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1. Introduction 

A qutrit density matrix is of order 3 and depends on 8 parameters. There are many 

attempts at visualizing the state space of a qutrit1–4: 

1) Using all 8 Gell–Mann matrices, which form a complete set for expressing 

3 × 3 SU(3) matrices;  

2) Using 6 Gell–Mann matrices supplemented by different matrices in place 

of 2 diagonal ones; and 

3) Bloch matrices and their principal minors. 

The Bloch matrix approach leads to many complicated constraints on the qutrit 

parameters. Previous work in this area focused on understanding the structure of  

8-D parameter spaces through 2- and 3-sections. On the other hand, the 3-D Bloch 

ball state space of qubits are easily visualized. Developing geometrical tools to 

visualize the state space of qutrits in a similar way will be very useful. In this report, 

we present a scheme for representing qutrit state space (QtSS) in 3-D. 

2. Unitary Transformations 

2.1 General Qutrit States 

The most general qutrit density matrix can be represented using the special unitary 

group SU(3) invariant form as 

 𝜌 =
1

3
𝐼3 + �⃗⃗� . �⃗⃗� . (1) 

Here 𝐼3 is 3 × 3  unit matrix,  �⃗⃗�  = (𝑛1, n2,…, 𝑛8) are 8 real parameters, and �⃗⃗�  = (𝜆1, 

𝜆2,…, 𝜆 8) are 3 × 3 Gell–Mann matrices. Using them one obtains 

 𝜌 =

[
 
 
 
 
1

3
+ 𝑛3 +

𝑛8

√3
𝑛1 − 𝑖𝑛2 𝑛4 − 𝑖𝑛5

𝑛1 + 𝑖𝑛2
1

3
− 𝑛3 +

𝑛8

√3
𝑛6 − 𝑖𝑛7

𝑛4 + 𝑖𝑛5 𝑛6 + 𝑖𝑛7
1

3
−

2𝑛8

√3 ]
 
 
 
 

. (2) 

2.2 Matrix Exponential for Density Matrix  

Given a Hamiltonian 𝐻 and an angle-like parameter 𝜃, the corresponding unitary 

transformation is given as 𝑈 = 𝑒𝑖𝜃𝜌. In general 𝜌 is a Hermitian matrix. For 

traceless and Hermitian 𝐻 matrices the exponentials are widely known. The 
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calculation becomes more involved for a general 3 × 3 matrix, which is the case 

with the density matrix under consideration.  

The characteristic equation (CE) of 𝜌 derived from Eq. 2 is given as follows: 

 𝜇3 − 𝜇2 + 𝑐2𝜇 − 𝑐3 = 0. (3) 

Using the definition 𝑟𝑖
2 = 

1

4
 (𝑎𝑖

2 + 𝑞𝑖
2), the coefficients of the CE are given by 

  𝑐2 =
1

2
{1 − 𝑇𝑟(𝜌2)}. (4) 

 𝑐3 =
1

6
{1 − 3𝑇𝑟(𝜌2) + 2𝑇𝑟(𝜌3)}. (5) 

Expressing the CE in terms of its eigenvalues, 

 (𝜇 − 𝜇0)(𝜇 − 𝜇1)(𝜇 − 𝜇2) = 0. (6) 

It leads to alternate expressions for the CE coefficients:  

 𝑐2 = 𝜇0𝜇1 + 𝜇1𝜇2 + 𝜇2𝜇0, 𝑐3 = 𝜇0𝜇1𝜇2. (7) 

So the eigenvalues are expressible in terms of the density matrix elements. These 

coefficients are further constrained by the following inequalities: 

 0 ≤ 𝑐2 ≤
1

3
,0 ≤ 𝑐3 ≤

1

27
. (8) 

One can derive the constraints on the traces also by 

 0 ≤ 𝑇𝑟(𝜌2) ≤
1

3
,0 ≤ 𝑇𝑟(𝜌3) ≤

1

9
. (9) 

It is possible to express any function of the density matrix (including the 

exponential for the unitary transformation) using the method of projectors as given 

in de Zela.1 Let 𝜇𝑘and |𝜇𝑘 > denote the eigenvalues and eigenvectors of the density 

matrix. Denoting the 3-D identity matrix by𝐼3, we can write, 

 𝐼3 = ∑ |𝜇𝑘 >< 𝜇𝑘|
2
𝑘=0 , 𝜌 = ∑ 𝜇𝑘|𝜇𝑘 >< 𝜇𝑘|

2
𝑘=0 . (10) 

The matrices |𝜇𝑘 >< 𝜇𝑘| (k = 0, 1, 2 can be expressed as a combination of 

eigenvalues (𝜇𝑘) and powers of density matrix (𝜌).  Also any function of density 

matrix can then be written as 

 𝑓(𝜌) = ∑ 𝑓(𝜇𝑘)|𝜇𝑘 >< 𝜇𝑘|
2
𝑘=0 ,  (11) 
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The unitary operator takes the following form:  

 𝑈 = 𝑒𝑖𝜃𝜌 = ∑ 𝑒𝑖𝜃𝜇𝑘|𝜇𝑘 >< 𝜇𝑘|
2
𝑘=0 . (12) 

2.3 Unitarily Transformed Density Matrix  

The density matrix transformed by the unitary operator is given as  

𝑈𝜌𝑈+ = 𝑒𝑖𝜃𝜌𝜌𝑒−𝑖𝜃𝜌 = (∑ 𝑒𝑖𝜃𝜇𝑘|𝜇𝑘 >< 𝜇𝑘|
2
𝑘=0 )𝜌(∑ 𝑒−𝑖𝜃𝜇𝑘|𝜇𝑘 >< 𝜇𝑘|

2
𝑘=0 ). (13) 

One needs to use a relation for density matrix due to the Cayley-Hamilton Theorem.  

 𝜌3 = 𝜌2 − 𝑐2𝜌 + 𝑐3. (14) 

Its use reduces the higher powers of density matrix to, at most, the quadratic. 

2.4 Unitary Transformation for Special Cases  

Details about the calculation are given in the Appendix. Here we enumerate the 

results under a common scheme.  

Case I: Roots: 0, 0, 1  

CE: 𝜇2(𝜇 − 1) = 0 

Constraints on CE coefficients: 𝑐2 = 0, 𝑐3 = 0 

Unitary operator: 𝑈 = 𝑒𝑖𝜃𝜌 = 𝐼3 + (𝑒𝑖𝜃 − 1)𝜌 

Transformed density matrix: 𝑈𝜌𝑈+ = 𝑒𝑖𝜃𝜌𝜌𝑒−𝑖𝜃𝜌 = 𝜌 

Case II: Roots: 0, 𝜇1 , 𝜇2 (𝜇2 > 𝜇1)  

CE: 𝜇(𝜇 − 𝜇1)(𝜇 − 𝜇2) = 0 

 𝜇1 =
1

2
− 𝛼, 𝜇2 =

1

2
+ 𝛼 (with 𝛼 = √

1

4
− 𝑐2,) 

Constraints on CE coefficients: 𝑐2 <
1

4
, 𝑐3 = 0 

Unitary operator: 𝑈 = 𝑒𝑖𝜃𝜌 = 𝑒𝑖𝜃/2 [𝑐𝑜𝑠𝜃𝛼 + 𝑖 (
𝑠𝑖𝑛𝜃𝛼

𝛼
) (𝜌 −

1

2
)] 

Transformed density matrix: 𝑈𝜌𝑈+ = 𝑒𝑖𝜃𝜌𝜌𝑒−𝑖𝜃𝜌 = 𝜌 

Case III: Roots: 0, 𝜇1 = 𝜇2=
1

2
 

CE: 𝜇(𝜇 − 𝜇1)
2 = 0 

Constraints on CE coefficients: 𝑐2 =
1

4
, 𝑐3 = 0 
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Unitary operator:  𝑈 = 𝑒𝑖𝜃𝜌 = 𝑒𝑖𝜃/2 

Transformed density matrix:  𝑈𝜌𝑈+ = 𝑒𝑖𝜃𝜌𝜌𝑒−𝑖𝜃𝜌 = 𝑒𝑖𝜃/2𝜌𝑒−𝑖𝜃/2 = 𝜌 

Case IV: Roots: 𝜇0 = 𝜇1 = 𝜇2   

CE: (𝜇 − 𝜇0)
3 = 0) 

Constraints on CE coefficients: 𝑐2
3 = 27𝑐3

2  

Examples: (𝑐2, 𝑐3) = (
1

4
,

1

24√3
) , (

1

3
,

1

27
) , (

1

2
,

1

6√6
), etc.  

Unitary operator: 𝑈 = 𝑒𝑖𝜃𝜌 = 𝑒𝑖𝜃𝜇0 

Transformed density matrix: 𝑈𝜌𝑈+ = 𝑒𝑖𝜃𝜇0𝜌𝑒−𝑖𝜃𝜇0 = 𝜌 

Case V: Roots: 𝜇0, 𝜇1 = 𝜇2  

CE  (𝜇 − 𝜇0)(𝜇 − 𝜇1)
2 = 0,  

Constraints on CE coefficients:  𝑐3 =
1

27
[9𝑐2 − 2 + 2(1 − 3𝑐2)

3/2] 

Examples: (𝑐2, 𝑐3) = (
1

4
,

1

54
) , (

8

27
,

20

729
) , (

8

25
,

112

3375
), etc. 

Also, 𝜇1 = 𝜇2 =
1

3
(1 + 𝛽), 𝛽 = √1 − 3𝑐2  

 𝜇0 =
1−4𝑐2+9𝑐3

1−3𝑐2
, 𝜇1 = 𝜇2 =

𝑐2−9𝑐3

2(1−3𝑐2)
 𝜇0 =

1

3
(1 − 2𝛽), 

Unitary operator: 𝑈 = 𝑒𝑖𝜃𝜌 =
1

𝛽
[𝑒𝑖𝜃𝜇1(𝜌 − 𝜇0) + 𝑒𝑖𝜃𝜇0(𝜇1 − 𝜌)] 

Transformed density matrix: 𝑈𝜌𝑈+ = 𝑒𝑖𝜃𝜌𝜌𝑒−𝑖𝜃𝜌 

= 𝜌 + (
𝑠𝑖𝑛𝛽𝜃/2

𝛽/2
)

2

[𝑐3 −
1

9
(2 + 𝛽 − 𝛽2)𝜌 +

1

3
(1 + 𝛽)𝜌2] 

2.5 Unitary Transformation for General Case 

The general case with all 3 real roots (𝜇0 < 𝜇1 < 𝜇2) leads to both coefficients of 

the CE being nonzero. So we get a complicated expression for the roots of the 

resulting cubic equation. One has to solve the following equations to calculate the 

density matrix and related functions. 

 𝐼3 = |𝜇0 >< 𝜇0| + |𝜇1 >< 𝜇1| + |𝜇2 >< 𝜇2|, (15) 
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 𝜌 = 𝜇0|𝜇0 >< 𝜇0| + 𝜇1|𝜇1 >< 𝜇1| + 𝜇2|𝜇2 >< 𝜇2|, (16) 

and 𝜌2 = 𝜇0
2|𝜇0 >< 𝜇0| + 𝜇1

2|𝜇1 >< 𝜇1| + 𝜇2
2|𝜇2 >< 𝜇2|. (17) 

Their solution allows one to write the unitary transformation operator as 

 𝑈 = 𝑒𝑖𝜃𝜌 = 𝑒𝑖𝜃𝜇0|𝜇0 >< 𝜇0| + 𝑒𝑖𝜃𝜇1|𝜇1 >< 𝜇1| + 𝑒𝑖𝜃𝜇2|𝜇2 >< 𝜇2|  

 = 𝑒𝑖𝜃𝜇0
(𝜇1−𝜌)(𝜇2−𝜌)

(𝜇1−𝜇0)(𝜇2−𝜇0)
− 𝑒𝑖𝜃𝜇1

(𝜇0−𝜌)(𝜇2−𝜌)

(𝜇1−𝜇0)(𝜇2−𝜇1)
+ 𝑒𝑖𝜃𝜇2

(𝜇0−𝜌)(𝜇1−𝜌)

(𝜇2−𝜇0)(𝜇2−𝜇1)
. (18) 

Rewriting Eq. 14, 

 (𝜇1 − 𝜇0)(𝜇2 − 𝜇0)(𝜇2 − 𝜇1)𝑈 = 𝑒𝑖𝜃𝜇0𝑎 − 𝑒𝑖𝜃𝜇1𝑏 + 𝑒𝑖𝜃𝜇2𝑐, (19) 

with 

 𝑎 =  (𝜇2 − 𝜇1)(𝜇2 − 𝜌)(𝜇1 − 𝜌), (20) 

 𝑏 = (𝜇2 − 𝜇0)(𝜇2 − 𝜌)(𝜇0 − 𝜌), (21) 

and 𝑐 = (𝜇1 − 𝜇0)(𝜇1 − 𝜌)(𝜇0 − 𝜌). (22) 

Then the transformed density matrix can be expressed as 

 (𝜇1 − 𝜇0)
2(𝜇2 − 𝜇0)

2(𝜇2 − 𝜇1)
2𝑈𝜌𝑈+  

 = [𝑒𝑖𝜃𝜇0𝑎 − 𝑒𝑖𝜃𝜇1𝑏 + 𝑒𝑖𝜃𝜇2𝑐][𝑒−𝑖𝜃𝜇0𝑎 − 𝑒−𝑖𝜃𝜇1𝑏 + 𝑒−𝑖𝜃𝜇2𝑐]𝜌  

 = 𝑎2 + 𝑏2 + 𝑐2 − 2𝑎𝑏𝑐𝑜𝑠(𝜇1 − 𝜇0)𝜃 − 2𝑏𝑐𝑐𝑜𝑠(𝜇2 − 𝜇1)𝜃 + 2𝑐𝑎𝑐𝑜𝑠(𝜇2 − 𝜇0)𝜃  

 = (𝑎 − 𝑏 + 𝑐)2 + 4𝑎𝑏𝑠𝑖𝑛2 (𝜇1−𝜇0)𝜃

2
+ 4𝑏𝑐𝑠𝑖𝑛2 (𝜇2−𝜇1)𝜃

2
− 4𝑐𝑎𝑠𝑖𝑛2 (𝜇2−𝜇0)𝜃

2
. (23) 

We use the following relations, 

 𝜇0 + 𝜇1 + 𝜇2 = 1, 𝑐2 = 𝜇0𝜇1 + 𝜇1𝜇2 + 𝜇2𝜇0, 𝑐3 = 𝜇0𝜇1𝜇2, (24) 

to find that each of the combinations 𝑎𝑏, 𝑏𝑐, and 𝑐𝑎 vanishes. One also gets 

(𝜇1 − 𝜇0)
2(𝜇2 − 𝜇0)

2(𝜇2 − 𝜇1)
2 = (𝑎 − 𝑏 + 𝑐)2. Finally, the transformed density 

matrix reduces to the following: 

 𝑈𝜌𝑈+ = 𝑒𝑖𝜃𝜌𝜌𝑒−𝑖𝜃𝜌 = 𝜌. (25) 

This rather surprising result says that the density matrix 𝜌 with 3 real and distinct 

eigenvalues describes a pure state.  
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3. Effect of Unitary Transformations on 3-D Vectors for Qutrit 
States 

For a density matrix to represent a physical qutrit, it must satisfy some constraints:  

1) Positivity of diagonal elements 

 0 ≤
1

3
± 𝑛3 +

𝑛8

√3
≤ 1, 0 ≤

1

3
−

2𝑛8

√3
≤ 1. (26) 

2) Normalization 

 𝑇𝑟(𝜌) = 1. (27) 

3) Constraint on the length of the state vector 

 �⃗⃗� . �⃗⃗� ≤
1

3
. (28) 

4) Nonnegativity of the determinant 

 det 𝜌 ≥ 0. (29) 

Earlier attempts at visualizing these general constraints focused on 8-D Cartesian 

space as shown by Sarbicki and Bengtsson,2 Mendas,3 Goyal et al.,4 and Bengtsson 

et al.5 The 2- and 3-sections of these 8-D objects (only 2 and 3 nonzero elements) 

have been found, classified, and characterized by these authors. Beyond 3 

dimensions it is impossible to visualize the state space, so attempts have been made 

to find alternative schemes. In this work, such a scheme is presented. 

3.1 Qutrit Constraints for Spin-1 Representation as 3-D Vectors 

Following the formalism of Kurzynski et al.6 and Kurzynski7, an alternative 

representation of the qutrit density matrix based on the symmetric part of the 2 qubit 

is our starting point. Define: 

 𝑑𝑖 = (𝑞𝑖 + 𝑖𝑎𝑖)/2, 𝑑�̅� = (𝑞𝑖 − 𝑖𝑎𝑖)/2 . (30) 

Then the Bloch matrix representing a spin-1 state is given by  

 𝜌 = [

𝜔1 −𝑑3 − 𝑑2
̅̅ ̅

−𝑑3
̅̅ ̅ 𝜔2 −𝑑1

−𝑑2 − 𝑑1
̅̅ ̅ 𝜔3

]. (31) 

The parameters in this representation are connected to spin-1 observables. 

 𝜔𝑖 =< 𝑆𝑖
2 >= 𝑇𝑟(𝜌𝑆𝑖

2), (32) 
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 𝑎𝑖 =< 𝑆𝑖 >= 𝑇𝑟(𝜌𝑆𝑖), (33) 

and 𝑞𝑘 =< 𝑆𝑖𝑆𝑗 + 𝑆𝑗𝑆𝑖 >= 𝑇𝑟{𝜌(𝑆𝑖𝑆𝑗 + 𝑆𝑗𝑆𝑖)}, 𝑘 ≠ 𝑖, 𝑗. (34) 

Comparison of this parametrization of this qutrit density matrix with the earlier one 

based on the Gell–Mann matrices gives the following identities: 

 𝑛1 =
1

2
𝑞3, 𝑛2 =

1

2
𝑎3, 𝑛4 =

1

2
𝑞2, 𝑛5 =

1

2
𝑎2, 𝑛6 = −

1

2
𝑞1, 𝑛7 =

1

2
𝑎1, (35) 

and 𝑛3 =
1

2
(𝜔1 − 𝜔2), 𝑛8 = √3 [−

1

3
+

1

2
(𝜔1 + 𝜔2)]. (36) 

Then the constraints in Eq. 20 take the following forms:  

1) Positivity of diagonal elements implies 

 𝜔1 ≥ 0,𝜔2 ≥ 0,𝜔3 ≥ 0 . (37) 

2) 𝑇𝑟(𝜌) = 1 implies 

 𝜔1 + 𝜔2 + 𝜔3 = 1. (38) 

3) 𝑇𝑟 (𝜌2) ≤ 1 implies 

 ∑ (𝜔𝑖
2 + 2𝑟𝑖

2)3
𝑖=1 ≤ 1. (39) 

Here 𝑟𝑖
2 = 

1

4
 (𝑎𝑖

2 + 𝑞𝑖
2) and equality sign hold for the pure states. 

4) det 𝜌 ≥ 0 implies  

 [∑ (3𝜔𝑖
2 − 2𝜔𝑖

3 + 6𝜔𝑖𝑟𝑖
23

𝑖=1 ) − Δ] ≤ 1. (40) 

Here Δ =
1

4
(𝑎2𝑎3𝑞1 + 𝑎3𝑎1𝑞2 + 𝑎1𝑎2𝑞3 − 𝑞1𝑞2𝑞3), and equality sign hold for  

the pure states. The relation to CE coefficients is given as  

 𝑐2 =
1

2
{1 − 𝑇𝑟(𝜌2)} = (𝜔2𝜔3 + 𝜔3𝜔1 + 𝜔1𝜔2) − ∑ 𝑟𝑖

23
𝑖=1 , (41) 

and 𝑐3 =
1

6
{1 − 3𝑇𝑟(𝜌2) + 2𝑇𝑟(𝜌3)} =  𝜔1𝜔2𝜔3 − ∑ 𝜔𝑖𝑟𝑖

23
𝑖=1 + Δ. (42)  

It is apparent that the 3 constraints can be rewritten in terms of the following 3-D 

vectors: 

1) �⃗⃗� = {𝑢1, 𝑢2, 𝑢3} such that  

 𝑢2 =
1

2
{3𝑇𝑟(𝜌2) − 1} =

3

2
∑ (𝜔𝑖

2 + 2𝑟𝑖
2)3

𝑖=1 −
1

2
, (43) 
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 𝑢1 = √
3

2
(𝜔1

2 + 2𝑟1
2) −

1

6
, (44) 

 𝑢2 = √
3

2
(𝜔2

2 + 2𝑟2
2) −

1

6
, (45) 

and 𝑢3 = √
3

2
(𝜔3

2 + 2𝑟3
2) −

1

6
. (46) 

2) �⃗� = {𝑣1, 𝑣2, 𝑣3} such that 

 𝑣2 =
1

8
{9𝑇𝑟(𝜌3) − 1} =

9

8
∑ {𝜔𝑖

3 + 3𝑟𝑖
2 − 3𝜔𝑖𝑟𝑖

2 + 3Δ}3
𝑖=1 −

1

8
, (47) 

 𝑣1 = √
9

8
{𝜔1

3 + 3(1 − 𝜔1)𝑟1
2 + Δ} −

1

24
, (48) 

 𝑣2 = √
9

8
{𝜔2

3 + 3(1 − 𝜔2)𝑟2
2 + Δ} −

1

24
, (49) 

and 𝑣3 = √
9

8
{𝜔3

3 + 3(1 − 𝜔3)𝑟3
2 + Δ} −

1

24
. (50) 

3) �⃗⃗� = {𝑤1, 𝑤, 𝑤3} such that 

 𝑤2 = 𝜔1 + 𝜔2 + 𝜔3 = 1, (51) 

and �⃗⃗� = {√𝜔1, √𝜔2, √𝜔3}. (52) 

These vectors have the desired properties such that for pure states 𝑢2 = 1 = 𝑣2, 

and for maximum mixed states 𝑢2 = 0 = 𝑣2, and they also obey the constraints 

0 ≤ 𝑢2 ≤ 1 and 0 ≤ 𝑣2 ≤ 1. The 3rd vector �⃗⃗�  is always of unit length. The 

original 8 degrees of freedom of a general qutrit state is distributed as 3+3+2 among 

the 3 vectors. They are always in the positive octant of a 3-D sphere of unit radius. 

The mixed states reside inside the volume interior to the “pure qutrit state surface”. 

This is similar to the Bloch ball of a qubit. 

3.2 Effect of Unitary Transformation on the QtSS Vectors  

It was found earlier that almost all the cases lead to no change in the density matrix. 

The special case with one double root with CE: (𝜇 − 𝜇0)(𝜇 − 𝜇1)
2 = 0 is the only 

case when this does not hold true. The transformed density matrix is given as the 

following: 

𝑈𝜌𝑈+ = 𝑒𝑖𝜃𝜌𝜌𝑒−𝑖𝜃𝜌 = 𝜌 + (
𝑠𝑖𝑛𝛽𝜃/2

𝛽

2

)

2

[𝑐3 −
1

9
(2 + 𝛽 − 𝛽2)𝜌 +

1

3
(1 + 𝛽)𝜌2]. (53) 
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It is clear from the definitions that 𝛽 = 𝑢 and 𝑐3 =
1

27
−

1

3
𝑢2 +

8

27
𝑣2, and so the 

connection with 3-D vectors can be easily established.  

4. Conclusion 

In this work we have shown that the 8-D qutrit state space can be alternatively 

visualized in 3 dimensions using 3-D vectors, and unitary transformations affect 

their lengths and directions. In the future it will be interesting to see if the QtSS  

3-D vectors  offer advantages over traditional methods for visualizing the properties 

and quantifying measures of the entangled qutrits.  
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Appendix. Unitary Transformation for Special Cases 
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Results for some special cases are as follows: 

(I) Both coefficients are zero. 

 𝒄𝟐 = 𝟎,   𝒄𝟑 = 𝟎. (A-1) 

These are all pure states with eigenvalues 𝜇 = 0,0,1. 

(II) Second coefficient is zero. 

 𝒄𝟐 ≠ 𝟎,   𝒄𝟑 = 𝟎. (A-2) 

Which gives  𝑇𝑟(𝜌3) = 1 − 3𝑐2. The characteristic equation (CE) for this case is 

given by 

 𝜇3 − 𝜇2 + 𝑐2𝜇 = 𝜇(𝜇2 − 𝜇 + 𝑐2) = 0. (A-3) 

It has 3 roots out of which one is always zero. The other 2 roots can be either 2 reals 

or 1 complex conjugate pair. This leads to the following special cases: 

(IIa) Two real nonzero roots (𝑐2 < 1/4 or 𝑇𝑟(𝜌2) > 1/2) 

Define = √1 − 4𝑐2 , then the roots are 0, (1 + 𝛼)/2, and (1 − 𝛼)/2,  

and 𝜌 = 𝑑𝑖𝑎𝑔(0, (1 + 𝛼)/2, (1 − 𝛼)/2). (A-4) 

The Cayley-Hamilton Theorem can be used according to which the density matrix 

itself satisfies the CE. Then we find that 

 𝑈 = 𝑒𝑖𝜃𝜌 = 𝑒𝑖𝜃/2[cos (𝜃𝛼/2) − (𝑖/𝛼)𝑠𝑖𝑛(𝜃𝛼/2) + (2/𝛼)𝑠𝑖𝑛(𝜃𝛼/2)𝜌]. (A-5) 

(IIb) One double root (𝑐2 = 1/4 or 𝑇𝑟(𝜌2) = 1/2)  

The roots are 𝛼 = 0 and 𝜌 = 𝑑𝑖𝑎𝑔(0, 1, 1). There is a single root of 0 and a double 

root of ½. The unitary transformation matrix is 

 𝑈 = 𝑒𝑖𝜃𝜌 = 𝐼 − 2(1 − 𝑒𝑖𝜃/2)𝜌. (A-6) 

(IIc) Pair of complex conjugate roots (𝑐2 > 1/4 or 𝑇𝑟(𝜌2) < 1/2) 

Define 𝛼′ = √4𝑐2 − 1 then the roots are, 0, (1 + 𝑖𝛼′)/2, and (1 − 𝑖𝛼′)/2, 

and, 𝜌 = 𝑑𝑖𝑎𝑔(0, (1 + 𝑖𝛼′)/2, (1 − 𝑖𝛼′)/2). (A-7) 

We also get 

U = eiθρ = eiθ/2[cosh (θα′/2) + (i/α′)sinh(θα′/2) − (2/

α′)sinh(θα′/2)ρ]. (A-8) 
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(III) Unitary Transformation for case with 2 nonzero roots (𝒄𝟐 < 𝟏/𝟒) 

The general unitary transformation is given by  

 𝑈𝜌𝑈+ = 𝑒𝑖𝜃�̂�𝜌𝑒−𝑖𝜃�̂�. (A-9) 

Here 𝜌′ is the original 3 × 3 matrix and 𝑒𝑖𝜃𝜌 is the diagonal matrix exponential for 

the case with real roots (the complex root situation is similar). It can be recalled 

that for a qubit this results in the rotation of the 3-dimensional Bloch vector. 

Rewriting  

 𝛼𝑈 = (𝐴1 + 𝐵1�̂�) + 𝑖(𝐴2 + 𝐵2�̂�). (A-10) 

Where 

 𝐴1 = 𝛼cos (𝜃𝛼/2)𝑐𝑜𝑠 (𝜃/2) + sin (𝜃𝛼/2)sin (𝜃/2), (A-11) 

 𝐴2 = 𝛼cos (𝜃𝛼/2)sin (𝜃/2) − sin (𝜃𝛼/2)cos (𝜃/2), (A-12) 

and 𝐵1 = −2𝑠𝑖𝑛 (𝜃𝛼/2)𝑠𝑖𝑛 (𝜃/2), 𝐵2 = −2𝑠𝑖𝑛 (𝜃𝛼/2)𝑐𝑜𝑠 (𝜃/2). (A-13) 

We get 

𝛼2𝑈𝜌𝑈+ = (𝐴1
2 + 𝐴2

2)𝜌 + (𝐴1𝐵1 + 𝐴2𝐵2)(�̂�𝜌 + 𝜌�̂�) +

(𝐵1
2 + 𝐵2

2)�̂�𝜌�̂� + 𝑖(𝐴1𝐵2 − 𝐴2𝐵1)(�̂�𝜌 − 𝜌�̂�). (A-14) 

with 

 𝐴1
2 + 𝐴2

2 = 𝛼2 cos2(𝜃𝛼/2) + sin2(𝜃𝛼/2), (A-15) 

 𝐵1
2 + 𝐵2

2 = 4sin2(𝜃𝛼/2), (A-16) 

 𝐴1𝐵1 + 𝐴2𝐵2 = −4sin2(𝜃𝛼/2), (A-17) 

and 𝐴1𝐵2 − 𝐴2𝐵1 = 2𝛼 𝑠𝑖𝑛 (
𝜃𝛼

2
) 𝑐𝑜𝑠 (

𝜃𝛼

2
). (A-18) 

Also let 𝐷 = {cos (𝜃𝛼/2) + (𝑖/𝛼)𝑠𝑖𝑛(𝜃𝛼/2)}. Then the unitarily transformed 

density matrix is given as 

 𝑈𝜌𝑈+ = [

DD̅𝜔1 D̅𝑒−𝑖𝜃𝛼/2(−𝑑3) D̅𝑒𝑖𝜃𝛼/2(−𝑑2)̅̅ ̅̅̅

𝐷𝑒𝑖𝜃𝛼/2(−𝑑3
̅̅ ̅) 𝜔2 𝑒𝑖𝜃𝛼/2(−𝑑1)

𝐷𝑒−𝑖𝜃𝛼/2(−𝑑2) 𝑒−𝑖𝜃𝛼/2(− 𝑑1)̅̅ ̅̅ 𝜔3

]. (A-19) 

Comparing this with Eq. 31, it is seen that under a unitary transformation the 

density matrix elements get multiplied by various trigonometric functions. This 

induces changes in the lengths and angles of the vectors (𝒖, 𝒗,𝒘). 
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List of Symbols, Abbreviations, and Acronyms 

3-D 3-dimensional 

8-D 8-dimensional 

CE characteristic equation 

QtSS qutrit state space 

SU special unitary group 
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