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Background 
 

Motivation 

The Joint Multi-Role Rotorcraft (JMR) program is intended to demonstrate technology 

for a family of rotorcraft that could eventually replace its entire fleet of helicopters — attack, 

reconnaissance,  utility and cargo — as well as similar platforms operated by the U.S. Navy, 

Marine Corps and Air Force. Currently, the Army uses a heavily upgraded fleet of helicopters. 

The upgrades offer marginal improvements in performance over their non-upgraded 

counterparts. The focus with JMR is on replacing the “medium” fleets of AH-64 Apaches and 

UH-60 Black Hawks, but the demonstrator configurations must be scalable downward to replace 

OH-58D Kiowa Warrior armed scouts and potentially upward to replace heavy-lift CH-47 

Chinooks, as shown in Figure 1.  

 

 

Figure 1: Joint Multi-Role Rotorcraft Program Architecture 

 

 Advanced and compound helicopters as well as tiltrotors are under the consideration for a 

potential JMR platform with the technology exploration to increase speed, range, payload, 

survivability and reliability. The development and evaluation of the JMR Demonstrator 

vehicle(s) will offer tremendous payoff for the entire rotary wing community. It will allow for 



7 

 

the pursuit of significant improvements in performance, survivability, commonality, and 

sustainability. It will provide essential insights as to the warfighter capabilities that are both 

achievable and affordable for the next generation fleet. Investigations are already underway by 

AFDD and the Design IPT using NASA Design and Analysis of Rotorcraft (NDARC)
i
 software, 

which has been under development since 2007. NDARC is the primary rotorcraft sizing and 

synthesis code used to compare JMR configurations and technologies. The JMR mission profile 

is designed to meet the future vertical lift needs of the armed forces. The high speed and high 

altitude requirements drive higher weight and cost given today’s technologies. Thus JMR will 

require “game changing” technologies. The Aerospace Systems Design Lab (ASDL) at Georgia 

Tech has been involved with a number of projects to develop and analyze tools with the 

capabilities to rapidly and dynamically evaluate and compare scenarios and enable real-time 

strategy exploration and trade-offs. The motivation for this ASDL task is that our experience in 

Quantitative Technology Assessment (QTA) can be utilized in support of trade studies currently 

being undertaken by AFDD for the JMR.
ii
 

 

The Problem Definition 

The Joint Multi-Role Rotorcraft Technology Demonstrator (JMR TD) is intended to 

demonstrate technologies for a family of rotorcraft that could eventually replace an entire fleet of 

helicopters. During the JMR TD effort, multiple rotorcraft configurations are being analyzed for 

their performance and mission effectiveness across a joint set of roles and operations. One 

anticipated outcome of the JMR TD effort is the identification of capability gaps and the impact 

that technologies can have on closing the gaps. In order to realize this outcome, there is a need 

for quantitative assessment of technology impact on rotorcraft capabilities. 

 

 The problem for the Design IPT team deals with arriving at a reasonably good guess at 

what a particular configuration will look like in terms of weight, performance, cost, and other 

system metrics given a set of requirements for the platform. Predicting the size, weight, and 

performance of a configuration is not that difficult using a tool such as the NASA Design and 

Analysis of Rotorcraft (NDARC) software, which was specifically created to aid in rotorcraft 
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conceptual design and technology impact analysis. The difficulty and challenge is being able to 

model current and future technologies in a way that makes sense, is believable, and also 

traceable. The real challenge is not the process itself. The real challenge is in answering the 

following questions:  

 

1. What are the technologies that the Design IPT should be considering for the 

various JMR configurations? 

2. What parameters in my tool are impacted – either positively or negatively – by 

each technology? 

3. What is the range that I might expect the impact to be in actual numbers? (i.e. 

0.5 – 1.2) 

4. Which technologies are compatible? Which are incompatible? 

5. What are the impacts of the technologies on enterprise goals? 

6. What are the most important/significant trades in the design? 

 

 By answering the questions above, NDARC can be used to quantify the impact of the 

technologies listed. Figure 2 is summary of Quantitative Technology Assessment (QTA) process 

using the NDARC. Each technology will be transferred to technology factors in the NDARC 

input set and the effects are analyzed through the NDARC analysis. 

 

 

Figure 2: JMR Quantitative Technology Assessment Overview 



9 

 

Previous Research Tasks 

NDARC Familiarization and Implementation 

One of the first tasks in beginning to address JMR vehicles and their technologies was for 

the team to familiarize itself with the modeling capabilities of NDARC. To do so, NDARC was 

used to size a vehicle to a public set of mission requirements that reflected the JMR missions. 

These requirements were found in the 2011 AHS student design competition. Sizing a vehicle to 

those requirements helped familiarize the research with NDARC. During this task, technology 

variables were identified, which are outlined in the next section. 

Identification of Technology Variables inside NDARC  

NDARC has built-in technology factors to reflect influence of advanced technology. 

These technology factors are used for parametric calculation of component weight, profile 

power, and cost as follows: 

             

where, W= weight of individual elements in a group, and dW= weight increment. 

                                  

where,       = mean drag coefficient,  =technology factor,        = basic drag coefficient, 

       =stall drag coefficient, and       =compressibility drag coefficient. 

                         

                      

where,    =fly away cost,   =inflation factor,   =technology factor,     = mission equipment 

package (MEP) cost,     =flight control electronics (FCE) cost,     = base aircraft cost, and 

      =maintenance cost per flight hour.  

The engine model accounts for advanced technology by specifying the specific power, specific 

fuel consumption, and specification turbine speed: SP0C = SPtech, sfc0C = sfctech, Nspec = 
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Ntech. In addition to the built-in technology factors, there are other design variables that can 

directly reflect advanced technology, e.g. drag parameters and inflow parameters.  

Literature Survey on Technology Factors  

A literature survey
iii,iv,v,vi,vii,viii,ix,x

  was performed to get an initial idea on  technology 

factors in NDARC. The purpose of the literature survey was to establish a frame of reference for 

potential improvement in performance of various rotorcraft subsystems as well as a framework 

of traceability for documenting literature on technologies identified for evaluation in the 

NDARC sizing code. It is important to note that a particular technology may provide 

improvement in a certain aspect of weight or fuel burn while resulting in a penalty of additional 

weight elsewhere, and thus the overall effect of potential technologies can only be feasibly 

assessed with collaboration between this evaluation effort and the respective disciplines 

corresponding to each technology.  

ModelCenter Environment 

ModelCenter is an MDO tool which allows users to easily construct complex 

environment with many tools linked together. Its primary function is to call and run the specified 

programs. Because NDARC reads in input files and generates output files, it was able to be 

plugged into the ModelCenter environment via a customized file wrapper. The screen shot of the 

ModelCenter environment that called-in the NDARC file wrapper is shown in Figure 3. Figure 4 

shows and example of how an output file is linked to the ModelCenter graphical environment. 
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Figure 3: NDARC in ModelCenter 

 

 

Figure 4: ModelCenter Linkage to NDARC Output Files 
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In order to build an environment capable of answering complex questions about technologies, 

missions, and requirements, the sizing tool and its results must be studied over a wide range of 

input values. ModelCenter provides features to do this, through the creation and application of 

Design of Experiments (DoEs), parametric studies, and carpet plots for analysis. The DoE tool is 

the most valuable, because it allows the purposeful changing of input values in order to 

maximize the value of output information while simultaneously attempting to minimize the cost, 

in terms of time and effort, of gathering that information. It is that capability that forms the basis 

of surrogate modeling; a powerful tool for rapid analysis and decision making. Later sections of 

this document outline the surrogate modeling effort, and its value.  

JMR Technology Sensitivity Study 

Of principal interest to the research is the impact of technology on the attributes and 

performance of rotorcraft, particularly the weight of the vehicle. This section summarizes a set of 

helicopter sizing studies that quantified the effect of new technology insertion at the subsystem 

level on design parameters – most importantly aircraft empty weight – at the group and overall 

system level of the vehicle’s weight statement. The design parameters were analyzed for their 

importance to the vehicle design, and then selected for inclusion as technology factors for later 

research. 

That research used the technology impact assessment flexibility of NDARC to explore a 

trade space of possible technologies which are represented by weight savings factors, or “tech 

factors” in the NDARC aircraft file, applied to each component of a sized aircraft’s weight 

statement. A methodology was developed to observe and quantify the global effect of each tech 

factor on the total empty weight of the vehicle. A baseline sizing model for a Medium 

Utility/Attack helicopter was integrated into ModelCenter. The code wrapped into the 

ModelCenter environment was then used to perform a set of preliminary DOE’s on weight. The 

DOE’s were designed using the statistical analysis software JMP, and the output files parsed by 

ModelCenter were fed back to JMP for analysis to determine the most impactful tech factors, as 

shown in Figure 5. 
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Figure 5: JMR Tech Sensitivity Analysis Data Flow 

 

NDARC not only includes tech factors to account for weight savings, but also tech 

factors to model improvements in rotorcraft propulsion and aerodynamics. This presented a very 

large trade space of possible technology benefits to consider in the initial test runs of the 

ModelCenter environment. Given that it is also possible for a technology to be modeled through 

multiple tech factors, such as weight, power, and drag, the number of tech factors that need to be 

assessed to cover a wide range of technologies is very large. Thus the initial phase of the 

sensitivity assessment was designed to produce plots of technology impact at as low a cost as 

possible, to enable more precise studies later on when the important technology factors had been 

discovered.  

 

 The output of the technology sensitivity assessment is a ranking of which technology 

factors in NDARC had the largest impact, which are graphed in Pareto plots. Figure 6 displays 

the results of the preliminary DOE, plotting the relative influence of the tech factors on aircraft 

empty weight. 
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Figure 6:  Preliminary DOE Empty Weight Pareto Results 

 

 Figure 7 shows the 8 most influential variables in the preliminary DOE. These variables 

account for 82% of the total influence on empty weight. They were retained for use in the more 

detailed DOE’s that followed, which needed to use more input points throughout the trade space 

of tech factors to create more accurate response surfaces, while eliminating the variables shown 

to be of lesser significance. 

 

 

Figure 7:  Preliminary DOE Highest Influence Tech Factors on Empty Weight 
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JMR Capability Assessment and Tradeoff Environment 

This section briefly reviews the process and results of building an environment capable of 

performing assessments of JMR technologies, vehicles, and missions. Building the Capability 

Assessment and Tradeoff Environment (CATE) required two parallel efforts: analyzing and 

building the representation of the concept analysis tool, NDARC; and creating the environment 

itself in such a way to provide an intuitive and meaningful interface to the results from NDARC. 

The first effort was required in order to enable rapid evaluation of concepts and trade-offs. The 

second effort not only implemented the rapid analysis capabilities through surrogate modeling 

and a graphical front-end, but has additional features to enable further study of selected concepts. 

The goal of both efforts was to synthesize and display information and features that enables 

stakeholders to ask “what-if?” questions and gain fast, meaningful answers. 

 The first fork of the process, focused on the creation of surrogate models and other data 

to support the CATE, is shown in Figure 8. It began with a variable screening study, which was 

done to both ease the creation of surrogate models, as well as to emphasize the most impactful 

and relevant vehicle properties. A selection of variables was made from that study for inclusion 

in the environment. The surrogate modeling began with variable range selection and the creation 

of a Design of Experiments (DoE). The DOE was then used to efficiently sample the design 

space to create surrogate models. The surrogate models were built using standard techniques and 

then implemented in the CATE. 

 The second fork of the process, which is the creation of the user interface of the CATE, 

was informed by the variable selection process, as well as by stakeholder desires. The 

environment allows for decision makers to size vehicles based on the missions they input, 

analyze the trade offs of technologies, and also allow for off-design analysis. Accomplishing this 

task involved the creation of visual elements for results displaying, software creation to allow 

direct access to NDARC from within the environment, and other features. 
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Figure 8 JMR Surrogate Modeling for CATE Process Flow 

 

 The surrogate model creation phase of the first fork met some difficulties in maintaining 

a high percentage of successful DOE cases for NDARC. On average, the number of cases for 

each design was around 1,750, but around 50% of those would be “failed” cases. A failed case 

either did not converge to a solution, or created a solution that had infeasible properties, such as 

an erroneous fuel weight. 

 Improvement of the NDARC case initial guesses was attempted by inputting previous 

trim solutions as initial guesses, and this provided some portion of the successful cases. A 

surrogate model was fit to the control positions that were found from the successful cases and 

used as an input to the NDARC model for the cases that had failed, but there were very few cases 

that succeeded due to that effort. 

 An analysis of the successful and failed cases was performed in order to determine if 

there were any patterns or features of the failed cases that could be used to improve the success 

rate. The analysis showed that there were no immediately obvious trends between failed and 

successful cases, as shown with a correlation analysis. A data classification analysis showed a 

moderate relationship between some mission and aerodynamic variables and the chance that a 

case would fail. However, the predictive power of these relationships was relatively poor, 

indicating a good chance that the failures had a random component. 
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 Even with the failed cases, there was enough information in the successful cases to create 

surrogate models that represented NDARC well. Further research into failed cases was proposed 

for the research effort that this document will explain.  

CATE Summary 

 The CATE tool was designed in Microsoft Excel, for ease of transfer, upgrade, and 

usability. The ubiquitous nature of Microsoft products, as well as the flexibility in provided by 

the VBA back-end makes this choice natural for a tool to be used by multiple stakeholders and 

analysts. 

 The tool contained two primary ‘dashboards’, or front-ends to the surrogate models and 

other data gathered from the efforts outlined in this report, shown in the figures below. The first 

dashboard, known as the ‘Sizing Dashboard’ contains many features, such as: mission definitions, 

sizing constraint definitions, technology parameters, and multiple forms of output and response 

plots for each concept. 

 

Figure 9 Captured Images of the Sizing Dashboard 
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 The second dashboard is the ‘Off-Design Dashboard’, which receives fixed vehicle 

information from the Sizing Dashboard and analyzes the vehicle’s performance for off-design 

missions. Information given in the dashboard includes payload/range charts, point performance 

condition sweeps, and other data. This dashboard works by calling NDARC’s mission 

performance directly, through a custom software wrapper. 

 

 

Figure 10 Captured Images of the Off-design Dashboard 
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Current Year Tasks and Results 

 The research effort that proceeded after the above summarized results was focused on 

increasing the capabilities of the CATE tool to provide users with a more streamlined user 

experience, more flexibility in using and updating information in the CATE, as well as with new 

features to enable technology portfolio assessment for both performance and mission 

effectiveness goals. 

 In addition to those stated goals, further research into analyzing failed cases and 

improving the surrogate models took place. This occurred alongside receiving updated JMR 

concept NDARC models. These new models were used to create updated surrogate models for 

the CATE tool, along with the addition of an input variable to directly account for accessory 

power usage due to new technologies. 

 The sections that follow will detail the research and CATE upgrade tasks that were 

accomplished in the current year. First, the failed case analysis and updated surrogate models 

will be discussed. The new models included a more general mission definition capability, which 

will be briefly outlined. Following that, the work done to enable the definition and assessment of 

JMR TD technologies is outlined. This includes the ability to define a technology’s Mission 

Effectiveness, which can capture benefits and costs of a technology that NDARC was not 

designed to capture. A discussion of the research into technology portfolio selection as well as 

how to interpret and use the results will take place. 

 Following those sections, an outline of the improved CATE layout and functionality will 

be given. For a more detailed explanation of the new features, an updated User’s Manual for 

CATE has been provided as an additional document.  

Surrogate Model Creation 

 This section discusses the process of updating and analyzing the new NDARC surrogate 

models for the CATE tool. First, some minor changes to variables and their ranges were made. 

During the fitting of the models, several discoveries were made regarding the failed cases, which 

were used to greatly improve the rate of successful cases. Summaries of the new models are then 

given. 
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Variables and Ranges for Three Configurations 

 

 For the updated NDARC models that were received, the variables that are included in the 

CATE tool are given in Table A1, Table A2, and Table A3. The variable “Pacc_0” has been 

included, which models an accessory power draw. This gives a more direct way to model the 

power draw of technologies without having to modify engine parameters. The ranges of the 

variables are given in Table A4, Table A5, and Table A6. An additional change is that the range 

of SP0C_Tech, and engine specific power tech factor, was shifted to cover a lower set of values 

than previously. This was done to improve the amount of successful cases, as will be explained 

in the next section. 

 Wider ranges were given for the ‘improvement’ direction of technology factors, in order 

to give room to reflect potential future progress. A direction of improvement is considered to be 

lower weight, power, fuel usage, and drag. Some room is left for degradation of the factors, since 

there will inevitably be trade-offs within new technologies. Some ranges in the table are given as 

percent deviations from the baseline value, while others are given in absolute terms. 

 Once the variables and their ranges had been defined, the surrogate modeling process 

continued with the creation of the DoEs for experimental data, then with fitting the data. Based 

on the variable ranges given above, a set of DoEs was created using a randomized design. The 

extremes of the design ranges were investigated to ensure coverage at the edges of the design 

space, along with the great coverage of the interior. The DoEs were also made large, in order to 

provide some overhead for cases that might not be able to converge.  

 

 On average, the number of cases for each design was around 1,750. The large number of 

cases was selected, as mentioned previously, to help ensure that even with failed cases, there 

would be enough successful runs to create surrogates from.  

 

Failed Case Analysis 

 

 With the new models, a high incidence of successful cases was observed in the DOE 

results. At least 80% of the cases run were successful overall, while some of the configurations 

had an even higher success rate. To achieve this high success rate a detailed investigation had 
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been performed which identified improvement opportunities. The end result is a higher 

confidence and increased efficiency when generating and running DOEs. However, a few failed 

cases are still expected. 

 The primary improvement opportunity was based on the engine technology factor 

‘SP0C_tech’, which is an engine specific power scaling factor. The new NDARC models had 

exhibited a different failure behavior than the previous ones, and showed a high correlation of 

failed cases with a discrete jump in the resulting engine fuel consumption. For a failed case, the 

engine fuel consumption was set to the default value of the model, and not scaled with the 

technology factors. This was occurring because the SP0C_tech factor was becoming too large for 

the engine model. The tech factor had its range reduced in magnitude, which enabled a large 

number of successful cases. Other failed cases were mitigated by generalizing the mission 

definition, which is explained in a later section. 

 A brief investigation was performed to address the remaining failed cases. It was found 

that the convergence (success) of a case depends on the input estimate. The sensitivity of 

convergence versus an initial estimate (DGW) is shown in Figure 11. The x-axis is the initial 

DGW estimate, and the DGW and Fuel Weight outputs are displayed on the y-axis. It can be 

seen that the initial estimate used to seed the convergence scheme within NDARC can lead to 

either a successful or a failed case, while barely affecting the converged result. A similar 

behavior was observed with several other input variables, such as payload and flight speed. This 

indicates that the analysis conditions may require care when they are chosen to ensure 

convergence. In the case that further improvement is desired, beyond the current rates, a further 

analysis of the convergence characteristics could prove beneficial.  
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Figure 11 Convergence sensitivity to initial estimate 

 Given that such a large number of cases were successful, and that the remaining cause of 

failure is primarily based on the inherent instability in numerical solvers, the surrogate modeling 

can proceed with high levels of confidence that the surrogates will easily interpolate over the 

failed cases.  This is because the regions of failed cases are still physically feasible, since they 

are the same regions as successful cases, but are numerically more unstable than the successful 

cases.  

 

Surrogate Model Fitting 

 

Modeling was performed in Matlab using Response Surface Equations (RSEs). Since the 

number of cases was very near the number of terms of a fully quadratic RSE with cross terms, 

stepwise regression was used to select the smallest model that still provided an acceptable level 

of accuracy. The statistics of the model fits are given below. First shown is an example fit plot 

for the Tilt Rotor’s maximum takeoff weight function, see Figure 12. The training R2 value 

shows a good fit to the 80% of the data that was used to train it. The Model Fit Error (MFE) and 

Model Representation Error (MRE) histograms show the distribution of the percentage error for 
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the fit and the validation cases, respectively. A standard deviation of 3 for the MRE cases means 

that 95% of the validation cases had an error within +/- 6%, or two sigma. 

 Further fit statistics are summarized in Table 1, Table 2, and Table 3 for the most 

important outputs of the models, as determined by the variable sensitivity and ranking analysis 

that was performed in a previous research year, along with the cost outputs. The columns of the 

tables are the MFE, in terms of R
2
, and MRE, in terms of the standard deviation of the percent 

error. 

 The fits can improve with further tuning of the models, as well as with increasing the 

number of successful cases from NDARC. Information from the analysis of failed cases will be 

used to inform that effort. Mitigation of the failed cases can occur simply by restricting the 

ranges of certain inputs to levels that do not cause a high probability of failure and by improving 

trim initial guesses.  

 The updated surrogate models are, in general, of a better quality than the previous models 

in the CATE tool. This is due to the further examination into improving model convergence and 

variable ranges that was undertaken during the research year. 

Table 1 Fit Statistics for Compound Surrogate Models 

Output 
MFE (Training 

R^2) 
MRE (Std. Dev of % 

error)) 

Weight_OpW 0.9851 1.972 

Weight_SDGW 0.99084 1.5766 

Weight_DGW 0.98952 1.6693 

Weight_WMTO 0.99628 2.2413 

Weight_UsefulLoad 0.98962 1.3274 

Weight_WE 0.99148 1.7707 

Engine_MRP 0.99655 3.6329 

Engine_CRP 0.99655 3.6329 

Cost_aicraft_cost 0.99001 2.1806 

Cost_maintenance_cost 0.99064 2.1316 
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Figure 12 Sample Fit Statistics for Tilt Rotor WMTO RSE 

  
Table 2 Fit Statistics For Tilt Rotor Surrogate Models 

Output 
MFE (Training 

R^2) 
MRE (Std. Dev of % 

error)) 

Weight_OpW 0.99383 2.4142 

Weight_SDGW 0.99371 2.2096 

Weight_DGW 0.99353 2.2671 

Weight_WMTO 0.99696 2.9405 

Weight_UsefulLoad 0.99148 2.1877 

Weight_WE 0.99452 2.5431 

Engine_MRP 0.9782 12.9965 

Engine_CRP 0.9782 12.9965 

Cost_aicraft_cost 0.99347 4.5382 

Cost_maintenance_cost 0.99338 5.8717 
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Table 3 Fit Statistics For SMR Surrogate Models 

Output 
MFE (Training 

R^2) 
MRE (Std. Dev of % 

error)) 

Weight_OpW 0.99706 2.1992 

Weight_SDGW 0.99517 2.5543 

Weight_DGW 0.99715 2.4928 

Weight_WMTO 0.99654 3.3734 

Weight_UsefulLoad 0.99577 2.9799 

Weight_WE 0.99672 2.4054 

Engine_MRP 0.99307 4.2967 

Engine_CRP 0.99307 4.2968 

Cost_aicraft_cost 0.99647 3.1587 

Cost_maintenance_cost 0.99616 3.0859 

 

 With the creation of the surrogate models, the relationships between technologies, 

mission parameters, and requirement can now be updated within the Capability Assessment and 

Tradeoff Environment.  

Generalized Mission Structure 

 JMR TD vehicle mission structures can come in a wide variety of forms, with different 

payload requirements, hover requirements, mission segment order, and other mission features. 

Capturing such a wide array of potential missions would require an infeasible amount of 

variables and cases to be run in NDARC. If a maximum of 10 mission segments was allowed, 

with an average of 4 variables needed for each segment (segment type, payload, atmosphere type, 

and engine operating characteristics), there would be more than 40 variables needed just for the 

mission definition. This is in addition to the nearly 40 variables needed to define the vehicle 

itself. Since mission segments could take on several different discrete values, and since mission 

performance is dependent on the sequence of mission segments, the dimensionality of the 

problem grows rapidly to an infeasible level for surrogate modeling. 

 Therefore, the research effort wants to provide the user with a general mission structure 

that can satisfy the standard forms of vehicle sizing missions while also providing the user with 

flexibility to generate a custom mission structure. Since different missions can be analyzed using 
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CATE’s Off-Design analysis capabilities, a general sizing mission can both reduce the modeling 

effort for the surrogate models and improve their fit quality. Based on the sizing JMR TD 

missions, the primary structure is seen to be standard cruise out and back structure, with a loiter 

segment at the midpoint. Difficulty is added in sizing the engine to handle strict hover 

requirements as well.  

 

  

Figure 13 Generalized Mission Profile 

 

 The use of the general mission profile helped improve NDARC convergence by using a 

streamlined set of vehicle requirements. In addition to the general mission profile for sizing, a 

mission profile for off-design analysis was also created. This profile contains more features for 

the user to select and analyze. This functionality is detailed in the User’s Manual for CATE. The 

combination of a general sizing mission profile that can size vehicles reliably with the Off-

Design analysis capabilities enables the user to understand a JMR TD vehicle’s performance in a 

wide range of conditions. 

Technology Portfolio Definition and Assessment in CATE 

 Previously, the CATE tool did not contain the ability to define unique technologies, nor 

was it capable of assembling technologies into portfolios that could be analyzed or optimized. A 
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primary effort for the research was to add this capability on to the surrogate modeling and 

technology factors that have been updated and improved in the CATE.  

Based on this need, the CATE tool now contains the ability to define technologies and 

then generate technology portfolios based on a particular set of objectives. An overview of the 

capabilities and their links are shown in Figure 14. Each capability will be explained in the 

following sections. The discussion begins with an overview of the capabilities, followed by a 

theoretical discussion regarding technology selection, which informs recommendations for using 

and interpreting the CATE’s portfolio selection capabilities. 

  

  

 

Figure 14: CATE Technology Portfolio Framework 

Technology Definition in CATE 

 

Technologies are made known to the CATE tool by defining them in the Interactive 

Reconfigurable Matrix of Alternatives (IRMA) 
xi

. The user can simply un-hide rows of the 

IRMA in the CATE tool in order to create new categories of technologies, or to grow an existing 

category. The boundaries of the IRMA can be seen from the pre-defined borders on the IRMA 

sheet. Within that range, up to 145 technologies can be defined. The initial version of the CATE 

has 36 example technologies, for the portfolio selection capabilities. The IRMA can be started by 
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pressing ’RUN’. When this is pressed, technologies can be selected, which will be colored green. 

Any technologies that are incompatible will be shown in red. The user can continue to select 

technologies and view the remaining feasible set of technologies. This process is shown in 

Figure 15 and Figure 16. 

  

  

Figure 15: Selection of One Technology in the CATE IRMA 

   

  

Figure 16: Selection of a Technology Portfolio in the CATE IRMA 

 The compatibility of technologies is controlled by a compatibility matrix. To define 

compatibilities, the ’Train’ can be used to open a window that enables the user to select two 

technologies and define if they are compatible, incompatible, or ’must-have’. A ’must-have’ 

technology relationship will cause the IRMA to automatically select additional technologies if 
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they must be selected with a different technology. These, and other aspects of using the IRMA, 

are explained in more detail in the provided User’s Manual. 

Technology Impact Definitions in CATE 

 

The IRMA and the compatibility matrix only enable the user to view what kinds of 

portfolios may be possible, as well as explore the impacts of technology incompatibilities. The 

CATE also gives the user the ability to model technologies through the NDARC surrogate 

models, as well as through qualitative rankings of mission effectiveness, which is an additional 

new feature of the CATE. The Technology Impact Matrix (TIM) has technologies as rows, and 

NDARC surrogate model inputs as the columns. Each entry represents a percent change from the 

baseline value that the technology will impact. For example, a technology can be defined as 

decreasing a component’s weight by 10% from the baseline value. In the sheet labeled 

’TechAttributes’, the user can edit these percent changes for their technologies. A partial 

example of the TIM is shown in Figure 17.  

 

Figure 17 Partial Example Technology Impact Matrix (TIM) 

Mission Effectiveness (ME) measures are based on different mission capability areas, as 

given in the Mission Systems Effectiveness Trades and Analysis (MS ETA) BAA
xii

 , which 

focuses on defining mission effectiveness for JMR TD technologies. The user can input a 

qualitative measure as to how much a technology meets a ME goal for each area. In general, a 

value of 1, 3, or 9 can be used to represent different levels of goal completition (such as low, 

medium, and high). This is similar to Quality Function Deployment (QFD) methods.  

Due to the qualitative nature, though, the user is given the ability to define what they 

mean by those values. For each broad category of ME goals, the user can define what numbers 

mean threshold, and what numbers mean objective. The threshold is defined as the qualitative 
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level of goal completion that is a minimum requirement. The objective value is qualitative level 

of goal completion above which no more credit can be given. When technologies meet a 

threshold value, a score that is between 0 and 1 will be given to the portfolio. Once a portfolio 

reaches the objective, no bonus score will be given. This is shown graphically in Figure 18.  

    

Figure 18: Qualitative Scoring for Mission Effectiveness 

 For example the user could define that a ME sub-category must have technologies 

selected in it such that the least amount of ‘value’ in the category was three. This could mean 

that one technology that is stated as having a ‘medium’ impact (3 in the QFD parlance) is 

selected, or 3 technologies that have a ‘low’ impact (a 1) are selected in order to meet that goal. 

If that goal is the threshold, then any impact in the category under 3 is not given any score, since 

even the minimum goal has not yet been met. 

 As soon as the minimum goal has been met, though, then some score can be given. This 

score is defined as the “Base Score”, and is defined by the user. As technologies are selected, and 

the impact in the category grows, it may reach and exceed an Objective value, which is a user-

defined measure of impact that denotes a goal above which no more score will be given. In 

between the threshold and objective levels of impact, a linear increase in the score is output. The 

score that is output represents how close a set of technologies is to reaching the objective value 

for the ME category. A score of zero means that the threshold has not been reached. If the score 
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is the base score, then the threshold has just been achieved. Once the score is 100%, then the 

objective goal has been completely attained. 

 The output of the mission effectiveness analysis is shown in Figure 19, for when no 

technologies are selected. The user is allowed to modify the threshold, objective, and base score 

values. The shifted score represents the percent of goal attainment that has been realized for a 

given ME category. This system of qualitative ranking allows the user to understand how close a 

portfolio gets to achieving a goal, on a uniform scale for each MS category, based on the user’s 

explicitly defined goals. This is also highly transparent, which is beneficial for qualitative 

assessment, since users may have different preferences or goals. 

 

 

Figure 19: Mission Effectiveness Outputs 

  

 The IRMA contains a visualization of the ME output as well, as shown in Figure 20. In 

the graph shown below the IRMA, the user can see how close a set of technologies is to 

achieving the defined objective for a ME category. Note that the technologies shown in the 

IRMA are only for example. 
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Figure 20: Mission Effectiveness Output with IRMA 

Technology Impact Definitions in CATE 

 

The primary capability of the different CATE technology assessment features is the 

ability to have the CATE tool select technology portfolios for the user, based on user-defined 

goals. In the sheet labeled ’Technology Selection’, the user is presented with two options that 

control the algorithm, as well as a choice of vehicle to base the selection on, and outputs to 

define goals for. These goals can either be to ’Minimize’, ’Maximize’, or ’Ignore’. Once the 

goals are defined, the ’Run’ button can be used. The meaning of the options (population and 

generations) are given in the following sections). A screenshot of these features is shown in 

Figure 21. 

    

Figure 21: Partial Screenshot of Technology Portfolio Selection Front-End 
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The algorithm that is used is the Non-Dominated Sorting Genetic Algorithm II (NSGAII) 

of Deb 
xiii

. As explained in the following section, this is a standard choice for discrete 

optimization of choices, such as technology selection. The NSGAII algorithm finds the Pareto 

Frontier of technology portfolios, given the objectives that have been defined. This concept will 

be defined further below, but it simply means that it finds the set of portfolios that represents a 

pure trade-off between desired objectives. On the Pareto Front, no performance can be gained 

without a loss in some other performance. 

The algorithm is implemented through the Inspyred Python library 
xiv

, which is a free, 

open source framework for creating biologically-inspired computational intelligence algorithms. 

It is compiled to an executable that runs on Windows XP or newer machines. When the 

algorithm completes, a new sheet is created with the results. The sheet is named based on the 

date and time that the algorithm was run. The results are given in a table of technology 

portfolios. In this table, the user can see which technologies are selected or not for each portfolio, 

as well as view the performance of the portfolio. Graphs of the relationships between the 

different selected goals are also shown. An example output is shown in Figure 22. Note that each 

point is labeled with the portfolio number, which can be used to find the portfolio in the results 

table. 

    

Figure 22: Example of an Output Pareto Frontier 
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The last set of information in the results sheet is a ranking of each technology. These 

rankings are based on the frequency of a technology being present on the Pareto Front. The more 

often a technology shows up on the Pareto Front, the more important it is likely to be for future 

funding and research. While the selection of a portfolio from the Frontier is beyond the scope of 

this document, a technology that appears frequently on the front is likely to be important, since it 

can likley help satisfy a wide range of goals. A more in-depth explanation of interpreting and 

understanding the results of the Portfolio Selection algorithm is given after the algorithm is 

explained. 

Genetic Algorithms for Technology Selection in CATE 

 This section will discuss the concepts and algorithm that is used for technology portfolio 

selection in the CATE tool. It will first explain the general concepts of multi-objective 

optimization, followed by the particulars of genetic algorithms. The interpretation of the 

algorithms’ results is discussed at the end of this section. 

 

Multi-Objective Optimization Overview 

 

Before discussing the algorithm used to select portfolios, some key concepts for multi-

objective optimization will be discussed. Since there may be multiple, competing objectives, 

fitness may no longer defined in terms of just one objective. Rather, the trade-off between 

competing objectives must be quantified for computer algorithms. The trade-off is captured with 

the concept of dominated and non-dominated solutions. First, the multi-objective problem is 

based on a function that returns a set of   objectives that are solved for a given feasible solution, 

 , along with a set of   constraints on either the inputs or outpus, as shown the problem 

formulation below. Notice that minimization is assumed for convenience, without a loss of 

generality. 

 
                                   

                                              
  

From this problem statement, where   ’s are the individual objectives that result from a 

feasible point,  , the concepts that lead to Pareto Optimality are defined below. 
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Pareto Dominance: 

A solution,       , is said to dominate another solution,         , if and only if the 

following condition is met:  

           
                       

The solution,    is then said to be dominated. The solution,  , will sometimes be referred to as 

non-dominated. The preference relation,  , is referred to as dominance.  

Pareto Frontier: 

A set of solutions,  , is said to comprise a Pareto Frontier, or be non-dominated if the 

following conditions are met:  

                            

Which says that no solution in   is dominated by any other solution in  . A set being a pareto 

frontier does not imply that it is the true pareto frontier of the problem,  .  

Those statements can be summarized in the following way. First, Pareto Dominance 

simply means that one solution is better (as defined by the decision maker) or equal to another 

solution in all objectives. A Pareto Frontier is a set of solutions that are all non-dominated. This 

means that no two points are better in all areas than another. On the Pareto Front, if improvement 

in one objective is desired, then some other objective must necessarily be diminished (if they are 

competing objectives). These concepts are used in algorithms to maintain a set of points that are 

the best possible set of points, given the objectives that have been defined. 

Technology Selection with Genetic Algorithms 

 

Genetic Algorithms (GAs) are a generic class of algorithms that optimize discrete and 

continuous multi-objective functions by using the properties of evolution and natural selection to 

guide the optimization. They are used extensively for a wide variety of problems, most relevantly 

for the knapsack problem 
xv

 and technology and portfolio optimization and selection 
xvi,xvii,xviii,xix.

 

A general template for GAs, which references standard GA operators, is given in Figure 23. 
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The solutions represent a technology portfolio, which is just a set of technologies. In 

GAs, a solution is generally called a ’chromosome’, which is made up of ’genes’. Each gene 

represents a particular variable or input to an optimization problem. For technology selection, 

each technology is represented by a gene that is either 0 or 1. A 0 means that the technology is 

not included, while a 1 means that it is included in the set. This is called a binary chromosome, 

and is shown in Figure 7, for a notional technolgy portfolio with   technologies. Notice that 

technologies 1 and     are selected for the portfolio. 

   

Figure 23: General Genetic Algorithm Framework  

Table 4 Example binary chromosome format for GA 

1 0   1 0 

                

 

The general framework starts with the creation of a ’population’ of possible solutions to 

an optimization problem. In the CATE tool, this population is created randomly. The population 

is evaluated using the TIM and surrogate models of NDARC in the CATE tool. During the 

evaluation, the compatibility of the technologies is tested using the IRMA’s compatibility matrix. 
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If a technology is causing an incompatibility to arise, then it is removed from the portfolio. Since 

there will be at least two technologies that are incompatible (compatibilities are defined 

reciprically), a decision must be made about which of the incompatible technologies to remove 

from the portfolio. The choice of the technology to be removed is made at random, which 

prevents any bias from entering the algorithm. Once the population has been made feasible, then 

its fitness is evaluated. This evaluation is based on how dominated each solution is. Points that 

are not dominated, or weakly dominated, are carried over to the next stage of the algorithm. 

Genetic Algorithms mimic nature, in that they select parents to create new solutions 

from. In the context of technology portfolios, two portfolios are chosen to be parents based on 

some fitness criteria. For example, two points that are far away on the Pareto front may be 

selected to be parents. Offspring are then created, which is done by sharing information between 

the parents. The most common procedure is that a portion of the chromosome from one parent 

will be given to the other, and vice versa. This is done to try to combine the good parts of each 

parent (such as good technologies) to create an even better technology portfolio. Once a set of 

offspring are created, their fitness is evaluated, and the process continues until some termination 

criteria is met. 

The NSGAII algorithm maintains an archive of non-dominated solutions, and attempts to 

’push’ the Pareto Frontier out until it nears the true Pareto Frontier. This push is accomplished by 

creating new solutions from combinations of existing good solutions, and with random changes 

to solutions to help explore the set of options. 

The two parameters for the NSGAII algorithm that are presented to the user are the size 

of the population, and the number of generations. The larger these numbers are, the more options 

the GA will explore. This will increase the chances that the final Pareto Frontier is closer to the 

true frontier. However, this will increase the algorithm’s run time. The population size is the 

number of parents to evaluate during each generation. The number of generations is the number 

of times that the algorithm creates new solutions. 
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Interpreting Technology Selection Results 

 

Interpreting and using the results of a multi-objective Genetic Algorithm is different than 

interpreting the results of standard numerical optimizers. Unlike the more common numerical 

optimization, GAs do not provide results that are guaranteed to be a global optimum. There are 

no local derivatives for a discrete technology selection problems to check for optimality. Genetic 

Algorithms are stochastic algorithms, meaning that their results and performance are based on 

some random behaviors. This randomness is what gives the GA its power to explore new 

solutions. It also causes the interpretation of the results to change. Each run of the algorithm will 

likely return different results but, if the population and generation count is high, then the results 

are more likely to be the same between different runs. 

It is critical to remember that the results of the algorithm are not necessarily the ’best’ 

options. They are simply the best that were found during the algorithm’s run. Research into the 

NSGAII has shown that it does provide high-quality results when given enough time to run. The 

base options of a population size of 50 and 100 generations are made to be a balance between the 

quality of the results and runtime, with a preference to results quality. When examining the 

results, the user is encouraged to not think of them as ’ideal’ technology portfolios, but rather as 

technology portfolios that contain valuable technology combinations, relative to most other 

portfolios. 

When finding Pareto Frontiers, there is the final problem that a user may wish to select a 

single point from the frontier to be the ’best’ point. Based on the definition of the Pareto 

Frontier, this task cannot be completed without first defining the preferences of the user. These 

preferences must capture the relative values of each objective in order to decide which objectives 

are more important. This is currently beyond the scope of the CATE tool. This issue is presented 

in order to orient the user to the capabilities of the tool, as well as the limitations. 

For the purposes of technology assessment, though, finding the Pareto Frontier is 

generally sufficient. The technologies that make up the designs on the frontier are likely to be the 

best ones to consider for more research, if the objectives considered are the most important to the 

user. This is why the CATE tool returns a ranking of technologies based on how often they occur 
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in the final Pareto Frontier. A technology that shows up very often indicates that it is able to 

balance competing objectives well. A technology that doesn’t show up often may be a 

’thoroughbred’ that is very good at optimizing a single objective at the cost of the others. A 

careful examination of the technologies that are present will illustrate to the user how vehicle 

performance and effectiveness can be optimized, according to their goals. 

Technology Selection Summary 

 

These sections have reviewed the features and concepts related to the new technology portfolio 

selection capabilities in the CATE tool. Genetic Algorithms are used to analyze the user-defined 

technologies to find the Pareto Frontier of technology portfolios that can attempt to meet the 

goals of a stakeholder. Further details of the options available to the user are given in the CATE 

User’s Manual. 

 

 

Additional CATE Features and Upgrades 

 A series of modifications to the CATE tool took place during the research period. These 

modifications were made to improve usability, and were based on feedback from the involved 

stakeholders. The primary dashboard, which contains the features described in the previous work 

section, has been improved in the following ways, and as shown in Figure 24. The various 

features will be outlined here, and the reader is referred to the CATE User’s Manual for a more 

detailed description of the specific ways of using the new features. 
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Figure 24 Captured Images of the Sizing Dashboard 

 First, the user is now given navigation controls, which enable the user to only view 

specific capabilities of the CATE dashboard at any given time. This has been done to allow users 

to only view the portions of the tool that they are concerned with, while limiting extraneous 

information. The user can show only one of the different CATE capabilities at a time, if they 

choose. They can also select to view only the capabilities for a given concept type. These enable 

the user to focus in on concepts or comparisons that are the most relevant to them. 

 

 The Off-Design Analysis dashboard has also been updated, as shown in Figure 25. The 

user can select the parameters for different mission segments, as discussed in the general mission 

definition section, and then use NDARC to generate various performance plots, such as Payload-

Range and Vertical Rate of Climb charts as before.  
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Figure 25: Captured Image of the Off-Design Analysis Dashboard 

 In addition to changes in the dashboards, there are new capabilities that enable the user to 

update the surrogate models in the CATE tool with new models that the user has created. This is 

important for any vehicle and technology assessment tool, since it allows the tool to remain a 

living capability that can update as requirements and information may change about the various 

concepts that are being examined. These capabilities are detailed in the CATE User’s Manual, 

and they require the user to run DOEs and build surrogates of their model. 

 

Summary and Conclusions 

 The work presented was done to expand upon the capabilities that already existed in the 

Capability Assessment and Tradeoff Environment (CATE) tool for the JMR TD effort. This 

work included the inclusion of new NDARC models, which forms the basis of the analysis 

capabilities of CATE, new abilities to define and analyze technologies, generic mission 

definitions, and new feature upgrades for the CATE tool. 

 

 Research had been continuing into the causes and solutions for the NDARC failed cases, 

the ultimate result of which was the understanding of the impact of extremely optimistic engine 

technology parameters, as well as the inherent limitations of numerical optimization within a 

sizing code. Both issues, once identified, were mitigated through various means, such as input 

variable range changes, and by slightly perturbing a failed case to enable the solution to converge. 

This provided a large set of successful cases that was used to build accurate surrogate models for 
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the CATE tool. Future work in this area would be to work with the NDARC source directly, or to 

add capabilities to the ModelCenter environment to automatically detect and perturb a failed case 

in a structured manner. 

 

 Once the number of successful cases was greater than 80% of the size of the DOEs, 

surrogate models were fit, which had overall better fit properties than previous surrogate models 

for CATE. The surrogate modeling was done using Stepwise Regression to fit Response Surface 

Equations, which enabled a reduction in the size of the equations, while still maintaining a high 

level of accuracy.  

 

 A more general mission structure was implemented in the surrogate models for vehicle 

sizing, as well as for off-design performance analysis. The former enabled more stable sizing 

runs, which improved the number of successful NDARC cases, while the latter provides the user 

with enhanced analysis capabilities once an interesting design point has been found. These 

mission structures capture the essential requirements and missions of potential JMR TD vehicles, 

while balancing surrogate model accuracy and feasibility. 

 

 To further expand the abilities of the CATE tool, technology definition and selection 

capabilities were added. The user of CATE can now define technologies, their compatibilities, 

and their impacts on NDARC inputs. This provides a traceable link between technologies and 

JMR TD vehicle assessment and design. Additionally, qualitative mission effectiveness 

assessment has been added, which is based on JMR TD mission systems definitions. In this way, 

technologies that generally just add weight and power to the vehicle can also be assessed for 

their primary purpose, which is modifying non-performance mission capabilities. 

 

 Technology portfolio selection capabilities have also been added. The user can, given that 

they have defined a set of potential technologies, define their preferences for metrics of concern 

and their directions of improvement. Using state of the art genetic algorithms, the CATE tool 

will find technology portfolios that represent a pure trade-off between the objectives of interest. 
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These portfolios can be further analyzed for trends and similarities that can inform the decision 

maker as to what technology programs may be the most valuable to pursue. 

 

 Finally, several upgrades have been made to the CATE environment to improve its 

usability. This includes allowing the user to view only the capabilities that they are concerned 

with, as well as new features for quickly updating the surrogate models. The research has 

improved the CATE tool’s functionality, models, and increased the number of capabilities 

available to the user to assess vehicle concepts and the technologies that may improve them.   

 

 These improvements and new capabilities are central to the goal of supporting 

Quantitative Technology Assessment (QTA) for the JMR TD IPT. The tool provides the ability 

to perform the key steps of a QTA process, which are to define candidate technologies, link them 

to modeling and simulation of the systems of concern, and then use both user and optimization 

guided methods and visualizations to understand the impact of technologies. The results can be 

used to understand where capability gaps exist, as well as inform decision makers as to the best 

avenues of future technology and design efforts. Overall, the CATE tool and its processes have 

advanced to become a more comprehensive solution that enables QTA for JMR TD concepts and 

technologies.  
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Appendix 

Variable Selection Tables 

Table A1: Single Main Rotor: Selected Variables 

Category Variable Description 

Flight  
Condition 

Condition.alt_eng Altitude for Engine sizing condition 

Condition.temp_eng Temp for Engine sizing condition 

Mission  
Parameter 

Mission.alt_cruise_out Altitude @outbound cruise 

Mission.alt_cruise_in Altitude @inbound cruise 

Mission.dist_cruise_out Outbound cruise distance 

Mission.dist_cruise_in Inbound cruise distance 

Mission.dist_dash_out Ounbound dash distance 

Mission.dist_dash_in Inbound dash distance 

Mission.time_loiter Midpoint loiter time 

Wpay.Wpay_dgw Payload for DGW condition 

Wpy.Wpay_eng Payload for Engine sizing condition 

Wpay.Wpay_mission Payload for Mission profile 

Design 
Parameter 

Design.CWs Blade loading 

Design.fstall Constant in stall drag increment 

Design.Ki_hover Induced velocity factor @hover 

Design.fSDGW SDGW factor 

Design.fWMTO WMTO factor 

Drag Drag.CD Fuselage forward flight drag coefficient 

Drag.Swet Fusleage wetted area 

Drag.DoQ_fit Fixtures and Fittings DoQ 

Drag.kDrag_hub Rotor hub forward flight square-cubed factor 

Drag.CD_pylon Rotor pylon drag coefficient 

Drag.Wing_CD Wing CD 

Drag.TECH_drag Tech factor for profile power 

Weight Weight.TECH_eng Tech factor for engine weight 

Weight.TECH_exh Tech factor for exhaust system weight 

Weight.TECH_plumb Tech factor for plumbing weight 

Weight.TECH_tank Tech factor for fuel tank weight 

Weight.TECH_body Tech factor for fuselage weight 

Weight.ECH_LG Tech factor for basic landing gear weight 

Weight.TECH_gb Tech factor for gear box weight 

Weight.TECH_blade Tech factor for blade weight 

Weight.TECH_hub Tech factor for hub and hinge weight 

Weight.TECH_rfold blade fold weight 
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Weight.TECH_fit   

Weight.TECH_prim   

Weight.TECH_RWfc_b Tech factor for rotary wing flight control (boosted) 

Weight.TECH_RWfc_mb Tech factor for rotary wing flight control (control boost mechanisms) 

Weight.TECH_RWhyd Tech factor for rotary wing flight control hydraulics 

Propulsion Propulsion.Pacc_0 Accessory power 

Propulsion.SP0C_tech Tech factor for specific power at MCP 

Propulsion.sfc0C_tech Tech factor for specific fuel consumption at MCP 

Cost Cost.TECH_cost_af Tech factor for airframe cost  

Cost.TECH_cost_maint Tech factor for maintenance cost 

 
 

Table A2: Compound: Selected Variables 

Category Variable Description 

Flight  
Condition 

Condition.alt_eng Altitude for Engine sizing condition 

Condition.temp_eng Temp for Engine sizing condition 

Mission  
Parameter 

Mission.alt_cruise_out Altitude @outbound cruise 

Mission.alt_cruise_in Altitude @inbound cruise 

Mission.dist_cruise_out Outbound cruise distance 

Mission.dist_cruise_in Inbound cruise distance 

Mission.dist_dash_out Ounbound dash distance 

Mission.dist_dash_in Inbound dash distance 

Mission.time_loiter Midpoint loiter time 

Wpay.Wpay_dgw Payload for DGW condition 

Wpy.Wpay_eng Payload for Engine sizing condition 

Wpay.Wpay_mission Payload for Mission profile 

Design 
Parameter 

Design.CWs Blade loading 

Design.fstall Constant in stall drag increment 

Design.Ki_hover Induced velocity factor @hover 

Design.fSDGW SDGW factor 

Design.fWMTO WMTO factor 

Drag Drag.CD Fuselage forward flight drag coefficient 

Drag.Swet Fusleage wetted area 

Drag.DoQ_fit Fixtures and Fittings DoQ 

Drag.kDrag_hub Rotor hub forward flight square-cubed factor 

Drag.CD_pylon Rotor pylon drag coefficient 

Drag.Wing_CD Wing CD 

Drag.TECH_drag Tech factor for profile power 

Weight Weight.TECH_eng Tech factor for engine weight 

Weight.TECH_exh Tech factor for exhaust system weight 
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Weight.TECH_plumb Tech factor for plumbing weight 

Weight.TECH_tank Tech factor for fuel tank weight 

Weight.TECH_body Tech factor for fuselage weight 

Weight.ECH_LG Tech factor for basic landing gear weight 

Weight.TECH_gb Tech factor for gear box weight 

Weight.TECH_blade Tech factor for blade weight 

Weight.TECH_hub Tech factor for hub and hinge weight 

Weight.TECH_rfold blade fold weight 

Weight.TECH_fit   

Weight.TECH_prim   

Weight.TECH_RWfc_b Tech factor for rotary wing flight control (boosted) 

Weight.TECH_RWfc_mb Tech factor for rotary wing flight control (control boost mechanisms) 

Weight.TECH_RWhyd Tech factor for rotary wing flight control hydraulics 

Propulsion Propulsion.Pacc_0 Accessory power 

Propulsion.SP0C_tech Tech factor for specific power at MCP 

Propulsion.sfc0C_tech Tech factor for specific fuel consumption at MCP 

Cost Cost.TECH_cost_af Tech factor for airframe cost  

Cost.TECH_cost_maint Tech factor for maintenance cost 

 

Table A3: Tilt-Rotor: Selected Variables 

Category Variable Description 

Flight  
Condition 

Condition.alt_eng Altitude for Engine sizing condition 

Condition.temp_eng Temp for Engine sizing condition 

Mission  
Parameter 

Mission.alt_cruise_out Altitude @outbound cruise 

Mission.alt_cruise_in Altitude @inbound cruise 

Mission.dist_cruise_out Outbound cruise distance 

Mission.dist_cruise_in Inbound cruise distance 

Mission.dist_dash_out Ounbound dash distance 

Mission.dist_dash_in Inbound dash distance 

Mission.time_loiter Midpoint loiter time 

Wpay.Wpay_dgw Payload for DGW condition 

Wpy.Wpay_eng Payload for Engine sizing condition 

Wpay.Wpay_mission Payload for Mission profile 

Design 
Parameter 

Design.CWs Blade loading 

Design.fstall Constant in stall drag increment 

Design.Ki_hover Induced velocity factor @hover 

Design.fSDGW SDGW factor 

Design.fWMTO WMTO factor 

Drag Drag.CD Fuselage forward flight drag coefficient 

Drag.Swet Fusleage wetted area 
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Drag.DoQ_fit Fixtures and Fittings DoQ 

Drag.kDrag_hub Rotor hub forward flight square-cubed factor 

Drag.CD_pylon Rotor pylon drag coefficient 

Drag.Wing_CD Wing CD 

Drag.TECH_drag Tech factor for profile power 

Weight Weight.TECH_eng Tech factor for engine weight 

Weight.TECH_exh Tech factor for exhaust system weight 

Weight.TECH_plumb Tech factor for plumbing weight 

Weight.TECH_tank Tech factor for fuel tank weight 

Weight.TECH_body Tech factor for fuselage weight 

Weight.ECH_LG Tech factor for basic landing gear weight 

Weight.TECH_gb Tech factor for gear box weight 

Weight.TECH_blade Tech factor for blade weight 

Weight.TECH_hub Tech factor for hub and hinge weight 

Weight.TECH_rfold blade fold weight 

Weight.TECH_fit   

Weight.TECH_prim   

Weight.TECH_RWfc_b Tech factor for rotary wing flight control (boosted) 

Weight.TECH_RWfc_mb Tech factor for rotary wing flight control (control boost mechanisms) 

Weight.TECH_RWhyd Tech factor for rotary wing flight control hydraulics 

Propulsion Propulsion.Pacc_0 Accessory power 

Propulsion.SP0C_tech Tech factor for specific power at MCP 

Propulsion.sfc0C_tech Tech factor for specific fuel consumption at MCP 

Cost Cost.TECH_cost_af Tech factor for airframe cost  

Cost.TECH_cost_maint Tech factor for maintenance cost 
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Variable Range Tables 

Table A4: SMR Variable Ranges 

Variable Baseline Min Max Variable Baseline Min Max 

alt_eng 6000 4000 6000 Wing_CD       

temp_eng 95 59 103 TECH_drag 1 0.7 1.1 

alt_cruise_out 14000 0 14000 TECH_eng 1 0.7 1.1 

alt_cruise_in       TECH_exh 1 0.7 1.1 

dist_cruise_out 175.1 157.59 227.63 TECH_plumb 0.655 0.4585 0.7205 

dist_cruise_in       TECH_tank 0.839 0.5873 0.9229 

dist_dash_out 54 48.6 70.2 TECH_body 0.759 0.5313 0.8349 

dist_dash_in       ECH_LG 1.151 0.8057 1.2661 

time_loiter 30 27 39 TECH_gb 0.601 0.4207 0.6611 

Wpay_dgw 4020 4000 6600 TECH_blade 0.952 0.6664 1.0472 

Wpay_eng       TECH_hub 1.009 0.7063 1.1099 

Wpay_mission       TECH_rfold 0.85 0.595 0.935 

CWs 0.0895 0.08055 0.11635 TECH_fit 0.95 0.665 1.045 

fstall 1 0.7 1.1 TECH_prim 0.88 0.616 0.968 

Ki_hover 1.16 1.05 1.25 TECH_RWfc_b 0.459 0.3213 0.5049 

fSDGW 0.95 0.665 1.14 TECH_RWfc_mb 0.712 0.4984 0.7832 

fWMTO 1.2 0.84 1.44 TECH_RWhyd 0.712 0.4984 0.7832 

CD 0.0041 0.00287 0.00451 Pacc_0 60 42 66 

Swet 1099 769.3 1208.9 SP0C_tech 200 120 260 

DoQ_fit 1.2 0.84 1.32 sfc0C_tech 0.3577 0.25039 0.39347 

kDrag_hub 0.5 0.35 0.55 TECH_cost_af 0.87 0.609 0.957 

CD_pylon 0.01 0.007 0.011 TECH_cost_maint 1 0.7 1.1 
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Table A5: Compound Variable Ranges 

Variable Baseline Min Max Variable Baseline Min Max 

alt_eng 6000 4000 6000 Wing_CD 0.008 0.0056 0.0088 

temp_eng 95 59 103 TECH_drag 1 0.7 1.1 

alt_cruise_out 24000 0 24000 TECH_eng 1 0.7 1.1 

alt_cruise_in       TECH_exh 1 0.7 1.1 

dist_cruise_out 175.1 157.59 227.63 TECH_plumb 0.655 0.4585 0.7205 

dist_cruise_in       TECH_tank 0.839 0.5873 0.9229 

dist_dash_out 54 48.6 70.2 TECH_body 0.759 0.5313 0.8349 

dist_dash_in       ECH_LG 1.151 0.8057 1.2661 

time_loiter 30 27 39 TECH_gb 0.601 0.4207 0.6611 

Wpay_dgw 4020 4000 6600 TECH_blade 0.9652 0.67564 1.06172 

Wpay_eng       TECH_hub 1.03 0.721 1.133 

Wpay_mission       TECH_rfold 0.85 0.595 0.935 

CWs 0.1367 0.12303 0.17771 TECH_fit 0.95 0.665 1.045 

fstall 0.8 0.7 1.1 TECH_prim 1.095 0.7665 1.2045 

Ki_hover 1.1346 1.05 1.25 TECH_RWfc_b 0.459 0.3213 0.5049 

fSDGW 0.9544 0.66808 1.14528 TECH_RWfc_mb 0.712 0.4984 0.7832 

fWMTO 1.25 0.875 1.5 TECH_RWhyd 0.712 0.4984 0.7832 

CD 0.0041 0.00287 0.00451 Pacc_0 60 42 187 

Swet 1170 819 1287 SP0C_tech 200 120 260 

DoQ_fit 1.2 0.84 1.32 sfc0C_tech 0.3792 0.26544 0.41712 

kDrag_hub 0.35 0.245 0.385 TECH_cost_af 0.87 0.609 0.957 

CD_pylon 0.009 0.0063 0.0099 TECH_cost_maint 1 0.7 1.1 
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Table A6 Tilt-Rotor Variable Ranges 

Variable Baseline Min Max Variable Baseline Min Max 

alt_eng 6000 4000 6000 Wing_CD 0.013 0.0091 0.0143 

temp_eng 95 59 103 TECH_drag 1 0.7 1.1 

alt_cruise_out 24000 0 24000 TECH_eng 1 0.7 1.1 

alt_cruise_in       TECH_exh 1 0.7 1.1 

dist_cruise_out 175.1 157.59 227.63 TECH_plumb 0.984 0.6888 1.0824 

dist_cruise_in       TECH_tank 0.803 0.5621 0.8833 

dist_dash_out 54 48.6 70.2 TECH_body 0.759 0.5313 0.8349 

dist_dash_in       ECH_LG 1.151 0.8057 1.2661 

time_loiter 30 27 39 TECH_gb 0.6 0.42 0.66 

Wpay_dgw 4020 4000 6600 TECH_blade 0.8 0.56 0.88 

Wpay_eng       TECH_hub 1.05 0.735 1.155 

Wpay_mission       TECH_rfold 0.85 0.595 0.935 

CWs 0.1367 0.12303 0.17771 TECH_fit 0.95 0.665 1.045 

fstall   0.7 1.1 TECH_prim 0.81 0.567 0.891 

Ki_hover 1.1346 1.05 1.25 TECH_RWfc_b 0.459 0.3213 0.5049 

fSDGW 1 0.7 1.2 TECH_RWfc_mb 0.702 0.4914 0.7722 

fWMTO 1.25 0.875 1.5 TECH_RWhyd 1.078 0.7546 1.1858 

CD 0.0041 0.00287 0.00451 Pacc_0 60 42 187 

Swet 1156 809.2 1271.6 SP0C_tech 200 120 260 

DoQ_fit 1.2 0.84 1.32 sfc0C_tech 0.3577 0.25039 0.39347 

kDrag_hub       TECH_cost_af 1 0.7 1.1 

CD_pylon 0.00904 0.006328 0.009944 TECH_cost_maint 1 0.7 1.1 
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