)
= K(K−1)

2 co-prime frequency pairs. As a consequence, the number of DOFs

in the resulting co-array is determined by the cardinality of the unique sum set of lags obtained in each
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co-prime frequency pair, which generally increases with the number of frequencies being used. However,

a general expression of the DOF for different choices of the co-prime frequencies is rather complicated

and does not necessarily provide meaningful insights. Instead, we provide the maximum number of

achievable DOFs in the following proposition, which corresponds to the case where each pair achieves

the maximum number of DOFs with minimum overlapping between different frequency pairs.

Proposition 2: The maximum number of achievable unique lags of the co-array generated from the

equivalent sub-arrays is given by

η = (L2 − 1)(K2 −K)− 2(L− 1)(K2 − 2K) + 1. (18)

The proof is provided in Appendix B.

It is clear that η ∝ O(K2L2), since there are O(K2) frequency pairs and O(L2) unique lags for

each pair. To achieve the upper bound of DOFs, however, it requires a large separation between different

multipliers Mk, k = 1, . . . ,K, so that the number of overlapping lags between different frequency pairs

is minimized.

V. COMPRESSIVE SENSING BASED DOA ESTIMATION

While the DOA estimation problem considered here appears to be similar to that discussed in [7, 25],

the CS method exploited therein cannot be readily applied to the underlying problem. A major distinction

is that the target reflection coefficients ρkq, q = 1, . . . , Q, differ at different frequencies k = 1, . . . ,K,

due to differences in their propagation phase delays and target reflectivities. As such, the phase term of

the cross-correlation between the received data vectors for different frequencies depends not only on the

spatial angle, but also on the unknown phase difference in the reflection coefficients and propagation

delays. In this section, we formulate the DOA estimation problem as a group sparsity based signal

recovery problem.

A. DOA estimation using only cross-lags

As discussed earlier, a full number of unique lags is achieved in the resulting co-array by using

the cross-lags between the sub-arrays. As such, the spatial spectra can be estimated based only on the

cross-lag correlations without loss of DOFs.

The cross-lag covariance matrix R
(i,k)
xx between the L × 1 received data vectors xi(t) and xk(t), for

1 ≤ i �= k ≤ K, is obtained as

R
(i,k)
xx = E

[
xi(t)x

H
k (t)

]
= AiR

(i,k)
ss AH

k =

Q∑
q=1

σ(i,k)
q ai(θq)a

H
k (θq), (19)
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where R
(i,k)
ss = E[si(t)s

H
k (t)] = diag([σ

(i,k)
1 , . . . σ

(i,k)
Q ]) is the cross-correlation matrix between the

received signals at the ith and kth frequencies. Note that σ
(i,k)
q , q = 1, . . . , Q, in general, takes a complex

value. Vectorizing R
(i,k)
xx in (19), we obtain

zik = vec
(
R

(i,k)
xx

)
= Ãikbik, i �= k ∈ [1, . . . ,K], (20)

where Ãik = [ãik(θ1), ..., ãik(θQ)] with ãik(θq) = a∗i (θq)
⊗

ak(θq), and bik = [σ
(i,k)
1 , ..., σ

(i,k)
Q ]T . It is

noted that the L2× 1 vector zik can be sparsely represented in the spatial domain over the entire angular

grids as

zik = Ão
ikb

o
ik, i �= k ∈ [1, . . . ,K], (21)

where Ão
ik is defined as the collection of steering vectors ãik over the entire possible grids θg for

g = 1, . . . , G, with G � Q. It is important to note that the angle positions of the signal arrivals θq, q =

1, . . . , Q, are indicated by the non-zero entries in vector bo
ik, whose values describe the corresponding

coefficients. Generally, the non-zero entries take different values with respect to different frequency pairs

but share the same positions because they correspond to the DOAs of the same Q targets. Therefore,

bo
ik exhibits a group sparsity across the K frequencies and, as such, the DOA estimation problem can

be solved in the context of group sparse reconstruction.

B. DOA estimation using both self- and cross-lags

While CS-based DOA estimation can be performed based only on the cross-lag correlations without

losing the available co-array DOFs, the utilization of both self- and cross-lags makes full use of the

observed data and may yield performance improvement.

The self-lag covariance matrix for the data vector xk(t), corresponding to the kth frequency for 1 ≤
k ≤ K, can be obtained as

R
(k,k)
xx = E

[
xk(t)x

H
k (t)

]
= AkR

(k,k)
ss AH

k + σ2
nk
IL =

Q∑
q=1

σ2
kqak(θq)a

H
k (θq) + σ2

nk
IL, (22)

where R
(k,k)
ss = E

[
sk(t)s

H
k (t)

]
= diag([σ2

k1, . . . σ
2
kQ]) is the auto-covariance matrix corresponding to the

kth frequency, and the signal power σ2
kq, q = 1, . . . , Q, is real and positive. Similarly, vectorizing R

(k,k)
xx

in (22) yields an L2 × 1 vector

zkk = vec
(
R

(k,k)
xx

)
= Ãkbk + σ2

nk
i, k ∈ [1, . . . ,K], (23)

where Ãk = [ãk(θ1), ..., ãk(θQ)], ãk(θq) = a∗k(θq)
⊗

ak(θq), bk = [σ2
k1, ..., σ

2
kQ]

T , and i = vec(IL).

Similarly, zkk can be sparsely represented as

zkk = B̃o
kkb̃

o
kk, k ∈ [1, . . . ,K], (24)
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where B̃o
kk =

[
Ão

k, i
]

and b̃o
kk =

[
bo T

kk , σ2
nk

]T
. Herein, Ão

k is the collection of steering vectors ãk(θg)

with g = 1, . . . , G, and bo
kk is the sparse vector whose non-zero entry positions correspond to the DOAs

of the signals. Similar to bo
ik in Eqn. (21), b̃o

kk also exhibits a group sparsity across the K frequencies

and shares the same sparsity pattern with bo
ik. Thus, by combing the results of zik and zkk, both self-

and cross-lag covariances can be fully utilized for possible performance improvement based on group

sparsity.

By using z̃ik, i, k ∈ [1, . . . ,K], to denote both cross-lag vector zik, i �= k, and self-lag vector zkk, the

DOA estimation problem using both self- and cross-lag covariances can be reformulated as:

z̃ik = B̃o
ikb̃

o
ik + εik, i, k ∈ [1, . . . ,K], (25)

where each vector z̃ik employs its respective L2 × (G+ 1) dictionary matrix,

B̃o
ik =

⎧⎪⎨
⎪⎩
[
Ão

kk, i
]
, i = k,[

Ão
ik,0
]
, i �= k,

(26)

and 0 denotes the all zero vector of L2× 1. An L2× 1 error vector εik is included in (25) to account for

the discrepancies between the statistical expectation and the sample average in computing the covariance

matrices R
(i,k)
xx , i, k = 1, . . . ,K. The discrepancies are modelled as i.i.d. complex Gaussian as a result

of a sufficiently large number of samples employed in the averaging.

Note that exploiting the self-lag covariances, together with the cross-lags, requires expanding the

dimension of the unknown sparse vector b̃o
ik by an additional element of the noise power σ2

nk
. In this

case, the first G elements of the obtained estimates of b̃o
ik are used to determine the DOAs, whereas the

last element of b̃o
ik is discarded.

A number of effective algorithms within the convex optimization and Bayesian sparse learning fra-

meworks are available to solve the complex-valued group sparse reconstruction problem. In this paper,

the CMT-BCS algorithm proposed in [20] and summarized in Section V-C is used due to its superior

performance and robustness to dictionary coherence.

C. CMT-BCS algorithm

We use the CMT-BCS to determine the DOAs of the targets which are treated as group sparse complex

observations. In this subsection, we briefly review the CMT-BCS approach based on [20]. Assume that

the entries in the sparse vectors rik are drawn from the product of the following zero-mean Gaussian

distributions:

b̃og

ik ∼ N (b̃og

ik |0, αgI2), g ∈ [1, . . . , G], (27)
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where b̃og

ik is a vector consisting of the real part coefficient, b̃ogR
ik , and the imagery part coefficient, b̃ogI

ik ,

with respect to the gth grid in b̃o
ik. In addition, α = [α1, . . . , αG]

T is a vector that contains variances of

b̃og

ik , g = 1, ..., G. Note that the vector α is shared by all groups to enforce the group sparsity. It is easy

to confirm that b̃og

ik trends to be zero when αg is set to zero [14].

To encourage the sparsity of b̃o
ik, a Gamma prior is placed on α−1

g , which is conjugate to the Gaussian

distribution,

α−1
g ∼ Gamma(α−1

g |a, b), g ∈ [1, . . . , G], (28)

where Gamma(x−1|a, b) = Γ(a)−1bax−(a−1)e−
b

x , with Γ(·) denoting the Gamma function, and a and b

are hyper-parameters.

As the covariance matrix is estimated from the received data samples, a Gaussian prior N (0, β0I2) is

also placed on the εik. Similarly, the Gamma prior is placed on β−1
0 with hyper-parameters c and d.

The CMT-BCS algorithm carries out a Bayesian inference by the Gibbs samplers [20]. Once the

parameters α and β0 are estimated by maximizing the marginal likelihood, the joint posterior density

function of b̃o
ik can be obtained analytically using Bayes’ rule. Define b̃oRI

ik =
[
(b̃oR

ik )
T , (b̃oI

ik )
T
]T

, with

b̃oR
ik = [bo1Rik , . . . , boGR

ik ]T and b̃oI
ik = [bo1Iik , . . . , boGI

ik ]T . Then,

Pr(b̃oRI

ik |z̃ik, B̃o
ik,α, β0) = N (b̃oRI

ik |μik,Σik),

where

z̃RI

ik =
[
Re(z̃ik)

T , Im(z̃ik)
T
]T

(29)

μik = β−1
0 ΣikΨ

T
ikz̃

RI

ik , (30)

Σik =
[
β−1
0 ΨT

ikΨik + F−1
]−1

, (31)

Ψ =

⎡
⎣Re(B̃o

ik) −Im(B̃o
ik)

Im(B̃o
ik) Re(B̃o

ik)

⎤
⎦ , (32)

F = diag(α1, . . . , αG, α1, . . . , αG). (33)

Note that the mean and variance of each scattering coefficients can be derived using Eqns. (30) and (31)

when α and β0 are given. On the other hand, the values of α and β0 are determined by maximizing the

logarithm of the marginal likelihood, i.e.,

{α, β0} = arg max
α,β0

L(α, β0), (34)
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where

L(α, β0) =

K∑
i,k=1

log Pr(b̃oRI

ik |α, β0)

= const− 1

2

K∑
i,k=1

log |Cik|+
(
z̃RI

ik

)T
C−1

ik z̃RI

ik , (35)

and Cik = β0I + ΨikFΨ
T
ik. A type-II maximum likelihood (ML) approximation [26] employs the

point estimates for α and β0 to maximize Eqn. (35), which can be implemented via the expectation

maximization (EM) algorithm to yield

α(new)
g =

1

K2

K∑
i,k=1

(μ2
ik,g + μ2

ik,g+G +Σik,gg +Σik,(g+G)(g+G)), g ∈ [1, . . . , G], (36)

β
(new)
0 =

1

2GK2

K∑
i,k=1

(
Tr[ΣikΨ

T
ikΨik] + ||z̃RI

ik −Ψikμik||22
)
, (37)

where μ2
ik,g and μ2

ik,g+G are the gth and (g+G)th elements in vector μik, and Σik,gg and Σik,(g+G)(g+G)

are the (g, g) and (g + G, g + G) entries in matrix Σik. Because α and β0 depend on μik and Σik,

the CMT-BCS algorithm is iterative and iterates between Eqns. (30)-(31) and Eqns. (36)-(37), until a

convergence criterion is satisfied or the maximum number of iterations is reached.

VI. SIMULATION RESULTS

In the simulations, the CMT-BCS algorithm is used to estimate the DOAs of the signal arrivals with

hyper-parameters a = b = c = d = 0. The maximum number of iterations in the Gibbs sampling is set

to 200, and the sampler with the maximum marginal likelihood in the last 20 samples is chosen as the

estimate of b̃o
ik.

We present four examples to demonstrate the effectiveness of the proposed technique. For all examples,

Q targets, which are uniformly distributed between −60◦ and 60◦ are assumed to imping a ULA with

L = 4. The grid interval in the angular space is set to 0.25◦. In addition, the noise power at each

frequency is assumed to be identical and the phase difference between the received signal corresponding

to each frequency pair is independent and uniformly distributed over [0, 2π). We evaluate the performance

through Monte Carlo simulations. The root mean-square error (RMSE) of the estimated DOA of the signal

arrivals, expressed as

RMSE =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(θ̂q(i)− θq)2,

is used as the metric for performance evaluation with respect to the input SNR, where θ̂q(i) is the estimate

of θq for the ith Monte Carlo trial, i = 1, . . . , I . We use I = 500 independent trials in all simulations.
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A. Example I: Achievable number of DOFs with two co-prime frequencies

The number of achievable DOFs from the 4-element ULA with two co-prime frequencies is first

illustrated in Fig. 5. Q = 9 targets are considered, which are much larger than the number of physical

sensors. Two co-prime frequencies with M1 = 3 and M2 = 4 are exploited. Because the virtual sensor

lags are obtained from the estimated covariance matrix based on the received data samples, as in Eqn.

(5), the virtual steering matrix is sensitive to the noise contamination. To clearly demonstrate the number

of achievable DOFs, therefore, we use 10000 noise-free snapshots to obtain a relatively clean covariance

matrix. Fig. 5(a) shows the estimated spatial spectrum from the proposed co-array, which yields a co-

array with η = 19 virtual sensors, and the result of the conventional non-co-array scenario is depicted

in Fig. 5(b). It is clear that the co-array provides a sufficient number of DOFs to correctly identify the

DOAs of all 9 targets, whereas the non-co-array approach fails.

B. Example II: DOA estimation using only cross-lags vs. both self- and cross-lags

In Figs. 6 and 7, the results obtained by using both self- and cross-lags are compared to those using

only the cross-lags. Q = 6 targets are considered and two co-prime frequencies with M1 = 3 and M2 = 4

are exploited. The RMSE with respect to the input SNR is depicted in Fig. 6, where 2000 snapshots are

used. At a moderate or high SNR, the utilization of both self- and cross-lag covariances benefits from

additional measurement offered by the self-lags, resulting in the improved performance than the cross-

lag only scenario. In Fig. 7, such improvement is demonstrated with fewer false peaks in the estimated

spectra, where the input SNR is 10 dB. On the other hand, in the low SNR region, as shown in Fig. 6,

the performance of the algorithm using cross-lag covariances only is better than the results using both

self- and cross-lag covariances. In this case, both vectors zik and zkk are highly perturbed by the noise.

The inclusion of self-lag covariance matrices causes additional errors in the noise power estimation in

(25), whereas this term does not exist in the cross-lag covariances.

C. Example III: DOA estimation using different frequency pairs

This example compares the DOA estimation performance when different frequency pairs are used. In

the first frequency pair, M1 = 3 and M2 = 4 are assumed, yielding η = 19 elements in the virtual

co-array. In the second frequency pair, we assume M1 = 6 and M2 = 7, resulting in η = 31 virtual

co-array lags. In Fig. 8, the RMSE performance is presented as a function of the number of targets, Q,

where SNR is assumed to be 10 dB and 2000 snapshots are exploited. The result shows that the second

frequency pair outperforms the first one due to its higher number of DOFs and the larger aperture.
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D. Example IV: Performance of multiple co-prime frequency cases

To demonstrate the merits of exploiting multiple co-prime frequencies, we first consider a three

frequency case with M1 = 5, M2 = 6 and M3 = 7. Similarly, 10000 noise-free snapshots are used

to obtain a relatively clean covariance matrix. Fig. 9 shows the estimated spectrum for Q = 13 targets.

Note in this case that all targets are resolved correctly due to a high number of DOFs and a small number

of missing positions in the co-array.

Then, the RMSE performance of the three frequency case is presented in Fig. 10 with respect to the

input SNR, where Q = 13 and 2000 snapshots are assumed. For comparison purposes, a four frequency

scenario with M1 = 5, M2 = 6, M3 = 7, and M4 = 11 is also considered. It is clearly shown that the

performance is significantly improved as the number of frequencies is increased.

VII. CONCLUSIONS

In this paper, we developed a co-prime array implementation using a sparse uniform linear array with

multiple co-prime frequencies. We derived the analytical expression for the number of unique lags of

the yielding difference co-array to determine the number of detectable targets. The complex multitask

Bayesian compressive sensing algorithm was used to exploit the group sparse direction-of-arrivals (DOAs)

across different frequencies for effective spatial spectrum estimation. The number of detectable targets

and the DOA performance are improved as the number of frequencies increases. The effectiveness of the

proposed technique and analysis is verified using simulation results.

VIII. APPENDIX

A. Proof of Proposition 1

Denote ηt and ηo as the total number of lags in L̃P and the number of overlaps between the set L̃c

and L̃−
c , respectively. Then, the number of distinct lags in L̃P can be expressed as

η = ηt − ηo. (38)

Both L̃c and L̃−
c have L2 distinct lags due to the co-primality of M1 and M2. It is easy to confirm

that

ηt = 2L2. (39)

Given arbitrary lags l̃cm = M1l1m
−M2l2m

and l̃cn = M2l2n
−M1l1n

in set L̃c and L̃−
c , respectively,

where the indexes 0 ≤ l1m
≤ L − 1, 0 ≤ l2m

≤ L − 1, 0 ≤ l1n
≤ L − 1 and 0 ≤ l2n

≤ L − 1.

Had l̃cm = l̃cn been held, we would have M1(l1m
+ l1n

) = M2(l2m
+ l2n

). It is evident that they
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overlap at 0 position provided l1m
= l1n

= l2m
= l2n

= 0. When l1m
+ l1n

�= 0, the requirement is

equivalent to
M1

M2
=

l2m
+ l2n

l1m
+ l1n

. (40)

(a) When M2 ≥ 2L − 1, the maximum value of l1m
+ l1n

is less than M2. Since M1 and M2 are

co-prime, it is indicated that M1/M2 cannot be reduced to a ratio of smaller integers. As a result,

(40) cannot be hold. In other word, L̃c and L̃−
c only coincide at 0 position, i.e.,

ηo = 1. (41)

Substituting (39) and (41) into (38), we can obtain

η = 2L2 − 1. (42)

(b) When L ≤ M2 < 2L− 1, the relationship 0 ≤ l1m
+ l1n

≤ 2L− 2 < 2M2 is guaranteed. Due to the

co-primality of M1 and M2, (40) is valid if and only if

l2m
+ l2n

= M1,

l1m
+ l1n

= M2. (43)

Since 0 ≤ l1m
, l2m

≤ L− 1, the requirement is equivalent to

M1 − (L− 1) ≤ l2n
≤ M1,

M2 − (L− 1) ≤ l1n
≤ M2. (44)

Because 0 ≤ l1n
, l2n

≤ L− 1, we obtain the following relationship

max{M1 − (L− 1), 0} ≤l2n
≤ min{M1, L− 1},

M2 − (L− 1) ≤l1n
≤ L− 1, (45)

where max{a, b} and min{a, b} are operators, returning maximum and minimum values between a

and b, respectively. Since L ≤ M1 < M2, Eqn. (45) becomes

M1 − (L− 1) ≤ l2n
≤ L− 1,

M2 − (L− 1) ≤ l1n
≤ L− 1. (46)

It is indicated that 2L−1−M1 and 2L−1−M2 integers are in the respective range of l2n
and l1n

.

In addition to 0 position, there are (2L− 1−M1)(2L− 1−M2) combination to satisfy (40), i.e,

ηo = (2L− 1−M1)(2L− 1−M2) + 1. (47)
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Substituting (39) and (47) into (38), we can obtain

η = 2L2 − 1− (2L− 1−M1)(2L− 1−M2). (48)

(c) When L ≤ M2 < 2L− 1 and 1 ≤ M1 < L, (45) is equivalent to

0 ≤l2n
≤ M1,

M2 − (L− 1) ≤l1n
≤ L− 1. (49)

As such, there are (M1 + 1)(2L− 1−M2) integers satisfying (40). Therefore,

ηo = (M1 + 1)(2L− 1−M2) + 1. (50)

Substituting (39) and (50) into (38), we can obtain

η = 2L2 − 1− (M1 + 1)(2L− 1−M2). (51)

B. Proof of Proposition 2

(a) When K multiple frequencies are exploited, there are K(K − 1)/2 pairs of frequencies. As such,

the total number of lags, ηt, which includes both unique and overlapping lags, is

ηt = K(K − 1)L2, (52)

as each pair has 2L2 lags. To obtain the maximum number of achievable unique lags of the co-

array, we consider the case that each pair achieves its respective maximum number of unique lags, as

described in Section IV-A, and the number of overlapping lags between different pairs is minimum.

In this case, redundancy between different co-prime pairs happens at the following two cases: (a)

The zeroth entry is shared by all K(K − 1)/2 pairs of co-prime frequencies with a total number

of K(K − 1) overlapping lags, whereas the unique lag in this position is 1; (b) At all self-lag

positions because the array sensors corresponding to each frequency are used to generate K − 1

co-prime frequency pairs. As each frequency yields 2(L − 1) non-zero self-lags in L̃c
⋃
L̃−
c , there

are K(K− 1)× 2(L− 1) total lag entries with 2K(L− 1) unique lags, yielding 2K(K− 2)(L− 1)

redundancies to be discounted in computing the available unique lags. As a result, we can obtain

the maximum number of the achievable unique lags of the co-array as

η = ηt − ηo = (L2 − 1)(K2 −K)− 2(L− 1)(K2 − 2K) + 1. (53)
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Fig. 1. The coprime array configuration.
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(a) A sparse ULA
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(b) Equivalent structure with two coprime frequencies

Fig. 2. A sparse ULA with two coprime frequencies configuration.
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(b) M1=3 and M2=4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(c) M1=6 and M2=7

Fig. 3. Equivalent sensor positions for different M1 and M2 with L = 4 elements ULA (∇: Sub-array with M1; �: Sub-array

with M2).
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Fig. 4. The co-array lag positions in the set L̃c

⋃
L̃−
c with L = 4 element ULA (•: Positions in L̃c; �: Positions in L̃−

c ).
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(a) Co-array scenario (b) Non-co-array scenario

Fig. 5. Estimated spectrum using co-array and non-co-array scenarios (M1 = 3, M2 = 4, Q = 9, and 10000 noise-free

snapshots).
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Fig. 6. RMSE versus input SNR (M1 = 3, M2 = 4, Q = 6, and 2000 snapshots; ∇: Use self- and cross-lags; �: Use cross-lags

only).
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(a) Using self- and cross-lags (b) Using cross-lags only

Fig. 7. Spatial spectra estimated using different lags (M1 = 3, M2 = 4, Q = 6, SNR=10 dB, and 2000 snapshots).
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Fig. 8. RMSE versus signal number for different frequency pairs (SNR=10 dB and 2000 snapshots; ∇: first pair (M1 = 3 and

M2 = 4); �: second pair (M1 = 6 and M2 = 7)).
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Fig. 9. Spatial spectra estimated for three frequency case (M1 = 5, M2 = 6, M3 = 7, Q = 13 and 10000 noise-free snapshots).
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Fig. 10. RMSE versus SNR for different number of frequencies (Q = 13 and 2000 snapshots; ∇: M1 = 5, M2 = 6 and

M3 = 7; �: M1 = 5, M2 = 6, M3 = 7 and M4 = 11.
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3.4. Frequency Diverse Coprime Arrays with Coprime

Frequency Offsets for Multi-Target Localization

Abstract

Different from conventional phased-array radars, the frequency diverse array (FDA) radar offers

a range-dependent beampattern capability that is attractive in various applications. The spatial and

range resolutions of an FDA radar are fundamentally limited by the array geometry and the frequency

offset. In this paper, we overcome this limitation by introducing a novel sparsity-based multi-target

localization approach incorporating both coprime arrays and coprime frequency offsets. The covariance

matrix of the received signals corresponding to all sensors and employed frequencies is formulated to

generate a space-frequency virtual difference coarrays. By using O(M +N) antennas and O(M +N)

frequencies, the proposed coprime arrays with coprime frequency offsets enables the localization of up

to O(M2N2) targets with a resolution of O(1/(MN)) in angle and range domains, where M and N are

coprime integers. The joint direction-of-arrival (DOA) and range estimation is cast as a two-dimensional

sparse reconstruction problem and is solved within the Bayesian compressive sensing framework. We

also develop a fast algorithm with a lower computational complexity based on the multitask Bayesian

compressive sensing approach. Simulations results demonstrate the superiority of the proposed approach

in terms of DOA-range resolution, localization accuracy, and the number of resolvable targets.

I. INTRODUCTION

Target localization finds a variety of applications in radar, sonar, communications, and navigation [2]–

[5]. The phased array radars are known for their capability to electronically steer a beam for target

detection and tracking in the angular domain [6]–[9]. To localize targets in both angle and range, beam-

steering should be achieved across a signal bandwidth. This generally leads to a complicated waveform

design and signal processing algorithms. Recently, the frequency diverse array (FDA) framework was

introduced as an attractive multiple-input multiple-output (MIMO) structure that performs beam steering

over a signal bandwidth and achieves joint estimation of targets direction-of-arrival (DOA) and range

information [10]–[20]. As compared with conventional arrays that assume a fixed carrier frequency, FDA

radars use a small frequency increment across array elements and thus achieve beam steering as a function

of the angle and range in the far field. In FDA radars, the spatial and range resolutions are fundamentally

limited by the array aperture and maximum frequency increment. In addition, the number of degrees-of-
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freedom (DOFs) offered by the array sensors and frequency increments determines the maximum number

of detectable targets.

The traditional FDA exploits a uniform linear array with a uniform frequency offset. The range and

DOA estimation problem using such FDA radar has been discussed in [21]–[23]. In [21], [22], the target

ranges and DOAs are jointly estimated by the minimum variance distortionless response (MVDR) and

the MUSIC methods, respectively. Unlike [21], [22], an FDA utilizing coherent double pulse respectively

with zero and non-zero frequency increments is considered in [23], where the ranges and DOAs are

estimated in two steps. In the zero frequency increment case, the DOAs are first estimated using a non-

adaptive beamformer. The estimated DOA information is then used as the prior knowledge by adaptive

beamforming to obtain the range information in the other pulse. It is important to note that the above

methods [21]–[23] use the traditional FDA radar and are discussed in the physical sensor framework

rather than the virtual difference coarray. That is, for an array with Nt sensors, there are only O(Nt)

DOFs with a resolution O(1/Nt) in both the range and angle domains. While the angular and range

resolutions can be improved by exploiting a large interelement spacing and a large frequency increment,

such structure generally requires a large number of array sensors, or otherwise yields undesirable aliasing

problems, i.e., causes ambiguous estimations in angular and range dimensions.

Compared with uniform linear arrays (ULAs), sparse arrays use the same number of sensors to

achieve a larger array aperture. A properly designed non-uniform array can achieve a desired trade-off

between meanbeam width and sidelobe levels and, thereby, provide enhanced performance in terms of

DOA accuracy and resolution. These attributes are achieved without changes in size, weight, power

consumption, or cost. More importantly, sparse arrays offer a higher number of DOFs through the

exploitation of the coarray concept [24] and, as such, significantly increases the number of detectable

targets. Likewise, non-uniform frequency offsets can be used to achieve improved target identifiability

and resolution in the range dimension [25]. Among different techniques that are available for sparse signal

structures and array aperture synthesis, the recent proposed nested [26] and coprime configurations [27]

offer systematical design capability and DOF analysis involving sensors, samples, or frequencies [28]–

[41].

In [42], a nested array is employed to generate a coarray where the MUSIC algorithm together with

spatial smoothing is applied. As a result, the number of the DOFs in the angular domain is increased

to O(N2
t ). In [43], a sparsity-based method using the nested array is proposed. It achieves improved

resolution and estimation accuracy when compared with the conventional covariance based methods.

However, the number of the DOFs in the range domain is still O(Nt) since a uniform frequency offset

is used. In addition, due to the large dimension of the joint range and angle dictionary, this method
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results in a prohibitive computational complexity that limits its practical applicability, particularly when

the number of antennas is large.

In this paper, we propose a novel configuration for the FDA radar, which incorporates both coprime

array structure and coprime frequency offsets. In the proposed approach, the offsets of carrier frequencies

assume a coprime relationship to further increase the number of DOFs beyond that achieved by only

implementing the sparse arrays with uniform frequency increments. As a result, by using O(Nt) antennas

and O(Nt) frequencies, the proposed approach achieves O(N2
t ) DOFs with a resolution of O(1/N2

t ) in

both angular and range domains.

In this paper, we consider point-like targets and we exploit their sparsity in both range and angular

domains. We propose both joint and sequential estimation methods based on the space-frequency coarray

structure. For the joint estimation, the covariance matrix of the received signals corresponding to all

sensors and employed frequencies is formulated to generate a virtual difference coarray structure in

the joint space-frequency domain. Then, a joint-variable sparse reconstruction problem in the range

and angular domain is presented as a single measurement vector (SMV) model. We further develop a

novel sequential two-step algorithm in the context of group sparsity for reduced complexity. The cross-

covariance matrices between the signals received at all sensors corresponding to different frequency pairs

form space-only coarrays. Observations in these coarrays exhibit a group sparsity across all frequency

pairs, since their sparse angular domain vectors share the same non-zero entry positions associated with

the same target DOAs. Therefore, the DOAs can be first solved under a multiple measurement vector

(MMV) model. The values of nonzero entries contain the range information, and their estimates across

all frequency pairs are utilized to formulate a sparse reconstruction model with respect to the range. In

so doing, the joint DOA and range estimation problem is recast as two sequential one-dimensional (1-D)

estimation problems with a significantly reduced computational complexity.

The above sparse learning problems can be solved within the compressive sensing (CS) framework

[44] and various CS methods can be used for this purpose. As a preferred approach, we exploit the

algorithms developed in the sparse Bayesian learning context as they achieve superior performance and

are insensitive to the coherence of dictionary entries [45]–[51]. In particular, the complex multitask

Bayesian compressive sensing (BCS) method [45], which effectively handles complex-value observations

in the underlying problem, is used in this paper.

The main contribution of this work is threefold: (a) We achieve a significantly increased number of

DOFs and improve both angular and range resolutions by exploiting both coprime array and coprime

frequency offsets under the coarray and frequency difference equivalence. (b) We employ a sparsity-based

method to solve the joint DOA and range estimation problem which, when compared to conventional
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MUSIC-based approach, enables more effective utilization of the available coarray aperture and frequency

differences to resolve a higher number of targets and improve the localization accuracy. (c) We further

develop a group-sparsity based algorithm which, by casting the joint DOA and range estimation as two

sequential 1-D estimation problems, significantly reduces the computational complexity and processing

time.

The rest of the paper is organized as follows. In Section II, the signal model of the traditional FDA

radar is described. In Section III, we present a new FDA structure using coprime arrays and coprime

frequency offsets. By effectively utilizing the available coarray aperture and frequency differences, two

sparsity-based multi-target localization methods are proposed in Sections IV and V that resolve a higher

number of targets and improve the localization accuracy. More specifically, in Section IV, the DOA and

range are jointly estimated by a two-dimensional (2-D) sparse reconstruction algorithm, whereas a low-

complexity algorithm through sequential 1-D sparse reconstruction is presented in Section V. Simulation

results are provided in Section VI to numerically compare the localization performance of the proposed

approach with other methods in terms of the number of resolvable targets, DOA-range resolution, and

localization accuracy. Such results reaffirm and demonstrate the effectiveness of the proposed approach.

Section VII concludes the paper.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IN

denotes the N ×N identity matrix. (.)∗ implies complex conjugation, whereas (.)T and (.)H respectively

denote the transpose and conjugate transpose of a matrix or vector. vec(·) denotes the vectorization

operator that turns a matrix into a vector by stacking all columns on top of the another, and diag(x)

denotes a diagonal matrix that uses the elements of x as its diagonal elements. E(·) is the statistical

expectation operator and ⊗ denotes the Kronecker product. Pr(·) denotes the probability density function

(pdf), and N (x|a, b) denotes that random variable x follows a Gaussian distribution with mean a and

variance b. Similarly, CN (a, b) denotes joint complex Gaussian distribution with mean a and variance b.

Γ(·) is the Gamma function operator. δq,p is a delta function that returns the value of 1 when p = q and 0

otherwise. N and N+ respectively denote the set of non-negative integers and positive integers, whereas

R+ denotes the set of positive real numbers. | · | denotes the determinant operation, whereas ‖ · ‖2 and

‖ · ‖F represent the Euclidean (l2) norm and Frobenious norm, respectively. Tr(A) returns the trace of

matrix A.

II. FREQUENCY DIVERSE ARRAY RADAR

Without loss of generality, we limit our discussion to far-field targets in the 2-D space where the DOA

is described by the azimuth angle only. Extension to three-dimensional (3-D) space is straightforward.
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Fig. 1. The FDA configuration.

A. Signal Model

As shown in Fig. 1, an FDA radar utilizes a linear array with Nt antennas. Note that the array spacing

can be either uniform or non-uniform. Denote p = [p1d, ..., pNt
d]T as the positions of the array sensors

where pk ∈ N, k = 1, ..., Nt. The first sensor, located at p1 = 0, is used as the reference. To avoid spatial

ambiguity, d is typically taken as half wavelength, i.e., d = λ0/2 = c/(2f0), where c is the velocity of

electromagnetic wave propagation and f0 is the base carrier frequency. Different from the conventional

phased-array radar where all antennas transmit the same signal with carrier frequency f0, each FDA

element radiates a signal with an incremental carrier frequency. That is, a continuous-wave (CW) signal

transmitted from the kth element is expressed as

sk(t) = Akexp(j2πfkt), (1)

where Ak is the amplitude and the radiation frequency fk = f0+ξkΔf is exploited with a unit frequency

increment Δf , and ξk ∈ N is an integer coefficient of the frequency offset applied at the kth element,

k = 1, ..., Nt. The maximum increment is assumed to satisfy ξNt
Δf � f0 so as to guarantee that the

FDA radar works in a narrowband platform. Also, the frequency offsets are not necessary uniform.

An important objective of this paper is to improve the parameter identifiability using the FDA radar.

Since the targets in different bins can be simple identified, we consider a scene with Q far-field targets

within the same Doppler bin. Without loss of generality, the Doppler frequency is assumed to be 0. The

locations of the targets are modeled as (θq, Rq), q = 1, 2, · · · , Q. Then, the received signal at the lth

sensor is modeled as

x̌l(t) =

Nt∑
k=1

Q∑
q=1

ρq(t)exp(j2πfkt)e
−j 4π

λk
Rqe

−j
2πpld

λk
sin(θq)

+ ňl(t), l = 1, . . . , Nt, (2)

where ρq(t), q = 1, . . . , Q, are complex scattering coefficients of the targets, which are assumed to be

uncorrelated zero-mean random variables with E[ρ∗qρp] = σ2
qδq,p, 1 ≤ q, p ≤ Q, due to, e.g., the radar
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cross section (RCS) fluctuations. In addition, λk = c/fk denotes the wavelength corresponding to carrier

frequency fk. Furthermore, ňl(t) is the additive noise, which is assumed to be spatially and temporally

white, and is independent of target signals.

By implementing the pass-band filtering, the received signal is converted to the signals corresponding

to the respective frequencies. For a CW waveform with frequency fk transmitted from the kth sensor,

the baseband signal received at the lth sensor can be expressed as

xk,l(t) =

Q∑
q=1

ρq(t)e
−j 4π

λk
Rqe

−j
2πpld

λk
sin(θq) + nk,l(t)

=

Q∑
q=1

ρq(t)e
−j

4πfk
c

Rqe
−j

πpl(f0+ξkΔf)

f0
sin(θq) + nk,l(t), (3)

where nk,l(t) is the noise at the filter output with a variance σ2
n. Because ξkΔf � f0, the above expression

can be simplified as

xk,l(t) =

Q∑
q=1

ρq(t)e
−j

4πfk
c

Rqe−jπpl sin(θq) + nk,l(t). (4)

Stacking xk,l(t) for all k, l = 1, ..., Nt yields an N2
t × 1 vector,

x(t) =

Q∑
q=1

ρq(t)ap,f (θq, Rq) + n(t)

= Ap,fd(t) + n(t), (5)

where ap,f (θq, Rq) = ap(θq) ⊗ af (Rq) represents the steering vector associated with the angle-range

pair (θq, Rq). Herein, ap(θq) and af (Rq) are steering vectors corresponding to θq and Rq, respectively,

expressed as

ap(θq) =
[
1, e−jπp2 sin(θq), · · · , e−jπpNt sin(θq)

]T
, (6)

af (Rq) =
[
e−j

4πf1
c

Rq , e−j
4πf2

c
Rq , · · · , e−j

4πfNt
c

Rq

]T
. (7)

In addition, Ap,f = [ap,f (θ1), · · · ,ap,f (θQ)], d(t) = [ρ1(t), · · · , ρQ(t)]T , and nk(t) is the noise vector

following the joint complex Gaussian distribution CN (0, σ2
nIN2

t
).

The N2
t ×N2

t covariance matrix of data vector x(t) is obtained as

Rx = E[x(t)xH(t)] = Ap,fRddA
H
p,f + σ2

nIN2
t

=

Q∑
q=1

σ2
qap,f (θq, Rq)a

H
p,f (θq, Rq) + σ2

nIN2
t
, (8)

where Rdd = E[d(t)dH(t)] = diag([σ2
1, . . . , σ

2
Q]) represents the target scattering power. Note that we

assume the target scattering coefficients to be frequency-independent for the emitting signals since the
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frequency offsets are relatively small. In practice, the covariance matrix is estimated using T available

samples, i.e.,

R̂x =
1

T

T∑
t=1

x(t)xH(t). (9)

Existing covariance matrix based techniques can then be applied to estimate the DOA and range of

the targets, e.g., the Fourier-based power spectrum density (PSD) [52] and 2-D MUSIC [53].

B. Unambiguous Range

For each target, the DOA and range information are respectively determined by φθq and φRq
, which

are defined as the minimum phase difference in angle and range dimensions, respectively, i.e., the phase

terms of e−jπ sin(θq) and e−j4πΔfRq/c. In reality, however, phase observations are wrapped within [−π, π).

Therefore, the true phase can be expressed as

φ
(true)
θq

= φθq + 2mθqπ, (10)

φ
(true)
Rq

= φRq
+ 2mRq

π, (11)

where mθq and mRq
are unknown integers. As a result, the range estimate is subject to range ambiguity

[54], i.e.,

Rq =
cφRq

4πΔf
+

cmRq

2Δf
. (12)

The latter term in (12) implies ambiguity in range due to phase wrapping. Thus, the range can be assumed

as infinite values separated by Rmax = c/(2Δf), which is referred to as the maximum unambiguous

range. Therefore, the use of a large value of Δf will reduce the maximum unambiguous range. As a

large frequency bandwidth is required to achieve proper range resolution, uniform frequency offsets must

trade off between the range resolution and unambiguous range estimation. On other other hand, coprime

frequency offsets allows the use of small Δf while collectively spanning a large signal bandwidth.

III. FREQUENCY DIVERSE COPRIME ARRAYS WITH COPRIME FREQUENCY OFFSETS

For the traditional FDA radar with Nt-element ULA and uniform frequency increment, it can localize

up to N2
t −1 targets, with a resolution O(1/Nt) in the angle and range domains, respectively. Compared

with the uniform case, sparse arrays and sparse frequency offsets use the same number of sensors and

frequencies to achieve a larger array aperture and frequency bandwidth. As a result, they improve the

resolution and estimation accuracy. However, the number of resolvable targets using sparse arrays and

sparse frequency offsets is still upper bounded by N2
t − 1, if those covariance matrix based approaches

are used directly. Such the limitation can be overcome by the improvement of DOFs under the coarray

equivalence.

106



A. Coarray Equivalence

By vectorizing the matrix Rx, we obtain the following N4
t × 1 virtual measurement vector:

z = vec(Rx) = Ãp,fbp,f + σ2
nĩ, (13)

with

Ãp,f = [ãp,f (θ1, R1), · · · , ãp,f (θQ, RQ)], (14)

bp,f = [σ2
1, · · · , σ2

Q]
T , (15)

ĩ = vec
(
IN2

t

)
, (16)

where

ãp,f (θq, Rq) = a∗p,f (θq, Rq)⊗ ap,f (θq, Rq)

= a∗p(θq)⊗ a∗f (Rq)⊗ ap(θq)⊗ af (Rq)

= (a∗p(θq)⊗ ap(θq))⊗ (a∗f (Rq)⊗ af (Rq))

= ãp(θq)⊗ ãf (Rq) (17)

for 1 ≤ q ≤ Q. Benefiting from the Vandermonde structure of ap(θq) and af (Rq), the entries in ãp(θq)

and ãf (Rq) are still in the forms of e−jπ(pi−pj) sin(θq) and e−j4π(ξi−ξj)ΔfRq/c, for i, j = 1, · · · , Nt. As

such, we can regard z as a received signal vector from a single-snapshot signal vector bp,f , and the

matrix Ãp,f corresponds to the virtual array sensors and virtual frequency offsets which are respectively

located at the sensor-lags between all sensor pairs and frequency-offsets between all frequency pairs.

The targets can thus be localized by using the space-frequency coarray, in lieu of the original antennas

and frequencies. Note that the number of elements in the space-frequency coarray structure are directly

determined by the distinct values of (pi− pj) and (ξi− ξj) for i, j = 1, · · · , Nt. Non-uniform arrays can

substantially increase the number of DOFs by reducing the number of redundant elements in the coarray.

In other words, the number of DOFs would be reduced if different pairs of sensors or frequency offsets

yield same lags when the uniform arrays are exploited.

B. Coprime Arrays with Coprime Frequency Offsets

Among the different choices that are available for sparse array and frequency offset designs, the recently

proposed coprime configurations [27] offer a systematical design capability and DOF analysis involving

sensors, samples, or frequencies. In this paper, we use the extended coprime structure which is proposed
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in [55] as an example. Extensions to other generalized coprime structures that achieve higher DOFs are

straightforward [34].

As shown in Fig. 2, the extended coprime array structure utilizes a coprime pair of uniform integers.

The coprime array consists of a 2M -sensor uniform linear subsarray with an interelement spacing of N ,

and an N -sensor uniform linear subarray with an interelement spacing of M . The two integers M and

N are chosen to be coprime, i.e., their greatest common divisor is one. In addition, M < N is assumed.

Define

P(M,N) = {Mn|0 ≤ n ≤ N − 1}
⋃

{Nm|0 ≤ m ≤ 2M − 1} (18)

as the union of two sparsely sampled integer subsets with respect to the pair of coprime integers (M,N).

As such, the yielding correlation terms have the positions

L(M,N) = {±(Mn−Nm)|0 ≤ m ≤ 2M − 1, 0 ≤ n ≤ N − 1}. (19)

An example is illustrated in Fig. 3, where M = 2 and N = 3. Fig. 3(a) shows the physical elements

of extended coprime structure, and the positions of the corresponding correlation terms are depicted in

Fig. 3(b). Notice that “holes”, e.g., ±8 in this case, still exist in the virtual domain and are indicated by

× in the figure. It is proved in [56] that L(M,N) can achieve at least MN (up to (3MN+M−N+1)/2)

DOFs with only 2M +N − 1 (two subsets share the first element) entries in P(M,N).

When coprime arrays and coprime frequency offsets with pairs of coprime integers (M,N) is exploited,

there are at least MN available DOFs in each ap(θq) and af (Rq). That is, the resulting virtual array

elements and virtual frequency offsets enable estimation of at least MN distinct DOAs and MN distinct

ranges of targets. Benefitting from the sparse structure, the proposed coprime array with coprime frequency

offsets offers a larger aperture and frequency span, thus resulting in an improved resolution in both angular

and range domains. Further, it has less redundant entries in the covariance matrix Rx, implying that the

#0 #1 #  #2 

 
#0 #1 #  #2 

 

Fig. 2. The extended coprime structure.
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(b)

Fig. 3. An example for the extended coprime structure. (a) The physical elements in P(M,N) (�: Subset 1; ∇: Subset 2); (b)

The corresponding correlation term positions in L(M,N).

resulting coarray structure and frequency lag sets provide a higher number of DOFs that can be used to

identify more targets using the CS based methods.

The localization problem in (13) is similar to handling multiple targets that are fully coherent. In

this case, the covariance matrix constructed from the virtual signal vector is rank-1 and, as a result,

subspace-based localization approaches fail to function. A well-known approach that restores the rank

of the covariance matrix is spatial smoothing [57], [58]. A major disadvantage of such approach is

that only consecutive lags in the virtual observations can be used so that every subarray has a similar

manifold (e.g., [−7, 7] in Fig. 3(b)), whereas the virtual sensors that are separated by any holes have

to be discarded. Alternatively, this problem can be solved by using sparse reconstruction methods (e.g.,

[34], [59]) which, by taking advantages of the fact that the targets are sparse in the angle-range domain,

utilize all consecutive and non-consecutive lags (e.g., ±9 and [−7, 7] in Fig. 3(b)) in the coarray so as

to fully utilize the available DOFs offered by the coarray configurations.

Provided that sufficient snapshots are available for reliable covariance matrix estimation, at least

O(MN) targets (no same DOA and no same range), up to O(M2N2) targets (each of MN DOAs has

MN distinct ranges), can thus be localized by using Nt = 2M +N −1 antennas and Nt = 2M +N −1

frequencies. For a given number of Nt, the maximum number of DOFs can be further optimized by

Maximize M2N2

subject to 2M +N − 1 = Nt, (20)

M < N, M,N ∈ N+.

It is demonstrated in [31] that the valid optimal coprime pair to maximize MN is the one that has

2M and N as close as possible. This is satisfied by choosing N = 2M − 1. In this case, more than
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Fig. 4. The number of DOFs versus Nt.

[
N2

t (Nt + 2)2
]
/64 DOFs can be obtained. Therefore, the frequency diverse coprime arrays with coprime

frequencies can resolve more targets than that of conventional FDA with ULA and uniform frequency

increment (i.e., N2
t − 1) when Nt ≥ 6, as shown in Fig. 4.

IV. TARGET LOCALIZATION USING MULTITASK BCS

In the following, we perform multi-target localization in the sparse reconstruction framework. The

general focus of proposed methods is to resolve a higher number of targets and improve the localization

accuracy by fully utilizing all the virtual observations achieved from lags in both sensor positions and

frequencies. For the simplicity and clarity of the presentation, we assume the targets to be placed on

a pre-defined grid. Direct application of the proposed method in the presence of dictionary mismatch

would yield performance degradation. However, various techniques, such as those cited in [32], [33],

[60], [61], can be used to overcome this problem by exploring the joint sparsity between signals and the

grid mismatch variables.

The virtual signal vector z in (13) can be sparsely represented over the entire discretized angular grids

as

z = Φb+ ε, (21)

where Φ =
[
Φs, ĩ

]
. Herein, Φs is defined as the collection of steering vectors ãp,f (θg1 , Rg2) over all

possible grids θg1 and Rg2 , g1 = 1, . . . , G1, g2 = 1, . . . , G2, with G = G1G2 � N4
t > Q, and bs is
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the sparse vector whose non-zero entry positions correspond to the DOAs and ranges of the targets, i.e.,

(θq, Rq), q = 1, . . . , Q. The term ĩ in the dictionary accounts for noise variance terms that have unequal

values in the vectorized entries. In addition, an error vector ε is included to represent the discrepancies

between the statistical expectation and the sample average in computing the covariance matrix R. The

discrepancies are modelled as i.i.d. complex Gaussian as a result of a sufficiently large number of samples

employed in the averaging.

In this paper, we elect to perform the sparse signal reconstruction within the BCS framework [45]–

[51] stemming from their superior performance and robustness to dictionary coherence. In particular, the

complex multitask BCS approach developed in [45] is used to deal with all the sparse reconstruction

problems. Thus, the following sparse Bayesian model is presented as an MMV model with P tasks

(measurements), whereas the SMV problem in (21) can be considered as a special case with a single

task, i.e., P = 1.

A. Sparse Bayesian Formulation

The MMV model is expressed as

Z = ΦB, (22)

where Z = [z1, · · · , zP ] and B = [b1, · · · ,bP ]. The matrix B is jointly sparse (or row sparse), i.e., all

columns of B are spares and share the same support.

Assume that the entries in jointly sparse matrix B are drawn from the product of the following zero-

mean complex Gaussian distributions:

Pr(B|α) =

P∏
p=1

CN (bp|0,Λ), (23)

where α = [α1, . . . , αG]
T and Λ = diag(α). It is noted that the gth row of B trends to be zero when

αg, g = 1, · · · , G is set to zero [46]. In addition, α is placed on a complex variable directly. As such,

it achieves improved sparse signal reconstruction because by utilizing the group sparsity of the real

and imaginary components than the methods that simply decomposing them into independent real and

imaginary components.

To encourage the sparsity, a Gamma prior is placed on αg, which is conjugate to the Gaussian

distribution,

αg ∼ Γ(αg|1, ρ), g ∈ [1, · · · , G], (24)
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where ρ ∈ R+ is a fixed priori. It has been demonstrated in [62] that a proper choice of ρ encourages a

sparse representation for the coefficients. Then, we have

Pr(α|a, b) =
G∏

g=1

Γ(αg|1, ρ). (25)

All columns of B share the same prior due to the group sparse property. Base on [63], both of the real

and image parts of bp, p = 1, · · · , P , are Laplace distributed and share the same pdf that is strongly

peaked at the origin. As such, this two-stage hierarchical prior is a sparse prior that favors most rows of

B being zeros.

A Gaussian prior CN (0, β−1
0 I2) is also placed on the error vector ε. Then, we have,

Pr(Z|B, β0) =

P∏
p=1

CN (zp|Φbp, β
−1
0 I), (26)

Likewise, the Gamma prior is placed on β0 with hyper-parameters c and d, expressed as

Pr(β0|c, d) = Γ(β−1
0 |c, d), (27)

where Gamma(β−1
0 |a, b) = Γ(a)−1baβ

−(a−1)
0 e

− b

β0 .

By combining the stages of the hierarchical Bayesian model, the joint pdf becomes

Pr(Z,B,α, β0) = Pr(Z|B, β0)Pr(B|α)Pr(α|1, ρ)Pr(β0|c, d). (28)

To make this Gamma prior non-information, we set c = d = 0 in this paper as in [46]–[51].

B. Bayesian Inference

Assuming α and β0 are known, given the measurement Z and the corresponding dictionary Φ, the

posterior for B can be obtained analytically using Bayes’s rule, expressed as a Gaussian distribution with

mean μ and variance Σ

Pr(B|Z,α, β0) =

P∏
p=1

CN (bp|μp,Σ), (29)

where

μp = β−1
0 ΣΦHzp, (30)

Σ =
[
β−1
0 ΦHΦ+ F−1

]−1
. (31)

The associated learning problem, in the context of relevance vector machine (RVM), thus becomes the

search for the α and β0. In RVM, the values of α and β0 are estimated from the data by performing a
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type-II maximum likelihood (ML) procedure [62]. Specially, by marginalizing over the B, the marginal

likelihood for α and β0, or equivalently, its logarithm L(α, β0) can be expressed analytically as

L(α, β0) =

P∑
p=1

log Pr(bp|α, β0)

=

P∑
p=1

log

∫
Pr(zp|bp, β0)Pr(bp|α)dbp

= const− 1

2

P∑
p=1

log |C|+ (zp)
H C−1zp (32)

with

C = β0I+ΦFΦH . (33)

Denote U = [μ1, · · · ,μP ] = β−1
0 ΣΦHZ, B = B/

√
P , Z = Z/

√
P , U = U/

√
P , and ρ = ρ/P . An

ML approximation employs the point estimates for α and β0 to maximize (32), which can be implemented

via the expectation maximization (EM) algorithm to yield

α(new)
g =

√
1 + 4ρ(‖μg‖22 +Σg,g)− 1

2ρ
, g ∈ [1, · · · , G], (34)

β
(new)
0 =

E{‖Z−ΦB‖2F }
NΦ

, (35)

where μg is the gth row of matrix U and Σg,g is the (g, g)th entry of matrix Σ. In addition, NΦ is the

number of rows of Φ.

It is noted that, because α(new) and β
(new)
0 are a function of μp and Σ, while μp and Σ are a function

of α and β0, this suggests an iterative algorithm that iterates between (30)–(31) and (34)–(35), until a

convergence criterion is satisfied or the maximum number of iterations is reached. In each iteration, the

computational complexity is O(max(NΦG
2, NΦGP )) with an NΦ ×G dictionary Φ [48].

C. Complexity Analysis

For the case of 2-D BCS, the corresponding joint angle-range of targets, (θ̂q, R̂q), q = 1, · · · , Q, can

be estimated by positions of the nonzero entries in b in (21). In the sequel, we analyze its computational

complexity, which can be divided into the following three stages:

S1: Compute the N2
t ×N2

t covariance matrix R̂x with (9).

S2: Generate the N4
t × 1 virtual array data z with (13) by vectorizing the covariance matrix.

S3: Perform target localization to obtain (θ̂q, R̂q), q = 1, · · · , Q using (30)–(31) and (34)–(35), based

on the BCS (P = 1) with an N4
t ×G1G2 dictionary.
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In S1, there are O(N4
t T ) complex multiplications, whereas no multiplication operation is needed for

vectorization in S2. For the BCS, we might need O(κN4
t G

2
1G

2
2) complex multiplication operations, where

κ is the number of iterations. Therefore, the total computational load, i.e., O(N4
t T +κN4

t G
2
1G

2
2), is very

huge because the exhaustive 2-D searching process, which motivates the development of fast algorithms.

V. A FAST ALGORITHM FOR TARGET LOCALIZATION

In this section, we develop an algorithm based on the multitask BCS, wherein the 2-D sparse recon-

struction problem is cast as separate 1-D sparse reconstruction problems. Therefore, the computational

complexity can be reduced.

Stacking xk,l(t) for all l = 1, ..., Nt yields the following Nt × 1 vector,

xk(t) =

Q∑
q=1

ρq(t)e
−j

4πfk
c

Rqap(θq) + nk(t). (36)

As such, the vector xk(t) behaves as the received signal of the array, corresponding to the frequency fk,

k = 1, · · · , Nt.

The cross-covariance matrix between data vectors xk(t) and xk′(t), respectively corresponding to

frequencies fk and fk′ , 1 ≤ k, k′ ≤ Nt, is obtained as

Rxkk′ = E[xk(t)x
H
k′(t)] =

Q∑
q=1

σ2
qe

−j
4πΔf

kk′
c

Rqap(θq)a
H
p (θq), (37)

where Δfkk′ = fk − fk′ = (ξk − ξk′)Δf . Note that the dimension of Rxkk′ is reduced to Nt × Nt,

compared to the N2
t × N2

t matrix Rx in (8). In practice, the cross-covariance matrix is estimated by

using T available samples, i.e.,

R̂xkk′ =
1

T

T∑
t=1

xk(t)x
H
k′(t), 1 ≤ k, k′ ≤ Nt. (38)

Vectorizing this matrix yields the following N2
t × 1 vector

zkk′ = vec(Rxkk′ ) = Ābfkk′ , (39)

where

Ā = [ãp(θ1), · · · , ãp(θQ)], (40)

bfkk′ = [σ2
1e

−j
4πΔf

kk′
c

R1 , · · · , σ2
Qe

−j
4πΔf

kk′
c

RQ ]T . (41)

Similarly, (39) can be sparsely represented over the entire angular grids as

zkk′ = Φ̄b̄kk′ , (42)
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where the N2
t ×G1 dictionary Φ̄ is defined as the collection of steering vectors ãp(θg) over all possible

grids θg1 , g1 = 1, . . . , G1, with G1 � Q. As such, the DOAs θq, q = 1, · · · , Q, are indicated by

the nonzero entries in the sparse vector b̄kk′ , whose values describe the corresponding coefficients

σ2
qe

−j
4π(ξk−ξ

k′ )Δf

c
Rq . Note that the nonzero entries corresponding to different frequency pairs share the

same positions as they are associated with the same DOAs of the Q targets. However, their values differ

for each frequency pair. Therefore, zkk′ exhibits a group sparsity across all frequency pairs and the

problem described in (42) can be solved in the MMV sparse reconstruction context.

Denote Z = [z1, · · · , zP ] as the collection of vectors zkk′ , corresponding to all P = N2
t frequency

pairs. Then, the MMV sparse reconstruction problem is expressed as

Z = Φ̄B̄, (43)

where B = [b̄1, · · · , b̄P ] is the sparse matrix that can be reconstructed by the multitask BCS.

Denote Q̄ as the number of distinct DOAs of Q targets, the nq̄, as the index of those nonzero positions

in B̄ corresponding to θq̄, q̄ = 1, · · · , Q̄. In addition, the P ×1 vector bnq̄
is denoted as the nq̄th column

of B̄T . Then, the range can be estimated by solving the following sparse reconstruction problem:

bnq̄
= ΨRnq̄

, q̄ = 1, · · · , Q̄, (44)

where Ψ is the N2
t ×G2 dictionary, whose g2th column, g2 = 1, . . . , G2, is

Ψg2 =
[
1, · · · , e−j

4π(ξk−ξ
k′ )

c
Rg2 , · · · , 1

]T
, (45)

with 1 ≤ k, k′ ≤ Nt. Then, the range on θq̄, q̄ = 1, · · · , Q̄ can be indicated by positions of nonzero

entries in sparse vector Rnq̄
.

As a summary, the proposed approach can be divided into the following four stages:

S1: Compute all Nt ×Nt covariance matrix R̂xkk′ using (38), 1 ≤ k, k′ ≤ Nt.

S2: Generate all the N2
t × 1 virtual array data zkk′ with (39) by vectorizing the covariance matrix,

1 ≤ k, k′ ≤ Nt.

S3: Perform DOA estimation of the targets, based on the multitask sparse reconstruction
(
P = N2

t

)
model in (43) with an N2

t ×G1 dictionary.

S4: Perform range estimation of the targets, based on the sparse reconstruction model in (44) with an

N2
t ×G2 dictionary.

In S1, there are O(N4
t T ) multiplication operations. The complexity in S3 and S4 is O(κ1N

2
t G

2
1) and

O(κ2N
2
t G

2
2), respectively, where κ1 and κ2 are the corresponding number of iterations. Thus, the total

computation load is O (N4
t T + κ1N

2
t G

2
1 + κ2Q̄N2

t G
2
2

)
, which is much lower than O(N4

t T+κN4
t G

2
1G

2
2)

in Section IV.
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Remarks: The following observations can be made regarding the relationship between the joint and

the two-step estimation methods:

(1) Both estimation methods achieve the same number of DOFs from the coarray;

(2) The two-step estimation method requires a significantly reduced complexity. However, the corre-

sponding performance becomes sub-optimal due to error propagation. i.e., errors in the DOA estimation

stage may yield additional perturbations in the range estimation.

VI. SIMULATION RESULTS

For illustrative purposes, we consider an FDA radar exploiting coprime array and coprime frequency

offset, where M = 2 and N = 3 are assumed. The extended coprime structure consist of Nt = (2M +

N − 1) = 6 physical elements, and has (3MN +M −N + 1)/2 = 9 DOFs in the virtual domain. As

such, the increased number of DOFs enables to localize more than M2N2 = 36 targets with only 6

antennas exploiting 6 frequencies.

The unit interelement spacing is d = λ0/2, where λ0 is the wavelength with respect to the carrier

frequency f0 = 1 GHz. We choose the unit frequency increment to be Δf = 30 KHz, resulting maximum

unambiguous range Rmax = c/(2Δf) = 5000 m. In all simulations, Q far-field targets with identical

target scattering powers are considered. The qth target is assumed to be on angle-range plane (θq, Rq),

where θq ∈ [−60◦, 60◦] and Rq ∈ [1000, 5000] m, for q = 1, · · · , Q. The localization performance for the

coprime array and coprime frequency offset (CA-CFO) is examined in terms of the resolution, accuracy,

and the maximum number of resolvable targets. The average root mean square error (RMSE) of the

estimated DOAs and ranges, expressed as

RMSEθ =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(θ̂q(i)− θq)2,

RMSER =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(R̂q(i)−Rq)2, (46)

are used as the metric for estimation accuracy, where θ̂q(i) and R̂q(i) are the estimates of θq and Rq for

the ith Monte Carlo trial, i = 1, . . . , I . We use I = 500 independent trials in simulations.

A. Joint Estimation Method versus Two-step Estimation Method

We first compare the performance of the joint estimation method and two-step estimation method.

Q = 1 target with (10◦, 1000m) is considered. The dictionary matrices Φ̄ and Ψ are assumed to contain

all possible grid entries within (5◦, 15◦) and (1250 m, 1350 m) with uniform intervals θg1 = 0.2◦ and
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Rg2 = 1 m, respectively. Fig. 5 compares the RMSE performance of DOA and range estimations with

respect to the input signal-to-noise ratio (SNR), where 500 snapshots are used. In Fig. 6, we compare the

RMSE performance with respect to the number of snapshots, where the input SNR is set to −5 dB. It

is clear that the joint estimation method achieves slightly better estimation accuracy at the cost of much

higher computation complexity.

-10 -8 -6 -4 -2 0 2 4 6 8 10
SNR (dB)

10-3

10-2

10-1

R
M
S
E

(d
e
g
)

Joint

Two-step

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10
SNR (dB)

100

R
M
S
E

(m
)

Joint

Two-step

(b)

Fig. 5. RMSE versus SNR using the joint and two-step estimation methods (Q = 1 and T = 500). (a) RMSEθ; (b) RMSER
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B. CA-CFO versus Other Array Configuration and Frequency Offset Designs

Next, we examine the localization performance for different array configuration and frequency offset

designs. Particularly, the proposed CA-CFO is compared with uniform linear array and uniform frequency

offset (ULA-UFO). Uniform linear array with coprime frequency offset (ULA-CFO), and coprime array

and uniform frequency offset (CA-UFO) are also considered. In order to reduce the computational load,

we use the fast algorithm in section V for target localization in simulations.

In Fig. 7, we compare the resolution performance of different schemes. Q = 8 targets whose true

positions are shown in Fig. 7(a) are considered. The dictionary matrices Φ̄ and Ψ contain steering

vectors over all possible grids in (−60◦, 60◦) and (1000 m, 5000 m) with uniform intervals θg1 = 1◦ and

Rg2 = 100 m, respectively. Note that the number of targets is larger than the number of antennas, and the

traditional phased array radar does not have sufficient DOFs to resolve all targets. The covariance matrix

are obtained by using 500 snapshots in the presence of noise with a 0 dB SNR, and the corresponding

localization performance are illustrated in Figs. 7(b)–(e). It is evident that only the case of CA-CFO can

identify targets correctly because the increased DOFs in both virtual array and frequency can estimate

more DOAs than the number of antennas, and more ranges than the number of frequencies. In addition,

the corresponding larger apertures in both angle and range domains enable the CA-CFO case to resolve

the closely spaced targets. The conventional FDA with ULA-UFO fails to separate both pairs of the targets

with closely spaced angle and closely spaced range. However, the scenario of CA-UFO can resolve the

pair of targets with closely spaced angle and the ULA-CFO case can identify targets with closely spaced

range, benefitting from the increased DOFs in the angle and range domains, respectively.

We further compare the estimation accuracy through Monte Carlo simulations. To proceed with the

comparison, we consider Q = 2 targets with (10◦, 1300 m) and (25◦, 1700m), which can be separated

for all cases. The dictionary matrices Φ̄ and Ψ are assumed to contain entries corresponding to all

possible grids in (10◦, 30◦) and (1000 m, 2000 m) with uniform intervals θg1 = 0.2◦ and Rg2 = 10 m,

respectively. Fig. 8 compares the RMSE performance of DOA and range estimations with respect to the

input SNR for different array configurations and frequency offset structures, where 500 snapshots are used.

In Fig. 9, we compare the RMSE performance with respect to the number of snapshots, where the input

SNR is set to −5 dB. It is evident that the accuracy of both DOA and range estimates is improved as the

SNR and the number of snapshots increase. In comparison with the uniform array/offset case, the coprime

array/offset structure benefits from more independent measurements under the CS framework. It is shown

that the CA-UFO and ULA-CFO respectively achieve improved estimation accuracy in the angular and

range domains than that of the ULA-UFO owing to the coprime structure in the sensor positions and
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frequency offsets. In particular, the CA-CFO achieves the best performance as the advantages of coprime

structure are presented in both angular and range domains.

In Fig. 10, we consider Q = 56 targets. Note that this number is more than the available DOFs

obtained from the cases of ULA-UFO (the conventional FDA radar), ULA-CFO, and CA-UFO. As the

virtual array and virtual frequency offset are obtained from the estimated covariance matrix based on

the received data samples, the virtual steering matrix is sensitive to the noise contamination. To clearly

demonstrate the sufficient DOFs for localization of a large number of targets, we use 2000 snapshots in

presence of noise with a 10 dB input SNR. It is evident that all 56 signals can be identified correctly,

which demonstrates the effectiveness of the CA-CFO in resolving more targets.

C. Sparsity-based Method versus Subspace-based Method

In Figs. 11–13, we compare the sparsity-based method and the MUSIC algorithm with spatial smoothing

(MUSIC-SS) applied to the CA-CFO configuration. Note that the spatial smoothing technique is applied

to the covariance matrix of the virtual measurement vector z so that its rank can be restored before the

MUSIC algorithm is applied. In this case, only consecutive lags, i.e., [−7, 7], can be used so that every

sub-matrix has a similar manifold. The corresponding number of available DOFs is less than that of

the proposed sparsity-based approach, which utilizes all unique lags [34]. In Fig. 11, we examine their

resolution for Q = 5 closely spaced targets, whose true positions are shown in Fig. 11(a). The localization

results, depicted in Figs. 11(b) and 11(c), are obtained by using 500 snapshots with a 0 dB SNR. It is

clear that the sparsity-based method outperforms the MUSIC-SS approach for resolving the closely spaced

targets, since it exploits all distinct lags to form a virtual space-frequency structure, thus yielding a larger

array aperture and frequency span compared to the corresponding MUSIC-SS technique which only uses

consecutive lags. The respective RMSE performance is compared in Figs. 12 and 13 under the same target

scenario considered in Figs. 8 and 9, whereas Q = 2 targets located at (10◦, 1300 m) and (25◦, 1700 m)

are present. In Fig. 12, 500 snapshots are used, while a −5 dB SNR is assumed in Fig. 13. It is evident

that the proposed sparsity-based method achieves a lower RMSE than the MUSIC-SS due to the higher

number DOFs in both angular and range domains. This simulation example shows that the sparsity-based

method achieves better performance than the MUSIC-SS counterparts do.

D. Proposed Method versus Existing Methods

In Figs. 14–16, we compare the performance of the proposed method with the existing methods using

sparse arrays. The methods in [42] and [43], which are referred to as the Nested-MUSIC and Nested-
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CS, respectively, employ a nested array configuration but with the uniform time-delayer and frequency

increment. As a consequence, it has only O(Nt) frequency DOFs with a smaller spectral span for a coarse

range resolution, although it has the same O(N2
t ) spatial DOFs as the proposed coprime FDA radar

configuration. The same target scenario considered in Figs. 11–13 is used for performance comparison.

Fig. 14 depicts the angle-range resolution, wherein the true positions and results obtained from the

proposed method are reproduced from Fig. 11(a) and Fig. 11(c) as Fig. 14(a) and Fig. 14(b) for the

convenience of comparison. The corresponding results using the Nested-MUSIC and Nested-CS methods

are presented in Figs. 14(c) and 14(d), respectively. It is evident that only the proposed method can resolve

these closely spaced targets in the range. Furthermore, the Nested-MUSIC method produces more blurry

spectra than the Nested-CS for targets with a small angulare separation. The RMSE is compared in Figs.

15 and 16. It is clear that the Nested-MUSIC and Nested-CS methods suffer from significant performance

degradation in the range domain due to the reduced spectral span and range-domain DOFs. Accordingly,

the Nested-CS outperforms the Nested-MUSIC owing to its utilizations of all distinct lags in the coarray

structure.

VII. CONCLUSIONS

In this paper, we proposed a novel sparsity-based multi-target localization algorithm, which incorporates

both coprime arrays and coprime frequency offsets in an FDA radar platform. By exploiting the sensor

position lags and frequency differences, the proposed technique achieved a high number of DOFs repre-

senting a larger array aperture and increased frequency increments compared to conventional approaches.

These attributes enable high-resolution target localization of significantly more targets than the number

of physical sensors. A fast algorithm was developed that cast the 2-D sparse reconstruction problem as

separate 1-D sparse reconstruction problems, thus effectively reducing the computational complexity. The

offerings of the proposed technique were demonstrated by simulation results.
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Fig. 6. RMSE versus the number of snapshots using the joint and two-step estimation methods (Q = 2 and SNR= −5 dB).

(a) RMSEθ; (b) RMSER
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Fig. 7. The localization results using different schemes (Q = 8) (a) True; (b) ULA-UFO; (c) CA-UFO; (d) ULA-CFO; (e)

CA-CFO.
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Fig. 8. RMSE versus SNR (Q = 2 and T = 500). (a) RMSEθ; (b) RMSER
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Fig. 9. RMSE versus the number of snapshots (Q = 2 and SNR= −5 dB). (a) RMSEθ; (b) RMSER
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Fig. 10. The localization results using CA-CFO (Q = 56). (a) True; (b) Estimated
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Fig. 11. The localization results for different methods using CA-CFO (Q = 5, T = 500, and SNR= 0 dB) (a) True; (b)

MUSIC-SS; (c) Proposed.
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Fig. 12. RMSE versus SNR for different methods using CA-CFO (Q = 2 and T = 500). (a) RMSEθ; (b) RMSER
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Fig. 13. RMSE versus the number of snapshots for different methods using CA-CFO (Q = 2 and SNR= −5 dB). (a) RMSEθ;

(b) RMSER
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Fig. 14. The localization results for different methods (Q = 5, T = 500, and SNR= 0 dB) (a) True; (b) Proposed; (c)

Nested-MUSIC; (d) Nested-CS.
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Fig. 15. RMSE versus the SNR for different methods (Q = 2 and T = 500). (a) RMSEθ; (b) RMSER
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Fig. 16. RMSE versus the number of snapshots for different methods (Q = 2 and SNR= −5 dB). (a) RMSEθ; (b) RMSER
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3.7. Generalized Coprime Sampling of Toeplitz Matrices for

Spectrum Estimation

Abstract

Increased demand on spectrum sensing over a broad frequency band requires a high sampling rate

and thus leads to a prohibitive volume of data samples. In some applications, e.g., spectrum estimation,

only the second-order statistics are required. In this case, we may use a reduced data sampling rate

by exploiting a low-dimensional representation of the original high dimensional signals. In particular,

the covariance matrix can be reconstructed from compressed data by utilizing its specific structure,

e.g., the Toeplitz property. Among a number of techniques for compressive covariance sampler design,

the coprime sampler is considered attractive because it enables a systematic design capability with a

significantly reduced sampling rate. In this paper, we propose a general coprime sampling scheme that

implements effective compression of Toeplitz covariance matrices. Given a fixed number of data samples,

we examine different schemes on covariance matrix acquisition for performance evaluation, comparison

and optimal design, based on segmented data sequences.

Index Terms

Compressive covariance sampling, structured matrix, coprime sampling, overlapping data segmenta-

tion

I. INTRODUCTION

Various applications require spectrum sensing over a broad frequency band, which demand on the

sampling rate and produce a large amount of data. In some cases, the original signal is known to be

sparse. This property allows the exploitation of compressive sensing and sparse sampling approaches that

enable effective sparse signal reconstruction [3], [4], with no loss of information. The signal reconstruction

can be carried out by a number of algorithms, such as orthogonal matching pursuit (OMP), least absolute

shrinkage and selection operator (LASSO), and Bayesian compressive sensing [5]–[8].

Spectrum estimation based on the second-order statistics adds to the abovementioned applications for

signal reconstruction. In this case, the covariance function and the covariance matrix can be constructed as

low-dimensional representations of the original high-dimensional signals [9], [10]. This fact has motivated

the development of an alternate framework, referred to as compressive covariance sampling, in which

the signal sparsity is not a requirement [11]–[13].
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In this paper, we consider spectrum estimation of wide-sense stationary (WSS) processes utilizing the

Toeplitz property of the covariance matrix. Note that, while our focus in this paper is limited to the

second-order statistics, extension to techniques based on high-order statistics [14] is straightforward.

Several methods have been developed to tackle similar compressive Toeplitz matrix sampling. For

example, a generalized nested sampler [15] was proposed to recover Toeplitz matrices from a compressed

covariance matrix. However, this approach assumes an infinite number of data samples and does not

consider the achievable reconstruction performance when the number of samples is finite. In addition,

it imposes a minimum sampling interval that follows the Nyquist criterion, which makes it ineffective

to implement low sampling rate systems for wideband spectrum estimation. In [16], a minimal sparse

sampler was proposed through a set of properly designed analog filters and then down-sampling the signals

at a reduced rate. A finite number of outputs was divided into multiple blocks without overlapping, and

the compressed covariance was estimated by averaging over these blocks. However, the requirement of

using the designed analog filters complicates the implementation. In addition, the effect of utilization of

overlapping blocks were not considered.

The proposed work is based on the recently developed coprime sampling structure [17], which utilizes

only two uniform samplers to sample a WSS process with sampling intervals, M and N . The integers

M and N , which represent the down-sampling rates, are chosen to be coprime. As a result, it generates

two sets of uniformly spaced samples with a rate substantially lower than the nested [18] and with fewer

samplers than the schemes in [19]–[21].

In this paper, we design a sampling matrix to compress Toeplitz matrices based on a coprime sampling

scheme. In particular, our focus is on effective estimations of the Toeplitz covariance matrix and signal

spectrum from a finite number of samples of a WSS sequence. Toward this objective, we generalize the

coprime sampling approach to achieve a higher number of degrees of freedom (DOFs) and low estimation

error. The generalization is carried out in the following two aspects: (a) The first generalization is to use

multiple coprime units to obtain a higher number of DOFs and improved power spectrum density (PSD)

estimation performance. This is achieved through the use of an integer factor p, where a coprime unit

is defined as a full period of the output sample pattern between x[bMN ] and x[(b + 1)MN − 1] for

any non-negative integer b. (b) The second generalization is to exploit overlapping blocks in performing

sample averaging, enabling an increased number of blocks to be used for sample averaging, leading to

a reduced estimation variance.

The concept of generalized coprime sampling was first developed in [1] where only the abovementioned

first generalization is considered, whereas the second generation was introduced in [2]. In this paper, we

extend these preliminary results by providing comprehensive theoretical support and performance bound
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analysis of the developed techniques, and describe the spectrum estimation algorithm based on the cross-

covariance between the outputs of the two samplers. A number of simulation results are presented to

clearly reveal the relationship between the achieved performance and various parameters related to the

sampling strategies and signal conditions.

The rest of the paper is organized as follows. We first introduce the signal model in Section II.

Generalized coprime sampling that exploits multiple coprime units is presented in Section III. Section IV

describes spectrum estimation based on the generalized coprime sampling scheme, and the corresponding

spectrum identifiability, compression factor, and Cramér-Rao bound (CRB) are examined. In Section V,

we propose the exploitation of overlapping samples, and show analytically that the overlapping sampling

scheme achieves reduced variance in the estimated covariance matrix and signal spectrum. Simulation

results are provided in Section VI to numerically verify the effectiveness of the proposed generalization

and the analysis. Section VII concludes the paper.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IN

denotes the N ×N identity matrix. (·)∗ implies complex conjugation, whereas (·)T and (·)H respectively

denote the transpose and conjugate transpose of a matrix or a vector. E(·) is the statistical expectation

operator and ⊗ denotes the Kronecker product. R and C denote the set of real values and complex values,

respectively, while N+ denotes the set of positive integers. x ∼ CN (a, b) denotes that random variable

x follows the complex Gaussian distribution with mean a and variance b. 
·� denotes the floor function

which returns the largest integer not exceeding the argument. diag(x) denotes a diagonal matrix that uses

the elements of x as its diagonal elements, and Tr{A} returns the trace of matrix A.

II. SIGNAL MODEL

Assume that a zero-mean WSS process X(t), t ∈ R, which consists of signals corresponding to a

number of sparse frequencies, is confined within a bandwidth Bs. To obtain its PSD, the covariance

matrix needs to be provided from a specific realization of X(t), t = 0, . . . , T − 1. It suffices to consider

the discrete-time random process, X[l], obtained by sampling the analog signal X(t), with a Nyquist

sampling rate fs = 2Bs. Note that the discrete-time process X[l] remains WSS in the discrete-time

sense. Let xL[l] = [x[l], x[l + 1], . . . , x[l + L− 1]]T be a realized vector of X[l]. Then, the resulting

182



semi-positive definite, Hermitian and Toeplitz covariance matrix can be given by

Rx = E
[
xL[l]x

H
L [l]
]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r[0] r[−1] . . . r[−L+ 1]

r[1] r[0] . . . r[−L+ 2]
...

... . . .
...

r[L− 2] r[L− 3] . . . r[−1]

r[L− 1] r[L− 2] . . . r[0]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

in which the entry r[τ ] = E [x[l]x∗[l − τ ]] only depends on the lags τ = −L+ 1, . . . , L− 1. It is clear

from (1) that r[−τ ] = r∗[τ ]. In addition, the Toeplitz structure of Rx implies that many of its elements are

redundant. As a result, Rx can be obtained from a sparsely sampled data sequence. This fact motivated

compressive covariance sampling [11]–[13].

In this paper, we consider the problem of estimating an L × L covariance matrix of xL[l] and the

signal PSD from an observation of X(t) with an available length of KTs, where K ∈ N+ and K ≥ L.

When sampled at the Nyquist interval Ts = 1/fs, it yields K samples of discrete-time observations

x[k], k = 0, . . . ,K − 1. A common practice for covariance matrix estimation is to segment the entire

discrete-time observation of length K into multiple length-L blocks, and average the respectively sample

covariances [22]. As shown in Fig. 1, the entire observation period is segmented into multiple, possibly

overlapping, blocks. In Section III-B, we first consider the non-overlapping segmentation to illustrate the

signal model, as shown in Fig. 1(a), whereas the overlapping case depicted in Fig. 1(b) will be discussed

in Section III-C. Denote B as the number of data blocks for the non-overlapping case. We assume for

convenience that the B blocks cover the entire sequence, i.e., BL = K.

Denote by xb[l] = x[l+(b−1)L], l = 0, . . . , L−1, and xb = [xb[0], . . . , xb[L−1]]T for b = 1, . . . , B.

We sparsely sample each data block using a V × L sampling matrix As to obtain yb = Asxb, where

V � L. The estimated covariance matrix obtained by averaging the available B blocks and is expressed

as

R̂y =
1

B

B∑
b=1

yby
H
b = As

(
1

B

B∑
b=1

xbx
H
b

)
AH

s = AsR̂xA
H
s , (2)

where R̂x is an estimated covariance matrix of Rx. The compressed covariance matrix R̂y with size V ×V

can be exploited to reconstruct the L×L matrix R̂x, provided that it includes all lags τ = 0, . . . , L− 1.

Note that covariances corresponding to negative lags τ = −L + 1, . . . ,−1 can be obtained through the

Hermitian operation r[τ ] = r∗[−τ ] and thus does not contain additional information. Reconstruction of

full covariance matrix Rx from the compressed covariance matrix R̂y can be made possible by designing
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a proper sampling matrix As. It is clear that, since there are V 2 entries in R̂y, the number of samples

required to enable reconstruction of the Hermitian Toeplitz matrix R̂x is O(
√
L). In this end, R̂x can

be reconstructed as

R̂x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̂[0] r̂[−1] . . . r̂[−L+ 1]

r̂[1] r̂[0] . . . r̂[−L+ 2]
...

... . . .
...

r̂[L− 2] r̂[L− 3] . . . r̂[−1]

r̂[L− 1] r̂[L− 2] . . . r̂[0]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where r̂[τ ], τ = −L+1, . . . , L− 1 are estimated by averaging all the entries with the same lag τ in R̂y.

0  

0  

 2  

  

 

 

 

 

(a)

0  

0  

  

  

 

 

 

 

(b)

Fig. 1. Illustration of segmentations. (a) Non-overlapping segmentation; (b) Overlapping segmentation.
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III. GENERALIZED COPRIME SAMPLING

Coprime sampling exploits two uniform sub-Nyquist samplers with sampling period being coprime

multiples of the Nyquist sampling period [17], [23]. In this section, the generalized coprime sampling

scheme is presented in two operations. A multiple coprime unit factor p ∈ N+ [1], aiming to increase

the number of lags in the compressed covariance matrix, is first introduced. Then, the utilization of

overlapping samples between blocks is pursued to yield a reduced estimation variance through the use

of a non-overlapping factor q ∈ N+.

A. The concept of coprime sampling

In coprime sampling, the sampling matrix As can be denoted as As = [AT
s1 AT

s2]
T , where As1 and

As2 are the sub-sampling matrices corresponding to the two coprime samplers.

Definition 1: The (i, j)th entry of the sampling matrices As1 and As2 can be designed as:

[As1]i,j =

⎧⎪⎨
⎪⎩
1, j = Mi, i ∈ N+,

0, elsewhere,

and

[As2]i,j =

⎧⎪⎨
⎪⎩
1, j = Ni, i ∈ N+,

0, elsewhere,

(4)

where M ∈ N+ and N ∈ N+ are coprime integers.

From a data acquisition perspective, there are two sets of uniformly spaced samples of the input WSS

signal X(t), t = 0, . . . , T , from two samplers with sampling intervals MTs and NTs, respectively, as

illustrated in Fig. 2. Without loss of generality, we assume M < N . Then, the highest sampling rate of

the system is 1/(MTs) = fs/M and the two sampled stream outputs can be given as

y1[k1] = x[Mk1] = X(Mk1Ts),

y2[k2] = x[Nk2] = X(Nk2Ts). (5)

Note that, due to the coprime property of M and N , there are no overlapping outputs between the

two sets other than x[bMN ] for any non-negative integer b. The outputs between x[(b − 1)MN ] and

x[bMN − 1] are referred to as a coprime unit, positioned at

Pb = {bMN +Mk1}
⋃

{bMN +Nk2}. (6)

Over an observation with an available length of KTs, K/MN coprime units can be obtained, each

consists of M +N physical samples. As such, the total number of physical samples is given by

Ks = K

(
M +N

MN

)
= K

(
1

M
+

1

N

)
. (7)
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Fig. 2. Coprime sampling structure.

For illustration, an example is presented in Fig. 3, where two coprime samplers with M = 3 and N = 4

are considered. The length of K = 60 output streams consist of 5 coprime units, and Ks = 35 physical

samples are distributed between x[12(b− 1)] and x[12b− 1], for b = 1, . . . , 5, where 5 pairs of samples

overlap between the output of the two samplers at positions 0, 12, 24, 36, and 48.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Unit Unit Unit Unit Unit

Fig. 3. An example for coprime sampling (M = 3, and N = 4; •: Nyquist sampler; �: first sampler outputs; ∇: second

sampler outputs.)

Denote yb1 = [yb1 [0], . . . , yb1 [N − 1]]T as an N × 1 vector, and yb2 = [yb2 [0], . . . , yb2 [M − 1]]T as

an M × 1 vector, with yb1 [k1] = x[(b − 1)MN + Mk1] and yb2 [k2] = x[(b − 1)MN + Nk2], where

0 ≤ k1 ≤ N − 1 and 0 ≤ k2 ≤ M − 1, for 1 ≤ b ≤ K/(MN). In addition, let yb = [yT
b1

yT
b2
]T . As
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such, the (M +N)× (M +N) covariance matrix Ry can be expressed as

Ry =

⎛
⎜⎜⎜⎝
Ry11

Ry12

Ry21
Ry22

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
E[yb1y

H
b1
] E[yb1y

H
b2
]

E[yb2y
H
b1
] E[yb2y

H
b2
]

⎞
⎟⎟⎟⎠ . (8)

In Ry, matrices Ry11
and Ry22

contains self-lags of the two sampler output streams, while their cross-lags

are included in matrices Ry12
and Ry21

. Note that Ry21
= R∗

y12
. In addition, because the two sampler

outputs share the first sample in each coprime unit, the self-lags can be taken as cross-lags between

every sample from one sampler and the first sample from the other sampler. As such, the self-lags form a

subset of the cross-lags. Thus, Rx can be reconstructed by using only Ry12
, whose cross-lags (including

the negated ones) are given by the following set,

L = {τ |τ = ±(Mk1 −Nk2)}, (9)

where 0 ≤ k1 ≤ N − 1 and 0 ≤ k2 ≤ M − 1.

The prototype scheme uses one coprime unit samples to generate all lags in L. However, it should be

noticed that they are distributed in the range [−M(N − 1),M(N − 1)] with some missing integers at

(aM + bN), where a ≥ 1 and b ≥ 1, as shown in Fig. 4(a), for M = 3 and N = 4. That is, they are not

sufficient to reconstruct R̂x with dimension L = MN . To overcome this limitation, two coprime units

from the first sampler and one coprime unit from the second sampler are used to form one block in [17],

and the resulting lags are contiguous in the range [−MN −N + 1,MN +N − 1], as depicted in Fig.

4(b). This scheme is referred in this paper to as the conventional scheme. In this case, the maximum

achievable L is Lmax = MN +N .

B. Generalized coprime sampling scheme using non-overlapping blocks

In the sequel, an integer factor p ≥ 2, representing the number of multiple coprime units, is first

introduced to achieve a higher value of L. In each block, outputs from p coprime units from both

samplers, i.e., p(M +N) physical samples spawning a time period of pMNTs, are used to estimate the

covariance matrix. In this case, the resulting lags fall into the following set,

L̃ = {τ |τ = ±(Mk1 −Nk2)}, (10)

for 0 ≤ k1 ≤ pN − 1 and 0 ≤ k2 ≤ pM − 1. Note that varying p changes the set L̃. The following

proposition about the set L̃ reveals the property of the resulting lag positions.

Proposition 1: The set L̃ contains all integer lags in the range −(p − 1)MN − M − N + 1 ≤ τ ≤
(p− 1)MN +M +N − 1.
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0 3 6 9 12 15 18 21

0 4 8 12 16 20

Block 1 Block 2

−20 −15 −10 −5 0 5 10 15 20

(a)

0 3 6 9 12 15 18 21

0 4 8 12 16 20

Block 1

−20 −15 −10 −5 0 5 10 15 20

(b)

Fig. 4. An example for different schemes (M = 3, and N = 4; �: first sampler outputs; ∇: second sampler outputs; •: lags;

×: holes. (a) Prototype; (b) Conventional.)

The proof is provided in Appendix A. Note that, all resulting lags using conventional scheme are

included in L̃ as a special case of p = 2. For the generalized scheme, the maximum achievable value of

L becomes

L̃max = (p− 1)MN +M +N, (11)

and the number of the corresponding non-overlapping blocks is given by

B =

⌊
K

pMN

⌋
. (12)

An example for different values of p is illustrated in Fig. 5, where K = 120, M = 3, and N = 4 are

assumed. For the case of p = 2, i.e., the conventional scheme, each block forms consecutive lags within

[−18, 18]. That is, R̂x can be reconstructed with a maximum of dimension L̃max = 19 by averaging

B = 5 blocks. For the case of p = 5, L̃max = 55 can be obtained by a consecutive lag range of [−54, 54]

in each block, whereas the number of the blocks is reduced to B = 2.

We examine the compression factor, which is defined as the ratio of the number of entries in R̂x over

the corresponding number in R̂ỹ12
, expressed as

κ =
L× L

pM × pN
=

L2

p2MN
. (13)
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0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Block 1 Block 2 Block 3 Block 4 Block 5

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(a)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Block 1 Block 2

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(b)

Fig. 5. An example for different values of p (K = 120, M = 3, and N = 4; (a) p = 2; (b) p = 5.)

Because the maximum value of L is L̃max = (p− 1)MN +M +N , the maximum achievable value of

κ is given by

κmax =
[(p− 1)MN +M +N ]2

p2MN
. (14)

Fig. 6 shows κmax, as a function of M , N , and p. It is clear that κmax improves as M and N increase.

Notice that, while the number of entries in R̂ỹ12
increases with p, κmax does not significantly change. It

asymptotically approaches MN when p � 1.

For a given number of compression factor, i.e., the constant value of MN , the optimal coprime pair

in terms of total number of physical samples, Ks, can be derived by solving the optimization problem:

Minimize Ks = K

(
1

M
+

1

N

)

subject to MN = constant, (15)

0 < M < N.

It is demonstrated in [23], [31] that the valid optimal coprime pair is the one that has M and N as close

as possible. This is satisfied by choosing N = M + 1. This relationship is assumed in the remainder of
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the paper. In this case, Ks becomes

Ks = K

(
1

M
+

1

M + 1

)
, (16)

and the corresponding compression factor, κmax, can be expressed as

κmax =
L̃2
max

p2M(M + 1)
∝ M2, (17)

with L̃max = (p− 1)M2 + (p+ 1)M + 1.
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Fig. 6. κmax, as a function of M , N , and p.

C. Utilization of overlapping blocks

The variance of the estimated covariance and spectrum is generally reduced by utilizing a higher

number of averaging blocks. In addition to averaging over non-overlapping segments, as discussed earlier,

a general and more effective alternative for spectrum estimation is to exploit overlapping segments. In

so doing, the number of applicable blocks for sample averaging can be substantially increased. The

overlapping samples used are set by non-overlapping factor q ∈ N+.

As shown in Fig. 1(b), we maintain the same segment length pM(M + 1), and let the starting points

of two adjacent blocks D = qM(M + 1) units apart, where 1 ≤ q ≤ p. Similarly, we assume, for

convenience, that (B̃ − 1)D + pM(M + 1) = K covers the entire recorded sequence.
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Definition 2: Assume that D consists of the length of q coprime units, i.e., D = qM(M + 1), where

1 ≤ q ≤ p. Then, the number of blocks can be expressed as

B̃ =

⌊
K − pM(M + 1)

D

⌋
+ 1 =

⌊
K

qM(M + 1)
− p

q

⌋
+ 1

=

⌊
p

q
B − p

q

⌋
+ 1. (18)

It is straightforward to confirm that B̃ ≥ B since q ≤ p. In addition, B̃/B approaches p/q when B is

large. As such, p/q can be considered as the overlapping ratio that approximately describes the level of

additional blocks used for sample averaging. It is clear that B̃ increases as q decreases and is maximized

when q = 1. Note that the non-overlapping case can be considered as a special case of q = p and B̃ = B.

For illustration, an example of p = 5 and q = 1 is considered in Fig. 7, where K and M are assumed

to be the same as those in Fig. 5. It is shown that B̃ = 6 blocks can be used in Fig. 7, whereas only

B = 2 blocks are obtained in the corresponding non-overlapping scenario, as depicted in Fig. 5(b).

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Block 1
Block 2

Block 3
Block 4

Block 5
Block 6

Fig. 7. An example of utilization of overlapping samples (K = 120, M = 3, p = 5, and q = 1.)

Denote ỹb1 [k1] = x[(b−1)× qM(M +1)+Mk1] and ỹb2 [k2] = x[(b−1)× qM(M +1)+(M +1)k2],

where 0 ≤ k1 ≤ p(M + 1) − 1 and 0 ≤ k2 ≤ pM − 1, for 1 ≤ b ≤ B̃. In addition, let ỹb1 =

[ỹb1 [0], . . . , ỹb1 [p(M +1)−1]]T and ỹb2 = [ỹb2 [0], . . . , ỹb2 [pM −1]]T . The covariance matrix R̂ỹ12
, using

the generalized scheme, can be estimated as

R̂ỹ12
=

1

B̃

B̃∑
b̃=1

ỹb1 ỹ
H
b2 . (19)

Note that, for each 1 ≤ b ≤ B̃, the entries rb(k1, k2) = ỹb1 [k1]ỹ
∗
b2
[k2] corresponding to the same position

(k1, k2) in covariance matrix are still independent. As discussed above, the value of B̃ is increased from

that of B approximately by a factor of p/q. Thus, utilizing overlapping blocks for averaging, the variance

of the estimated covariance is generally reduced to q/p of the corresponding non-overlapping case.
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Then, R̂x with dimension L× L, where L ≤ L̃max, can be reconstructed as

R̂x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ˆ̃r[0] ˆ̃r[−1] . . . ˆ̃r[−L+ 1]

ˆ̃r[1] ˆ̃r[0] . . . ˆ̃r[−L+ 2]
...

... . . .
...

ˆ̃r[L− 2] ˆ̃r[L− 3] . . . ˆ̃r[−1]

ˆ̃r[L− 1] ˆ̃r[L− 2] . . . ˆ̃r[0]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where ˆ̃r[τ ], τ = −L + 1, . . . , L − 1, are estimated by averaging all the entries with the same lag τ in

R̂ỹ12
.

We make the following two remarks:

1. In the generalized coprime sampling scheme, (B̃ − 1)qM(M + 1) + pM(M + 1) = K, where

p, q ∈ N+, is assumed to cover the entire recorded sequence. When B̃ = 1, factor q does not have a

physical meaning. Thus, B̃ ≥ 2 needs to be guaranteed, which is equivalent to

p+ q ≤ K

M(M + 1)
. (21)

As such, the range of the pair of (p, q) falls into the following set,

Πp,q =

{
(p, q) | p+ q ≤ K

M(M + 1)
, 1 ≤ q ≤ p, p, q ∈ N+

}
. (22)

2. The covariance matrix Rỹ12
is estimated using the B̃ available samples. In practice, p and q are

generally chosen to yield the large number of blocks B̃ to achieve to rigid estimation of Rỹ12
.

3. As p increases, a higher number of DOFs in the compressed covariance matrix Rỹ12
can be achieved.

As a result, we can reconstruct covariance matrix R̂x with a higher dimension, yielding an improved

spectrum resolution and estimation accuracy. When q increases, the estimation accuracy can be improved

because a higher number of blocks are used in the averaging. However, such higher dimension and higher

number of blocks result in a higher computational complexity.

IV. SPECTRUM ESTIMATION AND THE CRB

Spectrum estimation deals with the problem of estimating the PSD of a random process, and finds

applications in the context of dynamic spectrum sharing [24]. In this case, a broad frequency band

should be sensed in order to locate the unoccupied spectrum before establishing a communication link.

Sub-Nyquist sampling for cognitive radios is a widely studied topic, e.g., in [25]–[30].

Generally, power spectrum sensing can be classified into two major categories. The first category

reconstructs the signal waveforms and then estimate the power spectrum, whereas the second category

estimates the power spectrum from the signal covariance, i.e., the second-order statistics. The approach
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discussed in [25]–[27] belongs to the former where the signals are assumed to be sparse in some domain

and sub-Nyquist sampling is implemented to recover the signal waveforms through compressive sensing.

The approach adopted in this paper, along with [28]–[30] and several other references [11]–[13], [15],

[16] belong to the second category. Note, however, that this paper makes significant difference to the

papers in its category, as our major contribution is the generalization of the coprime sampling, where

the multiple unit factor p is used to improve the degrees-of-freedom (DOFs) and spectrum resolution,

and the non-overlapping factor q is used to improve the estimation accuracy. Such generalization and the

related analyses are novel.

A. Spectrum estimation

The well-known Wiener-Khinchin theorem proves that the PSD of a signal and the covariance function

form a Fourier transform pair, expressed as

P [f ] =

∞∑
τ=−∞

r[τ ]e−j2πτf/fs . (23)

Therefore, once R̂x is reconstructed, then P [f ] can be estimated by employing the discrete Fourier

transform which does not require the assumptions of signal sparsity in the frequency domain. The

applicability to continuous spectrum signals will be demonstrated using a simulation example in Section

V.

For signals with sparse and discrete spectrum, however, we can further achieve high-resolution spectrum

estimation by exploiting subspace-based spectrum estimation techniques, in lieu of the Fourier transform.

As such, in the following, we focus on the spectrum estimation of sparse spectrum signals which consist

of a sum of multiple sinusoids, and the corresponding CRB analysis is provided.

Assume that x[k], for k = 0, 1, . . . ,K − 1, are samples of the analog signal X(t), which can be

presented as a sum of I independent frequency components

x[k] =

I−1∑
i=0

σie
−j2πkfi

fs + n[k], (24)

of frequency fi and complex magnitudes σi, i = 0, . . . , I − 1. The additive noise n[k] is assumed to

be an independent and identically distributed (i.i.d.) random variable following the zero-mean complex

Gaussian distribution with a variance σ2
n, i.e., n[k] ∼ CN (0, σ2

n).
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Using the generalized coprime sampling scheme, in the bth block, 0 ≤ b ≤ B̃−1, the received outputs

at the two coprime samplers can be respectively written as

ỹb1 [k1] = x[(b− 1)× qM(M + 1) +Mk1]

=

I−1∑
i=0

σie
−j2π[(b−1)×qM(M+1)+Mk1]fi

fs + nb1 [k1], (25)

ỹb2 [k2] = x[(b− 1)× qM(M + 1) + (M + 1)k2]

=

I−1∑
i=0

σie
−j2π[(b−1)×qM(M+1)+(M+1)k2]fi

fs + nb2 [k2], (26)

where 0 ≤ k1 ≤ p(M + 1) − 1, 0 ≤ k2 ≤ pM − 1, and the range of the pair (p, q) is given in Πp,q.

Stacking ỹb1 [k1] for 0 ≤ k1 ≤ p(M + 1) − 1 and ỹb2 [k2] for 0 ≤ k2 ≤ pM − 1, yields the following

received vector data

ỹb1 =

I−1∑
i=0

ab1(fi)e
−j2π[(b−1)×qM(M+1)]fi

fs σi = Ab1sΦ+ nb1 ,

ỹb2 =

I−1∑
i=0

ab2(fi)e
−j2π[(b−1)×qM(M+1)]fi

fs σi = Ab2sΦ+ nb2 , (27)

where s = [σ1, . . . , σI ]
T , Ab1 = [ab1(f1), . . . ,ab1(fI)], and Ab2 = [ab2(f1), . . . ,ab2(fI)] with

ab1(fi) =
[
1, e

−j2πMfi
fs , . . . , e

−j2π[p(M+1)−1]Mfi
fs

]T
, (28)

ab2(fi) =
[
1, e

−j2π(M+1)fi
fs , . . . , e

−j2π(pM−1)(M+1)fi
fs

]T
. (29)

In addition, Φ is a diagonal matrix given by

Φ = diag([e
−j2π[(b−1)×qM(M+1)]f1

fs , . . . , e
−j2π[(b−1)×qM(M+1)]fI

fs ]). (30)

Note that the noise vectors nb1 and nb2 follow the complex Gaussian distribution CN (0, σ2
nIpM ) and

CN (0, σ2
nIp(M+1)), respectively. Then, the compressed covariance matrix Rỹ12

is obtained as

Rỹ12
= E[ỹb1 ỹ

H
b2 ] = Ab1RssA

H
b2 + σ2

niỹ12

=

I−1∑
i=0

σ2
i ab1(fi)a

H
b2(fi) + σ2

niỹ12
, (31)

where iỹ12
returns a pM×p(M+1) matrix with ones on the main diagonal and zeros elsewhere. Note that,

the following vector with elements corresponding to different lags, a(fi) = [1, e
−j2πfi

fs , e
−j4πfi

fs , . . . , e
−j2(L−1)πfi

fs ]T ,

can be extracted based on ab1(fi)⊗ a∗b2(fi) for 1 ≤ i ≤ I . Thus, Rx ∈ CL×L, where L ≤ L̃max, can be

reconstructed and expressed as

Rx =

I−1∑
i=0

σ2
i a(fi)a

H(fi) + σ2
nIL. (32)
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In practice, R̂ỹ12
is estimated by averaging the available B̃ blocks as in (19), and R̂x is reconstructed

as in (20). The spectrum can be estimated using a variety of methods (e.g., [33]), with respect to R̂x. It

is well known that subspace-based methods are popular candidates to achieve a high spectrum resolution

with a moderate computational complexity. The multiple signal classification (MUSIC) algorithm [34] is

used to evaluate the performance of our approach. Note that the extension of other spectrum estimation

techniques [35], [36] is straightforward.

The MUSIC approach is based on eigen-decomposition of the reconstructed covariance matrix R̂x,

given by

R̂x = ÛΛ̂ÛH , (33)

where Λ̂ = diag{λ̂1, λ̂2, . . . , λ̂L} is the diagonal matrix of the eigenvalues in a descending order, and the

L×L matrix Û contains the corresponding eigenvectors. The MUSIC algorithm requires the information

of the rank of the signal subspace, i.e., the number of carrier frequencies of the signal arrivals. Various

mathematical criteria, such as Akaike information criterion (AIC) [37], minimum description length

(MDL) [38], and Bayesian information criterion (BIC) [39], can be employed to achieve the rank

estimation. In this paper, we apply the BIC on R̂x to obtain the value of I . It was shown that that

BIC based methods [40]–[42] generally outperform other methods, such as those developed based on

AIC and MDL [43]–[45] due to the stronger consistency, particularly when the number of array sensors

is large and the number of samples is small. Then, Eqn. (33) can be decomposed as

R̂x = ÛsΛ̂sÛ
H
s + ÛnΛ̂nÛ

H
n , (34)

where Ûs ∈ CL×I and Ûn ∈ CL×(L−I) contain the signal and noise subspace sample eigenvectors,

respectively, and the corresponding sample eigenvalues are included in the diagonal matrices Λ̂s =

diag{λ̂1, λ̂2, . . . , λ̂I} and Λ̂n = diag{λ̂I+1, λ̂I+2, . . . , λ̂L}. Then, the spectrum can be estimated as

P̂ (f) =
1

aH(f)ÛnÛH
n a(f)

, (35)

where f is defined as the collection over all possible grids in the spectrum and the values of f that produce

peaks in the estimator P̂ (f) are taken as estimates of the frequencies fi, i = 1, . . . , I . The spectrum

identifiability and resolution are improved as L increases, and they are optimized when L = L̃max. This

relationship is assumed in the remainder of the paper.

B. The Cramér-Rao Bound (CRB)

The CRB offers a lower bound on the variances of unbiased estimates of the parameters. The specific

CRB expressions given in [46]–[48] are valid only when the number of frequencies is less than the number
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of physical samples (I < Ks). This is because the expressions are based on the inverse of the matrix

AHA, where A is the so-called array or frequency manifold matrix. However, the assumption I < Ks

is not requirement for the existence of CRB, because even when I ≥ Ks, with proper prior information,

the Fisher information matrix (FIM) can remain nonsingular (invertible) under a much broader range of

conditions. Thus, we use the inverse of FIM as the CRB expression. After we have submitted the previous

version of the manuscript, several papers have been published on the CRB analysis of the directions of

arrival estimation when more sources than the number of sensors are handled in the context of coarrays.

We have cited these papers as references [49]–[51]. However, none of these papers provide revealing

solutions in a compact matrix form.

For a set of vectors ỹb = [ỹT
b1

ỹT
b2
]T , b = 1, . . . , B̃, the CRB is calculated by the well-known expression

[47] involving the FIM elements

Fαiαj
= B̃Tr

{
R−1

ỹ

∂Rỹ

∂αi
R−1

ỹ

∂Rỹ

∂αj

}
, (36)

for unknown variables αi and αj , where Rỹ is expressed as

Rỹ = E[ỹbỹ
H
b ] =

I−1∑
i=0

σ2
i ab(fi)a

H
b (fi) + σ2

nIp(2M+1), (37)

and ab(fi) = [aTb1(fi) aTb2(fi)]
T .

In the underlying case, the unknown parameters are the I signal frequencies fi and powers σ2
i for

i = 1, . . . , I , as well as the noise power σ2
n. Therefore, the elements in the (2I + 1) × (2I + 1) Fisher

matrix F can be written in terms of the block matrices, for i, j = 1, . . . , I , given by

Fi,j = B̃Tr

{
R−1

ỹ

∂Rỹ

∂fi
R−1

ỹ

∂Rỹ

∂fj

}
,

Fi,j+I = B̃Tr

{
R−1

ỹ

∂Rỹ

∂fi
R−1

ỹ

∂Rỹ

∂σ2
j

}
,

Fi,2I+1 = B̃Tr

{
R−1

ỹ

∂Rỹ

∂fi
R−1

ỹ

∂Rỹ

∂σ2
n

}
,

Fi+I,j = B̃Tr

{
R−1

ỹ

∂Rỹ

∂σ2
i

R−1
ỹ

∂Rỹ

∂fj

}
,

Fi+I,j+I = B̃Tr

{
R−1

ỹ

∂Rỹ

∂σ2
i

R−1
ỹ

∂Rỹ

∂σ2
j

}
,

Fi+I,2I+1 = B̃Tr

{
R−1

ỹ

∂Rỹ

∂σ2
i

R−1
ỹ

∂Rỹ

∂σ2
n

}
,

F2I+1,2I+1 = B̃Tr

{
R−1

ỹ

∂Rỹ

∂σ2
n

R−1
ỹ

∂Rỹ

∂σ2
n

}
, (38)
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where

∂Rỹ

∂fi
= σ2

i

[
∂ab(fi)

∂fi
aHb (fi) + ab(fi)

∂aHb (fi)

∂fi

]
,

∂Rỹ

∂σ2
i

= ab(fi)a
H
b (fi),

∂Rỹ

∂σ2
n

= Ip(2M+1). (39)

Then, the CRB of estimated frequencies is obtained as

CRB(fi) =
[
F−1

]
i,i
. (40)

V. SIMULATION RESULTS

For illustrative purposes, we demonstrate the spectrum estimation performance under different choices

of the arguments within the generalized coprime sampling scheme. Assume that I frequency components

with identical powers are distributed in the frequency band [−500, 500] MHz. Assume that K = 50000

samples are generated with a Nyquist sampling rate fs=1 GHz. In addition, the noise power is assumed

to be identical across the entire spectrum. The MUSIC method is used to estimate the power spectrum.

Our benchmarks are the spectrum DOFs and their statistical performance. The latter is evaluated in terms

of average relative root mean square error (RMSE) of the estimated frequencies, defined as

Relatvie RMSE(fi) =
1

fs

√√√√ 1

500I

500∑
n=1

I∑
i=1

(f̂i(n)− fi)2, (41)

where f̂i(n) is the estimate of fi from the nth Monte Carlo trial, n = 1, . . . , 500.

A. The performance of coprime sampling

We first illustrate the performance of coprime sampling. Herein, the conventional coprime sampling

scheme is considered, i.e., p = 2. In addition, M = 3 is assumed. As such, the L × L = 19 × 19

covariance matrix R̂x can be reconstructed from R̂ỹ12
with dimension pM × p(M + 1) = 6× 8. Thus,

the resulting compression factor is κmax ≈ 7.52 and up to L− 1 = 18 frequencies can be estimated.

In Fig. 8, we consider I = 18 frequencies with δf = 50 MHz separation in the presence of noise with

a 0 dB SNR. It is evident that all 18 frequencies can be identified correctly. In Fig. 9, the RMSE results

are shown as a function of the input SNR, where I = 1 is assumed. As expected, it displays a strong

inverse semi-logarithmic dependence on the input SNR. It is also observed that there is a gap between the

RMSE and CRB even in the high SNR region, due to estimation bias. The errors are mainly generated

in two aspects. On one hand, R̂ỹ12
is used to reconstruct R̂x. On the other hand, only consecutive lag

entries in R̂ỹ12
are exploited. It is observed that the bias errors increase with I due to a higher frequency

components, as shown in Fig. 10, where the input SNR is set to 0 dB.
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Fig. 8. Estimated spectrum (I = 18 and input SNR=0 dB).
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Fig. 9. Relative RMSE versus SNR (I = 1).

B. The generalized coprime sampling scheme versus other schemes

Next, we compare the generalized coprime sampling scheme with the nested sampler and the sparse

ruler based sampler, where the same number of physical samples is assumed. For the coprime sampler, we

set M = 3, and thus there are 2M +1 = 7 physical samples in each coprime unit. The sampling patterns

corresponding to the nested sampler and the sparse ruler based sampler that yield the same 7-sample unit
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Fig. 10. Relative RMSE versus I (SNR=0 dB).

are [0 1 2 3 7 11 15] and [0 1 4 10 12 15 17], respectively. In this simulation, p = 3 coprime units are

used to form the covariance matrix for the generalized coprime scheme, whereas the nested sampler and

minimal sparse ruler based sampler each uses one unit as in [15] and [12]. Their relative RMSEs are

depicted as a function of input SNR in Fig. 11, where I = 5 frequencies are considered. It is clear that

the generalized coprime scheme outperform the other two sampling schemes due to the higher number

of DOFs and improved resolution.

C. Relative RMSE for various p

In Figs. 12–14, we compare the performance corresponding to different choices of p under different

criteria, where non-overlapping segmentation is used.

Figs. 12 and Fig. 13 examine the performance for different choices of p, based on the same compression

factor, where M = 3 is assumed. In Fig. 12, the distinction on spectrum identifiability is depicted for

the cases of p = 10 and p = 45. We consider I = 100 frequencies with δf = 2 MHz separation in

the presence of noise with a 0 dB SNR. It is evident that only the scenario of p = 45 can resolve all

frequencies correctly, although in the case of p = 10 the number of DOFs L−1 = 114, is slightly higher

than the number of frequency components. Fig. 13 presents the RMSE and CRB with respect to p, where

I = 5 is assumed. It is observed that the estimation performance is improved as p increases. In addition,

the bias error between the estimated frequency and the CRB becomes smaller, since the ratio between

the number of consecutive lags and the number of total lags in R̂ỹ12
increases with p. In summary, a
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Fig. 12. Estimated spectra for the cases of p = 10 and p = 45 (M = 3 and input SNR=0 dB).

higher value of p can improve DOFs and spectrum estimation performance under the same compression

factor. However, the requirement of storage space and the computational load become higher, due to the

resulting higher value of L.

In Fig. 14, we present the relative RMSE as a function of the input SNR for different values of (p,M)

pairs, where the dimension of the covariance matrix is L = (p− 1)M2 + (p+ 1)M + 1 = 161, and the

number of frequencies is I = 5. It is clear that, as the value of M decreases (and so does the compression

factor κmax because κmax ∝ M2), the estimated relative RMSE is reduced since a higher number of
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Fig. 13. Relative RMSE versus p, based on the same M (I = 5 and M = 3).

physical samples (Ks = K(1/M + 1/(M + 1))) can be used.
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Fig. 14. Relative RMSE versus SNR, based on the same L (I = 5 and L = 161).
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D. Relative RMSE for various q

Finally, the advantage of utilization of overlapping blocks is demonstrated in Fig. 15, where M = 3

and p = 12 are assumed and I = 5 frequency is considered with a 0 dB SNR. In addition, q is chosen

within the range of {1, 2, 3, 4, 6, 12}. It is evident that the estimation performance can be improved as q

decreases, compared to the non-overlapping case, i.e., q = p = 12.

E. Relative RMSE versus K

In Fig. 16, we present the relative RMSE performance with respect to K, where M=3 is assumed,

and I=5 frequencies with a 0 dB input SNR are considered. It is evident that the estimated relative

RMSE performance is improved as K increases because a higher number of blocks is used to reduce the

noise effect. Asymptotically, when K is large, the relative RMSE asymptotically decreases with a factor

of 1/
√
K. In addition, various cases with different values of p and q are compared in this figure. By

assuming a large value of p and a small value of q, the generalized coprime sampling scheme improves

the RMSE performance as it benefits from the high dimension of the reconstructed covariance matrix

and the utilization of overlapping blocks, respectively.

F. Estimation for continuous spectrum

Finally, we consider an example of continuous spectrum signals in Fig. 17, where x(t) is assumed

to have continuous rectangular spectrum supports in [−350,−230] MHz and [150, 280] MHz. Multiple
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coprime unit factors of p = 2, 3, 7 are considered. As p increases, it is clear that the mainlobe becomes

closer to the ideal signal bandwidth due to the larger dimension of the reconstructed matrix R̂x. For

comparison, the case of p = 7 and q = 1 generally outperforms the case of p = 7 and q = 7 because a

higher number of blocks, achieved by using overlapping segmentation, become available for averaging.

VI. CONCLUSIONS

We proposed an effective approach to compressively sample wide-sense stationary processes. The

coprime sampling matrix was used to obtain a compressed representation for their second-order statistics.

Using a fixed number of data, different schemes for the acquisition of a covariance matrix were presented,

based on segmenting the data sequence. The performance of these schemes was compared and numerically

evaluated. The effectiveness of the proposed technique was evidently verified using simulation results.

VII. APPENDIX

Proof of Proposition 1

For the convenience of presentation, we define the function Γ ([k1min
, k1max

], [k2min
, k2max

]) as the

operation ±(Mk1 −Nk2) with k1 ∈ [k1min
, k1max

] and k2 ∈ [k2min
, k2max

]. Denote

L̃1 = {τ1|Γ([0, pN − 1], [0,M − 1])}, (42)

L̃2 = {τ2|Γ([0, N − 1], [0, pM − 1])}, (43)
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and the proposition 1 can be obtained by proving the following propositions:

1(a) L̃ = L̃1
⋃
L̃2.

1(b) For the set L̃1, it contains all integer lags in the range −(p− 1)MN −N +1 ≤ τ1 ≤ (p− 1)MN +

N − 1, and the “holes” are located at ±[(p − 1)MN + aM + bN ], where a ≥ 0 and b > 0 are

integers.

1(c) For the set L̃2, it contains all integer lags in the range −(p−1)MN −M +1 ≤ τ2 ≤ (p−1)MN +

M − 1, and the “holes” are located at ±[(p − 1)MN + aM + bN ], where a > 0 and b ≥ 0 are

integers.

1(d) The first pair of holes ±[p−1)MN+bN ] in L̃1, where b ≥ 0, can be aligned by the non-consecutive

element in L̃2.
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Proof of proposition 1(a): The lag set

L̃ ={Γ([0, pN − 1], [0, pM − 1])},

=

p⋃
p1=1

{Γ([0, pN − 1], [(p1 − 1)M,p1M − 1])}
⋃

p⋃
p2=1

{Γ([(p2 − 1)N, p2N − 1], [0, pM − 1])}

=L̃1

⋃⎛⎝ p⋃
p1=2

{Γ([0, pN − 1], [(p1 − 1)M,p1M − 1])}
⎞
⎠⋃

L̃2

⋃⎛⎝ p⋃
p2=2

{Γ([(p2 − 1)N, p2N − 1], [0, pM − 1])}
⎞
⎠ . (44)

Note that the union of the sets
⋃p

p1=2{Γ([0, pN − 1], [(p1 − 1)M,p1M − 1])} and
⋃p

p2=2{Γ([(p2 −
1)N, p2N − 1], [0, pM − 1])} is the subset of L̃1

⋃
L̃2. Therefore, (44) can be simplified as

L̃ = L̃1

⋃
L̃2. (45)

Proof of proposition 1(b): Given any integer τ1 satisfying

0 ≤ τ1 ≤ (p− 1)MN +N − 1, (46)

we need to prove that there exist integers k1 ∈ [0, pN−1] and k2 ∈ [0,M−1] such that τ1 = Mk1−Nk2

holds. The requirement k2 ∈ [0,M − 1] is equivalent to

0 ≤ Nk2 ≤ MN −N. (47)

Because Mk1 = τ1 +Nk2, we obtain the following relationship by combining (46) and (47),

0 ≤ Mk1 ≤ pMN − 1 < pMN. (48)

This result can be equivalently expressed as 0 ≤ k1 < pN . Because k1 is an integer, this requirement is

equivalent to

0 ≤ k1 ≤ pN − 1, (49)

which is satisfied in the underlying coprime array configuration.

Next, we prove the hole positions by contradiction. We suppose Mk1−Nk2 = (p−1)MN+aM+bN

holds for some integers k1 ∈ [0, pN − 1] and k2 ∈ [0,M − 1], where a ≥ 0 and b > 0 are integers, then

relationship
M

N
=

k2 −M + b

k1 − pN − a
(50)
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must be valid. From k1 ∈ [0, pN−1] and a ≥ 0, we find Mk1−Nk2 = (p−1)MN+aM+bN < pMN ,

and then b < M . As a result, |k2 −M + b| < M . Due to the coprimality between M and N , we cannot

find a k1 to satisfy (50). Therefore, Mk1 − Nk2 �= (p − 1)MN + aM + bN , i.e., there are holes at

(p− 1)MN + aM + bN in L̃1.

Due to the symmetry of L̃1, we can draw the conclusions that L̃1 all integer lags in the range −(p−
1)MN −N +1 ≤ τ1 ≤ (p−1)MN +N −1, and the “holes” are located at ±[(p−1)MN +aM + bN ],

where a ≥ 0 and b > 0 are integers.

Proof of proposition 1(c): We omit the proof of proposition 1(c), which can be proved by using the same

method as in the proof of proposition 1(b).

Proof of proposition 1(d): Based on the proposition 1(b), there are holes (p − 1)MN + aM + bN in

L̃1, where a ≥ 0 and b > 0 are integers. If the holes are aligned by the elements in L̃2, the following

relationship

(p− 1)MN + aM + bN = ±(Mk1 −Nk2) (51)

must be valid for k1 ∈ [0, N − 1] and k2 ∈ [0, pM − 1]. The requirement is equivalent to

(p− 1)MN + aM + (b+ k2)N = Mk1,

or

(p− 1)MN + (a+ k1)M + bN = Nk2,

i.e.,

b = −k2, or a = −k1. (52)

It is only possible for a = k1 = 0 when k1 ∈ [0, N − 1], k2 ∈ [0, pM − 1], a ∈ [0,∝), and b ∈ (0,∝).

Then, the requirement further becomes

(p− 1)M + b = k2. (53)

In the proof of proposition 1(b), it is shown that b < M , i.e., b ≤ M−1. As such, k2 ∈ ((p− 1)M,pM − 1] ⊆
[0, pM − 1]. Therefore, the holes (p− 1)MN + bN(a = 0) in L̃1 are aligned by the element in L̃2 for

some integers k2 ∈ [0, pM − 1]. As a result, the first hole outside the consecutive range of L̃ becomes

(p− 1)MN +M +N . Then, the set L̃ contains all integer lags in the range

−(p− 1)MN −M −N + 1 ≤ τ ≤ (p− 1)MN +M +N − 1. (54)
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