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1. Introduction 

The physical and chemical properties of 3,5-dinitro-1,3,5-oxadiazinane (DOD) 

make it a promising energetic material with potential use as a TNT replacement in 

melt-castable explosives. DOD exhibits a calculated density and heat of formation 

(∆Hf ) of 1.699 g/cm3 and −22.213 kJ/mol, respectively, at 298 K and a measured 

melting point of approximately 376 K.1–4 It possesses good thermal stability, as it 

decomposes above 473 K, with 98% conversion to products at 483 K,2–4 and good 

sensitivity to impact, as indicated by electrostatic potential map calculations.1 

Chute et al. and Tabouis, Ortigues, and Auberstein discovered DOD as a byproduct 

during the synthesis of RDX circa 1950, and Ishchenko et al. reported its synthesis 

from methylene dinitramide in 1996.5–9 More recently, Li et al. isolated DOD 

during the synthesis of RDX, less than 1% by mass, and reported its crystal 

structure at 103 K.4,10 

Figure 1 presents the molecular structure of the DOD and RDX compounds. A 

DOD molecule consists of a heterocyclic, 6-membered ring with 5 alternating 

carbon and nitrogen atoms and 1 oxygen atom between 2 of the carbon atoms. The 

molecule contains 2 nitro groups (–NO2), each bonded to 1 of the 2 nitrogen ring 

atoms, and 3 pairs of hydrogen atoms, each bonded to 1 of the carbon ring atoms. 

The structures of DOD and RDX are nearly identical, except that an oxygen atom 

in the DOD ring replaces one of the N–NO2 groups in the RDX ring. In DOD, the 

2 nitro groups stand on the same side of the ring (axial position), whereas in the 

most stable RDX polymorph (α-RDX), 1 nitro group adopts an equatorial (E) 

position while the other 2 groups adopt axial positions (A) (equatorial, axial, axial 

(EAA) conformation).4,10–12 

 

Fig. 1 Structural formulas of DOD (left) and RDX (right) 
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In this report, we describe an isolation procedure to produce hundreds of  

milligram-quantities of DOD and confirm its identity by single crystal X-ray 

diffractometry and Raman spectroscopy. We determine and report its key 

intermolecular interactions, crystal packing, and vibrational features and compare 

and contrast them to those of α-RDX. Further, we determine its crystal density at 

room temperature and compare the result to the theoretical value determined at  

298 K. 

2. Experimental Procedures 

2.1 Synthesis 

Crude DOD was obtained using the method of Ishchenkoiv et al.7–9 

Paraformaldehyde (0.9 g, 0.03 mol) and N,N’-dinitromethylenediamine 

(1.36 g, 0.01 mol) were added with vigorous stirring to a mixture of 2 mL 90% 

sulfuric acid and 20 mL of methylene chloride at 283 K. The mixture was stirred 

for 5 h at 293 K. The organic layer, separated from the mixture by decanting, was 

washed with water (5 × 5 mL) and then dried over MgSO4 at room temperature for 

several hours. Crystalline DOD was obtained by removing the volatiles by rotary 

evaporation at room temperature and dissolving the remaining residue in 

3:1 isopropanol:water by heating. The hot solution was placed in the freezer and 

allowed to solidify. Then, the frozen mixture was warmed to room temperature, at 

which point 65 mg of DOD was collected by suction filtration. DOD was 

recrystallized twice, first by dissolving it in hot chloroform and then by slowly 

evaporating the solvent over the course of several days. This procedure yielded 

clear, high-quality crystals for X-ray analysis. 

2.2 Characterization 

X-ray Crystallography. DOD crystals were characterized with a SuperNova, 

Dualflex, EosS2 diffractometer using a Mo Kα (λ = 0.71073 Å) radiation source 

and an EosS2 charged coupled device (CCD) detector at 297.93(10) K  

(Rigaku–Oxford, Japan). CrysAlis PRO and mercury were used in data collection, 

cell refinement, and data reduction.13–15 The molecular structure was determined 

with SHELXT using intrinsic phasing and refined with SHELXL using least 

squares minimization.16–18 The hydrogen atoms were refined using a riding model 

with C–H = 0.97 Å and Uiso (H) = 1.2Ueq (C). Table 1 lists the crystal data, data 

collection, and structure refinement details. 
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Table 1 Experimental crystallographic details for DOD 

Molecular and unit cell information 

Crystal data  Value 

Empirical formula C3H6N4O5 

Formula weight 178.12 

Crystal system monoclinic 

Space group P21/n 

a/Å 5.8390(4) 

b/Å 17.6086(10) 

c/Å 7.1309(5) 

α/° 90 

β/° 111.267(8) 

γ/° 90 

Volume/Å3 683.25(8) 

Z 4 

ρcalc /g/cm3 1.732 

μ/mm
–1 0.163 

F(000) 368.0 

Crystal size/mm3 0.5 × 0.6 × 0.5 

Data acquisition details  

Collection data  Value 

Temperature/K 297.93(10) 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 4.626 to 52.722 

Index ranges −7 ≤ h ≤ 7, −22 ≤ k ≤ 21, −8 ≤ l ≤ 8 

Reflections collected 5711 

Structure refinement 

Refinement statistics  Value 

Independent reflections 1400 [Rint = 0.0307, Rsigma = 0.0261] 

Data/restraints/parameters 1400/0/110 

Goodness-of-fit on F2 1.033 

Final R indexes [I>=2σ (I)] R1 = 0.0374, wR2 = 0.0889 

Final R indexes [all data] R1 = 0.0463, wR2 = 0.0946 

Largest diff. peak/hole / eÅ
–3 0.15/−0.16 

 

Raman Spectroscopy. DOD spectra were acquired using a Horiba LabRAM HR 

Evolution (Horiba Jobin Yvon, Kyoto, Japan) spectrometer, configured with a  

600 l/mm grating, 150 µm hole, and 5% neutral density filter. The data were 

collected in a backscattering geometry using a Lexel SHG (Cambridge Lasers  
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Laboratories, Inc, Fremont, California) ion laser tuned to 514 nm. We attenuated 

the 1-W laser beam to less than 5 mW with a 5% neutral density filter to prevent 

possible sample decomposition. The Horiba’s Labspec 6 (version 6.4.2.5) software 

was used to collect the data over the range of 50–4000 cm–1. Scans were performed 

using 10 accumulations of 5 s while utilizing the built-in spike filter to remove 

cosmic rays. A silicon wafer served to hold the sample and to check the calibration 

of the instrument by using the Si peak at 520.7 cm–1 as a reference. 

3. Results and Discussion 

3.1 Molecular Structure 

Single crystal X-ray diffraction and structure analysis of DOD revealed its 

molecular conformation at room temperature. The conformation is presented in  

Fig. 2. There are no unusual bond lengths and angles, and our values agree overall 

with those measured previously for DOD at 103 K.4,10 The N1–N2 and N3–N4 bond 

distances measure 1.396 (2) and 1.393 (2) Å, nearly identical with the two axial  

N–N bonds of α-RDX, whose average value equals 1.395 (3) Å at room 

temperature.9 The hexagonal ring adopts a chair-like conformation, where the N1, 

C2, C3, and N3 atoms lie in a plane [root-mean-square deviation (RMSD) = 0.0082 

(2) Å] and the NO2 groups adopt axial positions. In this conformation, the shortest 

distance from the C1 atom to the plane N1–C2–C3–N3 measures 0.548 (2) Å, 

whereas the shortest distance from the O1 atom to the plane measures –0.650 (2) 

Å. The atoms of the N–NO2 groups are nearly planar [RMSD = 0.013 (5) and 

0.011(1) Å] for the respective N1–N–O–O and N3–N–O–O planes, and their 

centroid-to-centroid distance measures 1.937 (1) Å. The dihedral angles between 

the C1–C2–C3 plane and the N1–NO2 plane or N3–NO2 plane are 64.93 (9)° and 

60.55 (9)°, respectively, similar to those involving the axial N–NO2 planes of  

α-RDX (~62°).11  
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Fig. 2 Molecular conformation of DOD. Nonhydrogen atoms are depicted as 50% 

probability displacement ellipsoids. 

Raman spectroscopy provides DOD vibrational structural information. Figure 3 

reveals the Stokes features resulting from the inelastic scattering of a DOD crystal 

with 514 cm–1 radiation. The features reflect the molecule’s modes of vibration. We 

tentatively assign the prominent features based in part on those reported previously 

for RDX.19–22 The peaks near 100 and 125 cm–1 result from lattice motions, whereas 

the peaks near 230 and 260 cm–1 result from ring out-of-plane bending vibrations. 

The peaks near 430 cm–1 and the one near 550 cm–1 result from ring in-plane 

bending. The strong peak near 880 cm–1 is a key signature for many energetic  

NO2-containing compounds and results from C–N–C ring stretching. In contrast, 

the peaks near 886 and 920 cm–1 result from N–NO2 stretching and in-plane CH2 

bending. The peak near 1300 cm–1 results from N–NO2 stretching, whereas the peak 

near 1600 cm–1 is attributed to asymmetric NO2 stretching. The strong features in 

the region between 2900 and 3100 cm–1 result from C–H asymmetric stretching 

vibrations. We searched for reported features associated with C–O–C vibrations in 

the regions between 800 and 860 cm–1 and 1000 and 1200 cm–1, but were unable to 

identify them unequivocally.23–26 These features are Raman-insensitive and/or 

overshadowed by other peaks in our spectrum, unlike the infrared-sensitive DOD 

C–O–C stretching vibration at 1183.2 cm–1 reported by Li et al.10  
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Fig. 3 DOD Raman spectrum in the regions between 100 and 3200 cm–1. The inset shows 

the structure of DOD; the C, H, N, and O atoms are depicted in grey, white, blue, and red, 

respectively.  

3.2 Intermolecular Interactions and Density 

Figure 4 shows the intermolecular interaction of DOD. Strong bifurcated contacts 

between the O2 and H atoms of adjacent molecules  

[O2∙∙∙H2Ai = 2.520(2) Å and O2∙∙∙H3Bii = 2.596(2) Å]; symmetry codes  

(i) −½−x, ½+y, ½+z; (ii) 1−x, 1−y, 1−z], as well as contacts between the O4 and H 

atoms of adjacent molecules [O4∙∙∙H3Ai = 2.602(2) Å; symmetry code  

(i) −1+x, y, z] dominate the intermolecular interactions and contribute to its 

stability. The molecules stack themselves in intertwining rows nearly along the  

a axis with an interatomic separation of 5.846 (3) Å. The O1 and C1 atoms of each 

molecule in a particular row position themselves in an opposite direction from the 

corresponding atoms of molecules in the adjacent row, resulting in intermolecular 

O1–O1 atom separations of 3.193 and 3.287 (2) Å (Fig. 5). 
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Fig. 4 DOD molecule revealing its intermolecular interactions, represented as dashed lines. The C, H, O, and N atoms are depicted in grey, white, red, 

and blue, respectively, whereas the bond colors are based on the color of the atoms.  
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Fig. 5 Crystal packing of DOD. The N, O, and H atoms are depicted in blue, red, and white, respectively. Strong O∙∙∙H interactions are not shown for 

simplicity. 
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DOD belongs to the monoclinic crystal system, space group P21/n, as revealed by 

its crystal structure. Its unit cell constants measure a (Å) = 5.8390(4),  

b (Å) = 17.6086(10), c (Å) = 7.1309(5), α/°= 90, β/°= 111.267 (8), and  

γ/°=90 at 297.9 (1) K, which are similar to those determined previously for DOD 

at 103 K.4,10 Based on the cell dimensions and the molecular weight of DOD, we 

determine a crystal density of 1.732 g/cm3 at 298 K, which is in accordance with 

the value of 1.792 g/cm3 reported for 103 K and agrees well with the theoretical 

value of 1.699 g/cm3 obtained by quantum mechanical calculations using a 

temperature of 298 K.  

4. Conclusions 

In this work we produced high quality X-ray diffracting DOD crystals and 

determined the molecular structure of DOD by both single crystal X-ray diffraction 

and Raman spectroscopy at room temperature. Overall, the values of the bond 

angles, lengths, and unit cell constants are in accordance with those measured 

previously at 103 K. Short contacts between the oxygen atoms of the nitrate groups 

and the hydrogen atoms of adjacent molecules (~2.52 to 2.60 Å) result in strong 

intermolecular interactions, which govern the crystal packing, stability, and density 

of DOD. Prominent Raman features near 880 cm–1 (C–N–C ring stretching),  

920 cm–1 (N–NO2 stretching and in-plane CH2 bending), 1300 cm–1 (N–NO2 

stretching), and in the region between 2900 and 3100 cm–1 (C–H asymmetric 

stretching) dominate its Raman spectrum. Our experimentally determined density 

agrees well with the calculated density (1.732 vs. 1.699 g/cm3 at 298 K). DOD’s 

stability and density make it an attractive energetic material for future applications. 
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CCD charged coupled device 

DOD 3,5-dinitro-1,3,5-oxadiazinane 

EAA equatorial, axial, axial 

RDX 1,3,5-trinitro-1,3,5-triazine 

RMSD root mean square deviation 

TNT 2,4,6-trinitrotoluene 
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