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Co-Prime Frequency and Aperture Design for HF Surveillance, 
Wideband Radar Imaging, and Nonstationary Array Processing 

1. Executive Summary 

This report presents the results of the research performed under Office of Naval Research 
( ONR) grant number N000 l 4-13-1-0061 over the period of January 1, 2013 to December 31 , 2017. 
The research team working on this project consists of Prof. Moeness Amin (PI, Villanova 
University), Prof. Yimin D. Zhang (Co-PI, Villanova University; moved to Temple University in 
2015), and Prof. Fauzia Ahmad (Co-PI, Villanova University; moved to Temple University in 
2016). This project supported two full-time Ph.D. students, Si Qin and Elie BouDaher, at Villanova 
University. We have also collaborated with Prof. Ahmad Hoorfar (Villanova University), Prof. 
Abdelhak M. Zoubir (Darmstadt University of Technology, Germany), Prof. Fulvio Gini 
(University of Pisa, Italy), Prof. Elias Aboutanios (University of New South Wale, Australia), Prof. 
Wei Liu (University of Sheffield, United Kingdom), Prof. Panos Markopoulos (Rochester Institute 
of Technology), and Prof. Xiangrong Wang (Beihang University, China). 

The research objectives are to develop novel co-prime sampling and array design strategies 
that achieve high-resolution estimation of spectral power distributions and signal direction-of
arrivals (DOAs), and their applications in various surveillance, radar imaging applications, and 
array processing. The focus of our studies has been in the following five areas: (i) Generalized co
prime array design; (ii) Wideband DOA estimation and radar sensing; (iii) Active sensing using 
co-prime arrays; (iv) Mutual coupling effect and mitigation; (v) Spectrum estimation based on co
prime sampling. These efforts resulted in 12 journal papers and 27 conference papers. 

Below is a summary of the research accomplishments in each of these individual areas. A list 
of the publications generated under the support of this project is provided in Section 2. The full 
text of selected journal publications are included in Section 3. 

1.1. Generalized Co-Prime Array Design 

A co-prime array uses two uniform linear subarrays to construct an effective difference coarray 
with certain desirable characteristics, such as a high number of degrees-of-freedom for DOA 
estimation. We have generalize the co-prime array concept with two operations [1]. The first 
operation is through the compression of the inter-element spacing of one subarray and the resulting 
structure treats the existing variations of co-prime array configurations as well as the nested array 
structure as its special cases. The second operation exploits two displaced subarrays, and the 
resulting co-prime array structure allows the minimum inter-element spacing to be much larger 
than the typical half-wavelength requirement, making them useful in applications where a small 
interelement spacing is infeasible. We have derived the analytical expressions for the coarray 
aperture, the achievable number of unique lags, and the maximum number of consecutive lags for 
quantitative evaluation, comparison, and design of co-prime arrays. 
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1.2. Wideband DOA Estimation and Radar Sensing 

The co-prime array, which utilizes a co-prime pair of uniform linear sub-arrays, provides a 
systematical means for sparse array construction. On the other hand, utilizing spectrum bandwidth 
in co-prime array can achieve a number of advantages. (a) Utilizing multiple frequencies 
equivalently provides multiple virtual arrays to achieve a higher number of degrees of freedom; 
(b) Fusing multi-frequency signals improves the robustness of DOA estimation; and (c) The use 
of signal bandwidth and co-prime array provides DOA-range resolution for target localization. In 
one of our proposed schemes [2], a co-prime array is operated at multiple frequencies in order to 
fill the missing coarray elements, thereby enabling the co-prime array to form consecutive coarray 
lags and effectively utilize all of the offered degrees of freedom (DOFs) with subspace based DOA 
estimation methods. In another proposed scheme (3], a single sparse uniform linear array is used 
to exploit two or more continuous-wave signals whose frequencies satisfy a co-prime relationship. 
This extends the co-prime array and filtering to a joint spatio-spectral domain, thereby achieving 
high flexibility in array structure design to meet system complexity constraints. The DOA 
estimation is obtained using group sparsity-based compressive sensing techniques. The achievable 
number ofDOFs is derived for the two-frequency case, and an upper bound of the available DOFs 
is provided for multi-frequency scenarios. In the third scheme [4], we considered the frequency 
diverse array (FDA) radar which offers a range-dependent beampattem capability. The spatial and 
range resolutions of an FDA radar are fundamentally limited by the array geometry and the 
frequency offset. We overcome this limitation by introducing a novel sparsity-based multi-target 
localization approach incorporating both coprime arrays and coprime frequency offsets. The 
covariance matrix of the received signals corresponding to all sensors and employed frequencies 
is formulated to generate a space-frequency virtual difference coarrays. The joint DOA and range 
estimation is cast as a two-dimensional sparse reconstruction problem and is solved within the 
Bayesian compressive sensing framework. The superiority of the proposed approach in terms of 
DOA-range resolution, localization accuracy, and the number of resolvable targets were evidently 
demonstrated. 

1.3. Active Sensing Using Co-Prime Array 

We performed DOA estimation of a mixture of coherent and uncorrelated targets using sparse 
reconstruction and active nonuniform arrays (5]. The data measurements from multiple transmit 
and receive elements can be considered as observations from the sum coarray corresponding to the 
physical transmit/receive arrays. The vectorized covariance matrix of the sum coarray observations 
emulates the received data at a virtual array whose elements are given by the difference coarray of 
the sum coarray. Sparse reconstruction is used to fully exploit the significantly enhanced degrees
of-freedom offered by the difference coarray of the sum coarray for DOA estimation. Simulated 
data from multiple-input multiple-output minimum redundancy arrays and transmit/receive co
prime arrays were used for performance evaluation of the proposed sparsity-based active sensing 
approach. 

1.4. Mutual Coupling Effect and Reduction 

We have investigated the effect of mutual coupling on DOA estimation using non-uniform arrays 
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[6]. We compared and contrasted the DOA estimation accuracy in the presence of mutual coupling 
for three different non-uniform array geometries, namely, minimum redundancy arrays, nested 
arrays, and co-prime arrays, and for two antenna types, namely dipole antennas and microstrip 
antennas. We demonstrated through numerical simulations that the mutual coupling, if 
unaccounted for, can, in general, lead to performance degradation, with the minimum redundancy 
array faring better against mutual coupling than the other two non-uniform structures for both 
antenna types. We also proposed two methods that can compensate for the detrimental effects of 
mutual coupling, leading to accurate and reliable DOA estimation. 

1.5. Spectrum Estimation Based on Co-Prime Sampling 

Increased demand on spectrum sensing over a broad frequency band requires a high sampling rate 
and thus leads to a prohibitive volume of data samples. In some applications, such as spectrum 
estimation, only the second-order statistics are required. In this case, we may use a reduced data 
sampling rate by exploiting a low-dimensional representation of the original high dimensional 
signals. In particular, the covariance matrix can be reconstructed from compressed data by utilizing 
its specific structure, e.g., the Toeplitz property. Among a number of techniques for compressive 
covariance sampler design, the coprime sampler is considered attractive because it enables a 
systematic design capability with a significantly reduced sampling rate. We have proposed a 
general coprime sampling scheme that implements effective compression of Toeplitz covariance 
matrices [7]. Given a fixed number of data samples, we examined different schemes on covariance 
matrix acquisition for performance evaluation, comparison and optimal design, based on 
segmented data sequences. 

1.6. References 

[1] S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for 
direction-of-arrival estimation," IEEE Transactions on Signal Processing, vol. 63, no. 6, pp. 
1377-1390, March 2015 . 

[2] E. BouDaher, Y. Jia, F. Ahmad, and M. G. Amin, "Multi-frequency co-prime arrays for high
resolution direction-of-arrival estimation," IEEE Transactions on Signal Processing, vol. 63 , 
no.14, pp. 3797-3808, July 2015. 

[3] S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, "DOA estimation exploiting a uniform 
linear array with multiple co-prime frequencies ," Signal Processing, vol. 130, pp. 37-46, Jan. 
2017. 

[4] S. Qin, Y. D. Zhang, M. G. Amin, and F. Gini, "Frequency diverse coprime arrays with 
coprime frequency offsets for multi-target localization," IEEE Journal of Selected Topics in 
Signal Processing, vol. 11 , no. 2, pp. 321-335, March 2017. 

[5] E. BouDaher, F. Ahmad, and M. G. Amin, "Sparsity-based direction finding of coherent and 
uncorrelated targets using active nonuniform arrays," IEEE Signal Processing Letters, vol. 
22, no. 10, pp. 1628-1632, Oct. 2015. 
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[6] E. BouDaher, F. Ahmad, M. G. Amin, and A. Hoorfar, "Mutual coupling effect and 
compensation in non-uniform arrays for direction-of-arrival estimation," Digital Signal 
Processing, vol. 61, pp. 3-14, Feb. 2017. 

[7] S. Qin, Y. D. Zhang, M. G. Amin, and A. Zoubir, "Generalized coprime sampling ofToeplitz 
matrix for spectrum estimation," IEEE Transactions on Signal Processing, vol. 65, no. 1, pp. 
81-94, Jan. 2017. 
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3.1. Generalized Coprime Array Configurations for 

Direction-of-Arrival Estimation 

Abstract 

A coprime array uses two uniform linear subarrays to construct an effective difference coarray with 

certain desirable characteristics, such as a high number of degrees-of-freedom for direction-of-arrival 

(DOA) estimation. In this paper, we generalize the coprime array concept with two operations. The 

first operation is through the compression of the inter-element spacing of one subarray and the resulting 

structure treats the existing variations of coprime array configurations as well as the nested array structure 

as its special cases. The second operation exploits two displaced subarrays, and the resulting coprime array 

structure allows the minimum inter-element spacing to be much larger than the typical half-wavelength 

requirement, making them useful in applications where a small inter-element spacing is infeasible. The 

performance of the generalized coarray structures is evaluated using their difference coarray equivalence. 

In particular, we derive the analytical expressions for the coarray aperture, the achievable number of 

unique lags, and the maximum number of consecutive lags for quantitative evaluation, comparison, and 

design of coprime arrays. The usefulness of these results is demonstrated using examples applied for 

DOA estimations utilizing both subspace-based and sparse signal reconstruction techniques. 

I. INTRODUCTION 

Direction-of-arrival (DOA) estimation, which determines the spatial spectra of the impinging electro

magnetic waves, is an important application area of antenna arrays. It is well known that conventional 

subspace-based DOA estimation methods, such as MUSIC and ESPRIT [3], [4], resolve up to N - I 

sources with an N-element array. However, the problem of detecting more sources than the number of 

sensors is of tremendous interest in various applications [5], [6]. Toward this purpose, a higher number of 

degrees-of-freedom (DOFs) is usually achieved by exploiting a sparse array under the coarray equivalence. 

For example, the minimum redundancy array (MRA) (7) is a linear array structure that, for a given number 

of physical sensors, maximizes the number of consecutive virtual sensors in the resulting difference 

coarray. The minimum hole array (also known as the Golomb array) minimizes the number of holes in 

the difference coarray [8]. However, there are no general expressions for the MRA and Golomb array 

configurations as well as the achievable DOFs for an arbitrary number of sensors. Therefore, the optimum 

design and performance analysis of such arrays are not easy in general. In addition, finding the suitable 
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covariance matrix corresponding to a large array requires a rather complicated time-consuming iterative 

process. 

Recently, several array configurations have been proposed as attractive alternatives for sparse array 

construction. The nested array [9], which is obtained by combining two uniform linear subarrays, in 

which one subarray has a unit inter-element spacing, can resolve O(N2) sources with N sensors. Unlike 

the MRA, the nested array configuration is easy to construct and it is possible to obtain the exact 

expressions of the sensor locations and the available DOFs for a given number of the sensors. The total 

aperture and the number of unique and consecutive coarray sensors can be subsequently obtained [9]. 

Note that, as some of the sensors in a nested array are closely located, the mutual coupling effects 

between antennas may become significant and thus compromise the coarray reconstruction capability and 

the DOA estimation performance [10), [11). The recently developed coprime array [12], which is referred 

to as the prototype coprime array in this paper, utilizes a coprime pair of uniform linear subarrays, where 

one is of M sensors with an inter-element spacing of N units, whereas the other is of N elements with an 

inter-element spacing of M units. By choosing the integer numbers M and N to be coprime, a coprime 

array can resolve O(M N) sources with M + N - 1 sensors. This is attractive when it is necessary to 

reduce mutual coupling between elements. A different coprime array structure was proposed in [13] by 

extending the number of elements in one subarray. The result is a larger number of consecutive virtual 

sensors under the coarray equivalence. By considering the difference coarray of N + 2M - 1 sensors, 

they demonstrated that continuous correlation lags can be created from - MN to MN. 

A close examination of the extended coprime configuration reveals that there is at least one pair of 

adjacent sensors that is separated only by the unit spacing, which is typically half wavelength to avoid the 

grating lobe problem. In addition to the mutual coupling effect as described above, there are situations 

that such half-wavelength minimum spacing is infeasible or impractical. One of the examples is when 

the physical size of the antenna sensors is larger than half-wavelength (e.g., [14)). Indeed, many parabola 

antennas are designed to have a large size for enhanced directivity [15]. This problem is alleviated through 

an effective array configuration design in which the minimum inter-element spacing is much larger than 

the typical half-wavelength requirement [l]. 

In this paper, we propose the generalization of the coprime array concept, which comprises two opera

tions. The first operation is the compression of the inter-element spacing of one constituting subarray in 

the coprime array by a positive integer. The resulting coarray structure is referred to as coprime array with 

compressed inter-element spacing (CACIS). As such, the coprime array structure developed in [13], which 

doubles the number of sensors in a constituting subarray, becomes a special case of the proposed CACIS 

structure. The second operation introduces a displacement between the two subarrays, yielding a coprime 

11 



array with displaced subarrays (CADiS). The resulting CADiS structure allows the minimum inter

element spacing to be much larger than the typical half-wavelength requirement. These two operations 

can be performed separately or jointly. We evaluate the performance of each individual generalized 

coarray structure corresponding to these operations using their respective difference coarray equivalence. 

In particular, we derive the analytical expressions of the coarray aperture, the achievable number of 

unique lags, and the maximum number of consecutive lags for quantitative evaluation, comparison, and 

optimal design. 

It is noted that the focus of this paper is the examination of the generalized coprime array structures in 

the context of narrowband DOA estimation. Wideband or multi-frequency signals may further permit the 

utilization of frequency-domain DOFs for enhanced DOA estimation capability. For example, it is shown 

in [16] that coprime arrays that handle wideband signals can benefit from frequency diversity to achieve 

improved DOA estimation performance. On the other hand, the exploitation of two coprime frequencies 

in a uniform linear array can generate an equivalent coprime array with an increased number of DOFs 

[17], [18]. 

The rest of the paper is organized as follows. In Section II, we first review the coprime array concept 

based on the difference coarray concept. Then two different DOA estimation approaches, which are 

respectively based on the MUSIC algorithm and compressive sensing (CS) techniques, exploiting coprime 

arrays are summarized in Section III. The two generalized coprime array structures, i.e., CACIS and 

CADiS, are respectively described in Sections IV and V with the analytical expressions of array aperture, 

unique coarray lags, and consecutive coarray lags. Different nested array structures are clarified and 

compared in Section VI. Simulation results are provided in Section VII to numerically compare the 

performance of the different generalized coprime array configurations with the two DOA estimation 

techniques. Such results reaffirm and demonstrate the usefulness of the results presented in Sections IV 

and V. Section VIII concludes this paper. 

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IN 

denotes the N x N identity matrix. (.)* implies complex conjugation, whereas (.f and (.) H respectively 

denote the transpose and conjugate transpose of a matrix or vector. vec(·) denotes the vectorization 

operator that turns a matrix into a vector by stacking all columns on top of the another, and diag(x ) 

denotes a diagonal matrix that uses the elements of x as its diagonal elements. II· ll2 and I I· I Ii respectively 

denote the Euclidean (l2) and li norms, and E( ·) is the statistical expectation operator. © denotes the 

Kronecker product, and real(·) and imag(·) represent the real and imaginary part operations. CN(a,B) 

denotes joint complex Gaussian distribution with mean vector a and covariance matrix B. 
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0 ••• •• • 0 
0 1 2 N - 1 

0 ••• 0 
0 1 2 M-l 

Fig. 1. The prototype coprime array configuration. 

II. COPRIME ARRAY CONCEPT 

A. Prototype coprime array structure 

A prototype coprime array [12], as described in the previous section, is illustrated in Fig. 1, where 

M and N are coprime integers. Without loss of generality, we assume M < N. The unit inter-element 

spacing d is set to >,,/ 2, where >,, denotes the wavelength. The array sensors are positioned at 

lP' = { M ndl O ::; n ::; N - l } U { N mdl O ::; m ::; M - l }. (1) 

Because the two subarrays share the first sensor at the zeroth position, the total number of the sensors 

used in the coprime array is M + N - l. Note that the minimum inter-element spacing in this coprime 

array is >,,/2. 

Denote p = [p1, ·· ·,PM+N- 1]T as the positions of the array sensors where Pi E lP', i = 1, ... , M +N- l, 

and the first sensor is assumed as the reference, i.e., p1 = 0. Assume that Q uncorrelated signals impinging 

on the array from angles 6 = [01 , ... , 0Q]T, and their discretized baseband waveforms are expressed as 

sq(t), t = 1, ... , T , for q = l , ... , Q. Then, the data vector received at the coprime array is expressed as, 

Q 

x (t) = L a(0q)sq(t) + n (t) = As(t) + n (t), (2) 
q=l 

where 

(3) 

is the steering vector of the array corresponding to 0q , A = [a (01), ... , a (0Q)] , and s (t) = [s1 (t), ... , SQ(t)]T. 

The elements of the noise vector n (t) are assumed to be independent and identically distributed (i.i.d.) 

random variables following the complex Gaussian distribution CN(O, a;I M+N-i)-
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The covariance matrix of data vector x (t) is obtained as 

Rxx = E[x(t)xH(t)] = ARssAH + a~IM+N-l 
Q 

= L a;a(0q) aH (0q) + a~IM+N- l , 
q=l 

(4) 

where Rss = E[s(t)sH (t)] = diag([a~, ... , ab]) is the source covariance matrix, with a~ denoting the 

input signal power of the qth source, q = 1, ... , Q. In practice, the covariance matrix is estimated using 

the T available samples, i.e., 

A 1;-. H 
Rxx = T L..,x(t) x (t ). 

t= l 
(5) 

From a pair of antennas located at the ith and kth positions in p, the correlation E[xi(t)xi;(t)] yields the 

( i, k )th entry in Rxx with lag Pi-Pk· As such, all the available values of i and k, where O :S i :S M + N - l 

and O :S k :S M + N - 1, yield virtual sensors of the following difference coarray: 

Cp = {z I z = u - v, u E JP, v E JP}. (6) 

The significance of the difference coarray is that the correlation of the received signal can be calculated 

at all differences in set Cp. Any application which depends only on such correlation (e.g., DOA 

estimation) can exploit all the DOFs offered by the resulting coarray structure. Using a part or the 

entire set of the distinct auto-correlation terms in set C p, instead of the original array, to perform DOA 

estimation, we can increase the number of detectable sources by the array. The maximum number of the 

DOFs is determined by the number of unique elements in the following set 

ILp = {lp I lpd E <Cp }. (7) 

To gain more insights about the difference coarrays, we separately consider the self-differences of the 

two subarrays and their cross-differences. Since the coarray is obtained from the Hermitian matrix Rxx, 

the self-difference in the coarray has positions 

ILs = {lsl ls= Mn} U {lsl ls= N m}, (8) 

and the corresponding mirrored positions IL; = {- lsl ls E ILs }, whereas the cross-difference has positions 

ILe = {lei le= N m - M n}, (9) 

and the corresponding mirrored positions IL~ = {-lei le E ILe}, for O :S n :S N - l and O :S m :S M - 1. 

Consequently, the full set of lags in the virtual array is given by, 

(10) 
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An example is illustrated in Fig. 2, where M =6 and N =7. Fig. 2(a) show the self- and cross-lags 

described in (8) and (9). If we include the negative mirror of the above set, then the full set of lags 

becomes symmetric, as shown in Fig. 2(b). Notice that some "holes", e.g., ±13, ±19, ±20, still exist in 

the difference coarray and are indicated by x in this figure. The total number of lags in the symmetric 

set gives a global upper bound of the achievable DOFs. 

x Holes 

0xxxxx 00 xx xx000 xxx 0000 xx00000 x000000000000D000000 x0000Dxx QOOOxxx QOOxxxx Q 
-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 

(a) 

• Lags x Holes 

•• xxxx ••• xxx •••• xx ••••• x••••••••••••••••••••••••• x••••• xx •••• xxx ••• xxxx •• 
-35 -30 -25 -20 -15 -10 -5 0 

(b) 

5 10 15 20 25 30 35 

Fig. 2. An example of prototype coprime configuration coarrays, where M=6 and, N=7. (a) The set lLs and lLc. (b) The lag 

positions in full set lLp 

III. DOA ESTIMATION TECHNIQUES 

To better understand the significance of the performance metrics to be examined, i.e., the coarray 

aperture, the number of consecutive coarray lags, and the number of unique lags of coarray lags, we briefly 

review the two representative DOA estimation techniques that are recently developed for coprime array 

configurations. The first one is based on the well-known MUSIC algorithm, and the spatial smoothing 

technique [19], [20], [21] is applied to construct a suitable covariance matrix from the virtual sensor output 

prior to performing MUSIC spectrum estimation [12], [13] . Notice that, while the use of virtual sensors 

substantially increases the available number of DOFs, the application of spatial smoothing essentially 

halves the number of available virtual sensors. A different approach to perform DOA estimation exploiting 

coprime arrays is through sparse signal reconstruction by taking advantages of the fact that the spatial 

signal spectra are sparse. Such sparse signal reconstruction is achieved using the recently developed 

compressive sensing techniques [22], [23]. These two DOA estimation techniques are summarized below. 

A. MUSIC Algorithm 

Vectorizing Rxx in (4) yields 

- 2-
z = vec(Rxx) = Ab + O"n l = Br, 

15 
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where A = [a.(01 ), ... , a(0Q)], a(0q) = a*(0q)@a(0q), b = [ar , ... , ab]T, I = vec(I M+N-i). In 

addition, B = [A, I] and r = [bT ' a~]T = [ar' ... , ab, a~] are used for notational simplicity. The vector z 

amounts to the received data from a virtual array with an extended coarray aperture whose corresponding 

steering matrix is defined by A. However, the virtual source signal becomes a single snapshot of b. In 

addition, the rank of the noise-free covariance matrix of z, Rzz = zzH, is one. As such, the problem 

is similar to handling fully coherent sources, and subspace-based DOA estimation techniques, such as 

MUSIC, fail to yield reliable DOA estimates when multiple signals impinge to the array. 

To overcome this problem, it is proposed in [13] to apply spatial smoothing technique to the covariance 

matrix so that its rank can be restored. Since spatial smoothing requires a consecutive difference lag set 

so that every subarray has similar manifold, we extract all the consecutive lag samples of z and form a 

new vector z1 . Denote [- l1; , l(l as the consecutive lag range in lLp. Then, z1 can be expressed as 

(12) 

where A.1 is identical to the manifold of a uniform linear array (ULA) with 2l1; + 1 sensors located from 

- l1; d to l1;d and 11 is a (2l 1; + 1) x 1 vector of all zeros except a 1 at the (lt; + l ) th position. We divide 

this virtual array into l1; + 1 overlapping subarrays, Zli, i = 1, ... , lt; + 1, each with lt; + 1 elements, 

where the ith subarray has sensors located at (-i + 1 + k )d, with k = 0, 1, .. . , l1; denoting the index of 

the overlap subarray used in the spatial smoothing. 

Define 

(13) 

Taking the average of R,i over all i , we obtain 

l~ +l 

' 1 ~ Rzz = l+1 ~ R,i, 
f; i=l 

(14) 

which yields a full-rank covariance matrix so that the MUSIC algorithm can be performed for DOA 

estimation directly. As a result, lt; DOFs are achieved, which are roughly equal to half of the available 

consecutive lags of the resulting coarray. 

B. Compressive Sensing Approach 

Alternatively, (11) can be solved using the CS approach [23). The desired result of b , whose elements 

are the first Q entries of vector r, can be obtained from the solution to the following constrained lo-norm 

minimization problem 

r0 = argmin llr0 llo s.t. llz - B
0 r0 ll2 < t: , r o 

(15) 
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where E is a user-specific bound, B 0 is a sensing matrix consisting of the searching steering vectors and 

I, whereas r 0 is the sparse entries in these search grids to be determined. The sensing matrix B O and 

the entry vector r 0 are defined over a finite grid Bf, ... , 0b, where G » Q. The last entry of r 0 denotes 

the estimate of a;, whereas the positions and values of the non-zero entries in the other elements of r 0 

represent the estimated DOAs and the corresponding signal power. 

This type of problems has been the objective of intensive studies in the area of CS, and a number of 

effective numerical computation methods have been developed [24], [25], [26], [27], [28]. In [23], the 

batch Lasso method was used, but other methods may also be used. The objective function of the Lasso 

algorithm is defined as 

f 0 = argmin [!ilz - B
0 r0 ll2 + Atllr0 ll1] , 

r 0 2 
(16) 

where the l2 norm in the objective function denotes the ordinary least-squares (OLS) cost function, and 

the h norm involves the sparsity constraint. In addition, At is a penalty parameter which can be tuned to 

trade off the OLS error for the number of nonzero entries (degree of sparsity) in the estimates [24]. The 

above Lasso objective is convex in r 0
, and can be optimized using linear programming techniques [29]. 

IV. COPRIME ARRAY WITH COMPRESSED INTER-ELEMENT SPACING 

Now we present our main results that generalize coarray structures in two operations, i.e., CACIS 

and CADiS. The CACIS is presented in this section, whereas the CADiS is examined in the following 

section. 

We consider two subarrays with M and N sensors, where M and N are coprime. Note that, in the 

sequel, the condition that M < N is no longer assumed. Unlike the prototype coprime array, an integer 

compression factor p is introduced for changing the inter-element spacing of one subarray. Assume that 

M can be expressed as a product of two positive integers p and M, i.e., 

M=pM, (17) 

for some p that takes a value between 2 and M. It is easy to confirm that M and N are also coprime 

since M and N do not have common factors other than unity. As shown in Fig. 3, in the generalized 

coprime array, the M-element subarray has an inter-element spacing of Nd, whereas the N-element 

subarray has an inter-element space of Md = M d/p. As such, the generalized coprime array can be 

considered that the inter-element spacing of one constituting subarray is compressed by an integer factor 

of p, thus comes the term of coprime array with compressed inter-element spacing (CACIS). Note that 

all arrays consist of the same M + N - 1 physical antenna sensors and their aperture is (M - l )N, 
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0 

0 

Fig. 3. The CACIS configuration. 

l 

NJ 

0 
2 

~ 
l 

•••••• 0 
N-l 

0 ••• 0 
2 M-l 

regardless the value of p. It is shown that the variation of the coprime array configuration used in [13] 

is a special case of the CACIS configuration by choosing p = 2. 

In this array configuration, the self-lags of the two subarrays are given by the following set 1, 

is= {lsl ls= Mn} U {lsl ls= Nm}, (18) 

and the corresponding mirrored positions i ;, whereas the cross-lags between the two subarrays are given 

by 

(19) 

and the corresponding i ;;- , where O ~ m ~ M - 1 and O ~ n ~ N - 1. 

To completely exploit the DOFs of the CACIS configuration, we summarize the properties of i s and 

i e in the following proposition. 

Proposition 1: The following facts hold for the CACIS: 

(a) There are MN distinct integers in set i e. 

(b) i e contains all the contiguous integers in the range - ( N - l) ~ le ~ MN - M ( N - l) - 1. 

(c) The negative values form a subset of the flipped positive values in set i e, i.e., 

{lei le< 0, le E i e} ~ {-lei le> 0, le E i e}• 

(d) The self-lags form a subset of the cross-lags, i.e., (i; U i s) ~ (i ;;- U i e)-

(e) There are "holes" located at both positive range and negative ranges of i e. The holes falling in the 

negative range are located at - (aM + bN), where a 2 0, b > 0 are integers. 

The proof is provided in Appendix A. 

1 
() is used to emphasize variables corresponding to the CACIS structure. 
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Based on the properties (c) and (d) of Proposition 1, the entire lag set in the virtual array defined in 

(10) consists of {lei le 2 0, le E ic} U {- lei le 2 0, le E ie}, thus resulting in Proposition 2. 

Proposition 2: The CACIS configuration defined in equation (17) yields a virtual array such that: 

(a) It contains 2M N - (M + l )(N - l ) - 1 unique lags of virtual sensors; 

(b) Among the unique lags, there are 2MN - 2M(N - 1) - 1 consecutive integers within the range 

[-MN + M(N - 1) + 1, MN - M(N - 1)- 1]. 

The proof is provided in Appendix B. In Fig. 4, M = 2M is considered as an illustrative example of 

above properties . It is equivalent to the configuration proposed in [13]. In this case, the virtual array 

consists of 3MN +M - N unique lags, among which [-MN - M +l,MN +M- 1] are consecutive. 

Note that our result contains more consecutive lags and is more precise than the result provided in [13], 

which is [-MN+ 1, MN - l]. The difference, which is based on property (b) of Proposition 1, is 

clarified in Appendix A. 

D 0 X Holes 

-15 -10 -5 0 5 10 15 20 25 30 35 

(a) 

• Lags x Holes 
I X X I XX •• X tt X ••••••••••••••• ••••••••••••••••••••••••••••••• • X •• X •• xx • x x . 

-35 -30 -25 -20 -15 -10 -5 0 

(b) 

5 10 15 20 25 30 35 

Fig. 4. An example of CACIS configuration coarrays, where M=3, p=2 and N =7. (a) The set i . and i c, (b) The full set ip. 

According to Proposition 2, we can draw a conculsion that, for a specific pair of M and N , smaller 

values of M led to more unique and consecutive coarray lags. In other words, both numbers increase 

with the compression factor p. The minimum value that M can take is 1. In this case, the CACIS 

configuration becomes a nested array structure, which provides the highest numbers of the unique and 

consecutive virtual sensors. More detailed discussions about nested array configurations will be given in 

Section VI. 

V. COPRIME ARRAY WITH DISPLACED SUBARRAYS 

Sharing the same property as MRA, the prototype coprime array and the CACIS structure provide 

sparse configurations in which the minimum inter-element spacing remains the unit spacing, which is 
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typically half wavelength, to avoid the grating lobe problem. In addition to the aforementioned challenges 

associated with half wavelength minimum spacing in regards of antenna size and mutual coupling, there 

is a high number of overlapping between the self- and cross-lags. This is the case for both the prototype 

coprime array and the CACIS structures and is consequence of the collocated subarray placement. By 

introducing a proper displacement between the two subarrays, the new coprime array structure achieves a 

larger minimum inter-element spacing, a higher number of unique lags, and a larger virtual array aperture. 

As we will see, however, the number of consecutive lags is reduced because the positive and negative 

lags are no longer connected. 

Consider two collinearly located uniform linear subarrays, as depicted in Fig. 5, where one consists 

of N antennas and the other with M - 1 antennas. As such, the total number of the sensors is kept to 

M + N - 1. We refer to this coprime array structure as coprime array with displaced subarrays (CADiS). 

Similar to the CACIS configuration, we assume M and N are coprime. The N-element subarray has an 

inter-element spacing of Md, and the (M - 1)-element subarray has an inter-element spacing of Nd, 

where, as indicated in (17), M = pM. The difference to the CASIS structure lies in the fact that these 

two subarrays in the CADiS structure are placed collinearly with the closest spacing between the two 

subarrays set to Ld, where L ~ min{M, N}. Note that M > 1 is required to guarantee the minimum 

inter-element spacing to be larger than unit spacing, but the nested structure under this configuration, i.e., 

M = 1, will also be discussed later as a special case. The total number of array sensors in the CADiS 

structure remains M + N - 1, which is the same as the CACIS configuration discussed earlier. Note 

that the minimum inter-element spacing in the CADiS is min{M,N}d, as compared to din the CACIS 

structure. In addition, the total array aperture of the CADiS is (MN + MN - M - 2N + L )d, which 

is much larger than the (M - I)Nd of the CACIS. In practical application, however, a small value of 

displacement L should be chosen to avoid false peaks. 

Ld 

••• ••• 0 
0 1 N - 1 0 1 M-2 

~ ~ 
Subarrayl Subarray2 

Fig. 5. The CADiS configuration. 
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For the CADiS configuration, the corresponding self-lags Zs and cross-lags fe are respectively given 

by2 

is= {fsl Zs= Nm} U {fs l Zs= Mn}, 

Le = {fel le = M ( N - I) + Nm - Mn + L} , 

(20) 

(21) 

and their corresponding mirrored positions i ; and i ;;- , respectively, where O < m < M - 2 and 

O:s;n:s;N-1. 

The following proposition reveals the properties of the resulting virtual sensors of the CADiS confi

guration. 

Proposition 3: Set i s and ie have the following properties in the CADiS configuration: 

(a) There are (M - l )N distinct integers in set i e. 

(b) i e contains all the contiguous integers in the range ( M - 1) ( N - 1) + L :::; fe :s; MN - N - 1 + L. 

(c) There are "holes" located at M(N - 1)-(aM +bN) + Lin set i e, where a~ 0, b > 0 are integers. 

The proof is provided in Appendix C. 

In the CACIS configuration, the negative lags form a subset of the flipped positive counterpart. 

Therefore, only non-negative lags in lLe are used. In the CADiS configuration, however, the negative lags 

do not generally overlap with the flipped positive lags because of the displacement between two subarrays, 

necessitating the consideration of both positive and negative lags. As such, the CADiS configuration enjoys 

a higher number of unique lags than the CACIS because of the utilization of negative lags. In addition, 

the self-lags are less likely to coincide with the cross-lags in the CADiS configuration. Consequently, 

the CADiS offers a larger virtual array aperture and a higher number of virtual sensors. The role of the 

displacement L is as follows. On one hand, it reduces the overlaps between the self- and cross-lags. 

On the other hand, because Le has holes located at M(N - 1) - (aM + bN) + L for integers a ~ 0 

and b > 0, the number of consecutive lags can be extended by choosing an approximate value of L so 

that some self-lags are aligned to the cross-lag holes. For illustrative purpose, we consider the case of 

p = 2, M = 3, N = 7 and L = M + N as an example. The corresponding is and i e are shown in 

Fig. 6. It is clear that some holes in i e (12, 14, 15, 18 and 21) are aligned by elements of is. The 

following proposition describes the selection of the value of L that maximizes the number of unique and 

consecutive lags. 

2
( ) is used to emphasize variables corresponding to the CADiS structure. 
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Oxx OxxOO xOOxDODD OO DOODOOOOOO OOOOOOOOOOOOOOOOO xOO xOO xx OxxO 
0 X Holes 

0 5 10 15 20 25 30 35 40 45 50 55 

Fig. 6. An example of CADiS configuration coarrays, where p = 2, M = 3, N = 7 and L = M + N. 

Proposition 4: For the CADiS configuration, 

(a) The maximum number of unique lags 2MN + 2M - 5 can be achieved with L > N( M - 2). 

(b) .L = M + N is the choice that yields the largest number of consecutive lags. In this case, there are 

2MN + 2M - 1 unique lags, among which the range [(M - l )(N - 1),MN + M - 1] and its 

corresponding negative range [- M N - M + 1, -(M - l )(N - 1)] are respectively consecutive. 

The proof is provided in Appendix D. Based on property (2) of Proposition 4, it is clear that the number of 

unique lags increases as M increases, whereas the number of the consecutive lags decreases. Particularly, 

for the nested array structure, i.e., M = l, the positive range of consecutive lags is [0, MN] and its 

corresponding negative range becomes [- MN,0], resulting in all unique lags to be consecutive. 

For comparison, we enlist in Table I the coarray aperture, the maximum number of unique and 

consecutive lags for both proposed configurations. As the results show, for a given coprime pair of 

M and N, the nested structure achieves the maximum number of consecutive and unique lags when 

using CACIS configurations. In other word, it offers the highest number of DOFs for DOA estimation. 

As for CADiS, the nested structure provides the highest number only for the consecutive lags. Tl)e number 

of its unique lags, 2M N + l, on the other hand, is less than that of the CADiS structure with a large 

separation between the two subarrays. That is, the nested CADiS provides the highest number of DOFs 

only when MUSIC or other subspace based methods are used for DOA estimation, but it becomes less 

effective when CS based DOA estimation methods are applied. It is noted that, to estimate DOAs of up 

to M N sources, the nested CADiS structure requires only M + N - l sensors, which are much less than 

the result of 2M + N - l sensors as exploited in [13]. 

VI. COMPARISON OF DIFFERENT NESTED STRUCTURES 

The nested structure is referred to a structure consisting of two uniform linear subarrays, where one 

subarray has a unit inter-element spacing [9]. A nested array is usually designed such that the virtual 

sensors in the resulting coarray are all contiguous. The nested structure proposed in [9] , as shown in Fig. 

7, consists of an inner Ni -element subarray with a unit spacing d and an outer N2-element subarray with 

spacing (N 1 + l )d, resulting in 2N2 (N1 + 1) - 1 contiguous lags. Note that the nested array concept 
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TABLE I 

COMPARISON OF THE COARRAY APERTURE, NUMBER OF UNIQUE LAGS, AND NUMBER OF CONSECUTIVE LAGS 

Coarray aperture Maximum number of unique lags Maximum number of consecutive lags 

CACIS 

CADiS (M > 1) 

(displacement L) 

Nested CADiS (M = 1) 

(displacement L) 

(M - l)N 

(N- l)M 

+(M -2)N +L 

(arbitrary L) 

MN 

(L = N + l) 

2MN - M(N -1)- N 

2MN+2M-5 

(L > N(M - 2)) 

2MN+l 

(L = N + l ) 

TABLE II 

2MN - 2M(N -1) -1 

MN - (M - l )(N - 2) + 1 

(L = M + N) 

2MN+l 

(L = N + l) 

OPTIMUM SOLUTION FOR DIFFERENT NESTED STRUCTURES THAT MAXIMIZES THE DOFS 

Number of physical sensors Optimal values Maximum number of DOFs 

M=K+2,N=K 
K2 

K is even (M- l )N= -
2 2 4 

CACIS K=M+N - 1 

K is odd M=K+l N=K+l 
2 ' 2 

(M - l)N = K2 - 1 
4 

K is even M=K+2,N=K MN = 
K 2 +2K 

2 2 4 
CADiS K=M+N-1 

K is odd M=K+l,N=K+l MN= 
K 2 +2K+ 1 

2 2 4 

K K 
N2(N1 + 1) - 1 = 

K 2 +2K-4 
K is even N1 = 2 ,N2= 2 4 

Configuration K= N1 +N2 

in [9] 
K-1 N2 = K + l N2(N1 + 1) - 1 = 

K 2 +2K -3 
K is odd Ni=-

2
-. 

4 2 
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does not require a coprimality between N1 and N2. It is also important to note that, in the extension of 

the generalized coprime array framework, different nested array configurations can be defined, by setting 

M to be one to the CACIS and CADiS structures. These different nested configurations yield different 

numbers of DOFs. For comparison of the three nested array structures, we consider the same number, K, 

of physical sensors, and optimize the array configuration for each structure to maximize the respective 

number of DOFs. Such optimal solutions are summarized in Table II. It is clear that the structure in [9] 

offers a higher number of DOFs than the nested CACIS structure, but less than the nested CADiS. 

6~ 06 
(N1 + l)d 

6 ••• • •• 0 
0 1 N1 -1 0 1 N2 -1 
l J 

'-I"' 

Subarray 1 Subarray 2 

Fig. 7. The nested configuration proposed in [9]. 

For better illustrative purposes, we compare three different optimized nested configurations with K = 8 

physical sensors in Fig. 8. Fig. 8(a) shows the optimized nested CACIS configuration. One subarray is 

of N = 4 sensors with an inter-element spacing of Md = d, whereas the other is of M = 5 elements 

with an inter-element spacing of Nd = 4d. In addition, the two subarrays share the first sensor at the 

zeroth position and form a coarrys with 33 lag positions. The nested CADiS structure is illustrated in 

Fig. 8(b ). One 4-element subarray has an inter-element spacing of Md = d, and the other subarray has 

an inter-element spacing of Nd = 4d. In addition, there is a displacement Ld = (M +N)d = 5d between 

the two subarrays. As a result, its coarray has 41 lag positions. Finally, the nested array configuration 

proposed in [9] is depicted in Fig. 8(c), where the inner subarray has N1 = 4 elements with spacing d 

and the outer subarray has N2 = 4 elements with spacing (N1 + l)d = 5d. In this case, the coarray has 

39 lag positions. As a result, the nested CADiS structure achieves a higher number of DOFs. 

VII. SIMULATION RESULTS 

For illustrative purposes, we consider M = 6 and N = 7 with different values of the compression 

factor p of the two configurations, i.e., CACIS and CADiS. L = M + N are considered for the CADiS 

configuration for the convenience of performance comparison between both MUSIC and CS techniques. 
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5 10 15 20 

Fig. 8. Three different optimized nested configurations and their coarrays (K=8). (a) The nested CACIS. (b) The nested CADiS. 

(c) The nested configuration proposed in [9]. 

All configurations consist of M + N - 1 = 12 physical antenna sensors and the unit inter-element spacing 

is d = >../2. 

A. Array Configurations 

The virtual sensors corresponding to the CACIS and CADiS structures are respectively shown in Fig. 

9 and Fig. 10. Fig. 9(a) depicts the CACIS configuration example for p = 2, where the coprime array 

form a virtual array with 59 unique lags, among which 47 lags within [-23, 23] are consecutive. Fig. 

9(b) shows for the case of p = 3, and the resulting virtual array has 65 unique lags, among which 59 lags 

within [-29 , 29] are consecutive. When p = M = 6, i.e., M = 1, as shown in Fig. 9(c), the coprime array 

becomes the nested array structure with 71 unique lags, which are all consecutive. It is clear that both 

numbers of the unique and consecutive lags increase with p, and the nested array achieves the maximum 

number for both. For the CADiS configuration with L = M + N, the case of p = 2 is presented in Fig. 

lO(a). In this case, the entire virtual array has 89 unique lags, among which lags within [-44, - 12] and 

[12, 44] are respectively consecutive. For p = 3, there are 87 distinct lags, resulting consecutive lags in . 
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Fig. 9. CACIS configuration coarrays, for different compression factor p (M=6 and N =7). (a) p = 2 and M = 3. (b) p = 3 

and M = 2. (c) p = 6 and M = 1. 
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(c) 

Fig. 10. CADiS configuration coarrays with displacement L = M + N, corresponding the compression factor p (M=6 and 

N=7). (a) p = 2, M = 3 and L = 10. (b) p = 3, M = 2 and L = 9. (c) p = 6, M = 1 and L = 8. 

[-43, - 6] and in [6, 43] as shown in Fig. lO(b). In Fig. lO(c), the nested CADiS with p = 6 and M = l 
is considered as a special case. It is noted that all 85 lags in the full symmetric set of [-42, 42] are 

consecutive. 
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B. MUSIC and CS Spectra 

In Figs. 11 and 12, we present numerical examples to demonstrate the number of achievable DOFs for 

DOA estimation using the generalized coprime arrays. As the virtual sensor lags are obtained from the 

estimated covariance matrix based on the received data samples as in (5), the virtual steering matrix is 

sensitive to the noise contamination. To clearly demonstrate the number of achievable DOFs, therefore, 

we use 2000 noise-free snapshots to obtain a relatively clean covariance matrix. Q = 33 uncorrelated 

narrowband sources are considered, which are uniformly distributed between - 60° and 60°. For the 

MUSIC algorithm which requires consecutive lags, we respectively obtain 23, 29 and 35 DOFs of CACIS 

configuration for p = 2, p = 3 and p = 6 as shown in Figs. ll(a), ll(c) and ll(e). On the other hand, 

17, 19 and 42 DOFs are obtained using the CADiS configuration as shown in Figs. 11 (b ), 11 ( d) and 

l l(f). Note that only the nested structures have a sufficient number of DOFs to resolve all 33 impinging 

signals. This is verified in Fig. 11 in which only the cases of p = 6 resolve all the 33 signals for both 

configurations, whereas not all sources are correctly identified for the cases of p = 2 and p = 3. In 

addition, it is evident that the "nested CADiS" has better performance than "nested CACIS" due to the 

higher DOFs of the former. When the CS technique is applied for DOA estimation, a higher number of 

DOFs is achieved because all unique lags are exploited. The results obtained from the Lasso are shown 

in Fig. 12, where a grid interval of 0f = 0.25° and the penalty parameter of At = 0.85 are used. It is 

clearly shown that only the nested structure can recover all 33 sources using the CACIS configuration, 

whereas all these signals can be detected for all the CADiS configurations examined in Fig. 12 due to 

their higher unique lags. In addition, the CS based technique results in better estimated spectra, when 

comparing the MUSIC spectra depicted in Fig. 11. 

To compare the performance between the CACIS and CADiS structures as well as between the MUSIC 

and CS methods, we use the respective nested structures and compute the results in the presence of noise 

with a O dB SNR for all signals, and the number of snapshots is reduced to 500. In this case, the 

perturbation in the covariance matrix becomes higher due to noise and the limited number of samples, 

and the resulting DOA estimation performance degrades. The DOA estimation results are compared in 

Fig. 13 for Q = 33 sources, which is smaller than the available DOFs for both array configurations. It 

is evident that the nested CADiS outperforms the nested CACIS, and the CS based method achieves a 

better spatial spectrum estimation performance. 

C. Root Mean Square Error versus SNR and Number of Snapshots 

We further compare the DOA estimation performance of different CACIS and CADiS configurations 

through Monte Carlo simulations. The average root mean square error (RMSE) of the estimated DOAs, 
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expressed as 

RMSE = 
IQ 

is used as the performance metric, where 0q(i) is the estimate of 0q for the ith Monte Carlo trial, 

i = 1, ... , I. We use I = 500 independent trials in all simulations. 

To enable comparison, we consider Q = 16 narrowband uncorrelated sources, which are lower than 

the available DOFs for all cases with both MUSIC and CS techniques. Fig. 14 compares the RMSE 

performance as a function of the input SNR, where 500 snapshots are used. In Fig. 15, we compare 

the performance of different array configurations and DOA techniques with respect to the number of 

snapshots, where the input SNR is set to O dB. It is evident that the DOA estimation performance is 

improved with the increase of the input SNR and the number of snapshots. For the CACIS structure, the 

performance of both MUSIC and CS approaches improves as the compression factor p increases because 

of the increased number of consecutive and unique lags. As a result, the nested array structure achieves 

the best performance. For CADiS, MUSIC-based DOA estimation for non-nested CADiS structures 

suffers from significant performance degradation because of the disconnected coarray lags. As such, the 

nested array is the preferred CADiS structure when the MUSIC algorithm is used for DOA estimation. 

Furthermore, the nested CADiS slightly outperforms the nested CACIS as a result of higher number of 

consecutive lags. However, because it has the fewest unique lags, the nested structure is least effective 

among the three CADiS array structures when the CS technique is exploited. As a conclusion, the CS

based method obtains better performance than the MUSIC counterparts. In addition, when the CS-based 

technique is used, the CADiS outperforms the corresponding CACIS structures. 

VIII. CONCLUSIONS 

We have proposed the generalized coprime array concept in two aspects: compression of the inter

element of spacing of one constituting subarray, and the displacement of the two subarrays. The first 

operation yields flexibility of trading-off between unique lags and consecutive lags for effective direction

of-arrival (DOA) estimation based on different algorithms, whereas the second operation further allows a 

larger minimum inter-element spacing beyond the typical half-wavelength requirement. The performance 

of the generalized coarray structures was evaluated using their difference coarray equivalence, and the 

analytical expressions of the coarray aperture, the achievable number of unique lags, and the maximum 

number of consecutive lags were derived for quantitative evaluation, comparison, and optimal design. 

The usefulness of these results was demonstrated using examples applied for DOA estimations. 
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Fig. 11. Spatial spectra estimated using MUSIC for both configurations (Q=33, M = 6 and N = 7). (a) CACIS with p=2. (b) 

CADiS with p=2. (c) CACIS with p=3. (d) CADiS with p=3. (e) CACIS with p=6. (f) CADiS with p=6. 
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CADiS with p=2. (c) CACIS with p=3. (d) CADiS with p=3. (e) CACIS with p=6. (f) CADiS with p=6. 

X. APPENDIX 

A. Proof of Proposition 1 

(a) We prove it using contradiction. Denote le, = Nm1 - Mn1 and le
2 
= Nm2-Mn2 as two arbitrary 
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Fig. 13. Estimated spatial spectra (SNR=0 dB, 500 snapshots, Q=33). (a) MUSIC with nested CACIS. (b) MUSIC with nested 

CADiS. (c) LASSO with nested CACIS. (d) LASSO with nested CADiS. 

lags in set i c, where O ~ m1 ~ M - 1, 0 ~ m2 ~ M - 1, 0 ~ n1 ~ N - 1 and O ~ n2 ~ N - 1. 

Had fc, = fc2 been held, we would have 

M 
N = (22) 

Since n 1 - n2 < N, (22) cannot be hold due to the coprimality of M and N. That is, le, and lc2 

cannot be equal. Thus, lLc has MN distinct integers. 

(b) Given an arbitrary integer le in set ic satisfying 

-(N - 1) ~ le ~ MN - M(N - 1) - 1, (23) 

we need to prove that there exist integers m E [O, M -1] and n E [O, N - 1] such that fc = Nm- Mn 

holds. The requirement n E [O, N - 1] is equivalent to 

0 ~Mn~ M(N - 1). (24) 
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Because Nm= le+ Mn, we obtain the following relationship by combining (23) and (24), 

-(N - 1) :S Nm :S MN -1. (25) 

This result can be equivalently expressed as -N <Nm< MN, which implies - 1 < m < M. 

Because m is an integer, this requirement is equivalent to 

0 :Sm :S M - 1, (26) 

which is satisfied in the underlying coprime array. 

Remark: The configuration proposed in [13] becomes a special case of CACIS configuration, as 

M = 2M. As a result, the set i e contains all the integers in the range -(N-1) :S le :S MN +M-1. 

Apparently, our result contains more consecutive lags and more precise than the results provided in 

[13] using the same configuration. In [13], they only count the consecutive le in the range [O, MN]. 

(c) Given an arbitrary integer in set i e satisfying le = Nm - Mn < 0, where m E [O, M - 1] and 

n E [O, N - 1], the following relationship can be obtained 

0 :S Nm< Mn :S M(N - 1) < MN. 

Consequently, the set ie_, which consists of the negative elements in ie, can be expressed as 

i e_ = {lei le = Nm - Mn,Nm < Mn}, 

where 0 :S m :S M - 1 and 0 < n :S N - 1. 

(27) 

(28) 

Considering an arbitrary integer le1 = N m1 - M n1 in set i e_ , where N mi < M n1, m1 E [0, M -1] 

and n 1 E (0 , N - 1], then we need to prove that there always exists le2 in set ie to satisfy 

(29) 

where integers m2 E [0,M -1] and n2 E [0,N - 1]. 

Then the relationship 

(30) 

must be valid. Since n 1 + n 2 E (0, 2N) and M and N are coprime, it is indicated that M /N cannot 

be reduced to a ratio of smaller integers. As a result, the requirement is equivalent to 

m2=M-m1, 

n2=N-n1, (3 1) 

It is clear that there always exists m2 E [1,M] £; [0,M - 1] and n2 E [O,N - 1] to satisfy (31). 
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(d) Because the two subarrays share the first sensor at the zeroth position, the self-lags can be taken 

as cross-lags between every sensor of one subarray and the first sensor of the other subarray. Thus, 

(JL; U is) ~ (i~ U ie)-
( e) We prove the proposition by contradiction. Based on (28), we suppose Nm - Mn = -( aM + bN) 

holds for some integers m E (0, M) and n E (0, N), where a 2: 0 and b > 0 are integers, then 

relationship 
M m+b 
N n-a (32) 

must be valid. From 0 < n < N and a 2: 0, we find n - a < N . As such, due to the coprimality 

between M and N, we cannot find an integer m that satisfies (32). Therefore, Nm - Mn f

-(aM + bN), i.e., there are holes at -(aM + bN) in set ie. 

B. Proof of Proposition 2 

(a) In line with the property (d) of Proposition 1, the full symmetric set of lags which defined in (10) 

can be expressed as 

(33) 

Because i e can be denoted as 

(34) 

(33) is equivalent to 

(35) 

Based on the property (c) of Proposition 1, the negative values form a subset of the flipped positive 

values in set ie. It is indicated that {lei le < O,le E ie} ~ {-lei le > O,le E ie} and {- lei 

le < 0, le E i e} ~ {lei le > 0, le E i e}- Finally, the set ip becomes 

(36) 

Denote iJe and iJe_ as the number of distinct lags in set ie and ie_ , respectively. As a result of 

(36), the number of distinct lags in set ip can be expressed as 

T/P = 2(iJe - 'r/eJ - 1, (37) 

where 'r/e - iJe_ represents the number of non-negative lags in set i e. 

Due to the property (a) of Proposition 1, there are MN distinct integers in set i e. It is easy to 

confirm that 

iie = MN. (38) 
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fJp can be obtained easily if given fJe_. Next, the derivation of f/e_ is given as follows. 

According to the definition of !Le_ defined in (28), 

ie_ = {lei le= Nm - Mn , Nm < M n}, 

where O :::; m :::; M - 1 and O < n :::; N - l. 

For illustration, the geometry distribution of m and n, is shown in Fig. 16. As such, the boundary 

and interior of the shadow part Rl represents all elements in ie_ . Since M and N are coprime, 

there is no integer point on the diagonal line between OB. In addition, the shadow part Rl is 

symmetric with R2. As a consequence, for obtaining the number of elements in set !Le_ , we can 

first calculate the number of integer points in the rectangle within [0, M] and [l, N - l] and then 

get the half of that number. 

There are (M + 1) and (N - 1) integers in the range [0, M] and [l, N - l], respectively, thus, we 

obtain 
_ (M + l )(N - 1) 
r1c_ = 2 ' (39) 

Finally, substituting (38) and (39) into (37), 

T/P = 2MN - (M + l )(N - 1) - 1, (40) 

is derived analytically. 

(b) On the basis of property (b) of Proposition 1, ic contains all the contiguous integers in the range 

-(N - 1) :::; le:::; MN - M(N - 1) - 1. Then, it is easy to confirm that i p contains 2MN -

2.M(N - 1) - 1 consecutive integers in the range [- MN + M(N - 1) + 1, MN - M(N - 1) - 1] 

in terms of (36) .. 

C. Proof of Proposition 3 

(a) The proof can be extended from the proof of property (a) of Proposition 1, i.e., two arbitrary lags 

lei and lc
2 

in set i e cannot be equal. Thus, ie has (M - l )N distinct integers. 

(b) The set lLe can be rewritten as 

(41) 

where O :::; m :::; M - 2 and O :::; n :::; N - 1, for different values of z that falls into the following 

set, 

Z = {zl z = Nm- Mn, O:::; m :::; M - 2,0 :::; n:::; N - 1}. (42) 
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Extended from the proof of the property (b) of Proposition 1, we can conclude that z is consecutive 

in the range 

- (N - 1) :::; z:::; MN - M (N - 1) - N - l. (43) 

Combining (41) and (43), !Le contains all the contiguous integers in the range 

(M - l)(N - 1) + L:::; le :::; MN - N - l + L. (44) 

(c) Based on the the proof of property (e) of Proposition 1, it is easy to confirm that there are some 

holes located at - (aM + bN) in the negative range of set Z , where a ~ 0, b > 0 are integers. Then 

we can draw a conclusion that there are holes located at M(N - 1) - (aM + bN) +Lin set !Le by 

combining (41) and (42). 

(d) Due to the displacement, the two subarray do not share the first sensor any more. Considering 

the elements in set is, 0 ~ ie because the minimum value in !Le is L, which is larger than 1. 

Consequently, (IL; U Ls) i (IL~ U Le), 

D. Proof of Proposition 4 

(a) Denote fis and fie as the number of the distinct lags in sets ILs and !Le, respectively, and fio as the 

number of overlaps between the i s and ILe. Based on the definition of Lp and is in (21), all lags 

in these sets are positive. As a consequence of this, the number of full symmetric set of lags in the 

virtual array can be expressed as 

fip = 2( fis + fie - fio) - l. (45) 

Because of the coprimality of Mand N , Mn i= N m for n E (0,N - 1] and m E (0, M - 2]. As 

such, 

fis = M + N - 2. (46) 

In line with the property (a) of Proposition 1, we can obtain 

7Je = (M - l )N. (47) 

Substituting (46) and (47) into (45) , the relationship is equivalent to 

fjp = 2(M N + M - 2 - fio) - 1. (48) 

When L > N (M - 2), the maximum value in is is less than the minimum value in !Le. It signifies 

that there is no overlap between ls and le, i.e., fj0 = 0. Then the maximum number of unique lags, 

which is 2M N + 2M - 5, can be achieved. 
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(b) Due to the coprimality of M and N, any integer value for displacement, L, can be realized by an 

appropriate choice of integers c1 and c2 , i.e., [30] 

(49) 

Based on the property ( c) of the Proposition 3, there are holes located at M ( N - 1) - ( aM + bN) + L 

in set ic, where with a and bare integers and a E [0, oo) , b E (0, oo). If some holes are aligned by 

the elements in is, the following relationship 

M(N - 1) - (aM + bN) + L = Nm, (50) 

or 

M(N - 1) - (aM + bN) + L = Mn (51) 

must be valid. Substituting (49) into (50) and (51), the requirement is equivalent to 

or 

MN+ (c1 - a - l)M + (c2 - b)N = Mn, 

i.e., 

c1 = a + 1 or c2 = b. (52) 

Then the requirement further becomes 

c1 = 1 or c2 = 1, (53) 

so that the first hole (a = 0 and b = 1), which is outside the consecutive range of ic, can be aligned. 

When c1 = 1, i.e., L = M + c2N, the holes, where a= 0 and arbitrary b > 0, 

are aligned. 

M(N - 1) - bN + L 

=M(N - 1) - bN + M + c2N 

=(M - b + c2)N, 

When c2 = 1, i.e., L = ciM + N, the holes, where arbitrary a~ 0 and b = 1, 

M (N - 1) - ( aM + N) + L 

=M(N-1)- (aM +N) +c1M +N 

=(N - 1 - a+ ci)M, 
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are aligned. 

Thus, c 1 = c2 = 1, i.e. , L = M + N, is the optimal choice since all above holes can be aligned. In 

this case, the holes, where a = 0 and b = l, a = 0 and b = 2, a= l and b = l, are aligned. As 

a result, the first hole outside the consecutive range of i e becomes M(N - 1) - (M + 2N) + L 

where a = l and b = 2. Then, the set i e contains all the consecutive integers in the range 

M(N - 1) - (M + 2N - 1) + L ~ le~ MN - N - l + L , 

where L = M + N. 

It is simplified as, 

( M - l ) ( N - l ) ~ le ~ MN + M - l. 

(55) 

(56) 

Next, we give the proof of the number of the unique lags when L = M + N. The following 

relationship 

M(N - 1) + (Nm1 - Mn1) + M + N = Nm2, (57) 

or 

M(N - 1) + (Nm1 - Mn1) + M + N = Mn2, (58) 

must be valid if JL5 overlaps with i e. It is equivalent to 

V M 
M + m1 + 1 - n1 N = m2, (59) 

or 

(60) 

In (59), n1 must be equal to O because m 2 is an integer, yielding 

(61) 

It is clear to confirm m2 E [O, M - M - 3] since m 1 E [O, M - 2]. This suggests that the number 

of the overlaps in (59) is M - M - 2. Similarly, we can show the number of overlaps in (60) is 0. 

Hence, 

rj0 = M-M - 2. (62) 

Substituting (62) into (48), we can obtain the number of unique lags rjp to be 

ijp = 2MN + 2M - l. (63) 
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3.2. Multi-Frequency Co-Prime Arrays for High-Resolution 

Direction-of-Arrival Estimation 

Abstract 

This paper presents multi-frequency operation for increasing the number ofresolvable sources in 

high-resolution direction-of-arrival (DOA) estimation using co-prime arrays. A single-frequency 

operation requires complicated and involved matrix completion to utilize the full extent of the 

degrees of freedom (DOFs) offered by the co-prime configuration. This processing complexity is 

attributed to the missing elements in the corresponding difference coarray. Alternate single

frequency schemes avoid such complexity by utilizing only the filled part of the coarray and, 

thus, cannot exploit all of the DOFs for DOA estimation. We utilize multiple frequencies to fill 

the missing coarray elements, thereby enabling the co-prime array to effectively utilize all of the 

offered DOFs. The sources are assumed to have a sufficient bandwidth to cover all the required 

operational frequencies. We consider both cases of sources with proportional and 

nonproportional power spectra at the employed frequencies. The former permits the use ofmulti

frequency measurements at the co-prime array to construct a virtual covariance matrix 

corresponding to a filled uniformly spaced coarray at a single frequency. This virtual covariance 

matrix can be employed for DOA estimation. The nonproportionality of the source spectra casts 

a more challenging situation, as it is not amenable to producing the same effect as that of an 

equivalent single-frequency filled coarray. Performance evaluation of the multi-frequency 

approach based on computer simulations is provided under both cases of proportional and 

nonproportional source spectra. 

I. INTRODUCTION 

Nonuniform linear arrays provide the ability to estimate the direction-of-arrival (DOA) of more sources 

than the number of physical sensors [1]-[6]. Recently, a new structure of nonuniform linear arrays, known 

as co-prime arrays, has been proposed [7], [8]. A co-prime configuration comprises two undersampled 

uniformly spaced subarrays with co-prime number of elements and co-prime spatial sampling rates. Co

prime configurations have many advantages over other popular nonuniform configurations, including 
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minimum redundancy arrays (MRA) [9], minimum hole arrays (MHA) [10], and nested arrays [11]. For a 

given number of physical sensors, MRAs and MHAs require an exhaustive search through all possible 

combinations of the sensors to find the optimal design [12], [13]. On the other hand, the positions of the 

sensors constituting the co-prime configuration have closed-form expressions. Although the same is true of 

nested arrays, the elements of one of the subarrays constituting the nested structure are closely separated, 

which may lead to problems due to mutual coupling between the sensors. Co-prime arrays reduce the mutual 

coupling between most adjacent sensors by spacing them farther apart [7]. Because of all of the 

aforementioned characteristics, co-prime arrays are finding broad applications in the areas of 

communications, radar, and sonar [14]-[20]. 

Similar to other nonuniform arrays, high-resolution DOA estimation with co-prime arrays can be 

performed using two main approaches. The first approach employs covariance matrix augmentation [21]

[23], while the second method vectorizes the data covariance matrix to emulate observations at a virtual 

array whose elements are given by the difference coarray (the set of all spatial lags generated by the physical 

array [24]) [8], [11]. Since the difference coarray of a co-prime array contains multiple missing elements 

or 'holes' , the latter approach employs only that part of the difference coarray which has contiguous 

elements with no holes. As such, only a subset of the total degrees of freedom (DOFs) offered by the co

prime structure can be utilized for high-resolution DOA estimation using the vectorized covariance matrix 

approach. The augmented covariance matrix approach, on the other hand, can exploit all the DOFs but at 

the expense of additional complicated matrix completion processing [23]. 

In this paper, we consider multi-frequency operation to utilize all of the DOFs for DOA estimation in 

co-prime arrays. More specifically, a set of additional frequencies is employed to recover the missing lags 

through dilations of the coarray [25]. The sources are assumed to have a bandwidth large enough to cover 

all specific frequencies required for filling the holes. Only the array elements involved in filling the missing 

holes in the difference coarray are required to be operated at one or more of the additional frequencies. The 

multi-frequency measurements are used to construct a virtual covariance matrix corresponding to an 

equivalent filled uniformly spaced coarray at a single frequency [26]. High-resolution subspace techniques, 
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such as MUSIC [27], can then be applied to this virtual covariance matrix for DOA estimation. It is 

important to note that full utilization of the DOFs using multiple additional frequencies comes with a 

restriction on the sources' spectra. More specifically, the source spectra at all operational frequencies are 

required to be proportional. Deviations from this restriction can lead to higher DOA estimation errors. 

Multiple frequencies have previously been used for alias-free DOA estimation of broadband sources 

[28], [29]. In [28], frequency diversity was exploited on a single spatial sampling interval to mitigate spatial 

aliasing in DOA estimation with a sparse nonuniformly spaced array. Ambiguities in the source location 

estimates were resolved by proper choice of chosen operational frequencies in [29] for arrays with periodic 

spatial spectra. Spatial sampling interval diversity at a single narrowband frequency was exploited in [7] to 

disambiguate aliased DOAs. Both spatial sampling and frequency diversity were exploited in [26] through 

multi-frequency coarray augmentation for high-resolution DOA estimation. However, no attempt was made 

therein to select the best number of employed frequencies or determine their best values. We effectively 

apply the multi-frequency coarray augmentation to co-prime arrays in this paper. Our main contribution 

lies in exploiting the specific structure of the coarray corresponding to co-prime configuration to determine 

the number and values of the additional frequencies required for recovering the missing lags. We provide 

closed-form expressions for the additional frequencies , which are 'best' in the sense of minimum 

operational bandwidth requirements. We also describe when and how the redundancy in the coarray can be 

exploited to reduce the system hardware complexity for multi-frequency co-prime arrays. Further, we 

investigate the effects of noise and deviation from the proportional source spectra constraint on the DOA 

estimation performance of the multi-frequency co-prime arrays. 

The remainder of the paper is organized as follows. The single-frequency based high-resolution DOA 

estimation using co-prime arrays is reviewed in Section II. In Section III, we describe the multi-frequency 

approach for filling the missing elements in the coarray and utilizing all the DOFs offered by the co-prime 

configuration for DOA estimation. Section IV delineates the system bandwidth requirement for the multi

frequency operation, taking into account the specificities of the coarray structure corresponding to co-prime 

arrays. Coarray redundancy is also examined to reduce the number of antennas engaging in multiple 
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frequency operation. In Section V, performance of the proposed method is evaluated through extensive 

simulations under both proportional and nonproportional source spectra and Section VI concludes the 

paper. 

IL HIGH-RESOLUTION DOA ESTIMATION USING SINGLE-FREQUENCY CO-PRIME ARRAYS 

A co-prime array consists of two undersampled uniform linear subarrays, one having M sensors 

positioned at {Nmd0 , 0 $ m $ M - 1}, and the other comprising N sensors with positions 

{Mnd0 , 0 $ n $ N - 1} [11], Mand N being co-prime integers and d0 equal to one-half wavelength at 

the operating frequency w0 . Without loss of generality, we assume M < N. With the two subarrays sharing 

the element at location 0, the co-prime array has a total of M + N - 1 physical sensors. The element 

positions of the corresponding difference coarray form the set 

S0 = {±(Mnd0 - Nmd0)}, 0 $ n $ N - 1, 0 $ m $ M - 1, (1) 

which extends from -N(M - l)d0 to N(M - l)d0 , but only the elements from -(M + N - l)d0 and 

(M + N - 1)d0 are contiguous. As such, high-resolution schemes, such as MUSIC, can estimate only up 

to M + N - 1 sources. 

An extended co-prime configuration was proposed in [8], wherein the number of elements in the 

subarray with fewer sensors were doubled, as depicted in Fig. I. The difference coarray of this 

configuration, shown in Fig. 2, extends from -(2M - l)Nd0 to (2M - l)Nd0 , and has a contiguous set 

of elements between -(MN+ M - l)d0 and (MN+ M - 1)d0 . Thus, high-resolution DOA estimation 

can be performed to estimate (MN+ M -1) sources using the extended co-prime configuration. We will 

consider the extended co-prime configuration with M <Nin the remainder of this paper. 

Assume that D sources with powers <J{(w0),<J}(w0 ), ... ,<J5(w0 ) impinge on the extended co-prime 

array from directions [01, 02 , •.• , 0v] where 0 is measured relative to broadside. The received data vector at 

frequency w0 can be expressed as 

(2) 

where s(w0 ) = [s1 (w0 ) s2 (w0 ) ... sv(w0 )]T is the source signal vector at w0 , n(w0 ) is the corresponding 
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noise vector, A(w0) is the array manifold matrix at w 0 , and the superscript (. f denotes matrix transpose. 

The (i,j)th element of the array manifold can be expressed as 

[A(w0)]u = ejkoxisin(ej),i = 1,2, ... ,2M + N -1, j = 1,2, ... ,D (3) 

where xi is the location of the ith physical sensor of the array, 0j is the DOA of the jth source, and k 0 = 

w0 / c is the wavenumber at w0 with c being the speed of propagation in free space. Assuming that the 

sources are uncorrelated and the noise is spatially and temporally white, the covariance matrix is obtained 

as 

(4) 

where R55 (w0 ) = diag([o-f (w 0 ) o'}(w0 ) ... cr8(w0)]) is the source covariance matrix, crJ(w0 ) is the noise 

variance, I is an identity matrix, the superscript (·)H denotes Hermitian operation, and E {.} denotes the 

statistical expectation operator. In practice, (4) is replaced by a sample average. 

After forming the covariance matrix, two approaches can be employed to perform high-resolution DOA 

estimation. The first approach uses covariance matrix augmentation [2 l]-[23]. Following [22], since the 

difference coarray is filled between -(MN+ M - 1)d0 and (MN+ M - 1)d0 , a virtual covariance matrix 

corresponding to an equivalent (MN+ M)-element filled ULA can be formed by collecting specific 

elements of the estimated spatial covariance matrix RxxCw0 ) into a Toeplitz matrix. The resulting 

augmented covariance matrix may not always be positive definite and, thus, requires positive definite 

Toeplitz completion [22]. Subspace-based high-resolution methods can then be applied to the augmented 

covariance matrix for estimating up to (MN + M - 1) sources. The number of resolvable sources can be 

increased to (2M - 1)N by considering a partially specified virtual covariance matrix corresponding to an 

equivalent (2M - 1)N + 1-element filled ULA [23]. However, this comes at the expense of increased 

computational complexity due to a complicated and involved matrix completion process. 

The second approach vectorizes the covariance matrix Rxx(w0 ) as [7] 

z(w0) = vec(Rxx(w0 )) = A(w0 )[crf(w0 ) crf (w 0 ) ... cr5(w0 )]T + crJ(w0)i, (5) 

where A(w0) = A*(w0 ) 0 A(w0), the symbol '0' denotes the Khatri-Rao product, the superscript '*' 
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denotes complex conjugation, and i is the vectorized form ofl. The vector z(w0) acts as the received signal 

vector of a longer array whose elements positions are given by the difference coarray. However, as the 

sources are replaced by their powers, the model in (5) is similar to that of a fully coherent source 

environment. Spatial smoothing can be used to decorrelate the sources [8], [30], provided that only the 

filled part of the difference coarray between -(MN+ M - 1)d0 and (MN+ M - 1)d0 is employed. As 

such, the rank of the smoothed covariance matrix is equal to (MN+ M) [8], [11], which allows a maximum 

of (MN + M - 1) sources to be estimated by applying high-resolution techniques. 

In the sequel, we employ the filled part of the coarray and covariance matrix augmentation for DOA 

estimation under single frequency operation. 

III. HIGH RESOLUTION DOA ESTIMATION WITH MULTI-FREQUENCY CO-PRIME ARRAYS 

In this section, we describe how dual and multiple frequencies can be utilized to fill the holes in the 

coarray, thereby permitting the exploitation of the full DOFs that the co-prime configuration has to offer. 

The sources are assumed to have a bandwidth large enough to cover all frequencies required for filling the 

holes. Discrete Fourier transform (OFT) or filterbanks are used to decompose the array output vector into 

multiple non-overlapping narrowband components and extract the received signal at each considered 

frequency [31 ], [32]. The observation time is assumed to be sufficiently long to resolve the different 

frequencies . 

Consider the extended co-prime configuration of Fig. I, where the unit spacing d0 is assumed to be 

half-wavelength at the reference frequency w0 .The received signal at w0 is the same as in (2), whereas that 

obtained by operating the physical co-prime array at a different frequency, Wq = aqwo, has the form 

(6) 

where A( Wq) is the (2M + N - 1) x D array manifold at Wq with its (i, j)th element given by 

(7) 

In (7), kq = wq/c is the wavenumber at Wq . Since kq = aqko , (7) can be rewritten as 
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(8) 

Comparing (3) and (8), we observe that the array manifold at Wq is equivalent to the array manifold at w0 of 

a scaled version of the physical co-prime array. The position of the ith element in the equivalent scaled 

array is given by aqxi . This results in the difference coarray at wq to be a scaled version of the coarray at 

the reference frequency w0 [33]. Values of Wq higher than w0 cause an expansion of the coarray, while the 

coarray contracts if Wq is lower than w0. In other words, operation at the additional frequency adds extra 

points at specific locations in the coarray. A suitable choice of additional operating frequencies will cause 

some of these extra points to occur at the locations of the holes in the difference coarray at w0 . 

A. Virtual Covariance Matrix Formation 

Let the total number of operational frequencies, including the reference, be Q. As shown below, a 

virtual covariance matrix can be constructed using the multi-frequency measurements, which is equivalent 

to that of a ULA with (2M - l)N + 1 elements operating at the reference frequency [26], [34]. This would 

allow DOA estimation of (2M - l)N sources instead of (MN+ M - 1) sources using (2M + N - l) 

physical sensors of the co-prime array. 

A (2M + N - l) x (2M + N - l) support matrix C(wq) is defined such that its (i,j)th element is 

given by [26], [34] 

(9) 

That is, the (i,j)th element of C( wq) is the spatial lag or the coarray element position which is the support 

of the (i,j)th element of the covariance matrix Rxx(wq) 

(10) 

where R55 (wq) = diag([o-f(wq) o}(wq) ... o-J(wq)]) is the source covariance matrix at frequency wq

It should be noted that C(wq) = aqC(w0 ), where C(w0) is the support matrix at the reference frequency 

w0 • Let Cv(w0 ) and Rv(w0 ) be the support and the covariance matrices corresponding to the desired ULA 

with (2M - l)N + 1 sensors operating at w0 • Given that the Q operational frequencies are sufficient to 
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fill all the holes in the difference coarray of the co-prime array, then 

(11 ) 

Leth be the map that arranges selected elements of the multi-frequency support matrices, {C( wq)}~;:t, into 

the desired virtual support matrix Cv(w0 ) . Using the same map, the virtual covariance matrix Rv(w0 ) 

corresponding to the equivalent ULA can then be constructed from the covariance matrices 

{Rxx ( Wq) }~;:t corresponding to the Q operational frequencies [26]. 

For illustration, we consider a co-prime array with M = 2 and N = 3. The sensor positions of the two 

uniform linear subarrays are given by [O, 2d0 , 4d0 ] and [3d0 , 6d0, 9d0], respectively. The support matrix 

C(w0) at the reference frequency takes the form 

0 -2 -3 -4 -6 -9 
2 0 - 1 -2 -4 -7 

C(wo) = 3 1 0 -1 -3 -6 
1d 0• 12 

4 2 1 0 -2 - 5 
I 6 4 3 2 0 - 3 

9 7 6 s 3 0 

The difference coarray of this configuration is shown in Fig. 3. It has holes at -8d0 and 8d0 . In order to 

fill these holes and form the virtual covariance matrix, an additional frequency w1 = 8/9w0 is required. 

With this choice of the second operational frequency, the support matrix at w1 is given by 

0 -16/9 -8/3 -32/9 -16/3 -8 

16/9 0 -8/9 -16/9 -32/9 -56/9 

C(w1 ) = 8/3 8/9 0 -8/9 -8/3 -16/3 
do, (13) 

32/9 16/9 8/9 0 -16/9 -40/9 
16/3 32/9 8/3 16/9 0 -8/3 

8 56/9 16/3 40/9 8/3 0 

The support matrix Cv(w0 ) of the desired 10-element ULA, whose elements are positioned at [O, 1, ... , 9]d0 , 

has the structure 

0 -1 -2 - 8 - 9 
1 0 -1 -7 -8 

Cv(wo) = 2 1 0 - 6 - 7 
(14) 

8 7 6 0 -1 
9 8 7 1 0 
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From (12)-(14), we observe that several possibilities exist for constructing Cv(w0 ) using C(w0 ) and C(w1 ) , 

since several elements of C(w0 ) and C(w1 ) correspond to the same element of Cv(w0 ). Either a single 

element or an average of all such elements can be used to specify the map for forming the desired virtual 

support matrix and, subsequently, the virtual covariance matrix Rv(w0 ) [26], [34]. 

It should be noted that since the difference coarray at w0 has two holes at ±8d0 , only those elements 

of Rxx(w1 ) that correspond to these two lags are required to form Rv(w0 ). This means that instead of 

operating the entire co-prime array at w1 , only the sensors that produce the ±8d0 lags at w1 should be 

operated at the additional frequency. For example, operating the two sensors with positions [0 9]d0 at w1 

produces the following reduced support matrix 

(15) 

The two support matrices C(w0 ) and Cr(w1 ) can then be combined to form Cv(w0 ) . This procedure results 

in reducing hardware complexity. A more detailed discussion in this regard is provided in Section IV-D. 

B. Proportional Spectra Requirement 

For multi-frequency DOA estimation, the normalized covariance matrices are employed instead of 

{Rxx(wq)}~,:-~ . The (i,j)th element of the normalized covariance matrix Rxx( wq) at frequency Wq can be 

expressed as [34] 

(16) 

where [ x( Wq)] i is the ith element of the data vector at frequency Wq , and N5 ( Wq) is the number of sensors 

that are operated at Wq . This results in the source and noise powers in the covariance matrix representation 

of (I 0) being replaced by the normalized powers [26], which are given by 

(17) 
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(18) 

where iff ( Wq) is the normalized power of the kth source at frequency Wq and iiJ ( Wq) is the normalized 

noise power at the same frequency. The virtual covariance matrix Rv(w0), constructed by using the 

normalized covariance matrices {Rxx ( Wq)} ~=~ following the procedure outlined in Section III.A, must 

appear to have been generated by the virtual array as if it were the actual array operating at frequency w0 • 

However, some of the elements of the constructed virtual covariance matrix have contributions from 

frequencies other than w0• The virtual covariance matrix will be exact provided that the normalized power 

of each source is independent of frequency, 

iif{wq)=aL forallq E{O,l, ... ,Q-l}andallk E{l,2, ... ,D}. (19) 

For a high signal-to-noise ratio (SNR), a sufficient condition for the virtual covariance matrix to be exact 

is that the sources must have proportional spectra at the employed frequencies [34]. That is, 

(20) 

where f3k,l is a constant for each source pair (k, l) over all frequencies Wq, This condition is satisfied, for 

example, when the D sources are BPSK or chirp-like signals. 

IV. FREQUENCY SELECTION FOR MULTI-FREQUENCY OPERATION USING EXTENDED CO-PRIME ARRAYS 

In order to quantify the operational frequency set for filling the holes, we first need to examine the 

specific structure of the difference coarray corresponding to an extended co-prime configuration. Consider 

the difference coarray of Fig. 2, which corresponds to the co-prime array of Fig. 1. The total number of 

filled and missing elements in the coarray equals 2(2M - l)N + 1, whereas the total number of holes is 

determined to be (M - 1) (N - 1). As the coarray is symmetric, we only focus on the portion corresponding 

to the non-negative lags. We observe that the portion of the coarray extending from Oto (MN+ M - l)d0 

is uniform and has no holes. The first hole appears at (MN+ M)d0 , followed by another filled part from 
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(MN+ M + 1)d0 to (MN+ 2M - 1)d0 . The final part of the coarray from (MN+ 2M)d0 to (2M -

1)Nd0 is non-uniform and contains ((M - 1)(N - 1)/2) -1 holes. 

A. One Additional Frequency (Dual-Frequency Operation) 

The two holes at -(MN+ M)d0 and (MN+ M)d0 can be filled using only one additional frequency. 

The choice of the additional frequency is not unique. The value of w1 that minimizes the separation 

between w0 and w1 is given by 

MN+M 
W1 = a1 Wo = MN + M + 1 Wo, (21) 

where the numerator and the denominator of the scaling factor a1 correspond to the respective positions of 

the hole to be filled and the adjacent filled element to the right of the hole ( considering the non-negative 

lags) that is used to fill it. Note that the value of w1 in (21) is less than w0 • It can be readily shown that 

using neighboring elements other than the right adjacent one yields values of Wi, which result in a larger 

separation from w0 • 

Filling the two holes at ±(MN+ M)d0 causes the uniform part of the difference coarray to extend 

from -(MN+ 2M - 1)d0 to (MN+ 2M - 1)d0 . As a result, up to (MN+ 2M - 1) sources can be 

estimated after forming the corresponding virtual covariance matrix. This implies that, compared to the 

single frequency operation, M additional sources can be estimated using one extra frequency in addition to 

B. Multiple Additional Frequencies (Multiple Frequency Operations) 

The remaining (M - 1)(N - 1) - 2 holes in the difference coarray can also be filled through the use 

of additional frequencies. The exact number and values of the frequencies are tied to the non-uniformity 

pattern in the coarray beyond ±(MN+ 2M)d0 , which varies from one co-prime configuration to the other. 

Assuming that each additional frequency is used to fill only two holes (one missing positive element and 

its negative counterpart), we require at the most~ ((M - 1)(N - 1) - 2) = (MN - M - N)/2 additional 
2 

frequencies to yield a filled uniform coarray extending from -(2M - 1)Nd0 to (2M - 1)Nd0 . 
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C. Maximum Frequency Separation 

The maximum frequency separation from the reference frequency determines the required operational 

bandwidth of the antennas and receiver front end for the proposed multi-frequency approach. It is 

determined by the distance of the farthest hole from its nearest filled right neighbor and the location of the 

neighbor. The maximum number of consecutive holes in the difference coarray is (M - 1) and this pattern 

of (M - 1) consecutive holes repeats LN /MJ times at each end of the difference coarray, as shown in Fig. 

4 for the non-negative lags. However, it is the first set of (M - 1) consecutive holes (those on extreme left 

in Fig. 4) that requires operational frequencies with the maximum separation from w0 in order to be filled. 

The repeated hole patterns at larger lags yield smaller frequency separation values. The first missing 

element in the leftmost set of consecutive holes occurs at [ (2M - l)N - (M - 1) - (l~j - 1) M] d0 , 

while the nearest right filled element is positioned at [ (2M - l)N - (l~J - 1) M] d0 • Therefore, the 

required frequency to fill this hole is given by 

_ (2M - )N - (M - 1) - (~J - 1) M 
w = N . ~ 

(2M - 1)N - (~ j - l) M 
(22) 

The maximum frequency separation can, thus, be computed as 

1 -M 
~Wm.ax = lwo - wl = I N I w,o. 

(2M - l)N - (li1J - 1) M 
(23) 

Table I shows the maximum frequency separation for different co-prime array configurations under two 

cases: i) when one additional frequency is used to fill the first pair of holes, and ii) when all holes are filled 

using multiple frequencies. For each of the aforementioned cases, the additional number of estimated 

sources compared to single frequency operation are also specified in Table I. We observe that the maximum 

frequency separation decreases with increasing values of M and N. This is because both the holes and the 

elements that are used to fill them occur at larger spatial lags for higher values of M and N, which, in turn, 

implies a smaller value of the scaling factor in (23). 
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D. Reduced Hardware Complexity 

Since only a few observations at each employed frequency other than w0 are used for the proposed 

multi-frequency high-resolution DOA estimation scheme and the remaining observations are discarded, it 

is not economical to operate the entire physical array at each of the additional Q - 1 frequencies. Therefore, 

only the receive elements that generate the desired spatial lags for filling the holes need to be operating at 

more than one frequency . As determined in Section IV.C, the bandwidth requirement for the multi

frequency operation is not that high, especially for larger values of M and N. As such, only the multi

frequency receive elements require a DFT or a filterbank to extract the information at the different 

frequencies, leading to a significant reduction in system hardware complexity. 

It becomes of interest to determine the smallest number of sensors that are required to operate at the 

additional frequency or frequencies. As the holes occur in symmetric pairs, the lags corresponding to each 

pair can be generated using only two sensors in the physical array. In case ofredundancy in the difference 

coarray, there is more than one antenna pair that can generate the same spatial lag. In order to reduce the 

number of antennas engaging in multiple frequency processing, one should therefore seek and identify each 

sensor that participates in filling all the holes or at least many of them. This becomes important when there 

is flexibility in sensor participation choices implied by the redundancy property of the spatial lags. Clearly, 

only the redundant spatial lags occurring beyond the first symmetric hole pair at ±(MN+ M)d0 need to be 

considered, since these are used to fill the holes in the difference coarray. It can be readily shown that there 

are a total of2(M - 2) redundant lags beyond ±(MN+ M)d0 at ±(MN+ kN)d0 with weights given by 

W(±(MN + kN)d0) = M - k, fork= 1,2, ... ,M - 2. (24) 

For illustration, we consider an example where M = 4 and N = 5. The co-prime array consists of 12 

elements positioned at [O 4 5 8 10 12 15 16 20 25 30 35]d0 . Fig. 5 shows the difference coarray 

weighting function corresponding to this array. The first hole pair in the coarray occurs at ±(MN+ M)d0 = 

±24d0 • Beyond the first holes, 2(M - 2) = 4 redundant lags exist. The first redundant lag pair occurs at 

±(MN + N)d0 = ±25d0 with weight equal to (M - 1) = 3. The second redundant pair occurs at 
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±(MN+ 2N)d0 = ±30d0 and has a weightof(M - 2) = 2. In order to minimize the maximum frequency 

separation, only the redundant lags that occur immediately to the right of the holes ( considering the 

nonnegative lags) can be used. For the case where mod(N, M) = 1, all the redundant lags in the nonuniform 

part of the coarray occur immediately after the holes. This can be confirmed by observing the weighting 

function in Fig. 5. For the case where mod(N, M) = M - 1, none of the redundant lags are immediately to 

the right of the holes, as illustrated in Fig. 6 for the case where M = 4 and N = 7. For the remaining cases, 

only a subset of the redundant lags in the nonuniform part is immediately after the holes. 

For the illustration of the role of redundancy in reducing sensor engagement in hole filling, we provide 

the following two examples. Table II shows the additional frequencies and the corresponding sensor pairs 

that are required to fill all nine holes in the difference coarray for the case where M = 4 and N = 7. The 

corresponding physical array consists of 14 sensors at [O 4 7 8 12 14 16 20 21 24 28 35 42 49]d0 • It is 

clear from Table II that only the 6 sensors located at [O 4 8 12 16 49]d0 are required to operate at more 

than one frequency in order to fill all the holes in the coarray. It should be noted that since mod(N, M) = 

M - 1 in this example, the redundant lags in the difference coarray cannot be used to further decrease the 

number of antennas that would operate at more than one frequency. Table III shows the required frequencies 

and the corresponding sensor pairs for the case where M = 4 and N = 5. Since mod(N, M) = 1, different 

sensor pairs can be used to fill the same holes. As shown in Table III, the pairs that include common sensors 

at different frequencies are chosen in order to minimize the number of sensors that operate at more than 

one frequency. Table IV shows the percentage of sensors that need to be operated at more than one 

frequency for different co-prime array configurations. We observe that the number of sensors that need to 

be operated at multiple frequencies has a lower bound of one-third of the total number of sensors in the 

array, which is achieved for co-prime configurations with N = M + 1. It should be noted that the same 

choice of N = M + 1 also minimizes the total number of sensors in the co-prime arrays, as demonstrated 

in [15]. 

56 



V. NUMERICAL RESULTS 

In this section, we present DOA estimation results based on the MUSIC algorithm using multi

frequency co-prime arrays. Both proportional and nonproportional source spectra cases are considered and 

performance comparison with single-frequency operation is provided. We employ the filled part of the 

coarray and covariance matrix augmentation for DOA estimation using MUSIC under single frequency 

operation. The root mean squared error (RMSE) in all examples in this section is based on a single 

realization, unless stated otherwise. 

A. Proportional Spectra 

We first consider a co-prime array configuration with six physical sensors, corresponding to M = 2 

and N = 3. The first uniform linear subarray consists of three elements positioned at [O, 2d0, 4d0] and the 

second subarray has four elements with positions [O, 3d0 , 6d0 , 9d0], with d0 equal to one-half wavelength 

at w0 • The difference coarray of this configuration, shown in Fig. 3, has two holes at ±8d0 , which can be 

filled using an additional frequency w1 = (8/9)w0 . We consider 9 sources with proportional spectra, where 

(J'J (w1) = 3(J'J (w0 ) ford = 0,1, ... , 8. The sources are uniformly spaced between -0.95 and 0.95 in the 

reduced angular coordinate sin(0) . A total of2000 snapshots are used and the SNR is set to O dB for both 

frequencies. The estimated spatial spectrum, where only the reference frequency w0 is used, is provided in 

Fig. 7. The elements in the covariance matrix corresponding to the holes in the difference coarray have 

been filled with zeros. This is equivalent to the case where the sources have zero powers at the additional 

frequency. The vertical lines in the figure indicate the true DOAs of the sources. We observe from Fig. 7 

that the single frequency approach fails to correctly estimate the DO As of most of the targets. The RMSE 

is found to be 2.55°. This is expected since the considered co-prime array operating at a single frequency 

can resolve a maximum of7 sources. Fig. 8 depicts the estimated spatial spectrum using the dual-frequency 

approach. We can clearly see that the DOAs of all sources have been correctly estimated. In this case, the 

RMSE of the DOA estimates is equal to 0.67°. 
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In the second example, we consider a co-prime configuration with M = 5 and N = 7. The 7 sensors of 

the first ULA are positioned at [O, 5, 10, 15, 20, 25, 30]d0 , and the second ULA has 10 elements with 

positions [O, 7, 14, 21, 28, 35, 42, 49, 56, 63]d0 • The corresponding coarray extends from -63d0 to 63d0 

and has a total of 24 holes. The uniform portion of the coarray only extends from -39d0 to 39d0 . Thus, 

the single frequency operation can resolve a maximum of 39 sources. One additional frequency w1 = 

( 40/41)w0 is first used to fill the holes at ±40d0 in the coarray. As a result, the uniform part of the coarray 

now includes the lags from -44d0 to 44d0 , thereby increasing the maximum number ofresolvable sources 

from 39 to 44. We consider 44 sources with sin(0d) uniformly distributed between -0.97 and 0.97. The 

sources are assumed to have identical power spectra at the two frequencies . A total of 2000 snapshots are 

considered and the SNR is set to O dB for both frequencies. Fig. 9 shows the estimated spatial spectrum, 

wherein the DOAs of all 44 sources have been accurately estimated. The RMSE is determined to be 0.31 ° 

in this case. Next, we employ 12 additional frequencies to fill all 24 holes in the coarray. The additional 

frequencies and the corresponding holes they fill are listed in Table V. It should be noted that the holes 

could have also been filled using only six additional frequencies. These frequencies are w 1 = Sw0. w2 = 

2w0 w3 = (47 /49)w0 , w4 = 3w0 , (w5 = 59/63)w0 , and w6 = (61/63)w0 • However, this choice of 

frequencies results in a maximum frequency separation of 4w0, compared to 0.064w0 for the set of 

frequencies in Table V. Fig. 10 shows the estimated spatial spectrum corresponding to 63 sources with 

sin(0d) uniformly distributed between -0.97 and 0.97 and equal power spectra at the 12 frequencies. The 

SNR and the number of snapshots are taken to be the same as for Fig. 9. Again, the multi-frequency 

approach has estimated all sources accurately and the RMSE is 0.2°. 

B. Nonproportional Spectra 

We evaluate the DOA estimation performance of the multi-frequency co-prime arrays when the 

condition of proportional source spectra is violated. In the first example, we consider the same array and 

source configuration as in the first example in Section V.A with M = 2 and N = 3. However, the 9 sources 

are now assumed to have nonproportional spectra at w0 and w1 = (8/9)w0• More specifically, the source 
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powers at w 0 are assumed to be identical and equal to unity, whereas the source powers associated with 

w1 are assumed to independently follow a truncated Gaussian distribution with a mean of 5 .5 and a common 

variance. Two different values of 2.25 and 5.06 are considered for the variance. The variance controls the 

degree of non-proportionality. A higher variance increases the degree of non-proportionality of the source 

spectra, whereas a lower variance results in smaller variations in the source powers. Fig. 11 depicts the 

RMSE as a function of the variance and the SNR, averaged over 2000 Monte Carlo runs. For comparison, 

the RMSE corresponding to both single-frequency operation and dual-frequency operation for the case 

when the sources have proportional spectra are also included. As expected, the single-frequency approach, 

wherein the elements of the virtual covariance matrix corresponding to the holes in the coarray are filled 

with zeros, provides the worst performance. Further, the RMSE corresponding to the multi-frequency 

approach for nonproportional spectra increases with increasing variance. This results in a degradation of 

the estimation performance. Finally, the multi-frequency approach works best when the spectra are 

proportional and the SNR is higher. 

In the following example, we compare the performance of the multi-frequency approach to single

frequency DOA estimation as a function of the assumed model order. The same array configuration with 

M = 2 and N = 3 is used. Two cases are considered in this example. The first case deals with sources with 

proportional spectra, while the second considers sources with nonproportional spectra. For the 

nonproportional case, the source powers associated with w 0 are assumed to be identical and equal to unity, 

and the source powers associated with w1 follow a truncated Gaussian distribution with a mean of 5 .5 and 

a variance 2. In both cases, the actual number of sources is set to 4, and the assumed model order is varied 

between 4 and 7. 1000 Monte Carlo are considered in this example. Fig. 12 shows the RMSE, averaged 

over 1000 Monte Carlo runs, as a function of the assumed model order for both cases. In computing the 

RMSE, only the detected peaks that are closest to the actual source directions were considered. From Fig. 

12, we observe that, as expected, the performance of the single-frequency approach is not affected by the 

nonproportionality of the source spectra. On the other hand, the multi-frequency DOA estimation exhibits 

superior performance for sources with proportional spectra compared to those with nonproportional spectra. 
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Further, the multi-frequency approach is less sensitive to errors in model order as compared to the single

frequency approach. 

The effect of the degree of non-proportionality on DOA estimation performance is next examined for 

the co-prime configuration of the second example in Section V.A with M = 5 and N = 7 under both dual 

and multi-frequency operation. Again, the source powers at w 0 are assumed to be all equal to unity, whereas 

the source powers at additional frequencies follow a truncated Gaussian distribution with a mean of 5.5 and 

a common variance. Fig. 13 provides the RMSE, averaged over 2000 Monte Carlo runs, as a function of 

SNR and variance under the dual-frequency operation for 44 sources. Similar observations to those in Fig. 

11 can be made in this case as well. However, two differences can be noticed by comparing the RMSE plots 

in Figs. 11 and 13. First, the RMSE takes on lower values for all considered DOA estimation methods and 

variances for the co-prime configuration with M = 5 and N = 7. Second, the difference in performance 

between the single and dual frequency operations for the nonproportional spectra cases is much smaller at 

higher SNR values in this example. This is due to the fact that the ratio of the number of missing elements 

to the total number of elements in the filled part of the difference coarray is smaller in this example. This 

results in a smaller percentage of elements in the virtual covariance matrix to come from a different 

frequency or be filled with zeros for single frequency operation. The RMSE plots for the multi-frequency 

operation to fill all 24 holes are provided in Fig. 14, which corresponds to 60 sources with sin(0d) uniformly 

distributed between -0.97 and 0.97. The performance difference between multi-frequency operation for 

sources with non-proportional spectra and those with proportional spectra is even less noticeable in this 

case, though the RMSE values themselves are slightly higher for high SNR. Also, the single-frequency 

operation exhibits a higher RMSE since a higher percentage of the virtual covariance matrix elements now 

have a zero value compared to that for Fig. 13. 

The final example in this section examines the estimation performance for varying degree of 

nonproportionality of the source spectra for different values of M and N with the SNR fixed at O dB. Both 

dual-frequency operation for filling only the first hole pair and multi-frequency operation for filling all the 

holes are considered for each co-prime configuration. For each case, the maximum number of resolvable 
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sources was used. A total of 2000 Monte Carlo runs were considered in this example. The source powers 

associated with the reference frequency w0 are identical and equal to unity. For the additional frequencies, 

the source powers follow a truncated Gaussian distribution with a mean of 5.5 and a common variance. 

The corresponding RMSE plots as a function of the variance of the source powers are depicted in Fig. 15. 

In order to have a fair comparison among co-prime arrays of different sizes, each RMSE plot is normalized 

by the Cramer Rao Bound (CRB) of an equivalent ULA with total number of elements equal to the number 

of contiguous nonnegative lags in the corresponding difference coarray. By examining Fig. 15, the 

following observations are in order. First, as expected, a decrease in the variance of the sources spectra 

results in a reduced estimation error. Second, by comparing the results of dual and multiple frequency 

operation for fixed Mand N, we observe that, in general, the normalized RMSE error is smaller for the case 

when more than one additional frequencies are used. 

C. Comparison with Sparse Reconstruction 

Sparse reconstruction can be used in lieu of MUSIC for DOA estimation using multi-frequency co

prime arrays [35]. Unlike the proposed MUSIC-based approach, all of the lags generated by the multi

frequency operation, in addition to those that fill the holes in the difference coarray, can be utilized for 

DOA estimation using sparse reconstruction. This is because sparse reconstruction does not require the 

additional lags to fall on a uniform grid (integer multiples of the unit spacing). Utilization of all generated 

lags, in this case, enhances the number of DOFs for DOA estimation, leading to an increased number of 

resolvable sources. However, the performance of the sparse reconstruction approach is affected by the 

coherence of the data measurement operator. In addition, it is computationally more expensive than 

MUSIC. 

In order to compare the performance of sparse reconstruction and MUSIC based multi-frequency 

approaches, we consider the following example. The same array configuration as in the first example in 

Section V.A is used. Two frequencies, w0 and w1 = (8/9)w0 , are employed; the latter can fill the holes in 

the corresponding difference coarray so that the multi-frequency MUSIC technique can be applied. Nine 
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sources with directions uniformly spaced between -0.9 and 0.9 in the reduced angular coordinate sin(0) are 

used, which is the maximum number of sources that can be resolved using the multi-frequency MUSIC 

approach. Two separate cases are considered in this example. The first case assumes sources with 

proportional spectra, while the second considers sources with nonproportional spectra. For the latter, the 

source powers at w0 are assumed to be identical and equal to unity, whereas the source powers associated 

with w1 are assumed to independently follow a truncated Gaussian distribution with a mean of 5.5 and a 

variance of 2. Fig. 16 shows the RMSE, averaged over 1000 Monte Carlo runs, as a function of the SNR 

for both cases. The SNR is assumed to be identical at both frequencies and is varied from -10 dB to 10 dB 

with a 2.5 dB increment. It can be readily observed that the multi-frequency MUSIC approach outperforms 

the sparse reconstruction method for all SNR values when the sources have proportional spectra. In case of 

sources with nonproportional spectra, the multi-frequency MUSIC method outperforms the sparse 

reconstruction approach for low values of SNR, whereas both methods achieve similar performance at high 

SNR values. For both proportional and nonproportional spectra cases, the sparse reconstruction approach 

exhibits significantly degraded performance at low SNR values. This is expected since the accuracy of the 

sparse reconstruction methods suffers in high noise cases. 

VI. CONCLUSION 

A multi-frequency technique has been presented for high-resolution DOA estimation using co-prime 

arrays. A virtual covariance matrix at the reference frequency is created using elements of the narrowband 

covariance matrices corresponding to the different employed frequencies. The virtual covariance matrix 

corresponds to a uniform linear array with a difference coarray of the same extent as that of the co-prime 

array, except that the coarray of the ULA is filled whereas that of the co-prime array has holes. This permits 

the co-prime array to handle all of the degrees of freedom offered by the co-prime configuration. Simulation 

examples were used to evaluate the DOA estimation performance of the multi-frequency approach under 

both proportional and nonproportional spectra. It was shown that the DOAs are estimated with high 

accuracy under multi-frequency operation for sources with proportional spectra, while for non-proportional 
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spectra, the estimation error varies with the SNR as well as the values of M and N. The effect of 

nonproportionality was shown to be not as significant at high SNR for higher values of M and N as for 

lower values. 
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Figure 1. Extended co-prime array configuration 
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Figure 2. Difference coarray of the extended co-prime array. 
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Figure 3. Difference coarray at the reference frequency w0 for M= 2, N = 3. 
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Figure 4. Positive end part of the difference coarray corresponding to the co-prime array. 

TABLEI 
MAXIMUM FREQUENCY SEPARATION FOR DUAL AND MULTI-FREQUENCY 

Dual-frequency Multi-frequency 

M N Additional estimated Additional estimated 
sources '1.Wmax sources .1.wmax 

2 3 2 11.11% 2 11.11% 

3 4 3 6.25% 6 10.00% 

3 5 3 5.26% 8 8.00% 

5 7 5 2.44% 24 6.35% 

7 9 7 1.41% 48 5.13% 
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Figure 5. Difference coarray weight function: M = 4, N = 5. 
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Figure 6. Difference coarray weight function: M= 4, N= 7. 
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TABLE II 
REQUIRED FREQUENCIES AND SENSOR PAIRS, M = 4, N = 7 

Frequencies Holes Sensor Pairs 

w1 = (32/33)w0 ±32d0 [16 49]d0 

w2 = (36/37)w0 ±36d0 [12 49]d0 

w3 = (39/41)w0 ±39d0 [8 49]d0 

w4 = (40/41)w0 ±40d0 [8 49]d0 

w5 = (43/4S)w0 ±43d0 [4 49]d0 

w6 = (44/4S)w0 ±44d0 [4 49]d0 

w7 = (46/49)w0 ±46d0 [O 49]d0 

w8 = (47 /49)w0 ±47d0 [O 49]d0 

w9 = (48/49)w0 ±48d0 [O 49]d0 

TABLE III 
R EQUIRED FREQUENCIES AND SENSOR PAIRS, M = 4, N = 5 

Frequencies Holes Sensor Pairs Chosen Pairs 

w1 = (24/2S)w0 ±24d0 [O 2S]d0 , [S 30]d0 , [10 3S]d0 , [O 2S]d0 

w2 = (28/30)w0 ±28d0 [O 30]d0 , [S 3S]d0 [O 30]d0 

w3 = (29/30)w0 ±29d0 [O 30]d0 , [S 3S]d0 [O 30]d0 

w4 = (32/3S)w0 ±32d0 [O 3S]d0 [O 3S]d0 

w5 = (33/3S)w0 ±33d0 [O 35]d0 [O 3S]d0 

w6 = (34/3S)w0 ±34d0 [O 35]d0 [O 3S]d0 
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TABLEIV 

PERCENTAGE OF MULTI-FREQUENCY SENSORS FOR DIFFERENT CO-PRIME PAIRS 

M N 
Multi-frequency 

sensors 

2 3 2/6 = 33.3% 

3 4 3/9 = 33.3% 

3 5 4/10 = 40.0% 

4 5 4/12 = 33.3% 

4 7 6/14 = 42.8% 

5 7 6/16 = 37.5% 

6 7 6/18 = 33.3% 
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Figure 7. MUSIC spectrum using single frequency, D = 9 sources with proportional spectra. 
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Figure 8. MUSIC spectrum using two frequencies, D = 9 sources with proportional spectra. 

70 

60 

!:O 

a 

I 30 .. 
I 20 
Q, 

10 

D 

-1 0 

-20 
-80 --60 

I I I I I I I I ~ I I I I I I 

I I I I I II 1 1111111 

I I I I I 11 11111.11 
I I I I I II 1 1111111 

~o 

I I 1 1111 111 
I I I ~ I • I I I I 
1 1 q ~. I I I 
1 1 q ~ I I I I 

-20 

II I 
II I 

" I 

' ' ' ' 

... ... .... 

... 
''' 
0 

a (degrees) 

' ' I 
I 
I 

I I 

20 ~o €0 80 

Figure 9. MUSIC spectrum with dual frequencies, D = 44 sources with proportional spectra. 

71 



60 

50 

0 

• •• 
30 

, , , , 
I I 

ffi' I 
I 

E. ' 

I 20 
0 
Q. 

10 

0 ' 

-10 

--2~ :. (:l(l -80 -60 -40 

,· ' 
I ltllf If 

I 11 lltll1iH1HH1l1H1 11 
I II j I j I t~ ! jl 1illiillill1il1l1I I 1 

i I ii I I I II 11 i ~I Ii n 111II111II111 I I II 11 11 I 
II 11 1 1111 11,1~11~11 ,uu, ............. 1 I 
II lltltl11U1l11 .. •••••••• .. ••••• .. •• 1 1 
II ll11t 411U111il1nn11111111111111 11 
11 11 I I I~~ Iii ii Ii ii 111II111II111 I I II 11 1 I 
II II i I i~~U 11111111111111111111111 11 1 I 

II II j l~411h11li1U1UU1•• .. •••••n 1• 1 1 
ii 'I I 1111•• .. ••• ................. Ufl ll 
II 1 1 Jll il1H1l1H1IIH••• .. ••••••~ fl 11 .. , .. ........................... ,.,,, ,, 
1111 II ........................ 0 •• ,, 

II U 11ll1t•• .. ••• ......... ,, •••••• Ujl jl 
., .,.,.,., ............ ,.,,,11,1,1111111 ,1 
UU 1111•• .. ••• ......... ffltlfllll ll jl jl .,.,,,,,,,, .. ,,, .. ,,,,,,,,0,,,,, 111 t11 
111,,11111U1l1H1HH1l1I •111111 111 I ~ t 1 

1nn1 1,,,11,11H1HH1MMUMhll lll j l jl 
1 •1 •~~~1•,n11111111n1•1••~• 111 11111 
In u~, 1111111111 HMMMU i • • 111 111 . ,1 

-20 0 20 40 
a (degrees! 

60 80 100 

Figure 10. MUSIC spectrum with multiple frequencies, D = 63 sources with proportional spectra. 

TABLEV 
ADDITIONAL FREQUENCIES AND CORRESPONDING HOLES, M = 5, N = 7 

Frequency Holes Frequency Holes 

W1 = (40/41)w0 ±40d0 W7 = (55/56)w0 ±55d0 

Wz - (45/46)w0 ±45d0 Wa = (57 /58)w0 ±57d0 -

W3 = (47 /48)w0 ±47d0 W9 = (59/63)w0 ±59d0 

W4 = (S0/51)w0 ±50d0 W10 = (60/63)w0 ±60d0 

W5 = (52/53)w0 ±52d0 W11 = (61/63)w0 ±61d0 

w6 = (54/56)w0 ±54d0 W12 = (62/63)w0 ±62d0 
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3.3. DOA Estimation Exploiting A Uniform Linear Array with 

Multiple Co-prime Frequencies 

Abstract 

The co-prime array, which utilizes a co-prime pair of uniform linear sub-arrays, provides a syste

matical means for sparse array construction. By choosing two co-prime integers M and N, O(M N) 

co-array elements can be formed from only O(M + N) physical sensors. As such, a higher number of 

degrees-of-freedom (DOFs) is achieved, enabling direction-of-arrival (DOA) estimation of more targets 

than the number of physical sensors. In this paper, we propose an alternative structure to implement 

co-prime arrays. A single sparse uniform linear array is used to exploit two or more continuous-wave 

signals whose frequencies satisfy a co-prime relationship. This extends the co-prime array and filtering to 

a joint spatio-spectral domain, thereby achieving high flexibility in array structure design to meet system 

complexity constraints. The DOA estimation is obtained using group sparsity-based compressive sensing 

techniques. In particular, we use the recently developed complex multitask Bayesian compressive sensing 

for group sparse signal reconstruction. The achievable number of DOFs is derived for the two-frequency 

case, and an upper bound of the available DOFs is provided for multi-frequency scenarios. Simulation 

results demonstrate the effectiveness of the proposed technique and verify the analysis results. 

I. INTRODUCTION 

An important application of array signal processing is direction-of-arrival (DOA) estimation, which 

determines the spatial spectrum of the impinging electromagnetic waves. It is well known that an N

element uniform linear array (ULA) has N - I degrees-of-freedom (DOFs), i.e., it resolves up to N - I 

sources or targets by using conventional DOA estimation methods, such as MUSIC and ESPRIT [3, 4]. 

On the other hand, a higher number of DOFs can be achieved to resolve more targets by using the same 

number of array sensors if they are sparsely placed [5, 6]. An increased number of DOFs is usually 

achieved by exploiting the extended difference co-array whose virtual sensor positions are determined by 

the lag differences between the physical sensors. 

Among a number of techniques that are available for sparse array construction, co-prime array [7] is 

considered attractive due to its capability of the systematic sparse array design. By choosing two integer 

numbers Mand N to be co-prime, O(MN) targets can be resolved with M +N - 1 physical sensors [8]. 

This co-prime array concept can be generalized by introducing an integer factor that compresses the inter

element spacing of one constituting sub-array, thereby achieving increased DOFs [9, 11]. In addition, 
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by placing the two sub-arrays co-linearly instead of co-located, the number of unique virtual sensors 

is further increased, which benefits DOA estimation based on sparse signal reconstruction techniques 

[10, 11]. 

While the co-prime array concept has been developed using physical uniform linear sub-arrays, we 

propose in this paper an effective scheme that implements co-prime array configurations using a single 

sparse ULA with two or more co-prime frequencies. As such, the ULA, whose inter-element spacing 

is respectively M1 and M2 half-wavelengths of the two respective frequencies, with M1 and M2 to be 

mutually co-prime integers, acts as virtual sub-arrays, resulting in an equivalent structure to co-prime 

arrays. In essence, the proposed approach integrates the concept of co-prime array and co-prime filter to 

reduce complexity and achieve high system performance. Unlike co-prime arrays, wherein the numbers 

of sub-array sensors and the inter-element spacings have to satisfy the co-prime relationship, only the 

frequencies are required to be co-prime in the proposed scheme. 

The proposed scheme can be adopted for both passive and active radar systems. The former requires 

filtering the signal arrivals at the employed co-prime frequencies, whereas the latter requires emitting 

those frequencies from a single antenna or a phased array and receiving the target backscattering with 

ULA. The transmitter and receiver can be located or widely separated. For active sensing, sum co-array of 

the transmit and receive arrays replaces the difference co-array of the two structures which is associated 

with receive only operations [12]. 

In this paper, we derive the analytical expression of the available number of DOFs as a function of the 

number of physical sensors, L, and the selected co-prime frequencies for the two-frequency case. The 

results resemble those derived in [9, 11] for a physical co-prime array. The key difference lies in the fact 

that, unlike the co-prime array where each sub-array uses a different number of sensors, the two virtual 

sub-arrays in the underlying structure refer to the same physical ULA and thus share the same number 

of sensors. In addition, the number of physical sensors is not tied to the co-prime frequency multipliers 

M1 and M2. The property enables a higher flexibility in array design and operation. In particular, for 

a fixed number of physical array sensors, L, we demonstrate that a high number of DOFs, proportional 

to £ 2 , can be achieved with large values of M 1 and M 2. When K mutually co-prime frequencies are 

used, each pair of these frequencies can form a virtual co-prime array as discussed above. Accordingly, 

O(K2 £ 2) DOFs can be achieved. 

It is shown that, in the proposed scheme, the self-lags in the co-array corresponding to each sub-array 

form a subset of the sub-array cross-lags. As such, the available DOFs are solely determined by the 

number of cross-lags between the two sub-arrays. Because of the frequency-dependent characteristics of 

the source, channel and target radar cross section (RCS), the received signal vectors corresponding to the 
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different frequencies have a common spatial support, i.e., DOA, but generally have distinct coefficients. 

Thus, DOA estimations become a group sparse signal reconstruction problem. In this case, the self-lags 

obtained for each sub-array can also be exploited for possible performance improvement. 

A large number of compressive sensing (CS) techniques have been proposed to deal with this problem. 

In this paper, we consider the problem under the Bayesian compressive sensing (BCS) or sparse Bayesian 

learning framework [13-17], which generally achieves a better reconstruction performance over those on 

the basis of the greedy algorithms and dynamic programming approaches, such as the orthogonal matching 

pursuit (OMP) [18] and the least absolute shrinkage and selection operator (LASSO) [19] algorithms. In 

particular, we use the complex multitask Bayesian compressive sensing (CMT-BCS) algorithm [20] to 

determine the DOAs of group sparse complex signals. This algorithm jointly treats the real and imaginary 

components of a complex value, in lieu of decomposing them into independent real and imaginary 

components. As a result, the sparsity of the estimated weight vectors can be improved, yielding better 

signal recovery. Group sparsity treatments for real and imaginary entries have been reported in, e.g., 

[21, 22]. 

The remainder of the paper is organized as follows. In Section II, we first review the co-prime array 

concept based on the difference co-array. Then, the array signal model exploiting co-prime frequencies is 

summarized in Section III. Analytical expressions of array aperture and the number of DOFs are derived 

in Section IV with respect to two and multiple co-prime frequencies. Sparsity-based DOA estimation 

exploiting the CMT-BCS is described in Section V. Simulation results are provided in Section VI to 

compare the performance of DOA estimation for different scenarios and validate the usefulness of the 

results presented in Section V. Section VII concludes this paper. 

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IN 

denotes the N x N identity matrix. (.)* implies complex conjugation, whereas (.f and (.)H respectively 

denote the transpose and conjugate transpose of a matrix or vector. vec(· ) denotes the vectorization 

operator that turns a matrix into a vector by stacking all columns on top of each other, and diag(x ) denotes 

a diagonal matrix that uses the elements of x as its diagonal elements. II· ll2 and 11 · I 11 respectively denote 

the Euclidean (l2) and l1 norms, and E(·) is the statistical expectation operator. ® denotes the Kronecker 

product, and l·J denotes the floor function and returns the largest integer not exceeding the argument. 

Pr(-) denotes the probability density function (pdf), and N (x la, b) denotes that random variable x follows 

a Gaussian distribution with mean a and variance b. Re(x) and Im(x) denote the real and imaginary parts 

of complex element x, respectively. 
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II. CO-PRIME ARRAY CONCEPT 

In this section, we first review the co-prime array configuration that achieves a higher number of DOFs 

based on the difference co-array concept. A co-prime array [7] is illustrated in Fig. 1, where M and N 

are co-prime integers, i.e., their greatest common divisor is one. Without loss of generality, we assume 

M < N. The unit inter-element spacing d is typically set to >../2, where ).. denotes the wavelength. The 

array sensors are positioned at 

lP' = {Mndl O :Sn :SN - l } U {Nmdl O :Sm :SM - l} . (1) 

Because the two sub-arrays share the first sensor at the zeroth position, the total number of sensors used 

in the co-prime array is M + N - l. Note that the minimum inter-element spacing in this co-prime array 

is d = >../2. 
Denote p = (pi, ···, PM+N- 1]T as the positions of the array sensors, where Pi E JP', i = 1, ... , M +N-1, 

and the first sensor, located at p 1 = 0, is assumed as the reference. Assume that Q uncorrelated signals 

impinging on the array from angles 8 = [01 , ... , 0Q]I', and their discretized baseband waveforms are 

expressed as sq(t) , t = 1, ... , T, for q = 1, ... , Q. Then, the data vector received at the co-prime array is 

expressed as, 
Q 

x(t) = L a(0q)sq(t) + n (t) = As(t) + n (t), (2) 
q=l 

where 

(3) 

is the steering vector of the array corresponding to 0q, A = [a (01), ... , a (0Q)], and s(t) = [s1 (t), ... , SQ(t)]I'. 

The elements of the noise vector n(t) are assumed to be independent and identically distributed (i.i.d.) 

random variables following the complex Gaussian distribution CN(O , cr;IM+N-i). 

The covariance matrix of the data vector x (t) is obtained as 

E[x(t)xH (t)] = ARssA H + a;IM+N - l 
Q 

L a;a(0q)aH (0q) + u;IM+N-1, 
q=l 

(4) 

where Rss = E[s(t)sH (t)] = diag([ar, ... , er~]) with a~ denoting the input signal power of the qth target, 

q = l , ... , Q. In practice, the covariance matrix is estimated using the T available samples, i.e., 

~ 1 ~ H 
Rxx = T L...,x(t)x (t). 

t=l 

(5) 

B_y vectorizing the matrix Rxx, we obtain the following measurement vector: 

~ - 2 • z = vec(Rxx) = Ab + uni, (6) 
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where A = [a(01), ... , a(0Q)], a(0q) = a*(0q) ® a(0q ), for 1 :S q :S Q. In addition, b = [a f, ... , a~]T 

and i = vec(IM+N-1) . Benefiting from the Vandermonde vector a(0q ), we can regard z as a received 

signal from a single snapshot b and the matrix A behaves as the manifold matrix of a larger virtual array 

which has sensors located at the lags between two sub-arrays. From a pair of antennas located at the i th 

and kth positions in p, the correlation E[xi(t)x;;(t)] yields the (i, k)th entry in Rxx with lag Pi - Pk· 

As such, all the available values of i and k, where O :S i :S M + N - 1 and O ::; k =:; M + N - 1, yield 

virtual sensors of the following difference co-array: 

Cp = {z I z = u - v , u ElP', v ElP'}. (7) 

The significance of the difference co-array is that the correlation of the received signal can be calculated 

at all lags in the set Cp. Any application which depends only on such correlation (e.g., DOA estimation) 

can exploit all the DOFs offered by the resulting co-array structure. Using a part or the entire set of 

the distinct lag entries in the set Cp , instead of the original physical array, to perform DOA estimation, 

we can increase the parameter identifiability. The maximum number of the DOFs is determined by the 

number of unique elements in the following set 

lLp = {lp I lpd E Cp} . (8) 

III. SYSTEM MODEL 

As described in the previous section, a higher number of DOFs is achieved using a co-prime array. 

Such a co-prime array structure was originally developed using two physical uniform linear sub-arrays 

with co-prime inter-element spacing [7]. In this paper, we extend that concept to a sparse ULA with 

two or multiple co-prime frequencies, offering improved capabilities and flexibilities to achieve better 

performance using a single ULA. 

Assume K continuous-wave (CW) signals with co-prime frequencies are received at an £-element ULA 

with inter-element spacing D . By co-prime frequencies, we mean that the ratio between carrier frequencies 

equals the ratio between co-prime integers. For a CW waveform with frequency fk , k = 1, .. . , K, the 

return signal from the Q far-field targets, located at DOAs 0q, q = 1, 2, · · · , Q, are expressed in a vector 

form as 
Q 

xk (t ) = exp(j21rfkt) I::Pkq(t)ak(0q) + nk(t ), k = 1, .. . ,K, (9) 
q=l 

where Pkq(t) is the complex envelop of the signal q corresponding to fk , which does not vary with the 

receive antennas, but is in general frequency-dependent due to the different propagation phase delays. 

We assume Pkq(t) to be uncorrelated for different targets over one scan due to target motion or RCS 
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fluctuations (Swerling II). In addition, ak (0q) is the steering vector corresponding to 0q for frequency fk, 

expressed as 

[ 

_·hV • (0) _.2,,(L-l)D . (0 )]T 
(0 ) 1 J >- sm • J >- sm • ak q = , e • , .. . , e k , (10) 

where >-.k = c/ f k denotes the wavelength corresponding to f k, and c is the velocity of wave propagation. 

Furthermore, iik (t) is the additive noise vector whose elements are assumed to be spatially and temporally 

white, and are independent of the target signals. 

After converting the received signal vector to baseband using the respective frequencies, followed by 

low-pass filtering, we obtain 

Q 

xk(t) = L Pkq(t)ak(0q) + nk(t) = A ksk(t) + nk(t ), k = I , ... , K , (11) 
q=l 

where Ak = [ak (01),··· ,ak(0Q)] and sk(t ) = [Pki (t), ·· ·, PkQ(t)jT . We denote the noise variance at 

the filter output as cr~ •. 

For convenience, Mk, k = I, ... , K , are denoted as mutually co-prime integers. Without loss of 

generality, we assume that they are sorted in a descending order, i.e., M1 < M2 < . . . < MK. In 

addition, we assume that D is integer multiples of the half-wavelengths of all frequencies, such that 

Mk= 2D / >-.k, k = I, ... , K. As such, the ULA is sparse (spatially undersampled) at each frequency by 

a factor of Mk. In this case and for clarity, we can rewrite the steering vectors in a frequency-independent 

form, expressed as 

(12) 

It is clear that the DOA estimation problem is similar to the co-prime arrays considered in [7, 11]. There 

are K uniform linear sub-arrays with a respective co-prime inter-element spacing. It is noted, however, 

that unlike a co-prime array, in which the numbers of sub-array sensors are different, all sub-arrays in the 

underlying virtual co-prime array structure share the same number of sensors, L. In addition, the DOA 

estimation method needs to account for the fact that signals corresponding to different virtual arrays have 

distinct phases. In the next two sections, we respectively analyze the achievable DOFs and describe group 

sparse CS-based DOA estimation technique. 

IV. ANALYSIS OF ACHIEVABLE DOFS 

Similar to the co-prime array, the parameter identifiability can be improved using correlation-aware 

techniques. In this section, we consider the virtual array constructed by exploiting multiple co-prime 

frequencies and derive the analytical expressions of the number of DOFs. 
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A. Analysis of DOFs with two co-prime frequencies 

We first consider the problem when two frequencies M1 and M2, M1 < M2, are used. As shown in 

Fig. 2, the sensors of the two equivalent sub-arrays are located at 

(13) 

where do denotes a half-wavelength unit inter-element spacing in a normalized frequency sense (i.e., 

no specific frequency is referred to), and l1 and l2 are the respective indices of the sensor positions 

of the two equivalent sub-arrays. As such, the aperture of this equivalent co-prime array structure is 

M2 (L - l )do. In addition, the two uniform linear sub-arrays in the underlying problem have the same 

L sensors, which align in the zeroth position and whenever l2/ M 2 is an integer. Therefore, there are 

2L - 1 - l(L - 1)/M2J equivalent sensors. It is noted that, when M2 < L, there are overlaps among the 

equivalent sensors, resulting in a reduced number of DOFs. Therefore, we only consider the M2 2: L 

case in the remainder of this paper. 

Because each sub-array is linear and uniformly spaced and the two sub-arrays share the first sensor 

at the zeroth position, a self-lag position of a sub-array can always be taken as the cross-lag position 

between a sensor of this sub-array and the first sensor of the other sub-array. In other words, the self

lag positions form a subset of the cross-lag positions [11). Therefore, we only consider the cross-lags 

when determining the number of DOFs. In this array configuration, the cross-lags of the two equivalent 

sub-arrays are given by the following set, 

(14) 

and the corresponding mirrored set, 

(15) 

where O ::::; li ::::; L - l and O ::::; l2 ::::; L - l. The achievable DOFs from the difference co-array is 

determined by the unique elements in the following set 

(16) 

Overall, there are 2L2 lags in the set i p, which contains both non-overlapping and overlapping lags. To 

obtain a higher number of DOFs, which is determined by the number of unique lags in the set iP, we 

can choose different pairs of M 1 and M2 to reduce the redundancies in both ic and i~, as well as the 

overlapping lags between i c and i~. 
Denote rJ as the number of unique lags in the set ip. The following proposition reveals the analytical 

relationship between rJ and different choice of M1 and M2. 
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Proposition 1: For a virtual array constructed from a ULA with inter-element spacing D using two 

co-prime frequencies with D = ½M1 >-1 = ½M2>.2, the number of unique lags is given by 

TJ = 2L2 -1 - max{0,2L-1- M2}min{M1 + 1,2L - 1 - Mi}. 

It can be expressed for three different cases: 

(a) For M2 2 2L - 1, T/ = 2£2 - 1; 

(b) For L :'.S M2 < 2L - 1 and L :'.S M1 < M2, TJ = 2L2 - 1 - (2L - 1 - M2)(2L - 1 - M 1); 

(c) For L :'.S M2 < 2L - 1 and 1 :'.S M1 < L, TJ = 2£2 - 1 - (2L - 1 - M2)(M 1 + 1). 

The proof is provided in Appendix A. 

(17) 

The number of DOFs in the co-array can be obtained as (TJ + 1) / 2 [23]. It indicates that T/ achieves 

the maximum value of 2L2 - 1 in case (a), irrespective of M1, provided that M 1 < M 2 is satisfied. In 

practice, however, a large value of M2 would increase the number of missing positions, i.e., holes in the 

difference co-array. For cases (b) and (c), T/ depends on the values of both M 1 and M2 and is maximized 

when M1 = 1 or M1 = M2 -1. The latter case yields a smaller frequency separation between Ji and h, 

whereas the former configuration represents a nested structure [24]. A nested array is usually designed 

such that the virtual sensors in the resulting co-array are all contiguous and is considered as a special 

case of the generalized co-prime array in [11]. 

For an illustrative purpose, examples for different pairs of M 1 and M2 are presented in Fig. 3 and 

Fig. 4, where the physical ULA has 4 sensors in all cases. The equivalent sensor positions are illustrated 

in Fig. 3, whereas the respective co-arrays are presented in Fig. 4. Note that the holes are indicated by 

" x " . It is clear that the difference co-arrays for all cases have more virtual sensors than the number of 

physical sensors in the original ULA. Compared to the other examples, there are more duplications in the 

M1 = 2 and M2 = 3 < L case depicted in Fig. 3(a), leading to a reduction of the DOFs in the co-array, 

as shown in Fig. 4(a). Also, there are 19 unique lags for the M 1 = 3 and L < M2 = 4 < 2L - 1 case 

in Fig. 4(b), whereas it increases to 31 in Fig. 4 (c) for M 1 = 6 and M2 = 7 2 2L - 1, due to fewer 

overlapping lags between i c and i ;;-. The nested structure with M1 = 1 and M2 = L = 4 is depicted in 

Fig. 4( d) as a special case of L :'.S M2 < 2L - 1. It is evident that, in this case, all 25 lags are contiguous. 

B. Analysis of DOFs with multiple co-prime frequencies 

When more than two mutually co-prime frequencies are used, each co-prime frequency pair forms 

a virtual co-prime array corresponding to the two frequencies. Therefore, for K mutually co-prime 

frequencies, there are (~) = K(~- l ) co-prime frequency pairs. As a consequence, the number of DOFs 

in the resulting co-array is determined by the cardinality of the unique sum set of lags obtained in each 
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co-prime frequency pair, which generally increases with the number of frequencies being used. However, 

a general expression of the DOF for different choices of the co-prime frequencies is rather complicated 

and does not necessarily provide meaningful insights. Instead, we provide the maximum number of 

achievable DOFs in the following proposition, which corresponds to the case where each pair achieves 

the maximum number of DOFs with minimum overlapping between different frequency pairs. 

Proposition 2: The maximum number of achievable unique lags of the co-array generated from the 

equivalent sub-arrays is given by 

r, = (L2 
- l)(K2 

- K ) - 2(L - l )(K 2 
- 2K) + 1. (18) 

The proof is provided in Appendix B. 

It is clear that r, ex O(K 2 £ 2), since there are O(K 2 ) frequency pairs and 0(£2 ) unique lags for 

each pair. To achieve the upper bound of DOFs, however, it requires a large separation between different 

multipliers Mk , k = l, ... , K, so that the number of overlapping lags between different frequency pairs 

is minimized. 

V. COMPRESSIVE SENSING BASED DOA ESTIMATION 

While the DOA estimation problem considered here appears to be similar to that discussed in [7, 25), 

the CS method exploited therein cannot be readily applied to the underlying problem. A major distinction 

is that the target reflection coefficients Pkq , q = l, ... , Q, differ at different frequencies k = l, .. . , K, 

due to differences in their propagation phase delays and target reflectivities. As such, the phase term of 

the cross-correlation between the received data vectors for different frequencies depends not only on the 

spatial angle, but also on the unknown phase difference in the reflection coefficients and propagation 

delays. In this section, we formulate the DOA estimation problem as a group sparsity based signal 

recovery problem. 

A. DOA estimation using only cross-lags 

As discussed earlier, a full number of unique lags is achieved in the resulting co-array by using 

the cross-lags between the sub-arrays. As such, the spatial spectra can be estimated based only on the 

cross-lag correlations without loss of DOFs. 

The cross-lag covariance matrix Rt~k) between the L x l received data vectors xi(t) and xk (t ), for 

1 ~ i =f- k ~ K, is obtained as 

Q 

Rt~k) = E [xi(t)xf! (t)] = AiR~~k) A{! = L cr~i,k)ai(0q)af! (0q ), (19) 
q=l 
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where Ri~k) = E [si(t) sf (t)] = diag([aYk), ... o-g,k)]) is the cross-correlation matrix between the 

received signals at the ith and kth frequencies . Note that o-~i,k) , q = 1, ... , Q, in general, takes a complex 

value. Vectorizing R r}) in (19), we obtain 

( 
(i,k) ) -Zik = vec Rxx = A ik b ik, i -/- k E [1, ... , K l, (20) 

where A ik = [8.ik(01), .. . , a.ik(0Q)] with a.ik(0q) = at(0q) ® ak(0q), and b ik = [o-?·k), ... , o-g,k)]r. It is 

noted that the L 2 x 1 vector zik can be sparsely represented in the spatial domain over the entire angular 

grids as 

(21) 

where A fk is defined as the collection of steering vectors a.ik over the entire possible grids 09 for 

g = 1, . .. , G, with G » Q. It is important to note that the angle positions of the signal arrivals 0q, q = 

1, ... , Q, are indicated by the non-zero entries in vector b fk• whose values describe the corresponding 

coefficients. Generally, the non-zero entries take different values with respect to different frequency pairs 

but share the same positions because they correspond to the DOAs of the same Q targets. Therefore, 

b fk exhibits a group sparsity across the K frequencies and, as such, the DOA estimation problem can 

be solved in the context of group sparse reconstruction. 

B. DOA estimation using both self- and cross-lags 

While CS-based DOA estimation can be performed based only on the cross-lag correlations without 

losing the available co-array DOFs, the utilization of both self- and cross-lags makes full use of the 

observed data and may yield performance improvement. 

The self-lag covariance matrix for the data vector x k(t), corresponding to the kth frequency for 1 :S: 

k :S: K, can be obtained as 

Q 

R ~~k) = E [x k(t)x f (t)] = A kR i!·k) A f + o-~. IL = L o-lqak(0q) af (0q) + o-~) L, (22) 
q=l 

where R i~,k) = E [sk(t)sf (t)] = diag([o-l1, ... o-lQD is the auto-covariance matrix corresponding to the 

kth frequency, and the signal power o-lq , q = 1, .. . , Q, is real and positive. Similarly, vectorizing R ~~k) 

in (22) yields an L2 x 1 vector 

Zkk = vec ( R ~~k)) = A k b k + a~) , k E [1, .. . , K l, (23) 

where A k = [ak(01), .. . , a.k(0Q)], a.k(0q ) = ak(0q) Q9 ak(0q), bk = [o-l1, ... , o-~Q]T, and i = vec(h ). 

Similarly, z kk can be sparsely represented as 

(24) 
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where Bkk = [Ak, i] and bkk = [bkkT, O"~kr. Herein, Ak is the collection of steering vectors ak(0g) 

with g = l , ... , G, and bkk is the sparse vector whose non-zero entry positions correspond to the DOAs 

of the signals. Similar to bfk in Eqn. (21), bkk also exhibits a group sparsity across the K frequencies 

and shares the same sparsity pattern with bfk· Thus, by combing the results of z ik and Zkk, both self

and cross-lag covariances can be fully utilized for possible performance improvement based on group 

sparsity. 

By using Zik, i, k E [1 , ... , K], to denote both cross-lag vector Zik, i -=/= k, and self-lag vector Z kk, the 

DOA estimation problem using both self- and cross-lag covariances can be reformulated as: 

(25) 

where each vector Zik employs its respective £2 x ( G + 1) dictionary matrix, 

i = k, 
(26) 

i -=I= k , 

and O denotes the all zero vector of £ 2 x 1. An £ 2 x 1 error vector E.ik is included in (25) to account for 

the discrepancies between the statistical expectation and the sample average in computing the covariance 

matrices Rtl), i, k = l, ... , K . The discrepancies are modelled as i.i.d. complex Gaussian as a result 

of a sufficiently large number of samples employed in the averaging. 

Note that exploiting the self-lag covariances, together with the cross-lags, requires expanding the 

dimension of the unknown sparse vector bfk by an additional element of the noise power a-~k. In this 

case, the first G elements of the obtained estimates of bfk are used to determine the DOAs, whereas the 

last element of bfk is discarded. 

A number of effective algorithms within the convex optimization and Bayesian sparse learning fra

meworks are available to solve the complex-valued group sparse reconstruction problem. In this paper, 

the CMT-BCS algorithm proposed in [20] and summarized in Section V-C is used due to its superior 

performance and robustness to dictionary coherence. 

C. CMT-BCS algorithm 

We use the CMT-BCS to determine the DOAs of the targets which are treated as group sparse complex 

observations. In this subsection, we briefly review the CMT-BCS approach based on [20]. Assume that 

the entries in the sparse vectors r ik are drawn from the product of the following zero-mean Gaussian 

distributions: 

(27) 
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where bf; is a vector consisting of the real part coefficient, bf;R , and the imagery part coefficient, bft , 
with respect to the gth grid in b fk · In addition, a = [a1, ... , acf is a vector that contains variances of 

bf;, g = I, ... , G. Note that the vector a is shared by all groups to enforce the group sparsity. It is easy 

to confirm that bf; trends to be zero when a9 is set to zero [14]. 

To encourage the sparsity of b fk, a Gamma prior is placed on a 9
1 , which is conjugate to the Gaussian 

distribution, 

a9
1

,....., Gamma(a911a,b), g E [l , ... ,G], (28) 

where Gamma(x-1 1a, b) = r (a)- 1bax-(a-l)e-~ , with r( -) denoting the Gamma function, and a and b 

are hyper-parameters. 

As the covariance matrix is estimated from the received data samples, a Gaussian prior N(O, ,B0I 2) is 

also placed on the '=- ik· Similarly, the Gamma prior is placed on ,801 with hyper-parameters c and d. 

The CMT-BCS algorithm carries out a Bayesian inference by the Gibbs samplers [20] . Once the 

parameters a and ,80 are estimated by maximizing the marginal likelihood, the joint posterior density 

function of b fk can be obtained analytically using Bayes' rule. Define bf/;1 = [(bf:)T, (bfk f r, with 

b- oR _ [bo1R bocR]T d b-or _ [boll boar ]T Th 
ik - ik , · · · , ik an ik - ik , · · · , ik · en, 

where 

z fk = [Re(zikf, lm(zikf( 

/3 - l~ ,y,T-nr 
µ ik = o ,c.,ik ~ ik z ik , 

~ ik = [,Bo 1
'1>'7k '1iik + F - 1r 1

, 

\Ji = [Re(! fk) - Im~Bfk)] , 
Im(Bfk) Re(Bfk) 

F = diag(a1, ... , ac, a1, ... , ac). 

(29) 

(30) 

(31) 

(32) 

(33) 

Note that the mean and variance of each scattering coefficients can be derived using Eqns. (30) and (31) 

when a and /Jo are given. On the other hand, the values of a and ,80 are determined by maximizing the 

logarithm of the marginal likelihood, i.e. , 

{a,,Bo} = arg max .C (a ,/Jo), 
o. ,/30 

(34) 
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where 
K 

.C ( a , f3o) = L log Pr(bf,:1 la, f3o) 
i,k= l 

1 K 
- " 1 JC I (-nr )T c -1 -nr - const - 2 ~ og ik + z ik ik z ik , (35) 

i ,k=l 

and C ik = .BoI + iJ! ik FiI!':& . A type-II maximum likelihood (ML) approximation [26] employs the 

point estimates for a and f3o to maximize Eqn. (35), which can be implemented via the expectation 

maximization (EM) algorithm to yield 

K 

(new) _ 1 " ( 2 + 2 + ~ + ~ ) [1 G] a 9 - K 2 ~ µ ik,g µ ik ,g+G L.Jik,gg L..,ik,(g+G)(g+G) , 9 E , · · · , , 
i,k=l 

(36) 

K 

.Btew) = 2dK2 L (Tr[~ ik iI! ':& iI!ik] + llzf,{ - iJ!ikµ ik ll~), 

i,k=l 

(37) 

where µ ;k ,g and µ ;k,g+G are the gth and (g + G)th elements in vector µ ik• and Bik,gg and Bik,(g+G)(g+G) 

are the (g, g) and (g + G, g + G) entries in matrix ~ ik · Because a and fJo depend on µ ik and ~ ik , 

the CMT-BCS algorithm is iterative and iterates between Eqns. (30)-(31) and Eqns. (36)-(37), until a 

convergence criterion is satisfied or the maximum number of iterations is reached. 

VI. SIMULATION R ESULTS 

In the simulations, the CMT-BCS algorithm is used to estimate the DOAs of the signal arrivals with 

hyper-parameters a = b = c = d = 0. The maximum number of iterations in the Gibbs sampling is set 

to 200, and the sampler with the maximum marginal likelihood in the last 20 samples is chosen as the 

estimate of bfk· 
We present four examples to demonstrate the effectiveness of the proposed technique. For all examples, 

Q targets, which are uniformly distributed between -60° and 60° are assumed to imping a ULA with 

L = 4. The grid interval in the angular space is set to 0.25°. In addition, the noise power at each 

frequency is assumed to be identical and the phase difference between the received signal corresponding 

to each frequency pair is independent and uniformly distributed over [O, 21r). We evaluate the performance 

through Monte Carlo simulations. The root mean-square error (RMSE) of the estimated DOA of the signal 

arrivals, expressed as 

1 1 Q A 

IQ L L (0q(i) - 0q)2 , 
i=l q=l 

RMSE = 

is used as the metric for performance evaluation with respect to the input SNR, where 0q (i) is the estimate 

of 0q for the ith Monte Carlo trial, i = 1, . .. , I. We use I = 500 independent trials in all simulations. 
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A. Example /: Achievable number of DOFs with two co-prime frequencies 

The number of achievable DOFs from the 4-element ULA with two co-prime frequencies is first 

illustrated in Fig. 5. Q = 9 targets are considered, which are much larger than the number of physical 

sensors. Two co-prime frequencies with M1 = 3 and M2 = 4 are exploited. Because the virtual sensor 

lags are obtained from the estimated covariance matrix based on the received data samples, as in Eqn. 

(5), the virtual steering matrix is sensitive to the noise contamination. To clearly demonstrate the number 

of achievable DOFs, therefore, we use 10000 noise-free snapshots to obtain a relatively clean covariance 

matrix. Fig. S(a) shows the estimated spatial spectrum from the proposed co-array, which yields a co

array with rJ = 19 virtual sensors, and the result of the conventional non-co-array scenario is depicted 

in Fig. S(b). It is clear that the co-array provides a sufficient number of DOFs to correctly identify the 

DOAs of all 9 targets, whereas the non-co-array approach fails. 

B. Example II: DOA estimation using only cross-lags vs. both self- and cross-lags 

In Figs. 6 and 7, the results obtained by using both self- and cross-lags are compared to those using 

only the cross-lags. Q = 6 targets are considered and two co-prime frequencies with M 1 = 3 and M 2 = 4 

are exploited. The RMSE with respect to the input SNR is depicted in Fig. 6, where 2000 snapshots are 

used. At a moderate or high SNR, the utilization of both self- and cross-lag covariances benefits from 

additional measurement offered by the self-lags, resulting in the improved performance than the cross

lag only scenario. In Fig. 7, such improvement is demonstrated with fewer false peaks in the estimated 

spectra, where the input SNR is 10 dB. On the other hand, in the low SNR region, as shown in Fig. 6, 

the performance of the algorithm using cross-lag covariances only is better than the results using both 

self- and cross-lag covariances. In this case, both vectors Zik and Zkk are highly perturbed by the noise. 

The inclusion of self-lag covariance matrices causes additional errors in the noise power estimation in 

(25), whereas this term does not exist in the cross-lag covariances. 

C. Example III: DOA estimation using different frequency pairs 

This example compares the DOA estimation performance when different frequency pairs are used. In 

the first frequency pair, M 1 = 3 and M2 = 4 are assumed, yielding r7 = 19 elements in the virtual 

co-array. In the second frequency pair, we assume M1 = 6 and M2 = 7, resulting in rJ = 31 virtual 

co-array lags. In Fig. 8, the RMSE performance is presented as a function of the number of targets, Q, 

where SNR is assumed to be 10 dB and 2000 snapshots are exploited. The result shows that the second 

frequency pair outperforms the first one due to its higher number of DOFs and the larger aperture. 
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D. Example N : Performance of multiple co-prime frequency cases 

To demonstrate the merits of exploiting multiple co-prime frequencies, we first consider a three 

frequency case with M1 = 5, M2 = 6 and M3 = 7. Similarly, 10000 noise-free snapshots are used 

to obtain a relatively clean covariance matrix. Fig. 9 shows the estimated spectrum for Q = 13 targets. 

Note in this case that all targets are resolved correctly due to a high number of DOFs and a small number 

of missing positions in the co-array. 

Then, the RMSE performance of the three frequency case is presented in Fig. 10 with respect to the 

input SNR, where Q = 13 and 2000 snapshots are assumed. For comparison purposes, a four frequency 

scenario with M1 = 5, M2 = 6, M3 = 7, and M4 = 11 is also considered. It is clearly shown that the 

performance is significantly improved as the number of frequencies is increased. 

VII. CONCLUSIONS 

In this paper, we developed a co-prime array implementation using a sparse uniform linear array with 

multiple co-prime frequencies. We derived the analytical expression for the number of unique lags of 

the yielding difference co-array to determine the number of detectable targets. The complex multitask 

Bayesian compressive sensing algorithm was used to exploit the group sparse direction-of-arrivals (DOAs) 

across different frequencies for effective spatial spectrum estimation. The number of detectable targets 

and the DOA performance are improved as the number of frequencies increases. The effectiveness of the 

proposed technique and analysis is verified using simulation results. 

VIII. APPENDIX 

A. Proof of Proposition 1 

Denote 'T/t and 'T/o as the total number of lags in iP and the number of overlaps between the set ic 

and i;;- , respectively. Then, the number of distinct lags in i p can be expressed as 

'T/ = 'T/t - rJo· (38) 

Both i c and i;; have L2 distinct lags due to the co-primality of M1 and M2 . It is easy to confirm 

that 

'T/t = 2L2
. (39) 

Given arbitrary lags le," = M1 lim - M2 l2m and le,, = M2 l2n - Milin in set ic and i;;, respectively, 

where the indexes 0 :S lim ::; L - 1, 0 :S l2m :S L - 1, 0 :S Zin :S L - 1 and 0 :S l2n :S L - 1. 

Had fem = fen been held, we would have M1 (lim + liJ = M2(bm + l2J. It is evident that they 
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overlap at O position provided lim = l1n = l2m = l2n = 0. When lim + l1n -/= 0, the requirement is 

equivalent to 

= (40) 

(a) When M2 2: 2£ - 1, the maximum value of lim + lin is less than M2. Since M1 and M2 are 

co-prime, it is indicated that Mi/ M2 cannot be reduced to a ratio of smaller integers. As a result, 

(40) cannot be hold. In other word, ic and i;;- only coincide at O position, i.e., 

T/o = l. (41) 

Substituting (39) and (41) into (38), we can obtain 

T/ = 2£2 - 1. (42) 

(b) When L '.S M2 < 2£ - 1, the relationship O :S l1m + lin :S 2£ - 2 < 2M2 is guaranteed. Due to the 

co-primality of M1 and M2, (40) is valid if and only if 

Since O :S lim, b m :S L - l, the requirement is equivalent to 

M1 -(L - 1) '.S l2n '.S M1 , 

M2 - (L - 1) :S lin :S M2 . 

Because O ::::; li n, l2,. ::::; L - l, we obtain the following relationship 

max{M1 - (L - 1), O} :Sl2n :S min{M1, L - 1}, 

M2 - (L - 1) ::;tin ::::; L - l, 

(43) 

(44) 

(45) 

where max{ a, b} and min{ a, b} are operators, returning maximum and minimum values between a 

and b, respectively. Since L ::; M1 < M2, Eqn. (45) becomes 

M1 - (L - 1) :S l2n :S L - 1, 

M2 - (L - 1) ::::; lin ::::; L - l. (46) 

It is indicated that 2£ - 1 - M1 and 2£ - 1 - M2 integers are in the respective range of l2n and li n. 

In addition to O position, there are (2£ - 1 - M 1)(2L - 1 - M2) combination to satisfy (40), i.e, 

T/o = (2L - l - M1)(2L - 1 - M2) + 1. (47) 
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Substituting (39) and (47) into (38), we can obtain 

rJ = 2L2 - 1 - (2L - 1 - M1)(2L - 1 - M2). (48) 

(c) When L :S M2 < 2L - 1 and 1 :S M1 < L , (45) is equivalent to 

(49) 

As such, there are (M1 + 1)(2L - 1 - M2) integers satisfying (40). Therefore, 

'f/o = (M1 + 1)(2L - 1 - M2) + 1. (50) 

Substituting (39) and (50) into (38), we can obtain 

rJ = 2L2 - 1 - (M1 + 1)(2L - 1 - M2). (51) 

B. Proof of Proposition 2 

(a) When K multiple frequencies are exploited, there are K (K - 1)/2 pairs of frequencies. As such, 

the total number of lags, rJt , which includes both unique and overlapping lags, is 

rJt = K (K - l)L2
, (52) 

as each pair has 2L2 lags. To obtain the maximum number of achievable unique lags of the co

array, we consider the case that each pair achieves its respective maximum number of unique lags, as 

described in Section IV-A, and the number of overlapping lags between different pairs is minimum. 

In this case, redundancy between different co-prime pairs happens at the following two cases: (a) 

The zeroth entry is shared by all K (K - 1)/2 pairs of co-prime frequencies with a total number 

of K (K - 1) overlapping lags, whereas the unique lag in this position is 1; (b) At all self-lag 

positions because the array sensors corresponding to each frequency are used to generate K - l 

co-prime frequency pairs. As each frequency yields 2(L- 1) non-zero self-lags in ic Ui; , there 

are K (K - 1) x 2(L - 1) total lag entries with 2K(L-1) unique lags, yielding 2K(K - 2)(L -1) 

redundancies to be discounted in computing the available unique lags. As a result, we can obtain 

the maximum number of the achievable unique lags of the co-array as 

rJ = 'TJt - 'TJo = (L2 - l )(K 2 
- K ) - 2(L - l )(K 2 

- 2K) + 1. (53) 
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Fig. 1. The coprime array configuration. 
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Fig. 2. A sparse ULA with two coprime frequencies configuration. 
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Fig. 3. Equivalent sensor positions for different M1 and M2 with L = 4 elements ULA (V: Sub-array with M1; 6.: Sub-array 
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Fig. 5. Estimated spectrum using co-array and non-co-array scenarios (M1 = 3, M2 = 4, Q = 9, and 10000 noise-free 

snapshots). 
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Fig. 7. Spatial spectra estimated using different lags (M1 = 3, M2 = 4, Q = 6, SNR=lO dB, and 2000 snapshots). 
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Fig. 9. Spatial spectra estimated for three frequency case (M1 = 5, M 2 = 6, M 3 = 7, Q = 13 and 10000 noise-free snapshots). 
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3.4. Frequency Diverse Coprime Arrays with Coprime 

Frequency Offsets for Multi-Target Localization 

Abstract 

Different from conventional phased-array radars, the frequency diverse array (FDA) radar offers 

a range-dependent beampattern capability that is attractive in various applications. The spatial and 

range resolutions of an FDA radar are fundamentally limited by the array geometry and the frequency 

offset. In this paper, we overcome this limitation by introducing a novel sparsity-based multi-target 

localization approach incorporating both coprime arrays and coprime frequency offsets. The covariance 

matrix of the received signals corresponding to all sensors and employed frequencies is formulated to 

generate a space-frequency virtual difference coarrays. By using O(M + N) antennas and O(M + N) 

frequencies, the proposed coprime arrays with coprime frequency offsets enables the localization of up 

to O(M2 N 2 ) targets with a resolution of 0(1/(M N)) in angle and range domains, where Mand N are 

coprime integers. The joint direction-of-arrival (DOA) and range estimation is cast as a two-dimensional 

sparse reconstruction problem and is solved within the Bayesian compressive sensing framework. We 

also develop a fast algorithm with a lower computational complexity based on the multitask Bayesian 

compressive sensing approach. Simulations results demonstrate the superiority of the proposed approach 

in terms of DOA-range resolution, localization accuracy, and the number of resolvable targets. 

I. INTRODUCTION 

Target localization finds a variety of applications in radar, sonar, communications, and navigation [2]

[5]. The phased array radars are known for their capability to electronically steer a beam for target 

detection and tracking in the angular domain [6]-[9]. To localize targets in both angle and range, beam

steering should be achieved across a signal bandwidth. This generally leads to a complicated waveform 

design and signal processing algorithms. Recently, the frequency diverse array (FDA) framework was 

introduced as an attractive multiple-input multiple-output (MIMO) structure that performs beam steering 

over a signal bandwidth and achieves joint estimation of targets direction-of-arrival (DOA) and range 

information [I0]-[20]. As compared with conventional arrays that assume a fixed carrier frequency, FDA 

radars use a small frequency increment across array elements and thus achieve beam steering as a function 

of the angle and range in the far field. In FDA radars, the spatial and range resolutions are fundamentally 

limited by the array aperture and maximum frequency increment. In addition, the number of degrees-of-
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freedom (DOFs) offered by the array sensors and frequency increments determines the maximum number 

of detectable targets. 

The traditional FDA exploits a uniform linear array with a uniform frequency offset. The range and 

DOA estimation problem using such FDA radar has been discussed in [21]-[23]. In [21], [22], the target 

ranges and DOAs are jointly estimated by the minimum variance distortionless response (MVDR) and 

the MUSIC methods, respectively. Unlike [21], [22], an FDA utilizing coherent double pulse respectively 

with zero and non-zero frequency increments is considered in [23], where the ranges and DOAs are 

estimated in two steps. In the zero frequency increment case, the DOAs are first estimated using a non

adaptive beamformer. The estimated DOA information is then used as the prior knowledge by adaptive 

beamforming to obtain the range information in the other pulse. It is important to note that the above 

methods [21]-[23] use the traditional FDA radar and are discussed in the physical sensor framework 

rather than the virtual difference coarray. That is, for an array with Nt sensors, there are only O (Nt) 

DOFs with a resolution 0 (1/Nt) in both the range and angle domains. While the angular and range 

resolutions can be improved by exploiting a large interelement spacing and a large frequency increment, 

such structure generally requires a large number of array sensors, or otherwise yields undesirable aliasing 

problems, i.e., causes ambiguous estimations in angular and range dimensions. 

Compared with uniform linear arrays (ULAs), sparse arrays use the same number of sensors to 

achieve a larger array aperture. A properly designed non-uniform array can achieve a desired trade-off 

between meanbeam width and sidelobe levels and, thereby, provide enhanced performance in terms of 

DOA accuracy and resolution. These attributes are achieved without changes in size, weight, power 

consumption, or cost. More importantly, sparse arrays offer a higher number of DOFs through the 

exploitation of the coarray concept [24] and, as such, significantly increases the number of detectable 

targets. Likewise, non-uniform frequency offsets can be used to achieve improved target identifiability 

and resolution in the range dimension [25]. Among different techniques that are available for sparse signal 

structures and array aperture synthesis, the recent proposed nested [26] and coprime configurations [27] 

offer systematical design capability and DOF analysis involving sensors, samples, or frequencies [28]

[ 4 l ]. 

In [42], a nested array is employed to generate a coarray where the MUSIC algorithm together with 

spatial smoothing is applied. As a result, the number of the DOFs in the angular domain is increased 

to O (Nf ). In [43], a sparsity-based method using the nested array is proposed. It achieves improved 

resolution and estimation accuracy when compared with the conventional covariance based methods. 

However, the number of the DOFs in the range domain is still O (N t) since a uniform frequency offset 

is used. In addition, due to the large dimension of the joint range and angle dictionary, this method 
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results in a prohibitive computational complexity that limits its practical applicability, particularly when 

the number of antennas is large. 

In this paper, we propose a novel configuration for the FDA radar, which incorporates both coprime 

array structure and coprime frequency offsets. In the proposed approach, the offsets of carrier frequencies 

assume a coprime relationship to further increase the number of DOFs beyond that achieved by only 

implementing the sparse arrays with uniform frequency increments. As a result, by using O(Nt) antennas 

and O(Nt) frequencies, the proposed approach achieves O(Nf) DOFs with a resolution of 0(1/Nf) in 

both angular and range domains. 

In this paper, we consider point-like targets and we exploit their sparsity in both range and angular 

domains. We propose both joint and sequential estimation methods based on the space-frequency coarray 

structure. For the joint estimation, the covariance matrix of the received signals corresponding to all 

sensors and employed frequencies is formulated to generate a virtual difference coarray structure in 

the joint space-frequency domain. Then, a joint-variable sparse reconstruction problem in the range 

and angular domain is presented as a single measurement vector (SMV) model. We further develop a 

novel sequential two-step algorithm in the context of group sparsity for reduced complexity. The cross

covariance matrices between the signals received at all sensors corresponding to different frequency pairs 

form space-only coarrays. Observations in these coarrays exhibit a group sparsity across all frequency 

pairs, since their sparse angular domain vectors share the same non-zero entry positions associated with 

the same target DOAs. Therefore, the DOAs can be first solved under a multiple measurement vector 

(MMV) model. The values of nonzero entries contain the range information, and their estimates across 

all frequency pairs are utilized to formulate a sparse reconstruction model with respect to the range. In 

so doing, the joint DOA and range estimation problem is recast as two sequential one-dimensional (1-D) 

estimation problems with a significantly reduced computational complexity. 

The above sparse learning problems can be solved within the compressive sensing (CS) framework 

[44] and various CS methods can be used for this purpose. As a preferred approach, we exploit the 

algorithms developed in the sparse Bayesian learning context as they achieve superior performance and 

are insensitive to the coherence of dictionary entries [45)-[51]. In particular, the complex multitask 

Bayesian compressive sensing (BCS) method [45), which effectively handles complex-value observations 

in the underlying problem, is used in this paper. 

The main contribution of this work is threefold: (a) We achieve a significantly increased number of 

DOFs and improve both angular and range resolutions by exploiting both coprime array and coprime 

frequency offsets under the coarray and frequency difference equivalence. (b) We employ a sparsity-based 

method to solve the joint DOA and range estimation problem which, when compared to conventional 
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MUSIC-based approach, enables more effective utilization of the available coarray aperture and frequency 

differences to resolve a higher number of targets and improve the localization accuracy. (c) We further 

develop a group-sparsity based algorithm which, by casting the joint DOA and range estimation as two 

sequential 1-D estimation problems, significantly reduces the computational complexity and processing 

time. 

The rest of the paper is organized as follows. In Section II, the signal model of the traditional FDA 

radar is described. In Section III, we present a new FDA structure using coprime arrays and coprime 

frequency offsets. By effectively utilizing the available coarray aperture and frequency differences, two 

sparsity-based multi-target localization methods are proposed in Sections IV and V that resolve a higher 

number of targets and improve the localization accuracy. More specifically, in Section IV, the DOA and 

range are jointly estimated by a two-dimensional (2-D) sparse reconstruction algorithm, whereas a low

complexity algorithm through sequential 1-D sparse reconstruction is presented in Section V. Simulation 

results are provided in Section VI to numerically compare the localization performance of the proposed 

approach with other methods in terms of the number of resolvable targets, DOA-range resolution, and 

localization accuracy. Such results reaffirm and demonstrate the effectiveness of the proposed approach. 

Section VII concludes the paper. 

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IN 

denotes the N x N identity matrix. (.) * implies complex conjugation, whereas (.f and (.) H respectively 

denote the transpose and conjugate transpose of a matrix or vector. vec(-) denotes the vectorization 

operator that turns a matrix into a vector by stacking all columns on top of the another, and diag(x ) 

denotes a diagonal matrix that uses the elements of x as its diagonal elements. E( ·) is the statistical 

expectation operator and 0 denotes the Kronecker product. Pr ( ·) denotes the probability density function 

(pdt), and N (xla, b) denotes that random variable x follows a Gaussian distribution with mean a and 

variance b. Similarly, CN(a, b) denotes joint complex Gaussian distribution with mean a and variance b. 

r ( ·) is the Gamma function operator. 6q ,p is a delta function that returns the value of 1 when p = q and 0 

otherwise. N and N+ respectively denote the set of non-negative integers and positive integers, whereas 

JR+ denotes the set of positive real numbers. I · I denotes the determinant operation, whereas II · 11 2 and 

II · IIF represent the Euclidean (l2) norm and Frobenious norm, respectively. Tr(A ) returns the trace of 

matrix A. 

II. FREQUENCY DIVERSE ARRAY RADAR 

Without loss of generality, we limit our discussion to far-field targets in the 2-D space where the DOA 

is described by the azimuth angle only. Extension to three-dimensional (3-D) space is straightforward. 
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Fig. I. The FDA configuration. 

A. Signal Model 

As shown in Fig. 1, an FDA radar utilizes a linear array with Nt antennas. Note that the array spacing 

can be either uniform or non-uniform. Denote p = [p1d, ···,PN,d]T as the positions of the array sensors 

where Pk E N, k = I , ... , Nt. The first sensor, located at Pl = 0, is used as the reference. To avoid spatial 

ambiguity, dis typically taken as half wavelength, i.e., d = >..o/2 = c/(2J0), where c is the velocity of 

electromagnetic wave propagation and Jo is the base carrier frequency. Different from the conventional 

phased-array radar where all antennas transmit the same signal with carrier frequency Jo, each FDA 

element radiates a signal with an incremental carrier frequency. That is, a continuous-wave (CW) signal 

transmitted from the kth element is expressed as 

(1) 

where Ak is the amplitude and the radiation frequency Jk = Jo + (k.6..J is exploited with a unit frequency 

increment .6..J, and (k E N is an integer coefficient of the frequency offset applied at the kth element, 

k = I, ... , Nt . The maximum increment is assumed to satisfy (N,.6..J « Jo so as to guarantee that the 

FDA radar works in a narrowband platform. Also, the frequency offsets are not necessary uniform. 

An important objective of this paper is to improve the parameter identifiability using the FDA radar. 

Since the targets in different bins can be simple identified, we consider a scene with Q far-field targets 

within the same Doppler bin. Without loss of generality, the Doppler frequency is assumed to be 0. The 

locations of the targets are modeled as (0q, Rq), q = I, 2, · · · , Q. Then, the received signal at the lth 

sensor is modeled as 

+ n1(t), l = l, .. . , Nt, (2) 

where pq(t) , q = I , .. . , Q, are complex scattering coefficients of the targets, which are assumed to be 

uncorrelated zero-mean random variables with E[p;pp] = a-:&q,p, I ::; q,p::; Q, due to, e.g., the radar 
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cross section (RCS) fluctuations. In addition, >.k = c/ fk denotes the wavelength corresponding to carrier 

frequency fk. Furthermore, nz(t) is the additive noise, which is assumed to be spatially and temporally 

white, and is independent of target signals. 

By implementing the pass-band filtering, the received signal is converted to the signals corresponding 

to the respective frequencies. For a CW waveform with frequency fk transmitted from the kth sensor, 

the baseband signal received at the lth sensor can be expressed as 

Q 
. .,.. R . 2"P1d . (0 ) 

Xk,z(t) = L pq (t )e -J ,:;;- • e -J "k sm • + nk,z(t) 
q= l 

Q 
"'"' - -~R -j"P1UoH1;Afl sin(0) = L....t pq (t )e 1 

c •e Jo • + nk,z(t) , (3) 
q=l 

where nk,z(t ) is the noise at the filter output with a variance a;. Because (k tl f « Jo , the above expression 

can be simplified as 
Q 

Xk,z(t) = L pq(t )e- j~R.e-frrp1 sin(B.) + nk,1(t ). 
q=l 

Stacking xk,z(t) for all k,l = l , ... ,Nt yields an Nl x 1 vector, 

Q 

x (t) = L pq(t)ap,1(0q , Rq) + n (t) 
q= l 

= A p,J<l (t ) + n (t) , 

(4) 

(5) 

where ap,1(0q , Rq) = ap(0q ) @ a1(Rq) represents the steering vector associated with the angle-range 

pair (0q , Rq)- Herein, ap(0q) and a1(Rq) are steering vectors corresponding to 0q and Rq, respectively, 

expressed as 

(6) 

(7) 

In addition, A p,J = [ap,1(01 ), · · · , ap,1 (0Q)], d (t) = [P1 (t) , · · · ,PQ(t)f, and nk(t ) is the noise vector 

following the joint complex Gaussian distribution CN (O, a; IN;' ). 

The Nl x Nl covariance matrix of data vector x (t) is obtained as 

Rx = E[x(t)x H (t)] = A p,JR<ldA;!,f + a~IN; 

Q 

= L a~ ap,1 (0q, Rq)a;!,1(0q , Rq) + a~IN;, 
q= l 

(8) 

where Rdd = E[d (t)dH (t)] = diag( [a? , . . . , a~]) represents the target scattering power. Note that we 

assume the target scattering coefficients to be frequency-independent for the emitting signals since the 
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frequency offsets are relatively small. In practice, the covariance matrix is estimated using T available 

samples, i.e., 
T 

A 1 "'°' H Rx = T ~ x (t )x (t). (9) 
t=l 

Existing covariance matrix based techniques can then be applied to estimate the DOA and range of 

the targets, e.g., the Fourier-based power spectrum density (PSD) [52) and 2-D MUSIC [53]. 

B. Unambiguous Range 

For each target, the DOA and range information are respectively determined by ¢0. and ¢R., which 

are defined as the minimum phase difference in angle and range dimensions, respectively, i.e., the phase 

terms of e-j1l"sin(B.) and e-i411" t:..JR./c. In reality, however, phase observations are wrapped within [-1r, 1r ). 

Therefore, the true phase can be expressed as 

¢~:rue) = ¢0
0 
+ 2mo. 7r, (10) 

,i_(true) ,i_ 2 'YR = 'YR + ffiR 7r , q q q 
(11) 

where mo. and mR. are unknown integers. As a result, the range estimate is subject to range ambiguity 

[54), i.e., 
ccp R. cm R. 

R q = 41r flf + 2/lf . (12) 

The latter term in (12) implies ambiguity in range due to phase wrapping. Thus, the range can be assumed 

as infinite values separated by Rma:x = c/(2/lf) , which is referred to as the maximum unambiguous 

range. Therefore, the use of a large value of flf will reduce the maximum unambiguous range. As a 

large frequency bandwidth is required to achieve proper range resolution, uniform frequency offsets must 

trade off between the range resolution and unambiguous range estimation. On other other hand, coprime 

frequency offsets allows the use of small flf while collectively spanning a large signal bandwidth. 

III. FREQUENCY DIVERSE C0PRIME ARRAYS WITH C0PRIME FREQUENCY OFFSETS 

For the traditional FDA radar with Mt-element ULA and uniform frequency increment, it can localize 

up to Nl- l targets, with a resolution 0 (1/Nt) in the angle and range domains, respectively. Compared 

with the uniform case, sparse arrays and sparse frequency offsets use the same number of sensors and 

frequencies to achieve a larger array aperture and frequency bandwidth. As a result, they improve the 

resolution and estimation accuracy. However, the number of resolvable targets using sparse arrays and 

sparse frequency offsets is still upper bounded by Nl - l, if those covariance matrix based approaches 

are used directly. Such the limitation can be overcome by the improvement of DOFs under the coarray 

equivalence. 
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A. Coarray Equivalence 

By vectorizing the matrix Rx, we obtain the following Nf x 1 virtual measurement vector: 

- 2-:-
z = vec(Rx) = A p,Jhp,J + O"nl, (13) 

with 

A pJ = [ap.J(01, R1), · · · , a.pJ(0Q, RQ)], (14) 

bp,J = [ai, · .. , a-iir, (15) 

i = vec (INf) , (16) 

where 

a.p,1(0q , Rq) = a;,J(0q, Rq) 181 ap,1(0q, Rq) 

= a;(0q) 181 aj(Rq) 181 ap(0q) 181 a1(Rq) 

= (a;(0q) 181 ap(0q)) 181 (a j(Rq) 181 a1 (Rq)) 

= iip(0q) 181 a.1(Rq) (17) 

for 1 :::; q :::; Q. Benefiting from the Vandermonde structure of ap (0q) and a1(Rq), the entries in a.p(0q) 

and a.1(Rq) are still in the forms of e-j1r(p,-p;)sin(Bq) and e-i41r(f,,- f,;)t::,.fRq/c, for i,j = 1, · · · , Nt. As 

such, we can regard z as a received signal vector from a single-snapshot signal vector b p,f, and the 

matrix A p,J corresponds to the virtual array sensors and virtual frequency offsets which are respectively 

located at the sensor-lags between all sensor pairs and frequency-offsets between all frequency pairs. 

The targets can thus be localized by using the space-frequency coarray, in lieu of the original antennas 

and frequencies. Note that the number of elements in the space-frequency coarray structure are directly 

determined by the distinct values of (Pi - Pi) and (( i - (j) for i , j = 1, · · · , Nt. Non-uniform arrays can 

substantially increase the number of DOFs by reducing the number of redundant elements in the coarray. 

In other words, the number of DOFs would be reduced if different pairs of sensors or frequency offsets 

yield same lags when the uniform arrays are exploited. 

B. Coprime Arrays with Coprime Frequency Offsets 

Among the different choices that are available for sparse array and frequency offset designs, the recently 

proposed coprime configurations [27] offer a systematical design capability and DOF analysis involving 

sensors, samples, or frequencies. In this paper, we use the extended coprime structure which is proposed 
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in [55] as an example. Extensions to other generalized coprime structures that achieve higher DOFs are 

straightforward [34]. 

As shown in Fig. 2, the extended coprime array structure utilizes a coprime pair of uniform integers. 

The coprime array consists of a 2M -sensor uniform linear subsarray with an interelement spacing of N , 

and an N-sensor uniform linear subarray with an interelement spacing of M. The two integers M and 

N are chosen to be coprime, i.e., their greatest common divisor is one. In addition, M < N is assumed. 

Define 

II1'(M,N) = {MnlO :S n :S N - 1} LJ{NmiO :S m :S 2M - 1} (18) 

as the union of two sparsely sampled integer subsets with respect to the pair of coprime integers (M , N ). 

As such, the yielding correlation terms have the positions 

lL(M,N) = {±(Mn - Nm )IO :S m :S 2M - 1,0 :S n :S N - 1}. (19) 

An example is illustrated in Fig. 3, where M = 2 and N = 3. Fig. 3(a) shows the physical elements 

of extended coprime structure, and the positions of the corresponding correlation terms are depicted in 

Fig. 3(b). Notice that "holes", e.g., ±8 in this case, still exist in the virtual domain and are indicated by 

x in the figure. It is proved in [56] that lL(M,N) can achieve at least MN (up to (3MN +M - N +1)/2) 

DOFs with only 2M + N - l (two subsets share the first element) entries in II1'(M,N)· 

When coprime arrays and coprime frequency offsets with pairs of coprime integers (M, N) is exploited, 

there are at least MN available DOFs in each ap(0q) and a1 (Rq). That is, the resulting virtual array 

elements and virtual frequency offsets enable estimation of at least MN distinct DOAs and MN distinct 

ranges of targets. Benefitting from the sparse structure, the proposed coprime array with coprime frequency 

offsets offers a larger aperture and frequency span, thus resulting in an improved resolution in both angular 

and range domains. Further, it has less redundant entries in the covariance matrix Rx, implying that the 

N 
----&------ ----~ ----- ------ 0 ----------------------------------------o---------

#0 #1 #2 • • • • • • #2M-1 

M 
----<5 ----------<1>-----------0 --- ---------- ------------0 ------- ------------------ ---

#0 #1 #2 ••• #N-1 

Fig. 2. The extended coprime structure. 
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X . . . . . X 
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(b) 

Fig. 3. An example for the extended coprime structure. (a) The physical elements in lP'(M,N) (L:!.: Subset 1; V: Subset 2); (b) 

The corresponding correlation term positions in lL(M,N) · 

resulting coarray structure and frequency lag sets provide a higher number of DOFs that can be used to 

identify more targets using the CS based methods. 

The localization problem in (13) is similar to handling multiple targets that are fully coherent. In 

this case, the covariance matrix constructed from the virtual signal vector is rank-1 and, as a result, 

subspace-based localization approaches fail to function. A well-known approach that restores the rank 

of the covariance matrix is spatial smoothing [57], [58]. A major disadvantage of such approach is 

that only consecutive lags in the virtual observations can be used so that every subarray has a similar 

manifold (e.g., [-7, 7] in Fig. 3(b)), whereas the virtual sensors that are separated by any holes have 

to be discarded. Alternatively, this problem can be solved by using sparse reconstruction methods (e.g., 

[34], [59]) which, by taking advantages of the fact that the targets are sparse in the angle-range domain, 

utilize all consecutive and non-consecutive lags (e.g., ±9 and [- 7, 7] in Fig. 3(b)) in the coarray so as 

to fully utilize the available DOFs offered by the coarray configurations. 

Provided that sufficient snapshots are available for reliable covariance matrix estimation, at least 

O(M N) targets (no same DOA and no same range), up to O(M2 N 2) targets (each of MN DOAs has 

MN distinct ranges), can thus be localized by using Nt = 2M + N - 1 antennas and Nt = 2M + N - 1 

frequencies. For a given number of Nt, the maximum number of DOFs can be further optimized by 

Maximize M 2 N 2 

subject to 2M + N - 1 = Nt, (20) 

M < N , M,N E N+. 

It is demonstrated in [31] that the valid optimal coprime pair to maximize MN is the one that has 

2M and N as close as possible. This is satisfied by choosing N = 2M - 1. In this case, more than 
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[Nl(Nt + 2)2] / 64 DOFs can be obtained. Therefore, the frequency diverse coprime arrays with coprime 

frequencies can resolve more targets than that of conventional FDA with ULA and uniform frequency 

increment (i.e., N; - 1) when Nt ~ 6, as shown in Fig. 4. 

IV. TARGET LOCALIZATION USING MULTITASK BCS 

In the following, we perform multi-target localization in the sparse reconstruction framework. The 

general focus of proposed methods is to resolve a higher number of targets and improve the localization 

accuracy by fully utilizing all the virtual observations achieved from lags in both sensor positions and 

frequencies. For the simplicity and clarity of the presentation, we assume the targets to be placed on 

a pre-defined grid. Direct application of the proposed method in the presence of dictionary mismatch 

would yield performance degradation. However, various techniques, such as those cited in [32], [33], 

[60], [61], can be used to overcome this problem by exploring the joint sparsity between signals and the 

grid mismatch variables. 

The virtual signal vector z in (13) can be sparsely represented over the entire discretized angular grids 

as 

z = 4>b + €, (21) 

where 4> = [ <I> s, i] . Herein, <I> s is defined as the collection of steering vectors ap,1 ( 0 91 , R92 ) over all 

possible grids 091 and R92 , 91 = l , ... , G1 , g2 = l , ... , G2, with G = G1G2 » Nf > Q, and h s is 
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the sparse vector whose non-zero entry positions correspond to the DOAs and ranges of the targets, i.e., 

(0q, Rq ), q = 1, ... , Q. The term i in the dictionary accounts for noise variance terms that have unequal 

values in the vectorized entries. In addition, an error vector E is included to represent the discrepancies 

between the statistical expectation and the sample average in computing the covariance matrix R. The 

discrepancies are modelled as i.i.d. complex Gaussian as a result of a sufficiently large number of samples 

employed in the averaging. 

In this paper, we elect to perform the sparse signal reconstruction within the BCS framework [45]

[51] stemming from their superior performance and robustness to dictionary coherence. In particular, the 

complex multitask BCS approach developed in [45] is used to deal with all the sparse reconstruction 

problems. Thus, the following sparse Bayesian model is presented as an MMV model with P tasks 

(measurements), whereas the SMV problem in (21) can be considered as a special case with a single 

task, i.e., P = 1. 

A. Sparse Bayesian Formulation 

The MMV model is expressed as 

Z = <I>B , (22) 

where Z = [z1 , · · · , zp] and B = [b1 , · · · , bpj. The matrix Bis jointly sparse (or row sparse), i.e., all 

columns of B are spares and share the same support. 

Assume that the entries in jointly sparse matrix B are drawn from the product of the following zero

mean complex Gaussian distributions: 
p 

Pr(Blo) = IT CN(bplO, A), (23) 
p=l 

where a = [ o:1 , ... , o:a jT and A = diag( a ). It is noted that the gth row of B trends to be zero when 

o:9 , g = 1, · · · , G is set to zero [46]. In addition, a is placed on a complex variable directly. As such, 

it achieves improved sparse signal reconstruction because by utilizing the group sparsity of the real 

and imaginary components than the methods that simply decomposing them into independent real and 

imaginary components. 

To encourage the sparsity, a Gamma prior is placed on o:9 , which is conjugate to the Gaussian 

distribution, 

O'.g rv r( O'.g I 1, p), g E [l, · · · , Gj, (24) 
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where p E JR+ is a fixed priori. It has been demonstrated in [62) that a proper choice of p encourages a 

sparse representation for the coefficients. Then, we have 

G 

Pr(o:ia, b) = II r(a9 ll, p). (25) 
g=l 

All columns of B share the same prior due to the group sparse property. Base on [63), both of the real 

and image parts of hp, p = l , · · · , P, are Laplace distributed and share the same pdf that is strongly 

peaked at the origin. As such, this two-stage hierarchical prior is a sparse prior that favors most rows of 

B being zeros. 

A Gaussian prior CN(0, ,80
1 l2) is also placed on the error vector E. Then, we have, 

p 

Pr(ZIB , /3o) = II CN(zpj «I>bp, /30
11), 

p=l 

Likewise, the Gamma prior is placed on ,Bo with hyper-parameters c and d, expressed as 

Pr (,Bolc, d) = r(,BO
1 jc, d), 

where Gamma(/3O
1ja, b) = r(a)- 1ba,e0(a-l) e-fo-. 

By combining the stages of the hierarchical Bayesian model, the joint pdf becomes 

Pr(Z, B , o: , /3o) = Pr(ZIB , ,Bo)Pr(Bjo:)Pr(o:jl , p)Pr(,Bolc, d). 

To make this Gamma prior non-information, we set c = d = 0 in this paper as in [46)-(51). 

B. Bayesian Inference 

(26) 

(27) 

(28) 

Assuming o: and ,80 are known, given the measurement Z and the corresponding dictionary «I>, the 

posterior for B can be obtained analytically using Bayes's rule, expressed as a Gaussian distribution with 

mean µ and variance :E · 
p 

Pr(B IZ, a , ,Bo) = IT CN(bpjµp , :E), 
p=l 

where 

µ P = ,8O1 :Eq,Hzp, 

:E = [/3ol q,H cl> + F -1 rl . 

(29) 

(30) 

(31) 

The associated learning problem, in the context of relevance vector machine (RVM), thus becomes the 

search for the o: and ,80 . In RVM, the values of o: and ,80 are estimated from the data by performing a 
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type-II maximum likelihood (ML) procedure [62]. Specially, by marginalizing over the B, the marginal 

likelihood for o: and (30 , or equivalently, its logarithm £ ( o: , (30 ) can be expressed analytically as 

with 

p 

£ ( o: , f3o) = L log Pr(bpl o: , f3o) 
p=l 

p 

= L log j Pr(zpl bp, f3o) Pr(bpl o: )dbp 
p=l 

l P 
= const - 2 L log ICI + (zp)H c-1zp 

p=l 

C = (301 + 4>F4>H. 

(32) 

(33) 

Denote U = [µ 1, · · · , µp] = (30
1:Eq,Hz, B = B/ll, Z, = Z/ \!P, U = U /ll, and E.. = p/ P . An 

ML approximation employs the point estimates for o: and (30 to maximize (32), which can be implemented 

via the expectation maximization (EM) algorithm to yield 

· fi + 4p(ll µ 9 II~ + I:g,g) - 1 
(new)_ V - - g E [1,··· ,G], 

O'.g - 2E._ ' (34) 

(3(new) - E{ IIZ. - 4>J!II}} 
o - N;p ' (35) 

where !:!:..9 is the gth row of matrix U and I:9 ,9 is the (g, g) th entry of matrix :E. In addition, N ;p is the 

number of rows of 4>. 

It is noted that, because o: (new) and f3tew) are a function of µ P and :E, while µ P and :E are a function 

of o: and f3o , this suggests an iterative algorithm that iterates between (30)- (31) and (34)-(35), until a 

convergence criterion is satisfied or the maximum number of iterations is reached. In each iteration, the 

computational complexity is O (max(N;pG2 ,N;pGP)) with an N;p x G dictionary 4> [48] . 

C. Complexity Analysis 

For the case of 2-D BCS, the corresponding joint angle-range of targets, (0q, Rq) , q = l , · · · , Q, can 

be estimated by positions of the nonzero entries in b in (21). In the sequel, we analyze its computational 

complexity, which can be divided into the following three stages: 

SJ: Compute the Nl x Nl covariance matrix Rx with (9). 

S2: Generate the Nl x 1 virtual array data z with (13) by vectorizing the covariance matrix. 

SJ: Perform target localization to obtain (0q, Rq ), q = l ,. · · , Q using (30)- (31) and (34)- (35), based 

on the BCS (P = 1) with an Nl x G1 G2 dictionary. 
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In SJ, there are O(NfT) complex multiplications, whereas no multiplication operation is needed for 

vectorization in S2. For the BCS, we might need O(K,NfGtG~) complex multiplication operations, where 

K, is the number of iterations. Therefore, the total computational load, i.e., O(NfT + K,Nt4GrG~), is very 

huge because the exhaustive 2-D searching process, which motivates the development of fast algorithms. 

V. A FAST ALGORITHM FOR TARGET LOCALIZATION 

In this section, we develop an algorithm based on the multitask BCS, wherein the 2-D sparse recon

struction problem is cast as separate 1-D sparse reconstruction problems. Therefore, the computational 

complexity can be reduced. 

Stacking Xk,z(t) for all l = 1, .. . , Nt yields the following Nt x 1 vector, 

Q 

xk (t) = LPq(t)e-i~R•ap(0q) + nk(t). 
q=l 

(36) 

As such, the vector xk(t) behaves as the received signal of the array, corresponding to the frequency fk, 

k = 1, · · · ,Nt. 

The cross-covariance matrix between data vectors xk (t) and x k,(t) , respectively corresponding to 

frequencies fk and fk,, 1 ~ k, k' ~ Nt, is obtained as 

Q 
H 2 - j 4 w"- 'R-. ff Rxu, = E[x,.(t) k• ( ) ] = <1qe " ap(Oq ) (0q), (37) 

q=l 

where 6.fkk, = !k - fk , = (fa - ~k' )6.f. Note that the dimension of Rxkk, is reduced to Nt x Nt, 

compared to the Nl x Nl matrix Rx in (8). In practice, the cross-covariance matrix is estimated by 

using T available samples, i.e., 

T 
A 1"' H , Rxkk, = TL,_.;xk(t)xk,(t),1 ~ k,k ~ Nt. 

t=l 

Vectorizing this matrix yields the following Nl x 1 vector 

where 

2 ·4 wt../ ' R ~R T 
b/u i = [0-1 - J " • .... , UQ -J c QJ . 

Similarly, (39) can be sparsely represented over the entire angular grids as 
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(40) 
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where the Nl x G1 dictionary <I> is defined as the collection of steering vectors iip(09 ) over all possible 

grids 09,, 91 = 1, ... , G1, with G1 » Q. As such, the DOAs 0q, q = l , · · · , Q, are indicated by 

the nonzero entries in the sparse vector bkk' , whose values describe the corresponding coefficients 
. 4rc(sk - '•' ) Ll.f R a;e-1 c •. Note that the nonzero entries corresponding to different frequency pairs share the 

same positions as they are associated with the same DOAs of the Q targets. However, their values differ 

for each frequency pair. Therefore, Zkk' exhibits a group sparsity across all frequency pairs and the 

problem described in (42) can be solved in the MMV sparse reconstruction context. 

Denote Z = [z1, · · · , zp] as the collection of vectors Zkk' , corresponding to all P = Nl frequency 

pairs. Then, the MMV sparse reconstruction problem is expressed as 

z = <I>B, (43) 

where B = [b1, · · · , hp] is the sparse matrix that can be reconstructed by the multitask BCS. 

Denote Q as the number of distinct DOAs of Q targets, the nq, as the index of those nonzero positions 

in B corresponding to 0q, q = l, · · · , Q. In addition, the P x 1 vector bnq is denoted as the nqth column 

of :sr. Then, the range can be estimated by solving the following sparse reconstruction problem: 

bnii = 'i!Rn,p if. = 1, · · · , Q, (44) 

where 'I! is the Nf x G2 dictionary, whose 92th column, 92 = 1, ... , G2, is 

[ 
_ . .,..(ek-e.,l R ]T w g

2 
= 1, • • • le J C 92 l • • • l 1 ) (45) 

with 1 :S k, k' :S Nt. Then, the range on 0q, q = l, · · · , Q can be indicated by positions of nonzero 

entries in sparse vector Rnii . 

As a summary, the proposed approach can be divided into the following four stages: 

SJ: Compute all Nt x Nt covariance matrix Rxkk' using (38), 1 :S k, k' :S Nt. 

S2: Generate all the Nl x 1 virtual array data Z kk' with (39) by vectorizing the covariance matrix, 

1 :S k , k' :S Nt. 

SJ: Perform DOA estimation of the targets, based on the multitask sparse reconstruction (P = Nl) 

model in (43) with an Nl x G1 dictionary. 

S4: Perform range estimation of the targets, based on the sparse reconstruction model in (44) with an 

Nl x G2 dictionary. 

In SJ, there are O(NfT) multiplication operations. The complexity in SJ and S4 is O(K,1N;Gi) and 

O(K,2NlG~). respectively, where K,1 and K,2 are the corresponding number of iterations. Thus, the total 

computation load is O (NfT + K,1 NlGf + K,2QNfGD, which is much lower than O(NfT+ K,NfGfG~) 

in Section IV. 
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Remarks: The following observations can be made regarding the relationship between the joint and 

the two-step estimation methods: 

(1) Both estimation methods achieve the same number of DOFs from the coarray; 

(2) The two-step estimation method requires a significantly reduced complexity. However, the corre

sponding performance becomes sub-optimal due to error propagation. i.e., errors in the DOA estimation 

stage may yield additional perturbations in the range estimation. 

VI. SIMULATION RESULTS 

For illustrative purposes, we consider an FDA radar exploiting coprime array and coprime frequency 

offset, where M = 2 and N = 3 are assumed. The extended coprime structure consist of N t = (2M + 
N - 1) = 6 physical elements, and has (3MN + M - N + 1)/2 = 9 DOFs in the virtual domain. As 

such, the increased number of DOFs enables to localize more than M 2 N 2 = 36 targets with only 6 

antennas exploiting 6 frequencies. 

The unit interelement spacing is d = >.o/2, where >-o is the wavelength with respect to the carrier 

frequency f o = 1 GHz. We choose the unit frequency increment to be D..f = 30 KHz, resulting maximum 

unambiguous range Rmax = c/ (2D..f) = 5000 m. In all simulations, Q far-field targets with identical 

target scattering powers are considered. The qth target is assumed to be on angle-range plane (0q, Rq) , 

where 0q E [-60°, 60°] and Rq E [1000, 5000] m, for q = 1, · · · , Q. The localization performance for the 

coprime array and coprime frequency offset (CA-CFO) is examined in terms of the resolution, accuracy, 

and the maximum number of resolvable targets. The average root mean square error (RMSE) of the 

estimated DOAs and ranges, expressed as 

l Q 

Rlvl Ee = IQ I:I)oq(i) - 0q )2 , 

t=l q=l 

(46) 

are used as the metric for estimation accuracy, where 0q (i) and Rq(i) are the estimates of 0q and Rq for 

the i th Monte Carlo trial, i = 1, .. . , I. We use I = 500 independent trials in simulations. 

A. Joint Estimation Method versus Two-step Estimation Method 

We first compare the performance of the joint estimation method and two-step estimation method. 

Q = 1 target with (10°, 1000m) is considered. The dictionary matrices i and '11 are assumed to contain 

all possible grid entries within (5°, 15°) and (1250 m, 1350 m) with uniform intervals 091 = 0.2° and 
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R92 = 1 m, respectively. Fig. 5 compares the RMSE performance of DOA and range estimations with 

respect to the input signal-to-noise ratio (SNR), where 500 snapshots are used. In Fig. 6, we compare the 

RMSE performance with respect to the number of snapshots, where the input SNR is set to -5 dB. It 

is clear that the joint estimation method achieves slightly better estimation accuracy at the cost of much 

higher computation complexity. 

104 ~-~-~-~-~--~---......,__....._ _ __,_ _ __, 

-10 --$ -6 -2 0 2 4 6 8 10 
SNR (dB ) 

(a) 

!
-·•- Joint 
- -<II - T wo-st ep 

-10 -8 -6 -4 -2 0 2 4 6 8 10 
SNR (dB) 

(b) 

Fig. 5. RMSE versus SNR using the joint and two-step estimation methods (Q = 1 and T = 500). (a) RMSEe; (b) RMSER 
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B. CA-CFO versus Other Array Configuration and Frequency Offset Designs 

Next, we examine the localization performance for different array configuration and frequency offset 

designs. Particularly, the proposed CA-CFO is compared with uniform linear array and uniform frequency 

offset (ULA-UFO). Uniform linear array with coprime frequency offset (ULA-CFO), and coprime array 

and uniform frequency offset (CA-UFO) are also considered. In order to reduce the computational load, 

we use the fast algorithm in section V for target localization in simulations. 

In Fig. 7, we compare the resolution performance of different schemes. Q = 8 targets whose true 

positions are shown in Fig. 7(a) are considered. The dictionary matrices c1? and i_li contain steering 

vectors over all possible grids in (-60°, 60° ) and (1000 m , 5000 m) with uniform intervals 091 = 1 ° and 

R92 = 100 m, respectively. Note that the number of targets is larger than the number of antennas, and the 

traditional phased array radar does not have sufficient DOFs to resolve all targets. The covariance matrix 

are obtained by using 500 snapshots in the presence of noise with a O dB SNR, and the corresponding 

localization performance are illustrated in Figs. 7(b)-(e). It is evident that only the case of CA-CFO can 

identify targets correctly because the increased DOFs in both virtual array and frequency can estimate 

more DOAs than the number of antennas, and more ranges than the number of frequencies. In addition, 

the corresponding larger apertures in both angle and range domains enable the CA-CFO case to resolve 

the closely spaced targets. The conventional FDA with ULA-UFO fails to separate both pairs of the targets 

with closely spaced angle and closely spaced range. However, the scenario of CA-UFO can resolve the 

pair of targets with closely spaced angle and the ULA-CFO case can identify targets with closely spaced 

range, benefitting from the increased DOFs in the angle and range domains, respectively. 

We further compare the estimation accuracy through Monte Carlo simulations. To proceed with the 

comparison, we consider Q = 2 targets with (10°, 1300 m) and (25°, 1700m), which can be separated 

for all cases. The dictionary matrices c1? and i_li are assumed to contain entries corresponding to all 

possible grids in (10° , 30°) and (1000 m, 2000 m) with uniform intervals 09 , = 0.2° and R92 = 10 m, 

respectively. Fig. 8 compares the RMSE performance of DOA and range estimations with respect to the 

input SNR for different array configurations and frequency offset structures, where 500 snapshots are used. 

In Fig. 9, we compare the RMSE performance with respect to the number of snapshots, where the input 

SNR is set to - 5 dB. It is evident that the accuracy of both DOA and range estimates is improved as the 

SNR and the number of snapshots increase. In comparison with the uniform array/offset case, the coprime 

array/offset structure benefits from more independent measurements under the CS framework. It is shown 

that the CA-UFO and ULA-CFO respectively achieve improved estimation accuracy in the angular and 

range domains than that of the ULA-UFO owing to the coprime structure in the sensor positions and 
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frequency offsets. In particular, the CA-CFO achieves the best performance as the advantages of coprime 

structure are presented in both angular and range domains. 

In Fig. 10, we consider Q = 56 targets. Note that this number is more than the available DOFs 

obtained from the cases of ULA-UFO (the conventional FDA radar), ULA-CFO, and CA-UFO. As the 

virtual array and virtual frequency offset are obtained from the estimated covariance matrix based on 

the received data samples, the virtual steering matrix is sensitive to the noise contamination. To clearly 

demonstrate the sufficient DOFs for localization of a large number of targets, we use 2000 snapshots in 

presence of noise with a 10 dB input SNR. It is evident that all 56 signals can be identified correctly, 

which demonstrates the effectiveness of the CA-CFO in resolving more targets. 

C. Sparsity-based Method versus Subspace-based Method 

In Figs. 11-13, we compare the sparsity-based method and the MUSIC algorithm with spatial smoothing 

(MUSIC-SS) applied to the CA-CFO configuration. Note that the spatial smoothing technique is applied 

to the covariance matrix of the virtual measurement vector z so that its rank can be restored before the 

MUSIC algorithm is applied. In this case, only consecutive lags, i.e., [-7, 7], can be used so that every 

sub-matrix has a similar manifold. The corresponding number of available DOFs is less than that of 

the proposed sparsity-based approach, which utilizes all unique lags [34]. In Fig. 11, we examine their 

resolution for Q = 5 closely spaced targets, whose true positions are shown in Fig. 1 l(a). The localization 

results, depicted in Figs. ll(b) and ll(c), are obtained by using 500 snapshots with a 0 dB SNR. It is 

clear that the sparsity-based method outperforms the MUSIC-SS approach for resolving the closely spaced 

targets, since it exploits all distinct lags to form a virtual space-frequency structure, thus yielding a larger 

array aperture and frequency span compared to the corresponding MUSIC-SS technique which only uses 

consecutive lags. The respective RMSE performance is compared in Figs. 12 and 13 under the same target 

scenario considered in Figs. 8 and 9, whereas Q = 2 targets located at (10°, 1300 m) and (25°, 1700 m) 

are present. In Fig. 12, 500 snapshots are used, while a - 5 dB SNR is assumed in Fig. 13. It is evident 

that the proposed sparsity-based method achieves a lower RMSE than the MUSIC-SS due to the higher 

number DOFs in both angular and range domains. This simulation example shows that the sparsity-based 

method achieves better performance than the MUSIC-SS counterparts do. 

D. Proposed Method versus Existing Methods 

In Figs. 14-16, we compare the performance of the proposed method with the existing methods using 

sparse arrays. The methods in [42] and [43], which are referred to as the Nested-MUSIC and Nested-
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CS, respectively, employ a nested array configuration but with the uniform time-delayer and frequency 

increment. As a consequence, it has only O(Nt) frequency DOFs with a smaller spectral span for a coarse 

range resolution, although it has the same O(Nl) spatial DOFs as the proposed coprime FDA radar 

configuration. The same target scenario considered in Figs. 11-13 is used for performance comparison. 

Fig. 14 depicts the angle-range resolution, wherein the true positions and results obtained from the 

proposed method are reproduced from Fig. 1 l(a) and Fig. 1 l(c) as Fig. 14(a) and Fig. 14(b) for the 

convenience of comparison. The corresponding results using the Nested-MUSIC and Nested-CS methods 

are presented in Figs. 14(c) and 14(d), respectively. It is evident that only the proposed method can resolve 

these closely spaced targets in the range. Furthermore, the Nested-MUSIC method produces more blurry 

spectra than the Nested-CS for targets with a small angulare separation. The RMSE is compared in Figs. 

15 and 16. It is clear that the Nested-MUSIC and Nested-CS methods suffer from significant performance 

degradation in the range domain due to the reduced spectral span and range-domain DOFs. Accordingly, 

the Nested-CS outperforms the Nested-MUSIC owing to its utilizations of all distinct lags in the coarray 

structure. 

VII . CONCLUSIONS 

In this paper, we proposed a novel sparsity-based multi-target localization algorithm, which incorporates 

both coprime arrays and coprime frequency offsets in an FDA radar platform. By exploiting the sensor 

position lags and frequency differences, the proposed technique achieved a high number of DOFs repre

senting a larger array aperture and increased frequency increments compared to conventional approaches. 

These attributes enable high-resolution target localization of significantly more targets than the number 

of physical sensors. A fast algorithm was developed that cast the 2-D sparse reconstruction problem as 

separate 1-D sparse reconstruction problems, thus effectively reducing the computational complexity. The 

offerings of the proposed technique were demonstrated by simulation results. 
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Fig. 16. RMSE versus the number of snapshots for different methods (Q = 2 and SNR= - 5 dB). (a) RMSE0 ; (b) RMSEn 
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3.5. Sparsity-Based Direction Finding of Coherent and 

Uncorrelated Targets Using Active Nonuniform Arrays 

Abstract 

In this letter, direction-of-arrival (DOA) estimation of a mixture of coherent and uncorrelated targets 

is performed using sparse reconstruction and active nonuniform arrays. The data measurements from 

multiple transmit and receive elements can be considered as observations from the sum coarray 

corresponding to the physical transmit/receive arrays. The vectorized covariance matrix of the sum 

coarray observations emulates the received data at a virtual array whose elements are given by the 

difference coarray of the sum coarray (DCSC). Sparse reconstruction is used to fully exploit the 

significantly enhanced degrees-of-freedom offered by the DCSC for DOA estimation. Simulated data 

from multiple-input multiple-output minimum redundancy arrays and transmit/receive co-prime arrays 

are used for performance evaluation of the proposed sparsity-based active sensing approach. 

I. INTRODUCTION 

Direction-of-arrival (DOA) estimation is an important application of array signal processing and is an 

area of continued research interest [1-4] . The problem of DOA estimation becomes challenging in the 

presence of coherent sources or a mixture of coherent and uncorrelated sources, which often arise in the 

presence of multipath propagation. Traditional subspace-based DOA estimation techniques, such as 

MUSIC [5], can no longer be directly applied due to the rank deficiency of the noise-free covariance 

matrix. Spatial smoothing can be used to restore the rank of the covariance matrix [6]. However, it can 

only be applied to specific array structures and always results in reducing the degrees-of-freedom (DOF) 

that are available for DOA estimation. 

Sparse reconstruction techniques have also been applied for DOA estimation of coherent sources [7-

9]. In [7], an f 1 - SVD method is proposed to perform sparsity-based DOA estimation. In this method, 
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the singular value decomposition (SYD) is employed to reduce the dimensionality of the signal model , 

followed by a mixed f 1,2 - nonn minimization, which assumes group sparsity across the time snapshots. 

The number of resolvable sources in f 1 -SVD is limited by the number of sensors in the array. Joint f 0 

approximation, which is a related method to f 1 - SVD, has been proposed in [8). This method uses a 

mixed f 0,2 - nonn minimization, instead off 1,2 , in order to enforce sparsity in the reconstructed DO As. 

Another sparsity-based method for DOA estimation of more correlated sources than sensors was 

presented in [9]. This method adopts a dynamic array configuration, wherein different sets of elements of 

a uniform linear array (ULA) are activated in different time slots, and uses sparse reconstruction to 

estimate the vectorized form of the source covariance matrix to resolve the sources. 

All of the aforementioned schemes employ passive or receive-only arrays for DOA estimation. An 

active or transmit/receive sensing method was proposed in [10] for direction finding in a coherent 

environment. This method generalizes the spatial smoothing decorrelation technique to encompass active 

arrays, where the transmitters illuminate the field of view, and the receivers detect the reflections from the 

targets. The recorded data emulates measurements at the corresponding sum coarray. Using the coarray 

equivalence principle, the sum coarray measurements can be considered as originating from a virtual 

transmit/receive array, which, compared to the physical transmit/receive array, provides a different 

tradeoff between the number of resolvable targets and the maximum number of mutually coherent targets 

that can be resolved. The number of resolvable targets for this active sensing scheme is limited by the 

number of receivers in the virtual transmit/receive array. In [11 ], a sparse reconstruction scheme for DOA 

estimation in co-located multiple-input multiple-output (MIMO) radar was proposed. The received data is 

arranged in a vector which emulates measurements at the sum coarray, and either f 1 - SVD or a 

reweighted minimization is applied to reconstruct the signal. For this method, the number of resolvable 

targets is limited by the number of sum coarray elements. 

In this letter, we perform DOA estimation of a mixture of coherent and uncorrelated targets by using 

the covariance matrix of the data vector that emulates measurements at the sum coarray of active 
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nonuniform arrays. In so doing, the number of DOFs is significantly increased, owing to the fact that the 

vectorized covariance matrix of the sum coarray observations can be thought of as a single measurement 

at a virtual array whose elements are given by the difference coarray of the sum coarray (DCSC). The 

DCSC has a much higher number of elements compared to the sum coarray itself [12]. Sparse 

reconstruction is employed to fully exploit the enhanced DOFs by estimating the vectorized form of the 

source covariance matrix, which is linearly related to the vectorized data covariance matrix of the sum 

coarray observations. Two different nonuniform array geometries are considered for performance 

evaluation using simulated data. The first configuration is the MIMO minimum redundancy array (MRA), 

which maximizes the number of elements in the DCSC [12], whereas the second is the transmit/receive 

co-prime arrays [13, 14]. Simulation results clearly demonstrate the superior performance of the proposed 

scheme over existing methods in terms of the number of resolvable targets for a given number of 

transmitters/receivers. 

The remainder of the letter is organized as follows. In Section II, the signal model for active sensing 

is reviewed, and the proposed sparsity-based DOA estimation approach is presented. The MIMO MRA 

and co-prime configurations are also discussed in this section. The performance of the proposed method is 

evaluated in Section III through numerical simulation, and Section IV concludes the letter. 

IL PROPOSED DOA ESTIMATION APPROACH 

A. Signal Model 

We consider an M-element linear transmit array and an N-element linear receive array. The two 

arrays may or may not share common elements. These arrays are assumed to be co-located so that a target 

in the far-field appears to have the same direction at all transmitters and receivers. The scene is 

illuminated by multiple sequential narrowband transmissions of center frequency fo from the different 

transmitters. This group of transmissions, one from each transmitter, is referred to as a single "snapshot". 

We assume the field of view to consist of Q point targets in directions [0i,02 , •.• ,0Q], where 0 is the 
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angle relative to broadside of the transmit or receive array. The target distribution consists of both 

uncorrelated and coherent targets. Then, the output of the receive array can be expressed as an MN x 1 

vector [15, 16] 

Q 

x(t) = L ar(.0q)®ar(0q)sq(t) + n(t), (1) 
q= l 

where the operator@ denotes the Kronecker product, sq(t) is the reflection coefficient of the qth target at 

snapshot t, and a1(0q) and ar( 0q) are the steering vectors of the transmit and receive arrays 

corresponding to the direction of the qth target, respectively. The mth element of ai(0q) is given by 

exp(-jk0 tmsin0q) where t 111 is the location ofthe mth transmitter and k0 = 2rrf0/c is the wavenumber 

at frequency fo with c being the speed of light, and the nth element of ar( 0q) is given by 

exp(-jk0rn sin 0q) where rn is the location of the nth receiver. The vector n(t) in (1) is the MN x 1 

noise vector. The noise is assumed to be independent and identically distributed following a complex 

Gaussian distribution. 

The term a1(0q)®ar( 0q) in (1) is equivalent to the steering vector of a virtual receive-only array, 

whose elements are given by the sum coarray of the transmit and receive arrays. The sum coarray 

elements are defined as the set {Crn + tm), 0 :5 n :5 N - 1, 0 :5 m :5 M - 1} [I 7]. Let L be the number 

of unique elements in the sum coarray. Then, a new L x 1 received data vector can be formed from (1) as 

(2) 

where Asum = [asum (0 1),asum(02), ••• ,asum(0Q)] is the L X Q array manifold corresponding to the sum 

coarray, s(t) = (s1 (t), si(t), ... , sQ(t) f, and asum ( 0q) is the steering vector of the sum coarray in 

direction 0q. It should be noted that if two or more transmit/receive element pairs contribute to the same 

sum coarray point, either the average or one of the corresponding measurements could be used in XsumCt). 

The f 1 - SYD method can be applied to the sum coarray data vector Xsum(t) for sparsity-based DOA 

estimation [I I]. However, the maximum number of resolvable targets in this case is limited to the 
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number of unique elements in the sum coarray [18]. 

B. Correlation Matrix Based Sparse Reconstruction Approach 

The L x L covariance matrix of the sum coarray data can be expressed as 

Rsum = E{Xsum(t)X~um(t)} = AsumRssA~um + uJI, (3) 

where E{·} is the expectation operator, u; is the noise variance, and I is an L XL identity matrix. R55 is 

the Q x Q source correlation matrix, which contains the powers of the reflections from the targets on its 

main diagonal and the cross-correlations between the targets in the off-diagonal terms. In practice, the 

covariance matrix is estimated by a sample average over multiple snapshots. 

In order to perform DOA estimation of the coherent and uncorrelated targets, we estimate R55 using 

Rsum [9]. To this end, we proceed as follows. The angular region of interest is discretized into a finite set 

of K » Q grid points, {001 , 002 , ... , 00 K}, with 001 and 00 K being the limits of the search space. The targets 

are assumed to be located on the grid. Several methods can be used to modify the model in order to deal 

with off-grid targets [7, 19]. We define the L x K array manifold Asum whose columns are the steering 

vectors corresponding to the defined angles in the grid, and the K x K R.55 which holds the auto- and 

cross-correlation between the potential targets at the defined angles. Equation (3) can then be rewritten as 

(4) 

Since K » Q, Rss is a sparse matrix. Sparse reconstruction can then be applied to estimate R.5s, and 

consequently resolve the targets. The nonzero terms on the main diagonal of Rss correspond to the powers 

of the target reflections present in the field of view, and the nonzero off-diagonal terms correspond to the 

correlations between the coherent targets. As a result, the target directions can be obtained by identifying 

the nonzero terms on the main diagonal. 

The covariance matrix Rsum is vectorized by stacking its columns to form a tall vector, which 

emulates a single snapshot at a virtual array whose elements are given by the DCSC of the transmit and 

receive arrays. With the sum coarray containing L unique elements at positions x.e, .f = 0, ... , L - 1, the 
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DCSC elements are given by the set .0. = {xt
1 

- Xt
2

, .f 1 = 0, ... , L - 1 and .f2 = 0, .. . , L - 1 }. It can be 

readily shown that the L2 X 1 vectorized form of the noise-free term of R sum can be expressed as [9, 20], 

(5) 

where vec(·) denotes the vectorization operation and the superscript '*' denotes complex conjugation. 

Given the model in (5), the constrained optimization problem for reconstructing the K2 x 1 vec(R55 ) can 

be expressed as [21 ], 

(6) 

where the .f 2 - norm is the least squares cost function to maintain data fidelity , and the .f1 - norm 

encourages sparsity in the reconstructed vector. The regularization parameter il is used to control the 

weight of the sparsity constraint in the overall cost function. 

C. Maximum Number of Resolvable Targets 

The maximum number of resolvable targets using the proposed method depends on the number of 

unique lags in the DCSC and the number of coherent targets . Each pair of coherent targets corresponds to 

two nonzero off-diagonal terms in R55 , and each target contributes a nonzero term on the main diagonal. 

Due to conjugate symmetry in Rss, only the lower triangle matrix can be estimated. This implies that, 

instead of K 2 terms, only K(K + 1)/2 elements of Rss need to be estimated. According to [22], the 

sparsity based minimization problem in (6) is guaranteed to have a unique solution under the condition 

P 2: 2D, where P is equal to the number of independent observations or the number of unique elements in 

the DCSC and D is the number of nonzero terms in the lower triangle of R85 , which can be expressed as 

D = Q + C, where C is the number of pairs of coherent targets. 

The number of unique lags P in the DCSC is a function of the transmit and receive array geometries. 

For a given number of transmitters and receivers, active array configurations specifically designed to be 

optimal in the sense that the number of unique elements in the DCSC is maximized, would yield the 

highest number of resolvable sources. MIMO MRAs are one such type of arrays which are designed 

under the constraint that the DCSC has no holes [12]. However, the use of such optimal array 
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configurations is not mandatory, and the proposed technique can be applied to other nonuniform arrays, 

such as co-prime arrays. Co-prime arrays consist of two interleaved ULAs with co-prime number of 

elements and co-prime element spacing [13, 14]. Table I summarizes the number of unique elements in 

the sum coarray and the DCSC of three different implementations (Configurations A, B, and C) of a co

prime array comprising a (2Mc - 1) element ULA with Nc}.0 /2 inter-element spacing and a second 

ULA having Ne elements spaced by Mc}.0 /2; Mc and Ne are co-prime integers, the two ULAs share the 

first element at 0, and ).0 is the wavelength at the frequency / 0 • Configuration A uses the first ULA to 

transmit and the second ULA to receive. Configuration B employs the first ULA for transmission and 

both ULAs for reception. Configuration C uses the entire co-prime array to transmit and receive. These 

implementations provide different tradeoffs between cost, hardware complexity, and the maximum 

number of unique elements in the DCSC. We observe from Table I that the advantage of the proposed 

method over the f 1 - SVD method applied directly to the sum coarray of the co-prime arrays is more 

evident for higher values of Mc and Ne . For large Mc and Ne values, a three-fold increase in the DOFs 

occurs for configurations B and C. 

III. N UMERICAL RESULTS 

In this section, DOA estimation results for the proposed sparse reconstruction technique using 

nonuniform active arrays are presented, and a comparison with the f 1 - SVD method is also provided. 

Both MIMO MRAs and co-prime arrays are considered. The root mean square error (RMSE) with respect 

to the directions is used to compare the two methods. 

In the first example, we consider a MIMO MRA, which consists of two receivers positioned at 

[O, 7 d0] and three transmitters positioned at [O, d 0, 3d0] , where d0 = }.0 /2. Fig. 1 shows the 

corresponding sum coarray and the DCSC. The sum coarray consists of six elements positioned at 

[O, 1, 3, 7, 8, 10]d0 , whereas the DCSC consists of 21 consecutive virtual elements and its aperture 

extends from -10d0 to 10d0 . As such, f 1 - SVD applied to the sum coarray measurements can estimate 
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up to six sources, whereas the proposed method can estimate up to ten nonzero elements in the lower 

triangle of the source covariance matrix. This is tested by first considering six targets at directions 

[-60°, -20°, -15°, 10°, 30°, 40°], with the reflections from the first three targets being mutually 

coherent. The total number of snapshots is set to 500. Spatially and temporally white Gaussian noise is 

added to the observations, and the SNR for the six targets is set to [10, 0, 5, 0, 10, 0] dB. The search space 

is discretized uniformly from -90° and 90° with 1 ° increment, and the regularization parameter il is set 

empirically to 0.5 for the proposed method. The normalized spectrum obtained using f 1 - SYD and 

averaged across the snapshots is shown in Fig. 2(a). Fig. 2(b) depicts the normalized values on the main 

diagonal of the estimated source covariance matrix using the proposed approach. The dashed vertical 

lines in both figures indicate the true target directions. We observe that the proposed method has correctly 

estimated the target directions. However, f 1 - SVD misses two targets with low SNR, and produces 

biased estimates for the remaining targets. The RMSE is 0° for the proposed method. 

Next, the same MIMO MRA is used, but the number of targets is increased to seven with the first 

three being mutually coherent. The targets are positioned at [-55°, -40°, -15°, 5°, 20°, 45°, 65°) . A IO 

dB SNR is used for all the targets. The regularization parameter il is set to 0.3. Figs. 3(a) and 3(b) show 

the estimated spectra using f 1 - SYD and the proposed method, respectively. Clearly, f 1 - SYD fails to 

estimate the targets since the total number of targets exceeds the number of sum coarray elements. The 

proposed method, on the other hand, is successful since the number of nonzero elements in the lower 

triangle is equal to 10. The corresponding RMSE is 0.24°. The number of targets is then increased to 10, 

which is equal to the maximum number of nonzero elements in the lower triangle of the covariance 

matrix that can be estimated using the proposed method. The target directions are uniformly spaced 

between -50° and 50°. The reflections from all the targets are assumed to be uncorrelated in this 

example, and the other simulation parameters are kept the same as before. Fig. 4(a) shows the estimated 

spectrum using f 1 - SYD, which fails to estimate the target directions because the number of targets is 

larger than the number of sum coarray elements. The estimated spectrum using the proposed approach is 
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shown in Fig. 4(b ). As expected, this method correctly estimates all the DO As, and the RMSE is equal to 

0.2° in this example. 

Next, we consider a co-prime array with Mc = 3 and Ne = 4, i.e., the first ULA consists of five 

physical sensors with positions [4, 8, 12, 16, 20]d0 , and the second ULA consists of four sensors 

positioned at [O, 3, 6, 9]d0 • Configuration B is considered, which implies that the first ULA is used to 

transmit and both ULAs are used to receive. The corresponding sum coarray consists of 25 elements, and 

the DCSC consists of 67 elements. We consider 30 targets, uniformly spaced between -0.95 and 0.95 in 

the reduced angular coordinate sin(0), with three targets being mutually coherent. The rest of the 

simulation parameters are the same as in the previous examples. Figs. 5(a) and 5(b) show the estimated 

spectra using -e 1 - SYD and the proposed method, respectively. We observe that f 1 - SYD fails to 

estimate the target directions, since the number of targets exceeds the number of sum coarray elements. 

The proposed method correctly estimates the DOAs since the number of nonzero elements in the lower 

triangle of the source covariance matrix in this case is D = Q + C = 30 + 3 = 33, and the number of 

unique elements in the DCSC is P = 67 which is greater than 2D. The corresponding RMSE is 0.03°. 

IV. CONCLUSION 

A sparse reconstruction method has been proposed for DOA estimation using active nonuniform 

arrays. The proposed approach offers a significant enhancement in the DOFs over the currently employed 

methods by using the covariance matrix of sum coarray measurements to emulate observations at the 

difference coarray of the sum coarray. The proposed method was tested using two nonuniform array 

configurations and was shown to successfully estimate the directions of a mixture of coherent and 

uncorrelated targets. 
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3.6. Mutual Coupling Effect and Compensation in Non-Uniform 
Arrays for Direction-of-Arrival Estimation 

Abstract 

In this paper, we investigate the effect of mutual coupling on direction-of-arrival (DOA) estimation 

using non-uniform arrays. We compare and contrast the DOA estimation accuracy in the presence of 

mutual coupling for three different non-uniform array geometries, namely, minimum redundancy 

arrays (MRAs ), nested arrays, and co-prime arrays, and for two antenna types, namely dipole antennas 

and microstrip antennas. We demonstrate through numerical simulations that the mutual coupling, if 

unaccounted for, can, in general, lead to performance degradation, with the MRA faring better against 

mutual coupling than the other two non-uniform structures for both antenna types. We also propose 

two methods that can compensate for the detrimental effects of mutual coupling, leading to accurate 

and reliable DOA estimation. Supporting numerical simulation results are provided which show the 

effectiveness of the proposed compensation methods. 

I. INTRODUCTION 

Antenna arrays are employed for direction-of-arrival (DOA) estimation in a broad range of applications 

including radar, sonar, and wireless communications [1-3]. High-resolution DOA estimation techniques, 

such as MUSIC [4], ESPRIT [5], and .f 1 - SVD [6], are widely used for direction finding. In real antenna 

arrays, these techniques, in their original implementations, suffer from a model mismatch which, among 

other factors, can be attributed to mutual coupling between the elements. Mutual coupling occurs when an 

external illuminating source induces a current on the surface of each array element, causing it to radiate. A 

portion of the radiated signal is captured by the remaining elements in the array. If unaccounted for, this 

interaction affects the characteristics and the performance of the array [7-8]. 
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The mutual coupling between the array elements can be captured in a matrix called the mutual coupling 

matrix (MCM). Two major trends exist in the literature for performing DOA estimation in the presence of 

mutual coupling. The first deals with the case of perfectly known or modeled MCM, wherein the DOA 

estimation procedure is modified to account for the coupling [9]. In the second trend, the MCM is assumed 

to be unknown or imprecisely known with a specific structure, and is jointly estimated along with the source 

directions. 

Electromagnetic theory and numerical or analytical modeling techniques are typically employed to 

characterize the MCM [8, 10-14]. The MCM depends on the self and mutual impedances between the array 

elements. One of the earliest methods that model the coupling matrix is the open-circuit method [8]. This 

method treats the array as a bilateral terminal network and relates the uncoupled voltages with the coupled 

voltages through a mutual impedance matrix. For dipole antennas, the elements in the mutual impedance 

matrix can be approximated by closed-form expressions [15]. An extension of the open-circuit method has 

been proposed in [10], where two types of mutual impedances are defined, namely, the transmission mutual 

impedance and the re-radiation mutual impedance. In [11], the receiving-mutual-impedance method 

(RMIM) is described for use in receive-only antenna arrays. As such, it provides a more accurate coupling 

model in DOA estimation applications. RMIM considers each antenna pair separately to compute the 

receiving mutual impedances. An enhancement ofRMIM is presented in (12], which takes into account all 

the elements simultaneously in order to compute the receiving mutual impedances. 

For a perfectly known or modeled MCM, DOA estimation algorithms can be modified to incorporate 

the coupling and compensate for it in order to achieve accurate source directions [9]. However, if the 

modeled MCM is not exact, the performance of the DOA estimation is degraded. Moreover, the MCM must 

be re-calibrated periodically to account for any changes in local conditions. For instance, the presence of a 

new scatterer in the vicinity of the antenna array changes the mutual coupling. Several methods have been 

proposed to circumvent these issues. These methods assume the coupling matrix to be unknown or 

imprecisely known and aim to jointly estimate the MCM along with the source DOAs [7, 16-17]. Ref. [7] 

presents an iterative method to estimate the MCM, the DOAs, and the antenna gains, wherein the cost 
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function is minimized with respect to one unknown quantity at a time while keeping the remaining two 

unknowns fixed. A maximum likelihood estimator for DOA estimation under unknown multipath and 

unknown mutual coupling has been proposed in [16]. Ref. [17] employs sparse reconstruction to perform 

DOA estimation in the presence of unknown mutual coupling. However, all of these aforementioned 

methods have been developed for uniform linear arrays (ULAs) and take advantage of the special structure 

of the corresponding MCMs. Although these methods can be modified and applied to non-uniform arrays, 

they fail to take advantage of the increased degrees-of-freedom (DOFs) offered by non-uniform arrays for 

DOA estimation [18-22]. Recall that an NA - element non-uniform array can provide O(Nl) DOFs, thereby 

permitting DOA estimation of more sources than sensors. An iterative method for DOA estimation using 

non-uniform arrays in the presence of mutual coupling was proposed in [23]. This method treats the non

uniform array as a subset of a ULA and, therefore, cannot take full advantage of the increased DOFs. 

In this paper, we investigate the mutual coupling effect in non-uniform arrays. First, we examine the 

impact of coupling on the DOA estimation accuracy for different array geometries, including minimum 

redundancy arrays (MRA) [18], nested arrays [20], and co-prime arrays [21, 22]. The performance is 

evaluated for different array sizes and for two antenna element types, namely, dipole antenna and microstrip 

antenna. The latter is becoming increasingly popular in radar and wireless communications due to its low 

profile, ease of fabrication, low cost, and compatibility with radio frequency (RF) circuit boards. A 

computational electromagnetics software package, FEKO [24], is used to model the antenna arrays, and the 

RMIM [12] is used to compute the coupling matrices based on the obtained measurements. We show that 

the MRA provides superior performance compared to the nested and co-prime geometries, irrespective of 

the antenna type. Second, we propose two compensation methods that allow accurate DOA estimation using 

non-uniform arrays in the presence of mutual coupling. The first method assumes partial knowledge of the 

mutual coupling and employs an iterative approach to update the perturbed MCM and DOAs. Sparse signal 

reconstruction is used to find the source directions for a given coupling matrix, and a global optimization 

algorithm called covariance matrix adaptation evolution strategy (CMA-ES) [25] is used to update the 

MCM while keeping the DOAs fixed. The second method assumes unknown coupling and simultaneously 
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estimates the MCM, the source powers, and sources directions by minimizing a cost function using CMA

ES. Finally, the effectiveness of the proposed methods is evaluated through numerical examples. 

The remainder of this paper is organized as follows. High-resolution DOA estimation using non

uniform arrays is briefly reviewed in Section II. The signal model in the presence of mutual coupling is 

also presented in the same section. In Section III, DOA estimation performance of different non-uniform 

array geometries is evaluated and compared for the case of uncompensated mutual coupling. Section IV 

discusses the two proposed compensation methods that allow accurate DOA estimation under mutual 

coupling and provides supporting numerical results. Section V concludes the paper. 

II. DOA ESTIMATION USING NON-UNIFORM ARRAYS 

A general NA - element linear array is considered. The elements positions are assumed to be integer 

multiples of the unit spacing, i.e., xi = nido, i = l, ... , NA, where xi is the position of the ith array element, 

ni is an integer, and d0 is the unit spacing which is usually set to half-wavelength at the operating frequency. 

Assume that D narrowband sources with directions {011 02 , ••• , 0v} and powers {o}, a-f, ... , cr,5} impinge on 

the array, where 0 is measured relative to broadside. In the absence of mutual coupling, the received data 

vector at snapshot t can be expressed as 

x(t) = As(t) + n(t), (1) 

w~ere s(t) is the D x 1 source signal vector, n(t) is the NA X 1 noise vector, and A is the NA x D array 

manifold matrix whose (i, d)th element is given by 

[A]i,d = exp(jk0xi sin 0d). (2) 

Here, k0 is the wavenumber at the operating frequency and 0d is the DOA of the dth source. Under the 

assumptions of uncorrelated sources and spatially and temporally white noise, the covariance matrix can be 

expressed as 

(3) 

where E{·} is the expectation operator, (·)H denotes conjugate transpose, R55 = diag{crf, er}, ... , crJ} is the 

source covariance matrix, er~ is the noise variance, and I is an NA x NA identity matrix. 
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Two approaches can be used for DOA estimation. The first approach is based on covariance matrix 

augmentation [26-28], while the second uses spatial smoothing [21-22]. Since the augmented covariance 

matrix in the first approach may not always be positive semidefinite, we consider spatial smoothing based 

approach in this paper, which is briefly reviewed below. 

Vectorizing the covariance matrix in (3), we obtain 

z = vec{Rxx} = Ap + <J'Ji, (4) 

where p = [<1'{, <1'}, ... , <J'JF is the source powers vector, A= A* 0 A, the symbol '0' denotes the Khatri

Rao product, the superscript'*' denotes complex conjugate, and i = vec{I} is the vectorized identity matrix. 

The vector z emulates measurements at a longer array whose elements positions are given by the difference 

coarray of the non-uniform arrays, while the N] x D matrix A is the corresponding manifold matrix [29]. 

Assuming that the difference coarray has contiguous elements between -Ld0 and +Ld0 , the data 

measurements can be rearranged to form a new (2L + 1) x 1 vector z1, which contains measurements at 

these positions, 

(5) 

Since the sources are replaced by their powers in (5) and the noise is deterministic, the sources now appear 

as coherent, and subspace-based high-resolution methods can no longer be applied directly to perform DOA 

estimation. Spatial smoothing is used to build the rank of the covariance matrix of z1 [30]. The filled part 

of the difference coarray is divided into (L + 1) overlapping subarrays, each having (L + 1) contiguous 

elements. The positions of the elements of the mth subarray are given by the following set 

{(l + 1 - m)d0 , l=O,l, ... ,L}. (6) 

The received data vector at the mth subarray is denoted by Ztm' and the spatially smoothed covariance 

matrix is then computed as 

(7) 

DOA estimation techniques, such as MUSIC, can now be applied to Rzz to estimate up to L sources. 

153 



Thus far, mutual coupling has been ignored in the signal model. However, in practical antenna arrays, 

coupling between the antenna elements is a real issue and thus needs to be taken into account. The signal 

model in (I) can be modified to incorporate mutual coupling as 

x(t) == CAs(t) + n(t), (8) 

where C is the NA X NA mutual coupling matrix. Note that the coupling-free model, discussed in (1), is a 

particular case of (8) corresponding to C being an identity matrix. The covariance matrix of the 

measurements in (8) is given by 

Rxx == E{x(t)xH(t)} == CAR55AHCH + crJI. (9) 

Proceeding with the vectorization and spatial smoothing, followed by DOA estimation without 

compensating for the MCM, is likely to degrade performance, owing to the mismatch between the assumed 

model (1) and the actual measurements (8). The severity of performance degradation, however, is a function 

of the array configuration and the choice of antennas, as shown in the following section. 

III. MUTUAL COUPLING IMP ACT ON DOA ESTIMATION 

We quantify the performance degradations due to mutual coupling effect in terms of DOA estimation 

accuracy for three different non-uniform linear array configurations, namely, the minimum redundancy, 

nested, and co-prime geometries. Both MRAs and nested arrays have filled difference coarrays, whereas 

the difference coarray of a co-prime configuration contains a set of the consecutive lags. As such, spatial 

smoothing based approach can be applied to all three considered configurations for DOA estimation. For 

comparison, we also provide the performance of a uniform linear array in the presence of mutual coupling. 

III.A. Considered Array Geometries 

IIIA.1. Uniform Linear Arrays (ULA) 

A uniform linear array is an array whose elements lie along a straight line at equal intervals. An NA -

element ULA has elements with positions [O, 1, ... , NA - 1]d0 . 

JII.A.2. Minimum Redundancy Arrays (MRA) 
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An MRA maximizes the number of contiguous elements in the difference coarray for a given number NA 

of antenna elements [18]. The corresponding difference coarray contains the lowest possible redundancy 

without any missing lags or 'holes'. 

III.A .3. Nested Arrays 

An NA - element nested array consists of a combination of two ULAs, where the inter-element spacing of 

the first ULA with N1 elements is equal to the unit spacing d0 while the N2 = NA - N1 elements of the 

second ULA are separated by an integer multiple of d0 [20]. That is, the first element of the second ULA 

is placed at (N1 + l)d0 and the inter-element spacing is also set to (N1 + l)d0 . The corresponding 

difference coarray is filled and contains no holes. 

IILA.4. Co-prime Arrays 

A co-prime array comprises two spatially under-sampled ULAs with co-prime spatial sampling rates [21, 

22]. In the basic co-prime configuration, the first array consists of M elements with inter-element spacing 

Nd0 and the second array contains N elements with spacing Md0 , with Mand N being co-prime integers 

[21] . The elements of the two subarrays are arranged along a single line with the first elements coinciding, 

resulting in a co-prime array with NA = M + N - l non-uniformly spaced physical elements. The 

corresponding difference coarray has holes, but is filled between -(M + N - l)d0 and (M + N - l)d0 . 

111.B. Mutual Coupling Matrix Modeling and Measurement 

The mutual coupling matrix for each considered non-uniform array configuration is modeled using the 

receiving-mutual-impedance method (RMIM) [ 11]. Two conditions must be satisfied in order to render the 

application of this method feasible [ 11-12]. First, the array should be in the receiving mode. Second, the 

antenna elements should be terminated with a known load impedance ZL. Assuming these conditions have 

been fulfilled, the received voltage across the terminal load of a particular antenna can be expressed as a 

superposition of two external excitations 
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(10) 

where vi is the terminal load voltage of the ith antenna, ii is the current induced in the ith antenna, wi is 

the voltage due to the external sources, and vi is the voltage due to the mutual coupling from the other 

elements in the array. The coupled voltage vi is given by 

(11) 

where Zi,j is the receiving mutual impedance between the ith and jth elements. Substituting (10) in (11) 

and rearranging, the uncoupled voltages wi, i = 1,2, ... , NA can be stacked in a vector was 

(12) 

where Z is the mutual impedance matrix. 

In order to determine the elements ofZ, K plane waves with differentDOAs {0i, ... , 0K} are individually 

used to excite the array, and the corresponding received voltages, v~), m = 1, ... , NA, k = 1, ... , K, are 

recorded. Note that v~) denotes the received voltage at the mth array element when the kth plane wave is 

impinging on the array. The same set of plane waves is also used to excite each array element in isolation 

in order to measure the uncoupled voltages w~). Given v~) and w~) for all k, the following system of 

linear equations is solved for each antenna element in order to compute the corresponding mutual 

impedance values. 

v(1) -w(l) 
(1) (1) (1) (1) Zm,1 

m m 
Vl vm-1 Vm+l VNA 

/2) -w(2) (2) (2) (2) (2) Zm,m-1 
m m = v1 vm-1 Vm+l VNA 

Zm,m+l · 
(13) 

/K) -W(K) (K) (K) (K) (K) 
m m V1 vm-1 Vm+l VNA 

Zm,NA 

In order to compute the mutual impedance between each element and the remaining elements in the array, 

the number of planes waves K should be greater than or equal to (NA - 1) (12]. Once the matrix Z has been 

determined, the MCM is computed as C = z-1 , where 0-1 denotes matrix inverse. 
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111.C. Performance Comparisons 

In this section, the effect of mutual coupling on the DOA estimation performance is investigated for 

the array configurations described in Section III.A. We consider two different antenna types, namely, a 

dipole antenna and a rectangular microstrip or the so-called patch antenna, as array elements. Each antenna 

is designed for operation at 3 GHz. The dipoles are chosen as half-wavelength at 3 GHz. Each rectangular 

patch element has dimensions LP = 31.18 mm and WP = 46.64 mm, where Lp and WP correspond to the 

resonant length and radiating edge of the patch, respectively. The patch antenna is printed on a 2.87 mm 

lossless FR4 substrate with dielectric constant of 2.2, as shown in Fig. 1 (a). The ground plane is assumed 

to be infinite. The patch antenna is modeled using FEKO and the corresponding gain pattern is shown in 

Fig. l(b). This antenna is directive with a maximum gain at 0 = 0° and nulls at ±90°. We assume that the 

patch elements in the array are positioned with their resonant edges facing each other, as shown in Fig. I ( c) 

which depicts a six-element uniform linear patch array with an inter-element spacing of half-wavelength at 

3 GHz. 

For each array geometry, we vary the number of elements, NA, from four to ten with a step size of two. 

The element positions of the corresponding MRA configurations are provided in Table I, while those for 

nested and co-prime geometries are presented in Tables II and III, respectively. Note that, in the case of 

MRAs, more than one array structure is available for NA > 4. We choose the configuration which has the 

least number of element pairs separated by half-wavelength. For co-prime arrays, we consider, for each NA , 

the configuration with M = NA/2, N = M + 1. This choice was shown to have operational advantages in 

[31] and [32]. Further, for nested arrays, we employ the configurations with N1 = N2 = NA/2; this choice 

maximizes the DOFs for a given number of antennas [20]. FEKO is used to model the various microstrip 

and dipole array configurations and measure the required voltages for the RMIM. The corresponding mutual 

impedance and mutual coupling matrices are then computed for the different array geometries with varying 

number of elements. In the RMIM, the number of plane waves K is set to 16 for all array configurations. 

The directions of the plane waves are uniformly distributed between -74° and 76°. 

157 



For each combination of array configuration, antenna type, and total number of elements, we perform 

1,000 Monte Carlo runs with two sources at a fixed separation in the reduced angular coordinate, u = sin 0. 

That is, for each run, the first source direction u 1 is randomly chosen to lie between -0.95 and 0.95 and the 

second source direction u2 is selected so that tm = lu1 - u2 I is kept constant. Two source separations, 

Llu = 0.1 and Llu = 0.2, are considered. The model in (8) is used to generate the array measurements, with 

the signal-to-noise ratio (SNR) set to O dB. The total number of snapshots per run is chosen as I 0,000. This 

high number is selected to remove the influence of i) varying coarray redundancy of different array 

configurations, and ii) small sample size for correlation matrix estimation as a sample average. Spatial 

smoothing method is applied in conjunction with MUSIC to estimate the DOAs without compensating for 

the MCM. Note that in case of co-prime configurations, the DOA estimation only exploits the contiguous 

part of the coarray. The estimation accuracy is evaluated in terms of the average root-mean-square error 

(RMSE), which is given by 

D - 1, 
RMSE = D ~ (14) 

d"'l 

where NMc is the total number of Monte Carlo runs and fi.d,n is the estimate of the dth source at the nth 

run. 

Ill. C. l. Dipole Arrays 

Fig. 2(a) depicts the average RMSE as a function of the number of elements for all considered 

geometries when Llu = 0.1, while the RMSE for Llu = 0.2 is plotted in Fig. 2(c). For reference, the 

corresponding RMSE plots in the coupling-free scenario are shown in Fig. 2(b) and Fig. 2(d), respectively. 

Comparing Fig. 2(a) to Fig. 2(b) and Fig. 2(c) to Fig. 2(d), we observe that the results for the coupling-free 

scenario exhibit much smaller RMSE values than those in the presence of mutual coupling. This confirms 

the detrimental effect of mutual coupling on the DOA estimation performance. By examining Fig. 2(a) and 

Fig. 2(c), several additional observations can be made. First, the estimation error decreases as the array size 
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increases for all configurations. Since mutual coupling depends on the distance between the array elements, 

larger arrays provide a much sparser MCM as compared to smaller arrays, thereby reducing the overall 

effect on performance. Second, irrespective of the number of elements, the ULA provides the worst 

performance while the MRA achieves the best performance for both source separations. This is expected 

because i) the ULA has the highest number of element pairs that are half-wavelength apart, ii) all 

considered MRAs have a reduced number of antenna pairs separated by half-wavelength, and iii) the MRAs 

provide both the largest array size for a given number of antennas and largest filled coarray aperture, leading 

to better resolution capability. Finally, for !J..u = 0.2, the co-prime array provides better performance than 

the nested array for NA = 6, 8, and 10, as seen in Fig. 2(c). This is expected since the nested array has a 

greater number of element pairs separated by half-wavelength. For NA = 4, however, the nested array 

outperforms the co-prime array. This can be explained by examining the two corresponding array structures 

in Tables II and III. We note that both arrays have three contiguous elements at half-wavelength spacing, 

while the fourth element is closer to its nearest neighbor in the co-prime array as compared to the nested 

array. In the case of !J..u = 0.1, the roles are reversed for NA = 6 and 8, where the nested array outperforms 

the co-prime array. This is primarily due to the difference in the corresponding resolution capabilities. As 

mentioned earlier, since the difference coarray corresponding to a co-prime array has holes, a reduced 

coarray aperture is employed for spatial smoothing based DOA estimation. Even though the coupling effect 

is larger in nested arrays, its effect on the DOA estimation performance is outweighed by the resolution 

capability when the sources are closely separated. 

III. C.2. Microstrip Arrays 

The Monte Carlo experiments that were performed for dipole arrays are repeated for the microstrip arrays. 

Fig. 3 shows the obtained average RMSE plots for the different array configurations and different source 

separations both in the presence and absence of mutual coupling. By comparing the corresponding plots in 

Fig. 2 and Fig. 3, we observe an increase in the average RMSE when using microstrip arrays. This can be 

attributed to the proximity of the edges of the consecutive elements. Further, similar to the case of dipole 
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arrays, the microstrip MRA provides the smallest estimation error, while the microstrip ULA has the largest 

error for both source separations. In addition, the estimation error decreases with increasing number of array 

elements for all configurations. However, unlike the case of dipole arrays, nested arrays outperform the co

prime arrays for both source separations when microstrip antennas are employed. This performance 

difference between the co-prime and nested arrays for the two antenna types is due to the fact that mutual 

coupling in microstrip arrays comprises not only the edge coupling but also the coupling due to the presence 

of surface waves in the substrate. Since the aperture of co-prime arrays is smaller for the same number of 

antennas, the surface wave coupling influences the performance of co-prime arrays more than that of nested 

arrays. 

To summarize, mutual coupling affects the DOA estimation performance. The degree of performance 

degradation depends on the array configuration, the number of elements and their types, the source 

directions, and the source separations. 

IV. MUTUAL COUPLING COMPENSATION 

The MCM modeling provides a characterization of the mutual coupling, which can be utilized to account 

for the coupling in DOA estimation methods. However, in practice, the model can suffer from inaccuracies 

and, as such, requires frequent re-calibration in order to account for any changes in local conditions. 

Maintaining an exact MCM model can be cumbersome, if not impossible, in many practical applications. 

In this section, we propose two compensation methods for accurate DOA estimation under unknown or 

imperfectly known MCMs. The first method treats the modeling imperfections as perturbations in the MCM 

and employs an iterative approach to estimate the source directions and the perturbed MCM. The second 

method performs joint estimation of the MCM and the source directions simultaneously. 

IV.A. Iterative Approach 

We model imperfections in the coupling matrix as arising from perturbations in the mutual impedance 

matrix, i.e., Zactual = Zmodel + l).Z, where Zactual is the actual mutual impedance matrix, Zmodel is the 

initial modeled mutual impedance matrix, and l).Z is the perturbation matrix. We assume that the sources 
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are sparse in angle, which is true in general for direction finding applications. The angular region of interest 

is discretized into a finite set of Q grid points, where Q » D. Substituting (Zmadel + llz)-1 for C in (9) 

and vectorizing Rxx yields 

vec{Rxxl = vec{CAR55AHcH + aJI} 
= {[(Zmodel + llz)-1A]* ® [(Zmadel + llz)-1A]}vec{R55 } + aJi, (1 5) 

where '®' denotes the Kronecker product. In order to solve for the unknowns, namely the perturbations llZ, 

source directions and powers, and noise variance, a nested optimization problem can be posed as 

where Rxx is the covariance matrix obtained as a sample average, A is the NA x Q array manifold matrix 

corresponding to the grid of potential directions, R55 is the covariance matrix of the potential sources, and 

A. is a Lagrange-type regularization parameter. The elements on the main diagonal of R55 are the powers of 

the potential sources. The D nonzero diagonal elements correspond to the powers of the actual sources. 

The inner optimization in (16) over diag(R55) and aJ is convex and can be solved using sparse 

reconstruction techniques with the constraint that the unknowns are nonnegative. The f 2 - norm term in 

(16) is the least squares cost function that maintains data fidelity, while the f 1 - norm term encourages 

sparsity in the reconstructed power spectrum. The weight of the sparsity constraint in the overall cost 

function is controlled by A.. The choice of A is tied to the source sparsity and the noise variance. Several 

methods have been proposed to estimate A including cross-validation [33] and the discrepancy principle 

[6]. It is noted that the source directions are assumed to be located on the grid. However, several methods 

can be used to modify the model in order to deal with off-grid sources [6, 34]. The outer minimization over 

llZ in (16) is non-convex and can be solved by general nonlinear optimization methods. The nested 

optimization in (16) is solved iteratively until the maximum number ofiterations is reached or until the cost 

function stagnates. 

In this paper, we solve the outer optimization problem in (16) using CMA-ES [25], which is a nature-
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based global optimization algorithm. Nature-based optimization algorithms try to emulate natural 

phenomena, such as swarm intelligence and the Darwinian model of natural evolution, in order to find 

optimal solutions. These algorithms can deal with highly nonlinear cost functions, which require 

simultaneous optimization of a large number of parameters. Nature-based optimization algorithms include 

many categories, such as Genetic Algorithms [35], Particle Swarm Optimization [36], Evolutionary 

Programming [37], and Evolution Strategies [38]. CMA-ES has been shown to outperform other 

evolutionary algorithms in many complex electromagnetic problems [39]. 

CMA-ES is a self-adaptive evolution strategy which requires no parameter tuning. Fig. 4 shows the 

block diagram of the main operation of CMA-ES. The algorithm starts by initializing the parameters to 

their default values. It then samples a new generation of potential solutions from a multivariate Gaussian 

distribution using 

(17) 

where yi(.g+l) consists of the parameters of the ith potential solution at the (g + l)th generation, mCB) is 

the mean parameter vector of the best performing members of the previous generation, a~) is the step size, 

and C~) is the covariance matrix of the parameters. The parameters of the multivariate Gaussian 

distribution are then updated sequentially using the best performing members of the generation [25]. The 

performance of the members is measured by their fitness value or score on the outer optimization in (16). 

This process is then repeated until a termination criterion is met. This criterion can be, for instance, a target 

fitness value or a maximum number of generations. 

IV.B. Simultaneous Approach 

In this approach, the sources directions and the MCM are simultaneously estimated rather than in an 

iterative fashion [40]. Starting with the covariance matrix in (9), the joint DOA and MCM estimation is 

achieved by solving 
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(18) 

where ll·IIF is the Frobenius norm, 9 = [011 02 , •.. , 00 ]T contains the source DOAs, diag(R55) consists of 

the source powers, and z holds the unique elements in c-1 . The total number of unknowns is 

(2D + 1 + 2lzl), where lzl is the number of unique elements in the mutual impedance matrix. The 

multiplier 2 in front of lzl is due to the entries ofz being complex valued. A mixed-parameter variation of 

CMA-ES is used to solve (18), since the sources DOAs are picked from a predetermined grid while the 

remaining unknowns are assumed to be continuous parameters [39, 41]. 

It should be noted that the perturbed mutual impedance matrix model can be employed in (18), with 

the minimization carried out with respect to 9, diag(R55), O'J, and /iZ. 

IV.C. Supporting Results 

In the first example, a dipole array with a six-element nested configuration is considered. The elements 

positions are given by [1, 2, 3, 4, 8, 12]d0 . The corresponding difference coarray extends from -11d0 to 

11d0 and is filled with no holes. The length of the dipoles is set to half-wavelength. The corresponding 

MCM is modeled using the RMIM and the signal model in (8) is used to generate the array measurements. 

The coupling matrix is then assumed to be unknown and is jointly estimated along with the DOAs using 

the simultaneous method. A total of 11 sources are considered. The sources are uniformly spaced between 

-0.85 and 0.8 in the reduced angular coordinate u = sin 0. Spatially and temporally white Gaussian noise 

is added to the observations, and the SNR is set to 10 dB. The total number of snapshots is fixed to 1,000. 

Mixed-parameter CMA-ES is used to minimize the cost function in (18), where the DOAs are assumed to 

fall on a grid with 1 ° step size and the remaining parameters are assumed to be continuous. The search 

space for the unknown mutual impedance matrix is restricted to be within 10% of the actual values. For the 

CMA-ES algorithm, the population size and the number of generations are each set to 1,000. Fig. 5 shows 

the estimated spectrum, with the vertical dashed lines indicating the true source locations. Clearly, the 

163 



proposed method is successfully able to compensate for the mutual coupling and estimate the correct source 

directions. 

Next, we consider D = S sources with directions [-58°,-26°,-1°,23°,53°]. The same six-element 

nested array configuration from the first example is employed to estimate the DOAs under varying number 

of snapshots and SNR values. Figs. 6(a) shows the success rate as a function of the number of snapshots 

with the SNR of all sources fixed at 10 dB. For each snapshot value, a total of 100 Monte Carlo runs are 

used. A solution is deemed successful if each DOA estimate is within 2° of the true DOA. Fig. 6(b) shows 

the average RMSE values corresponding to the successful solutions. Figs. 6(c) and 6(d) depict the success 

rate and the average RMSE as a function ofSNR, respectively, with the number of snapshots fixed at 1,000. 

Again, 100 Monte Carlo runs are employed for each SNR value. From Fig. 6, it is evident that the 

performance of the proposed method improves with an increasing number of snapshots and increasing SNR. 

In addition, compared to the SNR, the number of snapshots has a larger effect on the performance. This is 

expected since the proposed method relies on a good estimate of the covariance matrix using the sample 

average. It should be noted that the performance can be further improved by increasing the population size 

and the number of generations of the CMA-ES algorithm. 

In the third example, the iterative method is used to estimate the actual MCM along with the DOAs. A 

six-element microstrip array with an MRA configuration is used. The elements positions are given by 

[0, 1, 6, 9, 11, 13]d0 , and each microstrip element is similar to the one modeled in Section III.C. The MCM 

is modeled using the RMIM and the data measurements are generated using the model in (8). The MCM is 

then perturbed to emulate the effect of changes in local conditions. The perturbations are drawn from 

uniform distributions that assume values between -25% and 25% of the actual values. Eight sources, 

uniformly spaced between u = -0.7 and u = 0.6, are considered. The SNR of all sources is set to 10 dB 

and the number of snapshots is equal to 1,000. Fig. 7(a) shows the estimated spectrum using MUSIC with 

spatial smoothing without accounting for mutual coupling. Clearly, the estimation performance is severely 

degraded since the mutual coupling is not accounted for. Fig. 7(b) depicts the initial estimated spectrum, 

while Figs. 7(c) and 7(d) show the estimated spectra after the first and tenth iterations, respectively. The 
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initial estimated spectrum of Fig. 7(b) is based on solving the inner optimization problem in (16) with the 

perturbations set to zero. We observe that the initial spectrum completely misses one source, provides 

biased estimates for some sources, and exhibits spurious peaks. The estimated spectrum after the first 

iteration in Fig. 7(c) finds all the sources, but exhibits some spurious peaks. The performance of the method 

improves with increasing number of iterations, and after ten iterations, all the sources are correctly 

estimated, as shown in Fig. 7(d). 

In order to validate the convergence of the proposed method, we perform I 00 Monte Carlo runs with 

the aforementioned six-element microstrip MRA. The same source directions and powers as in the third 

example are considered. In each run, a new perturbation of the MCM is generated and the minimization is 

performed over 20 iterations. Fig. 8 shows the success rate as a function of the iteration number. We note 

that the success rate improves with an increasing number of iterations and reaches I 00% after 20 iterations. 

It is to be noted that a faster convergence can be reached for smaller perturbations of the MCM. 

In the final example, a six-element extended co-prime dipole array with M = 2 and N = 3 is 

considered. Note that an extended co-prime configuration comprises of two interleaved ULAs, one with 

2M elements and the other with N elements, with the first element shared between them. The first subarray 

has elements at [O, 3, 6, 9]d0 and the second one has elements at [0, 2, 4]d0 • The corresponding difference 

coarray is filled between - 7 d 0 and 7 d 0 • The simultaneous compensation method is used to jointly estimate 

the MCM and the DOAs. A total of seven uniformly spaced sources between u = -0.8 and u = 0.8 are 

considered. The SNR is fixed to 10 dB for all sources and the number of snapshots is set to 1,000 for each 

run. Mixed-parameter CMA-ES with 1,000 population size and 1,000 generations is used to minimize the 

cost function. I 00 Monte Carlo runs are performed to assess the ability of the proposed method to provide 

a unique solution. Fig. 9 shows the estimated spectrum of one of the successful runs. The DOA estimates 

of all 100 runs are superimposed in Fig. 1 0(a). It is evident that some of the runs result in wrong or biased 

estimates. The success rate as a function of the maximum bias of all estimates is plotted in Fig. 1 0(b ). For 

instance, 76 percent of the runs result in a solution that has each estimated DOA within 2° of the actual 
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value. The success rate can be improved by increasing the number of generations used in CMA-ES. This is 

validated by increasing the number of generations to 5,000 and introducing restarts after each 1,000 

generations. Fig. 11 shows the corresponding results. We observe that runs in excess of 60 percent result in 

unbiased estimates, while all 100 runs produce solutions having each source estimate within 2° of the actual 

value. 

V. CONCLUSION 

The impact of mutual coupling on DOA estimation performance using non-uniform arrays was investigated 

in this paper. Direction finding accuracy was compared for three different non-uniform array configurations 

and two antenna element types. The MRA configuration was shown to provide superior estimation 

performance compared to nested and co-prime array configurations. Further, choice of dipole antennas as 

array elements fared better in terms of RMSE over microstrip antennas; the latter suffer from additional 

coupling arising from surface waves in the substrate. Additionally, two mutual coupling compensation 

methods were proposed for non-uniform arrays. The first method is iterative in nature and assumes 

imprecisely known MCM. The second method simultaneously estimates the coupling matrix and the DOAs 

and is better suited to scenarios where no prior knowledge of the MCM is available. Numerical examples 

were used to demonstrate the effectiveness of the proposed compensation methods. 
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TABLE I 

MINIMUM REDUNDANCY ARRAY CONFIGURATIONS 

NA Positions 

4 [0,1,4,6]d0 

6 [0,1,6,9,11,13]d0 

8 [O, 1, 4, 10, 16, 18, 21, 23]d0 

10 [O, 1, 3, 6, 13, 20, 27, 31, 35, 36]d0 

TABLE II 

NESTED ARRAY CONFIGURATIONS 

NA Positions 

4 [0,1,2,S]d0 

6 [0,1,2,3,7,11]d0 

8 [0,1,2,3,4,9,14,19]d0 

10 [0,1,2,3,4,5,11,17,23,29]d0 

TABLE III 

CO-PRIME ARRAY CONFIGURATIONS 

NA M N Positions 

4 2 3 [O, 2, 3, 4]d0 

6 3 4 [0,3,4,6,8,9]d0 

8 4 5 [0,4,5,8,10,12,15,16]d0 

10 5 6 [0,5,6,10,12,15,18,20,24,25]d0 
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Figure 1. (a) Patch antenna, (b) Gain pattern (dBi) of a single element in isolation, (c) Six
element uniform linear patch array. 
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3. 7. Generalized Cop rime Sampling of Toeplitz Matrices for 

Spectrum Estimation 

Abstract 

Increased demand on spectrum sensing over a broad frequency band requires a high sampling rate 

and thus leads to a prohibitive volume of data samples. In some applications, e.g., spectrum estimation, 

only the second-order statistics are required. In this case, we may use a reduced data sampling rate 

by exploiting a low-dimensional representation of the original high dimensional signals. In particular, 

the covariance matrix can be reconstructed from compressed data by utilizing its specific structure, 

e.g., the Toeplitz property. Among a number of techniques for compressive covariance sampler design, 

the coprime sampler is considered attractive because it enables a systematic design capability with a 

significantly reduced sampling rate. In this paper, we propose a general coprime sampling scheme that 

implements effective compression of Toeplitz covariance matrices. Given a fixed number of data samples, 

we examine different schemes on covariance matrix acquisition for performance evaluation, comparison 

and optimal design, based on segmented data sequences. 

Index Terms 

Compressive covariance sampling, structured matrix, coprime sampling, overlapping data segmenta-

tion 

I. INTRODUCTION 

Various applications require spectrum sensing over a broad frequency band, which demand on the 

sampling rate and produce a large amount of data. In some cases, the original signal is known to be 

sparse. This property allows the exploitation of compressive sensing and sparse sampling approaches that 

enable effective sparse signal reconstruction [3], [4], with no loss of information. The signal reconstruction 

can be carried out by a number of algorithms, such as orthogonal matching pursuit (OMP), least absolute 

shrinkage and selection operator (LASSO), and Bayesian compressive sensing [5]-[8]. 

Spectrum estimation based on the second-order statistics adds to the abovementioned applications for 

signal reconstruction. In this case, the covariance function and the covariance matrix can be constructed as 

low-dimensional representations of the original high-dimensional signals [9], [10]. This fact has motivated 

the development of an alternate framework, referred to as compressive covariance sampling, in which 

the signal sparsity is not a requirement [l 1]-[13). 
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In this paper, we consider spectrum estimation of wide-sense stationary (WSS) processes utilizing the 

Toeplitz property of the covariance matrix. Note that, while our focus in this paper is limited to the 

second-order statistics, extension to techniques based on high-order statistics [14) is straightforward. 

Several methods have been developed to tackle similar compressive Toeplitz matrix sampling. For 

example, a generalized nested sampler [15) was proposed to recover Toeplitz matrices from a compressed 

covariance matrix. However, this approach assumes an infinite number of data samples and does not 

consider the achievable reconstruction performance when the number of samples is finite. In addition, 

it imposes a minimum sampling interval that follows the Nyquist criterion, which makes it ineffective 

to implement low sampling rate systems for wideband spectrum estimation. In [16), a minimal sparse 

sampler was proposed through a set of properly designed analog filters and then down-sampling the signals 

at a reduced rate. A finite number of outputs was divided into multiple blocks without overlapping, and 

the compressed covariance was estimated by averaging over these blocks. However, the requirement of 

using the designed analog filters complicates the implementation. In addition, the effect of utilization of 

overlapping blocks were not considered. 

The proposed work is based on the recently developed coprime sampling structure [17), which utilizes 

only two uniform samplers to sample a WSS process with sampling intervals, M and N . The integers 

M and N , which represent the down-sampling rates, are chosen to be coprime. As a result, it generates 

two sets of uniformly spaced samples with a rate substantially lower than the nested [18) and with fewer 

samplers than the schemes in [19)- [21]. 

In this paper, we design a sampling matrix to compress Toeplitz matrices based on a coprime sampling 

scheme. In particular, our focus is on effective estimations of the Toeplitz covariance matrix and signal 

spectrum from a finite number of samples of a WSS sequence. Toward this objective, we generalize the 

coprime sampling approach to achieve a higher number of degrees of freedom (DOFs) and low estimation 

error. The generalization is carried out in the following two aspects: (a) The first generalization is to use 

multiple coprime units to obtain a higher number of DOFs and improved power spectrum density (PSD) 

estimation performance. This is achieved through the use of an integer factor p, where a coprime unit 

is defined as a full period of the output sample pattern between x[bMN] and x[(b + l )MN - 1] for 

any non-negative integer b. (b) The second generalization is to exploit overlapping blocks in performing 

sample averaging, enabling an increased number of blocks to be used for sample averaging, leading to 

a reduced estimation variance. 

The concept of generalized coprime sampling was first developed in [1] where only the abovementioned 

first generalization is considered, whereas the second generation was introduced in [2]. In this paper, we 

extend these preliminary results by providing comprehensive theoretical support and performance bound 
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analysis of the developed techniques, and describe the spectrum estimation algorithm based on the cross

covariance between the outputs of the two samplers. A number of simulation results are presented to 

clearly reveal the relationship between the achieved performance and various parameters related to the 

sampling strategies and signal conditions. 

The rest of the paper is organized as follows. We first introduce the signal model in Section II. 

Generalized coprime sampling that exploits multiple coprime units is presented in Section ID. Section IV 

describes spectrum estimation based on the generalized coprime sampling scheme, and the corresponding 

spectrum identifiability, compression factor, and Cramer-Rao bound (CRB) are examined. In Section V, 

we propose the exploitation of overlapping samples, and show analytically that the overlapping sampling 

scheme achieves reduced variance in the estimated covariance matrix and signal spectrum. Simulation 

results are provided in Section VI to numerically verify the effectiveness of the proposed generalization 

and the analysis. Section VII concludes the paper. 

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, I N 

denotes the N x N identity matrix. (·) * implies complex conjugation, whereas (·f and (-)H respectively 

denote the transpose and conjugate transpose of a matrix or a vector. E(·) is the statistical expectation 

operator and ® denotes the Kronecker product. IR and C denote the set of real values and complex values, 

respectively, while N+ denotes the set of positive integers. x ,....., CN(a, b) denotes that random variable 

x follows the complex Gaussian distribution with mean a and variance b. l·J denotes the floor function 

which returns the largest integer not exceeding the argument. diag(x ) denotes a diagonal matrix that uses 

the elements of x as its diagonal elements, and Tr{A} returns the trace of matrix A. 

II. SIGNAL MODEL 

Assume that a zero-mean WSS process X(t), t E IR, which consists of signals corresponding to a 

number of sparse frequencies, is confined within a bandwidth B 8 • To obtain its PSD, the covariance 

matrix needs to be provided from a specific realization of X (t), t = 0, ... , T - l. It suffices to consider 

the discrete-time random process, X[l], obtained by sampling the analog signal X(t), with a Nyquist 

sampling rate ls = 2B8 • Note that the discrete-time process X[l] remains WSS in the discrete-time 

sense. Let xL[l] = [x[l] , x[l + 1], . .. , x[l + L - l]f be a realized vector of X[l]. Then, the resulting 
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semi-positive definite, Hermitian and Toeplitz covariance matrix can be given by 

Rx= E [xL[l]xf [ll] 

r [0] r[- 1] r[- L + 1] 

r(l] r(0] r(-£+ 2] 

(1) 

r[L - 2] r[L- 3] r[-1] 

r[L - l] r [L - 2] r[0] 

in which the entry r[r] = E [x[l]x*[l - r]] only depends on the lags T = - L + 1, .. . , L - l. It is clear 

from (1) that r(-r] = r* [r]. In addition, the Toeplitz structure of Rx implies that many of its elements are 

redundant. As a result, Rx can be obtained from a sparsely sampled data sequence. This fact motivated 

compressive covariance sampling [l l]-[13]. 

In this paper, we consider the problem of estimating an L x L covariance matrix of X£ (l] and the 

signal PSD from an observation of X(t) with an available length of KTs, where K E N+ and K ~ L . 

When sampled at the Nyquist interval Ts = 1/ f s, it yields K samples of discrete-time observations 

x[k], k = 0, ... , K - l. A common practice for covariance matrix estimation is to segment the entire 

discrete-time observation of length K into multiple length-L blocks, and average the respectively sample 

covariances [22]. As shown in Fig. 1, the entire observation period is segmented into multiple, possibly 

overlapping, blocks. In Section ill-B, we first consider the non-overlapping segmentation to illustrate the 

signal model, as shown in Fig. l(a), whereas the overlapping case depicted in Fig. l(b) will be discussed 

in Section ill-C. Denote B as the number of data blocks for the non-overlapping case. We assume for 

convenience that the B blocks cover the entire sequence, i.e., BL = K. 

Denote by xb[l] = x [l + (b - l)L], l = 0, . .. , L - l, and Xb = [xb[0], ... , xb[L- l]f for b = l , ... , B. 

We sparsely sample each data block using a V x L sampling matrix A s to obtain Yb = A sx b, where 

V « L. The estimated covariance matrix obtained by averaging the available B blocks and is expressed 

as 

( 

I B 

s B 
b= l 

(2) 

where Rx is an estimated covariance matrix of Rx. The compressed covariance matrix Ry with size V x V 

can be exploited to reconstruct the L x L matrix Rx, provided that it includes all lags r = 0, ... , L - l. 

Note that covariances corresponding to negative lags r = - L + l , ... , - 1 can be obtained through the 

Hermitian operation r[r] = r* [-r] and thus does not contain additional information. Reconstruction of 

full covariance matrix Rx from the compressed covariance matrix Ry can be made possible by designing 
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a proper sampling matrix A 8 • It is clear that, since there are V2 entries in Ry, the number of samples 

required to enable reconstruction of the Hermitian Toeplitz matrix Rx is O( JI,). In this end, Rx can 

be reconstructed as 
f[O] f[- 1] f[-L+ 1] 

f[l] f[O] f[-L + 2] 

Rx = (3) 

f[L-2] f[L -3] f[- 1] 

f[L - 1] f[L- 2] f[O] 

where f[r], T = - L + 1, . . . , L - l are estimated by averaging all the entries with the same lag r in Ry. 

x[k] 

0 K-1 

I X1[l] I 
0 L-1 

I X2[/] I 
L 2L-1 

• • • • • • 

I XB[l] I 
(B -1)L K-1 

(a) 

x[k] 

0 K-1 

I X1[l] I 
0 L-1 

I X2[I] I 
D D+L-1 

• • • • • • 
I X.§ [I] I 

(B - l)D K-1 

(b) 

Fig. l. Illustration of segmentations. (a) Non-overlapping segmentation; (b) Overlapping segmentation. 
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Ill. GENERALIZED COPRIME SAMPLING 

Coprime sampling exploits two uniform sub-Nyquist samplers with sampling period being coprime 

multiples of the Nyquist sampling period [17], [23]. In this section, the generalized coprime sampling 

scheme is presented in two operations. A multiple coprime unit factor p E N-+ [1], aiming to increase 

the number of lags in the compressed covariance matrix, is first introduced. Then, the utilization of 

overlapping samples between blocks is pursued to yield a reduced estimation variance through the use 

of a non-overlapping factor q E N+. 

A. The concept of coprime sampling 

In coprime sampling, the sampling matrix As can be denoted as As = [A; 1 A;2]T, where As1 and 

As2 are the sub-sampling matrices corresponding to the two coprime samplers. 

Definition 1: The (i, j)th entry of the sampling matrices As1 and A 82 can be designed as: 

and 

{ 

1, j = M i, i E N+ , 
(As1] i,j = 

0, elsewhere, 

{

1, 
[As2]i,i = 

0, 

j = N i , i E N+, 

elsewhere, 

where M E N+ and N E N+ are coprime integers. 

(4) 

From a data acquisition perspective, there are two sets of uniformly spaced samples of the input WSS 

signal X(t ), t = 0, ... , T, from two samplers with sampling intervals MTs and NTs, respectively, as 

illustrated in Fig. 2. Without loss of generality, we assume M < N. Then, the highest sampling rate of 

the system is 1/ (MTs) = f s/M and the two sampled stream outputs can be given as 

Y1[k1] = x[Mk1] = X (Mk1Ts), 

Y2[k2] = x[Nk2] = X (Nk2Ts). (5) 

Note that, due to the coprime property of M and N, there are no overlapping outputs between the 

two sets other than x [bM N] for any non-negative integer b. The outputs between x[(b - l)M N] and 

x[bM N - l] are referred to as a coprime unit, positioned at 

(6) 

Over an observation with an available length of KTs, K /MN coprime units can be obtained, each 

consists of M + N physical samples. As such, the total number of physical samples is given by 

Ks = K(MM+:) = K(!+ ~). (7) 
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X(t) 

{ :~ y,[k,l 

,___ _____ ....,_; ~ Y2[k2] 

Fig. 2. Coprirne sampling structure. 

For illustration, an example is presented in Fig. 3, where two coprime samplers with M = 3 and N = 4 

are considered. The length of K = 60 output streams consist of 5 coprime units, and K s = 35 physical 

samples are distributed between x[12(b - 1)] and x [12b - 1] , for b = l, ... , 5, where 5 pairs of samples 

overlap between the output of the two samplers at positions 0, 12, 24, 36, and 48. 

I I• t • t t 

: : . I : .. ' . '' .... 
I I I I I• I> I. \ j .. t t I I,!,. t 

I, I , • • ,,I •• I I . I I I I• I I j I 

I I I I, I I I Ii• , I I• t I I. 11 I . I 

.h.. : b · .1:,. :A: A :! :11. : 'A A· :1:,. :e, : ·A: A :1:..· :.t., · :A i : :1:. :A: :A 
0 ) 8 9 1 l 15 18 2 2~ 'If SO 3! 38 39' C2 o'5 48 · 51 64 . 51 

V V V V V V V V V V V V * V V· 
0 ,t 8 12 16 .zo 24 23 3.1 38 'Ill 44 48 5.2 $ 

U it ~il Unit Uril U111 

Fig. 3. An example for coprime sampling (M = 3, and N = 4; •: Nyquist sampler; 6 : first sampler outputs; v': second 

sampler outputs.) 

Denote Yb,= [Yb,[O], .. . ,yb1 [N - l ]f as an N x 1 vector, and Yb2 = [yb2 [0], . . . ,yb2 [M - l ]]T as 

an M x 1 vector, with Yb,[k1] = x[(b - l )MN + Mk1] and Yb2 [k2] = x[(b - l )M N + Nk2] , where 

0 ~ k1 ~ N - l and O ~ k2 ~ M - l , for 1 ~ b ~ K /(MN). In addition, let Yb= [y[ yf, f . As 
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such, the ( M + N ) x ( M + N) covariance matrix Ry can be expressed as 

Ry = (Ryll Ry12 ) = (E[Yb1Yr,] E[Yb1Y~]) 

Ry21 Ry22 E[Yb,Yr,] E[Yb,Y~] 

(8) 

In Ry, matrices Ryll and Ry
22 

contains self-lags of the two sampler output streams, while their cross-lags 

are included in matrices Ry12 and Ry21 . Note that Ry21 = R;
1 2

• In addition, because the two sampler 

outputs share the first sample in each coprime unit, the self-lags can be taken as cross-lags between 

every sample from one sampler and the first sample from the other sampler. As such, the self-lags form a 

subset of the cross-lags. Thus, Rx can be reconstructed by using only Ry12 , whose cross-lags (including 

the negated ones) are given by the following set, 

(9) 

where O S k1 S N - l and O S k2 S M - l. 

The prototype scheme uses one coprime unit samples to generate all lags in IL. However, it should be 

noticed that they are distributed in the range [-M(N - 1), M(N - 1)] with some missing integers at 

(aM + bN), where a 2: 1 and b 2: 1, as shown in Fig. 4(a), for M = 3 and N = 4. That is, they are not 

sufficient to reconstruct Rx with dimension L = MN. To overcome this limitation, two coprime units 

from the first sampler and one coprime unit from the second sampler are used to form one block in [17] , 

and the resulting lags are contiguous in the range [-MN - N + 1, MN + N - l], as depicted in Fig. 

4(b). This scheme is referred in this paper to as the conventional scheme. In this case, the maximum 

achievable L is Lmax = MN + N. 

B. Generalized coprime sampling scheme using non-overlapping blocks 

In the sequel, an integer factor p 2: 2, representing the number of multiple coprime units, is first 

introduced to achieve a higher value of L. In each block, outputs from p coprime units from both 

samplers, i.e., p(M + N) physical samples spawning a time period of pM NTs, are used to estimate the 

covariance matrix. In this case, the resulting lags fall into the following set, 

(10) 

for O S k1 S pN - l and O S k2 S pM - l . Note that varying p changes the set i. The following 

proposition about the set lL reveals the property of the resulting lag positions. 

Proposition 1: The set i contains all integer lags in the range -(p - l )MN - M - N + l S T S 

(p-l)MN+M+N - 1. 
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,~ 1::.. 6. A 6, A A i:l. 
3 6 9 12 15 8 21' 

1¥ V V V V V 
4 a 12 16 20 

Blad. 1 Blodc 2 

X X X X X X X X X X X X • • X • • • • • • • • • • • • • X • • X X X X X X X X X X X X 

-20 -15 -10 - 5 0 5 10 15 20 

(a) 

I~ A i:l. A A A A A 
3 6 9 12 15 8 21 

1¥ V V V V V 
4 8 2 16 20 

Block 1 

• X X • • X • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • X • , .. 11. X • 
-20 -15 -10 -5 0 5 10 15 20 

(b) 

Fig. 4. An example for different schemes (M = 3, and N = 4; 6 : first sampler outputs; V : second sampler outputs; • : lags; 

x: holes. (a) Prototype; (b) Conventional.) 

The proof is provided in Appendix A. Note that, all resulting lags using conventional scheme are 

included in i as a special case of p = 2. For the generalized scheme, the maximum achievable value of 

L becomes 

Lmax = (p - l )MN + M +N, (11) 

and the number of the corresponding non-overlapping blocks is given by 

B = lp:N J · (1 2) 

An example for different values of p is illustrated in Fig. 5, where K = 120, M = 3, and N = 4 are 

assumed. For the case of p = 2, i.e., the conventional scheme, each block forms consecutive lags within 

[- 18, 18]. That is, Rx can be reconstructed with a maximum of dimension Lmax = 19 by averaging 

B = 5 blocks. For the case of p = 5, Lmax = 55 can be obtained by a consecutive lag range of [- 54, 54] 

in each block, whereas the number of the blocks is reduced to B = 2. 

We examine the compression factor, which is defined as the ratio of the number of entries in Rx over 

the corresponding number in Ry,, , expressed as 

L x L L2 

K, - - --- - ---- pM xpN - p2M N ' 
(13) 
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(b) 

Fig. 5. An example for different values of p (K = 120, M = 3, and N = 4; (a) p = 2; (b) p = 5.) 

Because the maximum value of Lis Lmax = (p - l )MN + M + N, the maximum achievable value of 

K is given by 
[(p - l )M N + M + N]2 

fi:max = p2M N (14) 

Fig. 6 shows fi:max , as a function of M, N, and p. It is clear that "-max improves as M and N increase. 

Notice that, while the number of entries in Ry1 2 increases with p, fl:max does not significantly change. It 

asymptotically approaches M N when p » 1. 

For a given number of compression factor, i.e., the constant value of M N , the optimal coprime pair 

in terms of total number of physical samples, K s, can be derived by solving the optimization problem: 

Minimize K s = K (! + ! ) 
subject to M N = constant, (15) 

0 < M < N . 

It is demonstrated in [23], [31] that the valid optimal coprime pair is the one that has M and N as close 

as possible. This is satisfied by choosing N = M + 1. This relationship is assumed in the remainder of 
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the paper. In this case, K s becomes 

and the corresponding compression factor, Kmax, can be expressed as 
-2 
Lmax M2 

Kmax = p2M(M + 1) ex , 

with £max= (p - l )M2 + (p + I)M + I. 

-+- M='.1 , N =ll 
.....,_ M =2, N 
- M=2, N= 7 
~ M =J, N =7 
--M =5, N 7 

0'------------''-~-~-~-~---~~ 
5 10 5 20 25 30 35 4D 45 50 

p 

Fig. 6. Kmax, as a function of M, N, and p. 

C. Utilization of overlapping blocks 

(16) 

(17) 

The variance of the estimated covariance and spectrum is generally reduced by utilizing a higher 

number of averaging blocks. In addition to averaging over non-overlapping segments, as discussed earlier, 

a general and more effective alternative for spectrum estimation is to exploit overlapping segments. In 

so doing, the number of applicable blocks for sample averaging can be substantially increased. The 

overlapping samples used are set by non-overlapping factor q E N+. 

As shown in Fig. l(b), we maintain the same segment length pM(M + I), and let the starting points 

of two adjacent blocks D = qM(M + 1) units apart, where 1 :S q :S p. Similarly, we assume, for 

convenience, that (B - I )D + pM(M + I) = K covers the entire recorded sequence. 
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Definition 2: Assume that D consists of the length of q coprime units , i.e. , D = qM(M + 1), where 

1 ~ q ~ p. Then, the number of blocks can be expressed as 

iJ = lK -pM(M + l ) j + 1 = l K _ !!.J + l 
D qM(M + 1) q 

= l~B - ~j+ 1. (18) 

It is straightforward to confirm that iJ 2: B since q S p. In addition, iJ / B approaches p / q when B is 

large. As such, p/ q can be considered as the overlapping ratio that approximately describes the level of 

additional blocks used for sample averaging. It is clear that iJ increases as q decreases and is maximized 

when q = l. Note that the non-overlapping case can be considered as a special case of q = p and iJ = B. 

For illustration, an example of p = 5 and q = l is considered in Fig. 7, where K and M are assumed 

to be the same as those in Fig. 5. It is shown that iJ = 6 blocks can be used in Fig. 7, whereas only 

B = 2 blocks are obtained in the corresponding non-overlapping scenario, as depicted in Fig. 5(b). 

~bbb~bbb~bbb~bbb~bbb~bbb~bbb~bbb~bbb~bbb 
0 3 6 9 ~2 15 18 21 24 27 30 33 36 39 42 45 '48 51 54 57 60 63 66 69 ~2 75 78 81 84 87 90 93 96991021051081111141 17 

I I I I I I I I I 

vvv~vv~vv~vv~vv~vv~vv~vv~vv~vv 
o 4 8 

1
12 15 20 i24 28 32 ~6 40 44 f 8 s2 56 130 64 68 

1
12 76 80 ~ 88 92 p6 1 oo 104 108 112 116 

1 Block1 I 1 

I I Block 2 I I 1 

I 1 1 Block 3 I 1 

I I Block 4 I 1 

I I Blocks I 
I Block6 

Fig. 7. An example of utilization of overlapping samples (K = 120, M = 3, p = 5, and q = l.) 

Denote Yb, [k1] = x[(b- 1) x qM(M + 1) + Mk1] and Yb2 [k2] = x[(b- l ) x qM(M + 1) + (M + l )k2], 

where O S k1 S p(M + 1) - 1 and O S k2 S pM - l , for 1 S b S B. In addition, let Yb, = 
[iib, [O], ... , Yb, [p(M + 1)- l] jY and Yb2 = [iib2 [O], .. . , Yb 2 [pM - l ]jT. The covariance matrix Ry,2 , using 

the generalized scheme, can be estimated as 

iJ 
R, 1 " - -H Y12 = iJ ~ Yb, Yb2 • 

(19) 

b=l 

Note that, for each 1 S b S B, the entries rb(k1, k2) = Yb, [k1]ii;
2 
[k2] corresponding to the same position 

(k1, k2) in covariance matrix are still independent. As discussed above, the value of iJ is increased from 

that of B approximately by a factor of pf q. Thus, utilizing overlapping blocks for averaging, the variance 

of the estimated covariance is generally reduced to q/ p of the corresponding non-overlapping case. 
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Then, Rx with dimension L x L, where L :::::; Lmax, can be reconstructed as 

f [O] f[- 1] f[-L+ 1] 

f[l] f[O] f[-£ + 2] 

Rx = (20) 

f [L - 2] f [L - 3] f[-1] 

f [L - 1] f[L - 2] f[O] 

where f[r], r = - L + 1, . .. , L - 1, are estimated by averaging all the entries with the same lag r in 

Ry1, · 

We make the following two remarks: 

1. In the generalized coprime sampling scheme, (B - l )qM(M + 1) + pM(M + 1) = K , where 

p, q E N+, is assumed to cover the entire recorded sequence. When B = 1, factor q does not have a 

physical meaning. Thus, B 2: 2 needs to be guaranteed, which is equivalent to 

K 
p +q'.S M(M + l )" 

As such, the range of the pair of (p , q) falls into the following set, 

IIp,q = { (p, q) Ip + q '.S M(: + 1)' 1 ::; q '.S P, P, q EN+ } · 

(21 ) 

(22) 

2. The covariance matrix Ry12 is estimated using the B available samples. In practice, p and q are 

generally chosen to yield the large number of blocks B to achieve to rigid estimation of Ry
12

• 

3. Asp increases, a higher number of DOFs in the compressed covariance matrix Ry
12 

can be achieved. 

As a result, we can reconstruct covariance matrix Rx with a higher dimension, yielding an improved 

spectrum resolution and estimation accuracy. When q increases, the estimation accuracy can be improved 

because a higher number of blocks are used in the averaging. However, such higher dimension and higher 

number of blocks result in a higher computational complexity. 

IV. SPECTRUM ESTIMATION AND THE CRB 

Spectrum estimation deals with the problem of estimating the PSD of a random process, and finds 

applications in the context of dynamic spectrum sharing [24]. In this case, a broad frequency band 

should be sensed in order to locate the unoccupied spectrum before establishing a communication link. 

Sub-Nyquist sampling for cognitive radios is a widely studied topic, e.g., in [25]- [30]. 

Generally, power spectrum sensing can be classified into two major categories. The first category 

reconstructs the signal waveforms and then estimate the power spectrum, whereas the second category 

estimates the power spectrum from the signal covariance, i.e., the second-order statistics. The approach 
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discussed in [25]-(27] belongs to the former where the signals are assumed to be sparse in some domain 

and sub-Nyquist sampling is implemented to recover the signal waveforms through compressive sensing. 

The approach adopted in this paper, along with [28]-(30] and several other references [11]-(13], (15], 

(16] belong to the second category. Note, however, that this paper makes significant difference to the 

papers in its category, as our major contribution is the generalization of the coprime sampling, where 

the multiple unit factor p is used to improve the degrees-of-freedom (DOFs) and spectrum resolution, 

and the non-overlapping factor q is used to improve the estimation accuracy. Such generalization and the 

related analyses are novel. 

A. Spectrum estimation 

The well-known Wiener-Khinchin theorem proves that the PSD of a signal and the covariance function 

form a Fourier transform pair, expressed as 
00 

P[f] = L r[T]e-j21rrf/J._ (23) 
-r=-oo 

Therefore, once Rx is reconstructed, then P[f] can be estimated by employing the discrete Fourier 

transform which does not require the assumptions of signal sparsity in the frequency domain. The 

applicability to continuous spectrum signals will be demonstrated using a simulation example in Section 

V. 

For signals with sparse and discrete spectrum, however, we can further achieve high-resolution spectrum 

estimation by exploiting subspace-based spectrum estimation techniques, in lieu of the Fourier transform. 

As such, in the following, we focus on the spectrum estimation of sparse spectrum signals which consist 

of a sum of multiple sinusoids, and the corresponding CRB analysis is provided. 

Assume that x[k], for k = 0, l , ... , K - l, are samples of the analog signal X (t), which can be 

presented as a sum of I independent frequency components 

J-1 

x[k] = I::>·ie -;~:•/; + n[k], (24) 
i=O 

of frequency Ji and complex magnitudes CTi, i = 0, . .. , I - l. The additive noise n[k] is assumed to 

be an independent and identically distributed (i.i.d.) random variable following the zero-mean complex 

Gaussian distribution with a variance u;, i.e., n[k] rv CN(O, u;) . 
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Using the generalized coprime sampling scheme, in the bth block, 0 ~ b ~ B- l, the received outputs 

at the two coprime samplers can be respectively written as 

Yb, [k1] = x[(b - 1) x qM(M + 1) + Mk1] 

I - 1 
"'\""""' -j2,,[(b-l)xqM(M+l J+Mk1)f; 

= ~ <Yie 1• + nb, [k1), 
i= O 

Yb2 [k2] = x[(b - 1) x qM(M + 1) + (M + l )k2] 

(25) 

(26) 

where O ~ k1 ~ p(M + 1) - 1, 0 ~ k2 ~ pM - 1, and the range of the pair (p, q) is given in IIp,q· 

Stacking Yb, [k1] for O ~ k1 ~ p(M + 1) - 1 and Yb, [k2] for O ~ k2 ~ pM - 1, yields the following 

received vector data 
I - 1 

_ "'\""""' -j2,,((b- l )XqM(MH})/; 

Yb, = ~ ab, (fi)e ,. <Yi = A b, s4> + nb,' 
i=O 

I - 1 
_ "'\""""' -j2,,((b-l ) XqM(M+l))/; 

Yb, = ~ ab, (fi)e ,. <Yi = A b2 s1> + nb,, 
i=O 

wheres = [<Y1, .. . ,<YJjT, Ab,= [ab,(!1), ... , ab,(h)], and A b,= [ab2 (!1), ... , ab2 (h)] with 

• _ [ -j2"Mf; -j2n[p(M+l) -l)M /;] T 
ab, (fi) - 1, e Is , .• • , e Is , 

[ 

-j2n(M+l)/; -j2"(pM-l)(M+l)/;] T 
ab,(!i)= 1, e f a , . .• ,e ls 

In addition, q> is a diagonal matrix given by 

-j2,,[(b-1) X qM(M+l)]/J -j2"((b-1) XqM(M+I))/ I 
q> = diag([e ,. , ... , e ,. ]). 

(27) 

(28) 

(29) 

(30) 

Note that the noise vectors n b, and n b, follow the complex Gaussian distribution CN(O, <Y;_l pM) and 

CN(O, <Y;_lp(M+i)) , respectively. Then, the compressed covariance matrix Ry,
2 

is obtained as 

Rfo = E[Yb, Yt!] = Ab,Rss A l! + <Y~iY12 

I - 1 

= L a}ab, (fi)a~ (Ji)+ <Y~i1112 , (31) 
i=O 

where i1112 returns apM xp(M + 1) matrix with ones on the main diagonal and zeros elsewhere. Note that, 
-j2"I; -j4-,,f; -j2(L-I)-,,J; 

the following vector with elements corresponding to different lags, a(fi) = [1, e 1. , e 1. , ... , e 1. ]T, 

can be extracted based on ab, (Ji) ® a;
2 
(Ji) for 1 ~ i ~ J. Thus, Rx E c,LxL, where L ~ Lmax, can be 

reconstructed and expressed as 

I - 1 

Rx = L <Y;a(fi)aH (Ji) + <Y~h- (32) 
i=O 
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In practice, Ry,, is estimated by averaging the available B blocks as in (19), and Rx is reconstructed 

as in (20). The spectrum can be estimated using a variety of methods (e.g., [33]), with respect to Rx. It 

is well known that subspace-based methods are popular candidates to achieve a high spectrum resolution 

with a moderate computational complexity. The multiple signal classification (MUSIC) algorithm [34] is 

used to evaluate the performance of our approach. Note that the extension of other spectrum estimation 

techniques [35], [36] is straightforward. 

The MUSIC approach is based on eigen-decomposition of the reconstructed covariance matrix Rx, 
given by 

(33) 

where A= diag{>.1, >-2 , . .. , >.L} is the diagonal matrix of the eigenvalues in a descending order, and the 

L x L matrix U contains the corresponding eigenvectors. The MUSIC algorithm requires the information 

of the rank of the signal subspace, i.e., the number of carrier frequencies of the signal arrivals. Various 

mathematical criteria, such as Akaike information criterion (AIC) (37], minimum description length 

(MDL) [38], and Bayesian information criterion (BIC) [39], can be employed to achieve the rank 

estimation. In this paper, we apply the BIC on Rx to obtain the value of I. It was shown that that 

BIC based methods [40]-[42] generally outperform other methods, such as those developed based on 

AIC and MDL [43]-[45] due to the stronger consistency, particularly when the number of array sensors 

is large and the number of samples is small. Then, Eqn. (33) can be decomposed as 

(34) 

where Us E c,Lxl and Un E c,Lx(L-I) contain the signal and noise subspace sample eigenvectors, 

respectively, and the corresponding sample eigenvalues are included in the diagonal matrices As = 

diag{>-1, >-2, ... , >-1} and An= diag{>-1+1 , >-1+2, .. . , >.L}. Then, the spectrum can be estimated as 

A 1 

P(f) = aH (J)UnU!f a (f)' 
(35) 

where f is defined as the collection over all possible grids in the spectrum and the values off that produce 

peaks in the estimator P(f) are taken as estimates of the frequencies Ji, i = 1, ... , I. The spectrum 

identifiability and resolution are improved as L increases, and they are optimized when L = Lmax· This 

relationship is assumed in the remainder of the paper. 

B. The Cramer-Rao Bound (CRB) 

The CRB offers a lower bound on the variances of unbiased estimates of the parameters. The specific 

CRB expressions given in [46]-[48] are valid only when the number of frequencies is less than the number 
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of physical samples (I < Ks)- This is because the expressions are based on the inverse of the matrix 

AH A, where A is the so-called array or frequency manifold matrix. However, the assumption I < K s 

is not requirement for the existence of CRB, because even when I 2: K s, with proper prior information, 

the Fisher information matrix (FIM) can remain nonsingular (invertible) under a much broader range of 

conditions. Thus, we use the inverse of FIM as the CRB expression. After we have submitted the previous 

version of the manuscript, several papers have been published on the CRB analysis of the directions of 

arrival estimation when more sources than the number of sensors are handled in the context of coarrays. 

We have cited these papers as references [49)-[51]. However, none of these papers provide revealing 

solutions in a compact matrix form. 

For a set of vectors Yb = [yfi yr,]r, b = 1, .. . , B, the CRB is calculated by the well-known expression 

[47] involving the F1M elements 

- { _ 1 8Ry _1 8Ry} 
Fa,a; = BTr Ry Bai Ry Baj , (36) 

for unknown variables O'.i and O'.j, where Ry is expressed as 

I - 1 

Ry = E[hyrJ = L crfab(fi)ar (Ji) + cr~I p(2M+l), (37) 
i=O 

and ab(!i) = [af,(/i) ar,(fi)f. 

In the underlying case, the unknown parameters are the I signal frequencies Ji and powers crf for 

i = 1, .. . ,I, as well as the noise power er~. Therefore, the elements in the (21 + 1) x (21 + 1) Fisher 

matrix F can be written in terms of the block matrices, for i , j = 1, ... , I, given by 

(38) 
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where 

::::.::.::i.. = ~ [aa,, (h) /-J (!,·) + (J·) aa!-J (h)] 
& !1 a- i a f , a b * 80 

' · & Ii ' 
BR.y . IJ 
lJc,-2 = (Ii )ab (f- ), 

8R -Oo{ = (2 Hl)· (39) 

Then, the CRB of estimated frequencies is obtained as 

CRB (fi) = [F - 1
] . . . 

i,i 
(40) 

V. SIMULATION R ESULTS 

For illustrative purposes, we demonstrate the spectrum estimation performance under different choices 

of the arguments within the generalized coprime sampling scheme. Assume that I frequency components 

with identical powers are distributed in the frequency band [- 500, 500] MHz. Assume that K = 50000 

samples are generated with a Nyquist sampling rate f 8 =l GHz. In addition, the noise power is assumed 

to be identical across the entire spectrum. The MUSIC method is used to estimate the power spectrum. 

Our benchmarks are the spectrum DOFs and their statistical performance. The latter is evaluated in terms 

of average relative root mean square error (RMSE) of the estimated frequencies, defined as 

. . 1 
Rel tV1e R!vl E(h) = I.~ (41 ) 

where Ji(n) is the estimate of Ji from the n th Monte Carlo trial, n = l , .. . , 500. 

A. The peiformance of coprime sampling 

We first illustrate the performance of coprime sampling. Herein, the conventional coprime sampling 

scheme is considered, i.e. , p = 2. In addition, M = 3 is assumed. As such, the L x L = 19 x 19 

covariance matrix Rx can be reconstructed from Ry,
2 

with dimension pM x p(M + 1) = 6 x 8. Thus, 

the resulting compression factor is /'\:max ~ 7.52 and up to L - l = 18 frequencies can be estimated. 

In Fig. 8, we consider I = 18 frequencies with of = 50 MHz separation in the presence of noise with 

a O dB SNR. It is evident that all 18 frequencies can be identified correctly. In Fig. 9, the RMSE results 

are shown as a function of the input SNR, where I = l is assumed. As expected, it displays a strong 

inverse semi-logarithmic dependence on the input SNR. It is also observed that there is a gap between the 

RMSE and CRB even in the high SNR region, due to estimation bias. The errors are mainly generated 

in two aspects. On one hand, Ry\
2 

is used to reconstruct Rx. On the other hand, only consecutive lag 

entries in Ry1 2 are exploited. It is observed that the bias errors increase with I due to a higher frequency 

components, as shown in Fig. 10, where the input SNR is set to O dB. 
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Fig. 8. Estimated spectrum (J = 18 and input SNR=O dB). 
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Fig. 9. Relative RMSE versus SNR (J = 1). 

B. The generalized coprime sampling scheme versus other schemes 

Next, we compare the generalized coprime sampling scheme with the nested sampler and the sparse 

ruler based sampler, where the same number of physical samples is assumed. For the coprime sampler, we 

set M = 3, and thus there are 2M + 1 = 7 physical samples in each coprime unit. The sampling patterns 

corresponding to the nested sampler and the sparse ruler based sampler that yield the same 7-sample unit 
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Fig. IO. Relative RMSE versus I (SNR=O dB). 

are [0 1 2 3 7 11 15] and [O 1 4 10 12 15 17], respectively. In this simulation, p = 3 coprime units are 

used to form the covariance matrix for the generalized coprime scheme, whereas the nested sampler and 

minimal sparse ruler based sampler each uses one unit as in [15] and [12]. Their relative RMSEs are 

depicted as a function of input SNR in Fig. 11, where I = 5 frequencies are considered. It is clear that 

the generalized coprime scheme outperform the other two sampling schemes due to the higher number 

of DOFs and improved resolution. 

C. Relative RMSE for various p 

In Figs. 12-14, we compare the performance corresponding to different choices of p under different 

criteria, where non-overlapping segmentation is used. 

Figs. 12 and Fig. 13 examine the performance for different choices of p, based on the same compression 

factor, where M = 3 is assumed. In Fig. 12, the distinction on spectrum identifiability is depicted for 

the cases of p = IO and p = 45. We consider I = 100 frequencies with of = 2 MHz separation in 

the presence of noise with a O dB SNR. It is evident that only the scenario of p = 45 can resolve all 

frequencies correctly, although in the case of p = 10 the number of DOFs L - l = 114, is slightly higher 

than the number of frequency components. Fig. 13 presents the RMSE and CRB with respect to p, where 

I = 5 is assumed. It is observed that the estimation performance is improved as p increases. In addition, 

the bias error between the estimated frequency and the CRB becomes smaller, since the ratio between 

the number of consecutive lags and the number of total lags in Rs,1 2 increases with p. In summary, a 
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Fig. 11. Relative RMSE versus SNR for different sampling schemes (J =5). 

Fig. 12. Estimated spectra for the cases of p = 10 and p = 45 (M = 3 and input SNR=O dB). 

higher value of p can improve DOFs and spectrum estimation performance under the same compression 

factor. However, the requirement of storage space and the computational load become higher, due to the 

resulting higher value of L. 

In Fig. 14, we present the relative RMSE as a function of the input SNR for different values of (p , M) 

pairs, where the dimension of the covariance matrix is L = (p - l )M 2 + (p + l )M + 1 = 161, and the 

number of frequencies is I = 5. It is clear that, as the value of M decreases (and so does the compression 

factor "-max because "-max ex M2), the estimated relative RMSE is reduced since a higher number of 
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Fig. 13. Relative RMSE versus p, based on the same M (I = 5 and M = 3). 

physical samples (Ks= K(l/M + l/(M + 1))) can be used. 
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Fig. 14. Relative RMSE versus SNR, based on the same L (I = 5 and L = 161). 
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Fig. 15. Relative RMSE versus q (M = 3, p = 12, and I = 5). 

D. Relative RMSE for various q 

Finally, the advantage of utilization of overlapping blocks is demonstrated in Fig. 15, where M = 3 

and p = 12 are assumed and I= 5 frequency is considered with a O dB SNR. In addition, q is chosen 

within the range of {1, 2, 3, 4, 6, 12}. It is evident that the estimation performance can be improved as q 

decreases, compared to the non-overlapping case, i.e., q = p = 12. 

E. Relative RMSE versus K 

In Fig. 16, we present the relative RMSE performance with respect to K, where M=3 is assumed, 

and I =5 frequencies with a O dB input SNR are considered. It is evident that the estimated relative 

RMSE performance is improved as K increases because a higher number of blocks is used to reduce the 

noise effect. Asymptotically, when K is large, the relative RMSE asymptotically decreases with a factor 

of 1 / v'J(. In addition, various cases with different values of p and q are compared in this figure. By 

assuming a large value of p and a small value of q, the generalized coprime sampling scheme improves 

the RMSE performance as it benefits from the high dimension of the reconstructed covariance matrix 

and the utilization of overlapping blocks, respectively. 

F. Estimation for continuous spectrum 

Finally, we consider an example of continuous spectrum signals in Fig. 17, where x(t) is assumed 

to have continuous rectangular spectrum supports in [-350, - 230] MHz and [150,280] MHz. Multiple 
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Fig. 16. Relative RMSE versus K (M=3 and 1=5). 

coprime unit factors of p = 2, 3, 7 are considered. As p increases, it is clear that the mainlobe becomes 

closer to the ideal signal bandwidth due to the larger dimension of the reconstructed matrix Rx, For 

comparison, the case of p = 7 and q = 1 generally outperforms the case of p = 7 and q = 7 because a 

higher number of blocks, achieved by using overlapping segmentation, become available for averaging. 

VI. CONCLUSIONS 

We proposed an effective approach to compressively sample wide-sense stationary processes. The 

coprime sampling matrix was used to obtain a compressed representation for their second-order statistics. 

Using a fixed number of data, different schemes for the acquisition of a covariance matrix were presented, 

based on segmenting the data sequence. The performance of these schemes was compared and numerically 

evaluated. The effectiveness of the proposed technique was evidently verified using simulation results. 

VII. APPENDIX 

Proof of Proposition 1 

For the convenience of presentation, we define the function r ([k1min, k1maxL [k2min, k2maxD as the 

operation ±(Mk1 - Nk2) with k1 E [k1min , k1 maJ and k2 E [k2min' k2ma.l· Denote 

i1 = {T11f([O,pN - 1], [0,M - 1])}, 

i2 = {T21f( [0,N -1], [0 ,pM - 1])} , 
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and the proposition 1 can be obtained by proving the following propositions: 

t(a) i = i1 Ui 2. 

l (b) For the set i 1, it contains all integer lags in the range - (p - l )M N - N + 1 :::; T1 :::; (p - l )M N + 
N - 1, and the "holes" are located at ± [ (p - 1) M N + aM + bN] , where a ~ 0 and b > 0 are 

integers. 

1 ( c) For the set i 2 , it contains all integer lags in the range - (p - 1) M N - M + 1 :::; T2 :::; (p - 1) MN + 

M - 1, and the "holes" are located at ± [(p - l )M N + aM + bN], where a> 0 and b ~ 0 are 

integers. 

l (d) The first pair of holes ± [p - l )M N + bN] in i 1, where b ~ 0, can be aligned by the non-consecutive 

element in i 2. 
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Proof of proposition 1 ( a): The lag set 

i = {r([O,pN - 1], [O,pM - 1]) } , 
p 

= LJ {f ([O,pN - 1], [(P1 - l )M,p1M - 1])} LJ 
p , =1 

p 

LJ {f([(p2 - l )N, p2N - 1], [O,pM - 1]) } 

d,, LJ c~, {r([O,pN - I] , [(p, - I )M, p1M - 1J)}) LJ 

iL2 LJ c~, (r([(p2 - l}N,p,N - I], [O,pM - 11}}) . (44) 

Note that the union of the sets LJ:,=2{f([O, pN - 1], [(P1 - l )M, p1M - 1])} and LJ:
2
=2{f ([(P2 -

l )N,p2N -1] , [O , pM - 1])} is the subset of i1 Ui2. Therefore, (44) can be simplified as 

(45) 

Proof of proposition 1 (b ): Given any integer T1 satisfying 

O:S r1 :S (p - l )MN +N - l , (46) 

we need to prove that there exist integers k1 E [O,pN - 1] and k2 E [O, M - 1] such that T1 = Mk1 - Nk2 

holds. The requirement k2 E [O, M - 1] is equivalent to 

0 :S N k2 :S M N - N. (47) 

Because M k1 = r 1 + Nk2, we obtain the following relationship by combining (46) and (47), 

0 :S Mk1 :S pMN - l < pMN. (48) 

This result can be equivalently expressed as O :S k1 < pN. Because k1 is an integer, this requirement is 

equivalent to 

0 :S k1 :S pN - l , (49) 

which is satisfied in the underlying coprime array configuration. 

Next, we prove the hole positions by contradiction. We suppose M k1 - N k2 = (p - l ) MN+ aM + bN 

holds for some integers k1 E [O , pN - l] and k2 E [O, M - l ], where a 2: 0 and b > 0 are integers, then 

relationship 

= --- -
N k1 -pN - a 

(50) 
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must be valid. From k1 E [0,pN - 1] and a 2 0, we find Mk1 - Nk2 = (p - l )MN +aM + bN < pMN, 

and then b < M. As a result, \ k2 - M + b\ < M. Due to the coprimality between M and N, we cannot 

find a k1 to satisfy (50). Therefore, Mk1 - Nk2 =I- (p - l)MN + aM + bN, i.e., there are holes at 

(p - l )MN + aM + bN in i 1. 

Due to the symmetry of i 1, we can draw the conclusions that i 1 all integer lags in the range - (p -

l )MN - N + l ::; r 1 ::; (p - l )MN +N - 1, and the "holes" are located at ± [(p - l )MN + aM + bN ], 

where a 2 0 and b > 0 are integers. 

Proof of proposition I ( c ): We omit the proof of proposition 1 ( c ), which can be proved by using the same 

method as in the proof of proposition 1 (b ). 

Proof of proposition l(d): Based on the proposition l(b), there are holes (p - l)MN + aM + bN in 

i 1, where a 2 0 and b > 0 are integers. If the holes are aligned by the elements in i 2, the following 

relationship 

(p - l )MN + aM + bN = ± (Mk1 - Nk2) (51) 

must be valid for k1 E [O, N - 1] and k2 E [0,pM - 1]. The requirement is equivalent to 

(p- l)MN + aM + (b+ k2)N = Mk1 , 

or 

(p - l )MN +(a+ k1 )M + bN = Nk2, 

i.e., 

b =-k2, or a =-k1 . (52) 

It is only possible for a= k1 = 0 when k1 E [0,N - 1], k2 E [0,pM - 1], a E [0, cx:), and b E (0, cx:). 

Then, the requirement further becomes 

(p - l)M + b = k2 . (53) 

In the proofof proposition l(b), it is shown that b < M, i.e., b :::; M - 1. As such, k2 E ((p - l )M,pM - 1] ~ 

[0 , pM - 1] . Therefore, the holes (p - l)MN + bN(a = 0) in i 1 are aligned by the element in i 2 for 

some integers k2 E [0, pM - l ]. As a result, the first hole outside the consecutive range of i becomes 

(p - l )MN + M + N . Then, the set i contains all integer lags in the range 

-(p- l)MN - M - N + l ::S r :::; (p- l )MN + M + N - l. (54) 

206 



REFERENCES 

[1] S. Qin, Y. D. Zhang, and M. G. Amin, "High-resolution frequency estimation using generalized coprime 

sampling," in Proc. SPIE Mobile, Multimedia/Image Process., Secur. Appl. Conj. (SPIE), Baltimore, MD, 

2015, vol. 9497, pp. 94970Kl-94970K7. 

[2] S. Qin, Y. D. Zhang, M. G. Amin, and A. M. Zoubir, "Generalized coprime sampling of Toeplitz matrices," 

in Proc. IEEE Int. Conj. Acoust. Speech Signal Process. (ICASSP), Shanghai, China, 2016, pp. 4468-4472. 

[3] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly 

incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, 2006. 

[4] D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, 2006. 

[5] J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," 

IEEE Trans. Inf. Theory , vol. 53, no. 12, pp. 4655-4666, 2007. 

[6] R. Tibshirani, "Regression shrinkage and selection via the lasso," J. R. Stat. Soc., Ser. B, vol. 58, no. 1, pp. 

267-288, 1996. 

[7] S. Ji, D. Dunson, and L. Carin, "Multitask compressive sensing," IEEE Trans. Signal Process., vol. 57, no. I, 

pp. 92-106, 2009. 

[8] Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, "Multi-task Bayesian compressive sensing exploiting intra

task dependency," IEEE Signal Process. Lett., vol. 22, no. 4, pp. 430-434, 2015 . 

[9] G. Dasarathy, P. Shah, B. N. Bhaskar, and R. Nowak, "Sketching sparse matrices, covariances, and graphs via 

tensor products," IEEE Trans. Inf Theory, vol. 61, no. 3, pp. 1373-1388, 2015. 

[IO] Y. Chen, Y. Chi, and A. Goldsmith, "Exact and stable covariance estimation from quadratic sampling via 

convex programming," IEEE Trans. Inf Theory, vol. 61 , no. 7, pp. 4034--4059, 2015 . 

[11] G. Leus and Z. Tian, "Recovering second-order statistics from compressive measurements," in Proc. IEEE 

Int. Workshop on Comp. Adv. in Multi-Sensor Adaptive Process. (CAMSAP), San Juan, Puerto Rico, 2011, pp. 

337-340. 

[12] D. D. Ariananda and G. Leus, "Compressive wideband power spectrum estimation," IEEE Trans. Signal 

Process., vol. 60, no. 9, pp. 4775-4789, 2012. 

[13] D. Romero and G. Leus, "Compressive covariance sampling," in Proc. Inf. Theory Appl. Workshop (/TA), San 

Diego, CA, 2013, pp. 1-8. 

[14] C. L. Nikias and J. M. Mendel, "Signal processing with higher-order spectra," IEEE Signal Process. Mag., 

vol. 10, no. 3, pp. I 0-37, 1993. 

[15] H. Qiao and P. Pal, "Generalized nested sampling for compression and exact recovery of symmetric Toeplitz 

matrices," in Proc. IEEE Global Conj. Signal Inf. Process. (GlobalSIP), Atlanta, GA, 2014, pp. 443-447. 

[16] Z. Tian, Y. Tafesse, and B. M. Sadler, "Cyclic feature detection with sub-Nyquist sampling for wideband 

spectrum sensing," IEEE J. Sel. Top. Signal Process., vol. 6, no. I, pp. 58-69, 2012. 

207 



[ 17] P. P. Vaidyanathan and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Trans. Signal Process., 

vol. 59, no. 2, pp. 573-586, 2011. 

[18] P. Pal and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees 

of freedom," IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4167-4181, 2010. 

[19] M.A. Lexa, M. E. Davis, J. S. Thompson, and J. Nikolic, "Compressive power spectral density estimation," in 

Proc. IEEE Int. Conj. Acoust. Speech Signal Process. (ICASSP), Prague, Czech Republic, 2011, pp. 3884-3887. 

[20] Y. L. Polo, Y. Wang, A. Pandharipande, and G. Leus, "Compressive wide-band spectrum sensing," in Proc. 

IEEE Int. Conf Acoust. Speech Signal Process. (ICASSP), Taipei, Taiwan, 2009, pp. 2337-2340. 

[21] D. D. Ariananda, G. Leus, and Z. Tian, "Multi-coset sampling for power spectrum blind sensing," in Proc. 

Int. Conf Digit. Signal Process. (DSP), Corfu, Greece, 2011, pp. 1-8. 

[22] P. D. Welch, "The use of fast Fourier transform for the estimation of power spectra: a method based on time

averaging over short, modified periodograms," IEEE Trans. Audio Electroacoust., vol. 15, no. 2, pp. 70-73, 

1967. 

[23] S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival 

estimation," IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1377-1390, 2015. 

[24] Q. Zhao and B. M. Sadler, "A survey of dynamic spectrum access," IEEE Signal Process. Mag., vol. 24, no. 

3, pp. 79-89, 2007. 

[25] M. Mishali and Y. Eldar, "From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals," 

IEEE J. Sel. Top. Signal Process., vol. 4, no. 2, pp. 375-391, 2010. 

[26] R. Venkataramani and Y. Bresler, "Perfect reconstruction formulas and bound on aliasing error in sub-Nyquist 

nonuniform sampling of multiband signals," IEEE Trans. Inf Theory, vol. 46, no. 6, pp. 2173-2183, 2000. 

[27] M. Mishali and Y. Eldar, "Blind multiband signal reconstruction: Compressed sensing for analog signals," 

IEEE Trans. Signal Process., vol. 57, no. 3, pp. 993-1009, 2009. 

[28] H. Sun, W. Y. Chiu, J. Jiang, A. Nallanathan and H. V. Poor, "Wideband spectrum sensing with sub-Nyquist 

sampling in cognitive radios," IEEE Trans. Signal Process., vol. 60, no. 11, pp. 6068-6073, 2012. 

[29] D. Cohen and Y. C. Eldar, "Sub-Nyquist sampling for power spectrum sensing in cognitive radios: A unified 

approach," IEEE Trans. Signal Process., vol. 62, no. 15, pp. 3897-3910, 2014. 

[30] M. Shaghaghi and S. A. Vorobyov, "Finite-length and asymptotic analysis of averaged correlogram for 

undersampled data," Appl. Comput. Harmon. Anal., http://dx.doi.org/10.1016/j.acha.2016.02.001. 

[31] K. Adhikari, J. R. Buck and K. E. Wage, "Extending coprime sensor arrays to achieve the peak side lobe height 

of a full uniform linear array," EURASIP J. Wireless Commun. Netw., doi:10.l 186/1687-6180-2014-148, 2014. 

[32] P. Stoica and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Trans. Acoust. Speech 

Signal Process., vol. 37, no. 5, pp. 720-741, 1989. 

[33] P. Stoica and R. L. Moses, Spectrum Analysis of Signals, Upper Saddle River, NJ: Prentice-Hall, 2005. 

208 



[34] R. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., vol. 

34, no. 3, pp. 276-280, 1986. 

[35] R. Roy and T. Kailath, "ESPRIT - Estimation of signal parameters via rotation invariance techniques," IEEE 

Trans. Acoust. Speech Signal Process. , vol. 17, no. 7, pp. 984-995, 1989. 

[36] Y. Hua and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped 

sinusoids in noise," IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. 5, pp. 814-824, 1990. 

[37] H. Akaike, "A new look at the statistical model identification," IEEE Trans. Autom. Control, vol. 19, no. 6, 

pp. 716-723, 1974. 

[38] M. Wax and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. Acoust. Speech 

Signal Process. , vol. 33, no. 2, pp. 387-392, 1985. 

[39] G. Schwarz, "Estimating the dimension of a model," Ann. Statist., vol. 6, no. 2, pp. 461-464, 1978. 

[40] Z. Lu and A. M. Zoubir, "Generalized Bayesian information criterion for source enumeration in array 

processing," IEEE Trans. Signal Process., vol. 61, no. 6, pp. 1470---1480, 2013. 

[41] Z. Lu and A. M. Zoubir, "Source enumeration in array processing using a two-step test," IEEE Trans. Signal 

Process. , vol. 63, no. JO, pp. 2718-2727, 2015 . 

[42] L. Huang, Y. Xiao, K. Liu, H. C. So, and J.-K. Zhang, "Bayesian information criterion for source enumeration 

in large-scale adaptive antenna array," IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3018-3032, 2016. 

[43] K. Han and A. Nehorai, "Improved source number detection and direction estimation with nested arrays and 

ULAs using jackknifing," IEEE Trans. Signal Process., vol. 61 , no. 23, pp. 6118-6128, 2013. 

(44] C. D. Giurcaneanu, S. A. Razavi, and A. Liski, "Variable selection in linear regression: Several approaches 

based on normalized maximum likelihood," Signal Process. , vol. 91, no. 8, pp. 1671- 1692, 2011. 

[45] L. Huang and H. C. So, "Source enumeration via MDL criterion based on linear shrinkage estimation of noise 

subspace covariance matrix," IEEE Trans. Signal Process., vol. 61, no. 19, pp. 4806-4821, 2013. 

[46] H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. New 

York: Wiley, 2002. 

(47] P. Stoica and A. Nehorai, "Performance study of conditional and unconditional direction-of-arrival estimation," 

IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. JO, pp. 1783-1795, 1990. 

[48] M. Shaghaghi and S. A. Vorobyov, "Cramer-Rao bound for sparse signals fitting the low-rank model with 

small number of parameters," IEEE Signal Process. Lett., vol. 22, no. 9, pp. 1497-1501, 2015. 

[49] C.-L. Liu and P. P. Vaidyanathan, "Cramer-Rao bounds for coprime and other sparse arrays, which find more 

sources than sensors," Digital Signal Process. , doi : JO.J016/j .dsp.2016.04.011, 2016. 

[50) M. Wang and A. Nehorai, "Coarrays, MUSIC, and the Cramer-Rao bound," arXiv:1605.03620, 2016. 

[51] A. Koochakzadeh and P. Pal, "Cramer-Rao bounds for underdeterrnined source localization," IEEE Signal 

Process. Lett., vol. 23, no. 7, pp. 919-923, 2016. 

209 



REPORT DOCUMENTATION PAGE 
Form Approved 

0MB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arl ington, VA 22202-4302. Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currenffy valid 0MB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) , 2. REPORT TYPE 3. DA TES COVERED (From - To) 

10/03/201 8 Final 01 -01 -2013 - 31-12-2017 
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

Co-Prime Frequency and Aperture Design for HF Surveillance, Wideband 
Radar Imaging, and Nonstationary Array Processing Sb. GRANT NUMBER 

N00014-13-1-0061 

Sc. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) Sd. PROJECT NUMBER 

Amin, Moeness, G (Pl), Ahmad, Fauzia (Co-Pl), Zhang, Yimin, D (Co-Pl) 

Se. TASK NUMBER 

Sf. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
Villanova University REPORT NUMBER 

800 Lancaster Avenue, Villanova, PA 19085 527934 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

Office of Naval Research 
Code 331 
875 North Randolph Street 11. SPONSOR/MONITOR'S REPORT 
Arlington, VA 22203-1995 NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

The research objectives are to develop novel co-prime sampling and array design strategies that achieve high-resolution 
estimation of spectral power distributions and signal direction-of-arrivals (DOAs), and their applications in various 
surveillance, radar imaging applications, and array processing. The focus of our studies has been in the following five 
areas: (i) Generalized co-prime array design; (ii) Wideband DOA estimation and radar sensing; (iii) Active sensing using 
co-prime arrays; (iv) Mutual coupling effect and mitigation; (v) Spectrum estimation based on co-prime sampling. 

15. SUBJECT TERMS 

Array signal processing, spectrum estimation , co-prime array, direction-of-arrival estimation, radar imaging 

16. SECURITY CLASSIFICATION OF: 

a. REPORT b.ABSTRACT c. THIS PAGE 

uu uu uu 

17. LIMITATION OF 
ABSTRACT 

uu 

18. NUMBER 
OF 
PAGES 

211 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 


