
New J. Phys. 18 (2016) 063029 doi:10.1088/1367-2630/18/6/063029

PAPER

Compiling quantum algorithms for architectures with multi-qubit
gates

EstebanAMartinez1,3, ThomasMonz1, Daniel Nigg1, Philipp Schindler1 andRainer Blatt1,2

1 Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25/4, 6020 Innsbruck, Austria
2 Institut fürQuantenoptik undQuanteninformation,Österreichische Akademie derWissenschaften, Technikerstraße 21a, 6020

Innsbruck, Austria
3 Author towhomany correspondence should be addressed.

E-mail: esteban.martinez@uibk.ac.at

Keywords: quantum algorithms, quantum compiler,many-qubit entangling gates,Mølmer-Sørensen gates, trapped-ion quantum
computing

Abstract
In recent years, small-scale quantum information processors have been realized inmultiple physical
architectures. These systems provide a universal set of gates that allow one to implement any given
unitary operation. The decomposition of a particular algorithm into a sequence of these available gates
is not unique. Thus, thefidelity of the implementation of an algorithm can be increased by choosing
an optimized decomposition into available gates. Here, we present amethod tofind such a
decomposition, where a small-scale ion trap quantum information processor is used as an example.
We demonstrate a numerical optimization protocol thatminimizes the number of requiredmulti-
qubit entangling gates by design. Furthermore, we adapt themethod for state preparation, and
quantumalgorithms including in-sequencemeasurements.

1. Introduction

Quantum technologies open newpossibilities that are inaccessible with current classical devices, ranging from
cryptography [1, 2] to efficient simulation of physical systems [3–5]. To utilize the full computational power of
quantum systems, one needs a universal quantum computer: a device able to implement arbitrary unitary
operations, or at least to approximate them to arbitrary accuracy. However, in any specific physical system, only
a certain set of operations is readily available. Therefore, it is necessary to decompose the desired unitary
operation as a sequence of these experimentally available gates. An available set of gates is known as universal if it
is possible tofind such a decomposition for an arbitrary unitary quantumoperation acting on the qubit register.

A canonical universal set of gates consists of two-qubit CNOTgates and arbitrary single-qubit rotations.
There exist deterministic algorithms that provide near-optimal decompositions of unitaries in terms of these
gates [6]. However, the set of gates that yields the highest fidelities depends on the particular experimental
implementation. In particular, two-qubit CNOTgatesmay not be themost efficient to implement.
Architectures like trapped ions [7, 8] or atom lattices [9] include in their toolboxes high-fidelitymulti-qubit
gates that act on the entire qubit register (see section 1.1). Implementing two-qubit gates in terms of these
requires refocusing [10] or decoupling [7] techniques, and thus increases the overhead. Therefore it is desirable
tofind a direct decomposition of the target unitary into the available operations. In general, the number of
multi-qubit gates needs to beminimized, since these aremore prone to errors than local gates.

Compiling unitaries usingmulti-qubit gates that act on thewhole qubit register ismore challenging than
using two-qubit gates. Even if a sequence implements correctly a unitary forN qubits, itmight notwork for

+N 1qubits, since additional ‘spectator’ qubits will also be affected by the sequence instead of being left
unchanged [11]. Therefore, one has to define a qubit register of interest where the unitarywill be compiled, and
the experimental implementation of the resulting sequence has to be limited to this subregister, as explained in
section 1.1.Moreover, the existing analyticalmethods forfinding decompositions of unitaries in terms of two-
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qubit gates (see for instance [12])do not seem to apply tomulti-qubit gates. Therefore, in this workwe employ
an approach based on numerical optimization.

A similar algorithm forfindingmulti-qubit gate decompositions has been studied in [11], where optimal
control techniques are used tofind a pulse sequence for a given target unitary operation. The procedure
described there starts with long sequences and then removes pulses, if possible. This often results in sequences
withmore entangling operations than actually required. In this workwe present an algorithmdesigned to
produce decompositions with aminimal number of entangling gates. In addition, we introduce a deterministic
algorithm forfinding decompositions of local unitaries.We also extend the algorithm to operations required for
state preparation ormeasurement, which are particular cases ofmore general operations known as
isometries [13, 14].

The paper is organized as follows: in section 1.1we describe precisely which gates wewill consider as part of
our experimentally available toolbox, and review some architectures for quantum information processing to
which themethods described in this work can be applied. In section 2we show an analytic algorithm to compile
local unitaries, which can be used tofind efficient implementations of state and process tomographies. Finally, in
section 3we describe and analyze an algorithm to compile fully general unitaries which relies on numerical
optimization.

1.1. Experimental toolbox
Several quantum information processing experiments based on atomic andmolecular systems have similar
toolsets of quantumoperations at their disposal. Often, it is convenient to apply collective rotations on an entire
qubit register. These collective (yet local) gates, combinedwith addressed operations (typically rotations around
the Z axis) allow one to implement arbitrary local unitaries, as we show in section 2. Together with suitable
multi-qubit operations, arbitrary quantumunitaries can be implemented. In this workwe consider the
following set of gates:

• Collective rotations of thewhole qubit register about any axis on the equator of the Bloch sphere ( )q fC , .
Here θ is the rotation angle andf is the phase, so that:

( ) ( )( )q f = q f f- +C , e , 1S Si cos sin 2x y

where s s= + +Sx y
x y

N
x y

, 1
, , are the total spin projections on the x or y axes, and s j

x y z, , are the respective
Pauli operators corresponding to qubit j. For the sake of brevity we also define rotations around theX andY
axes as:

( ) ( ) ( )q q=X C , 0 , 2

( ) ( ) ( )q q p=Y C , 2 . 3

• Single qubit rotations around theZ axis ( )qZn , where θ is the rotation angle, and n is the qubit index:

( ) ( )q = qs-Z e , 4n
i 2n

z

with sn
z being the Pauli Z operator applied to the n-th ion.

• EntanglingMølmer-Sørensen (MS) gates [15], with arbitrary rotation angle and phase ( )qfMS . Here θ is the
rotation angle andf is the phase of the gate, resulting in:

( ) ( )( )q =f
q f f- +MS e , 5S Si cos sin 4x y

2

where s s= + +Sx y
x y

N
x y

, 1
, , are the total spin projections on the x or y axes, as before. For f = 0 or

f p= 2 we obtain gates that act around theX orY axes, whichwewill denote:

( ) ( )q = q-MS e . 6x,y
i S 4x,y

2

Asmentioned before, it is desirable to be able to restrict the action of theMS gate to a particular qubit subset.
This can be done experimentally by spectroscopically decoupling the rest of the qubits from the computation
[7], or by addressing theMS gate only on the relevant subset of the qubits [16].

This set of gates, or equivalent ones, are available in several trapped-ion experiments [7, 17, 18]. A similar
toolbox of operations is available for architectures based on trapped-ion hyperfine qubits. For example, [8]
describes high-fidelitymicrowave gates applied to a single hyperfine 43Ca+ qubit. In amulti-qubit system, these
gates would drive collective rotations like the ones described above. In addition, [19]describes a Raman-driven
s sÄz z phase gate on two qubits, which applied to amany-qubit register would act analogously to theMS gate
already described.
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Recently, an implementation of high-fidelity gates in a 2D array of neutral atomqubits was reported [9]. The
toolbox described there consists of globalmicrowave-driven gates and single-site Stark shifts on the atoms,
which are completely equivalent to the local operations described before for the trapped-ion architecture. A
multi-qubit CNOT gate, equivalent to theMS gate, could also be implemented bymeans of long-range Rydberg
blockade interactions [20].

2. Compilation of local unitaries

Local unitaries can bewritten as a product of single-qubit unitaries. In this sectionwe show a fully deterministic
algorithm that produces decompositions of any local unitary as a sequence of collective equatorial rotations and
addressed Z rotations, as described in section 1.1. The decompositions presented here are optimal in the number
of pulses. These techniques are particularly useful for the implementation of state and process tomographies, as
exemplified infigure 1, since both require only local operations at the beginning and end of the algorithm.

Let us consider a register ofN qubits, and a local unitary = Ä Ä ÄU U U UN1 2 to be applied to them,
whereUi is the action of the unitary on the i-th qubit. If the same operation has to be applied tomore than one
qubit ( =U Ui j), we can replace bothwith a single instance of the operation, and then apply the same addressed
rotations on all qubits subject to the same operationUi. Therefore, we only have to consider the case where every
Ui is unique.

In order to apply a general local unitary to each qubit we need to have at least three degrees of freedomper
qubit [6], so the decompositionmust have at least N3 free parameters. During the sequence at least -N 1of the
qubitsmust eventually be addressed, since a different unitary has to be applied to each qubit. Therefore, a
sequence of addressed operations of the form ( ) ( ) ( )q q q¼ - -Z Z Z, , N N1 1 2 2 1 1 must be included in the
decomposition. These provide -N 1parameters, so +N2 1more degrees of freedom are required. Themost
economicway to provide these is bymeans of collective gates ( )q fC ,i i , which have two degrees of freedom each,
so the shortest sequence possiblemust include at leastN global operations, for a total of -N3 1 free
parameters. One additional degree of freedom remains, so wemust add a last gate. This can be either an
addressed operation on qubitN or a collective gate. If we add an addressed gateZN, we obtain a sequence of the
form:

( )= - -U Z C Z C Z C Z C , 7N N N N1 1 2 2 1 1

where ( )q f=C C ,i i i and ( )q=Z Zi i i are collective and single-qubit rotations respectively, as explained in
section 1.1. Such a sequence is useful for compiling local unitaries up to arbitrary phases, as explained in
appendices A.3 andA.4. The second alternative is to add a collective rotation ¢CN :

( )= ¢ - -U C C Z C Z C Z C , 8N N N N1 1 2 2 1 1

which is the type of sequence we consider in this section.
For particular unitaries, some of theCi andZi in equation (8)may actually be the identity, inwhich case the

sequence is simpler. Since the decomposition depends on the ordering of the qubits, by reordering them a
simpler sequencemight be obtained. For small numbers of qubits, one can compile the unitary for every possible
permutation, although this becomes inefficient for large numbers of qubits. However, let us remember that, for
the purposes of the compilation, the qubits are grouped together according towhich of them experience the
same single-qubit unitaryUi. For an application such as state tomography, there are only three possible unitaries
to be applied to each qubit in the register (shown infigure 1), since one onlywants to perform ameasurement in
one of three different bases. Therefore, effectively we only need to consider three qubits, inwhich case trying out
all the permutations is perfectly feasible.

Wewill describe nowhow to compile a generic local unitary = Ä Ä ÄU U U UN1 2 exactly, using a
decomposition of the form (8). Let usfirst note that the unitaries in equation (8) act on theN-qubit–Hilbert

Figure 1.Pulse sequence to perform a projectivemeasurement on the { }X, Y, Z bases for qubits { }1, 2, 3 , respectively.
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space, which is the tensor product of the single-qubit–Hilbert spaces. For the sake of simplifying the notation, we
will now refer to these unitaries as ˜ ˜C Z,i i, andwill reuse the notationsCi andZi for their action on the single
qubits, so that:

˜
˜ ( )


 

= Ä Ä Ä
= Ä Ä Ä Ä Ä

C C C C

Z Z

,

1 1 1, 9
i i i i

i i

where1 is the 2× 2 identitymatrix, andZi appears at the i-th place (since it only addresses the i-th qubit).
In terms of these single-qubit unitaries, factoring equation (8) for each qubit we obtainN equations:

( )







= ¢

= ¢

= ¢

U C C C Z C

U C C Z C C

U C C C C

,

,

. 10

N N

N N

N N N

1 2 1 1

2 2 2 1

2 1

From the last equationwe can determine ¢C CN N :

( )¢ = - -
-

-C C U C C C , 11N N N N1
1

2
1

1
1

and eliminating this factor from the remaining equations we obtain:

( )


 

=

=

=

- -

- - -

-
-

- -
-

-
- -

U U C Z C

U U C C Z C C

U U C C C Z C C C

,

,

. 12

N

N

N N N N N

1
1 1

1
1 1

1
2 1

1
2

1
2 2 1

1
1 1

1
2

1
1

1
1 1 2 1

We solve each equation in (12) consecutively. To solve the first equation in (12), let us notice that its left-
hand side is a knownunitary, which can bewritten as:

( )= a- -U U e , 13N
u1

1
i 21 1

where a1 is the angle of the rotation and u1 its generator. The right-hand side is simply a rotation aroundZ and a
change of basis. Therefore, the rotation angle ofZ1must be equal to a1, and the change of basismust be such
that:

( )s= -u C C . 14z1 1
1

1

We show in appendix A.1 how tofind the generator and angle of the collective rotation C1.
Having determined C1, we canwrite the second equation in (12) as:

( )=- - -C U U C C Z C . 15N1
1

2 1
1

2
1

2 2

As before, the left-hand side of this equation is a knownunitary, and the right-hand side consists of a rotation
aroundZ and a change of basis, so the rotation angle q2 and generator of the change of basisC2 can be found as
for the previous equation. This procedure can be repeated until all of the Ck andZkwith  -k N 1are
determined. The last collective operationsCN and ¢CN can be determined from equation (11). For this we need to
decompose an arbitrary unitary into a product of two equatorial rotations; this can be done as explained in
appendix A.2.

We have shown so far how to compile a local unitary exactly. However, in certain cases the constraints on the
target unitary areweaker, so that it can be implementedwith a simpler sequence. For instance, a unitary that is
followed by global gates whose phase can be freely adjustedmust only be specified up to a collective Z rotation
afterwards, since this rotation can be absorbed into the phase. This removes one free parameter from the
sequence, thus simplifying its implementation. The details of this procedure are presented in appendix A.3.
Another case of interest is when the target unitary is specified up to arbitrary independent Z rotations afterwards,
for instancewhen the unitary is followed by a projectivemeasurement on the Z basis. This is particularly useful
for tomographicmeasurements; details are shown in appendix A.4.

3. Compilation of general unitaries

In section 2we studied how to compile local unitaries in terms of collective and addressed rotations.However, a
universal quantum computer also requires entangling unitaries, whichmust be compiled into the
experimentally available local and entangling gates. For example, infigure 2we show a decomposition of a
Toffoli gate into a sequence of local and entangling gates applied consecutively. In this section, we present an
algorithm tofind such decompositions for arbitrary unitaries.

We seek decompositions directly in terms ofmulti-qubit entangling gates, since these are oftenmore
efficient than decompositions in terms of two-qubit gates. For example, a Toffoli gate can be implemented using

4
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only 3Mølmer-Sørensen (MS) gates [11], while 6CNOT gates are needed to implement it [21]), and a Fredkin
gate can be implemented using 4MS gates [22], while the least number of two-qubit gates required is 5 [23]. As
described in section 1.1,many equivalent types of entangling gates are experimentally available.Wewill consider
MS gates, but themethods shown here are applicable to any entangling gate that forms a universal set together
with local operations.

3.1. Compilation in layers
Inmany quantum information processing experiments themost costly operations in terms offidelity are
entangling gates. Therefore, when trying to compile a unitarywe seek tominimize the number of those. A
straightforwardway to do this is to use pulse sequences where layers of local unitaries and entangling gates are
applied consecutively, as shown infigure 3.

Any unitary can be decomposed in terms of single-qubit gates and two-qubit CNOT gates [24]:

( )=U L L LCNOT CNOT , 16M M 1 1 0

where Li denotes an arbitrary local unitary on thewhole qubit register and CNOTi denotes a gate between some
two qubits. A two-qubit CNOT gate can be implemented in an arbitraryN-qubit register as a sequence of local
unitaries and ( )pMS 8x gates [11]. Therefore, the following decomposition is always possible:

( ) ( ) ( )p p=U L L LMS 8 MS 8 . 17M x x1 0

However, some of the local unitaries Li in a decomposition of the form (17)may actually be identity, so after
removing them the resulting sequence has the following structure:

( ) ( ) ( )p p=U L k L k LMS 8 MS 8 , 18M x M x1 1 0

where the ki are integers, and the numberM of entangling gates is the same or less than in equation (17). It is
enough to consider  k0 7, since ( )pMSx is either the identity for an odd number of qubits, or aπ rotation
aroundX for an even number of qubits.

We now seek to further simplify sequence (18). Every single-qubit unitaryUi on qubit i can bewritten as a
composition of rotations around two different fixed axes [6], whichmeans that we can always choose a a,i i1 2

and ai3 such that:

( ) ( ) ( ) ( )a a a=U X Z X . 19i i i i i i i3 2 1

Any local unitary =  =L Ui
N

i1 can therefore bewritten as:

( ) ( ) ( ) ( ) a a a=
=

L X Z X , 20
i

N

i i i i i i
1

3 2 1

Figure 2.Decomposition of a Toffoli gate into a pulse sequence of collective equatorial rotations, addressed Z rotations and entangling
Mølmer-Sørensen (MS) gates.

Figure 3. Sequence with layers of local and entangling gates applied consecutively.
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where the product goes over theN qubits in the register. Since unitaries acting on different qubits commute, we
canwrite this as:

( ) ( ) ( ) ( )  a a a=
= = =

L X Z X 21
i

N

i i
i

N

i i
i

N

i i
1

3
1

2
1

1

˜ ˜ ˜ ( )= ¢X ZX , 22

where X̃ and Z̃ denote arbitrary products of rotations around theX orZ axes for all qubits. Therefore, the
sequence in (18) can bewritten as:

˜ ˜ ˜ ( )
˜ ˜ ˜ ( ) ˜ ˜ ˜ ( )

p

p

= ¢

´ ¢ ¢
U X Z X k

X Z X k X Z X

MS 8

MS 8 , 23

M M M x M

x1 1 1 1 0 0 0

and commuting theX rotationswith theMS gates we obtain a sequence of the form:

˜ ˜ ˜ ( )
˜ ˜ ˜ ( ) ˜ ( ) ˜ ˜ ˜ ( )

p

a p

= ¢

´ ¢ ¢
U X Z X k

X Z X Z k X Z X

MS 8

MS MS 8 . 24

M M M x M

x x2 2 2 2 1 1 0 0 0

Every odd local unitary (except for the last one) is a product of Z rotations on all qubits, and the even local
unitaries can be grouped as ˜ ˜ ˜= ¢L X Z Xi i i i.Moreover, a collective Z rotation can be extracted from each even
local unitary Li and absorbed into the phase of the subsequentMS gates and collective operations to simplify the
implementation of Li. Therefore the sequence can bewritten as:

( )
( ) ˜ ( ) ( )

p

p p

=

´

f

f f

U L k

L k Z k L

MS 8

MS 8 MS 8 . 25

M M

2 2 1 1 0

M

2 1

Wehave thus shown that anyN-qubit unitaryU can be decomposed into a sequence of the form shown in
(25). These sequences always have the same structure, whichmakes it easier to identify patterns if onewants to
compile families of unitaries, i.e. unitaries that depend on some tunable parameter.

3.2. Numerical optimization
Wehave described a general formof a sequence of local operations and global entangling gates that implements
any desired target unitary. It remains tofind the actual sequence parameters, that is, the rotation angles and
phases of the gates. However, we do not know a priori howmany entangling gates will be needed for a given
unitary. Therefore we suggest the following algorithm:

1. Propose a sequence withM= 0 entangling gates.

2. Search numerically for the sequence parameters thatmaximize the fidelity with the target unitary.

3. If the sequence has converged to the desired unitary (i.e. thefidelity equals 1), stop. Otherwise increaseM by 1
and go back to step 2.

When performing the numerical optimization in step 2 theremight be a number of local optima in addition
to the true global optimum,making fully deterministic optimizationmethods difficult to apply.We apply
therefore a repeated local search, where an efficient deterministic optimizationmethod is iterated, each time
using randomly determined initial conditions. The initial conditions are chosen randomly for every
optimization run, as experience has shownus that starting close to previously found localminima does not offer
any improvement. The search isfinalizedwhenever thefidelity with the target unitary is above some predefined
threshold, or when amaximumnumber of tries is exceeded. An advantage of thismethod is that, since each
optimization run starts from random initial conditions, these are easy to perform in parallel.

The algorithm chosen for each numerical optimization is the quasi-Newtonmethod of Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) [25]. The function to bemaximized is the fidelity of the unitary resulting from the
pulse sequence with the target unitary. Sincewe are interested in exact solutions, we reject those solutions whose
fidelity (normalized to themaximumvalue possible) is not equal to 1within some tolerance threshold (usually
1%). The gradient of thefidelity can be calculated analytically as a function of the sequence parameters, which
speeds up the computation as compared to using several evaluations of thefidelity function.

Apreviously used approach to this optimizationproblemwas a combinationof local gradient descent and
simulated annealing (SA) [11], which also helps to avoid localmaxima.However, thismethoddidnotmakeuse of
the analytic expression for thefidelity gradient,which speedsup the search.Moreover, its performancedependson
the ‘topography’of the optimization space and requiresmanual tuning of the searchparameters to achieve optimal
results.Wehave compared theBFGS and simulated annealing approaches by compiling 100 randomunitaries
uniformlydistributed in theHaarmeasure as explained in [26] for different numbers of qubits. In our experience,

6
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wefind that theBFGSmethod scales betterwith the number ofqubits than simulated annealing (seefigure 4). The
mediannumber of search repetitions needed tofind the global optimumwas 1 in all the cases.

The exponential scaling of the optimization problem complexity depends on the number of entangling gates
required to compile a given unitary, which is an intrinsic property of the unitary and does not depend on the
search algorithm. It is already known that it is not possible to efficiently implement an arbitrary unitary in terms
of two-qubit gates [6]; our numerical results suggest a similar result forN-qubit gates. In the two-qubit case the
compilation always succeededwith 3 entangling gates, and not less (using 200 search repetitions). This was to be
expected, since for two qubits anMS gate is equivalent to aCNOT gate, and it is known that 3CNOT gates are
enough (and in general necessary) to implement an arbitrary two-qubit unitary [27, 28]. In the three-qubit case,
the optimization always succeededwith 8 entangling gates, and neverwith fewer (also using 200 repetitions). For
4 qubits, the optimization always succeeded for 25 entangling gates, and succeeded only 4%of the timewith 24
entangling gates.However, we did only 4 optimization repeats in the four-qubit case, owing to the increased
time it takes for these to converge. Therefore, itmight be the case that given enough optimization runs,more
unitaries would have been compiledwith only 24 gates.We are not aware of any result in the literature
concerning the number ofN-qubit global entangling gates required for implementing a generalN-qubit unitary
formore thanN= 2 qubits. Fromour numerical results, we conjecture that any three-qubit unitary can be
implemented using atmost 8MS gates, and any four-qubit unitary using atmost 24 or 25MS gates.

A particularly interesting groupof unitaries areClifford gates,whichfind applications inquantumerror
correction [29], randomizedbenchmarking [30], and state distillation protocols [6]. To explore the difficulty of
compiling such gates, wehave tested our algorithmwith randomly generatedClifford gates, as explained in [31].
We show infigure 5 thedistributionof the optimal number of entangling gates required for compliging two-,
three- and four-qubit unitaries.Our results agreewith the literature [32] for the two-qubit case, sinceMSgates are
then equivalent to controlled-Z (orCNOT) gates. For larger numbers of qubits, the performance of our algorithm
in termsofnumber ofmulti-qubit gates required is also similar to that of algorithmsbased on two-qubit gates [32].

3.3. Compilation of isometries
Aparticular case of interest is the compilation of a unitarywhose actiononlymatters on certain input states. This
happens, for instance,whenone is interested in state preparation starting fromsomefixed input state. Such
operations belong to themore general class of operations knownas isometries [14, 30]. In this case, the problem tobe
solvedhas less constraints thanwhen fully specifying the target unitary, so a simpler sequencemaybe found. In this
sectionwe focus on compiling a unitary that is only specified in aparticular subspace of the input states, for example:

( )

 

 
 

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
U

u u
u u

u u

u u

free free
, 26target

11 12

21 22

31 32

41 42

Figure 4.Average time required to find the global optimum for 100 unitaries randomly distributed in theHaarmeasurewith the BFGS
and simulated annealingmethods, using an Intel©Core i5-4670s CPU550@3.10GHz x 4 (one processing thread per optimization
run). No data was obtained for the simulated annealing approach for 4 qubits owing to the excessive time required.
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where the columnsmarked as ‘free’ are left unspecified. In this case, a suitable fidelity function for the numerical
optimization is:

( ) ∣ ( ∣ ∣ )∣ ( )†=f U U Utr , 27S Starget
2

where ∣U S is a rectangularmatrix with the components of the unitary in the restricted subspace.
Amore general case is where some of the relative phases of the projections of the unitary acting on different

subspaces of thewholeHilbert space are irrelevant. For example, suppose that onewants to apply a unitary to
map some observable onto an ancilla qubit and thenmeasure the ancilla, as shown in figure 6. Since the input
state of qubit 3 is known to be ∣ ñ0 , only the subspace of input states spanned by {∣ ∣ ∣ ∣ñ ñ ñ ñ000 , 010 , 100 , 110 } is
relevant.Moreover, themeasurement will project the state of the systemonto either the subspace spanned by
{∣ ∣ ∣ñ ñ ñ000 , 010 , 100 }, or that spanned by {∣ ñ111 }, and all phase coherence between these alternatives will be
lost. Therefore, the compiled sequence can be sought such that itmatches the desired unitary in each of the
subspaces but allowing an arbitrary phasef between them:

( )

   
   
   

   
   
   
   

=

f

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

U

e

1 0 0 0
0 0 0 0
0 1 0 0
0 free 0 free 0 free 0 free
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0

28

i

target

In this case (figure 6) it is possible tofind a simpler implementation than in the fully constrained case (figure 2),
owing to the additional degrees of freedom available, namely arbitrary outputs for the ∣ ∣y ñ = ñ13 input states
and an arbitrary relative phase between the two possiblemeasurement outcomes.

Figure 5.Optimal number of entangling gates needed to compile randomClifford operations, for sample sizes { }1000, 200, 100 for
{ }=N 2, 3, 4 qubits. EachClifford gate was generated using N10 8 steps of the randomwalk described in [31]. Error bars correspond

to one standard deviation.

Figure 6. Left: a unitarymapping (Toffoli gate) is applied, after which qubit 3 ismeasured. Right: a pulse sequence for implementing
the circuit on the left. This implementation is simpler than in the fully constrained case (figure 2) because of the additional degrees of
freedomwhen compiling.
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In the general case considered herewewant tomaximize thefidelity in each subspace, without regard to the
relative phases between these. Thereforewe can seek tomaximize the function f consisting of the sumof the
fidelity functions (27) corresponding to each subspace:

( ) ∣ ( ∣ ∣ )∣ ( )†å=f U U Utr , 29
j

S Starget
2

j j

where the sum goes over all the subspaces with different relative phases, and ∣U Sj
is a rectangularmatrix with the

components of the unitary in the j-th subspace.

3.4. Compensation of systematic errors
Owing to systematic errors, the operations experimentally appliedmay still be unitary but deviate from the
intended ones. An example of this is addressing crosstalk due to laser light leaking onto adjacent qubits. If it is
possible to characterize the actual experimental operations being applied, then they can be taken into account
for the compilation by adapting our optimization procedure:

1. Compile the target unitary in terms of the ideal gates.

2. Replace the ideal gates by the experimentally characterized operations.

3. Add operations to obtain a higher fidelity with the ideal target unitary.

As an examplewe show that excessive crosstalk can be corrected in an implementation of a Toffoli gate.
Figure 7 depicts experimental data corresponding to the action of the Toffoli gate on the 8 input basis states. It
can be seen that, by adding just two pulses, the outputfidelity for each input state increased in some cases by up
to 20%. The sequence with 11 pulses is actually only an approximate correction to the uncorrected case. The
exact correction requires 14 pulses, and actually yields a lower fidelity than the approximate one, since it requires
more pulses and each of these has a non-zero error probability.

4. Conclusions and outlook

In this workwe have shownmethods to compile quantumunitaries into a sequence of collective rotations,
addressed rotations and global entangling operations. For local unitaries, we have demonstrated an analytic
approach that produces the shortest possible sequences in the general case, and adapted themethod to simplify
the resulting sequences if some constraints on the unitary are lifted. For arbitrary unitaries, we have presented an
approach that produces sequences of layered local and entangling operations. This approach is based on a
numerical optimization procedure that is faster than previously used ones, and the sequences obtained are by
design optimal with respect to the number of entangling gates. Our numerical results suggest upper bounds on
the number ofN-qubit gates required to implement arbitrary three- and four-qubit unitaries.

The results of this paper show that inmany cases onemay obtainmore efficient implementations by
considering operationsmore general than two-qubit entangling gates.However, the exponentially growing
complexity of decompositions as the number of qubits increases points to the necessity of keeping the register
size small.

Figure 7. Statefidelity for a Toffoli gate applied on the 8 canonical input states.
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AppendixA. Compiling local unitaries

A.1. Finding basis changes
In this appendixwewill showhow to satisfy equation (14).We need tofind a rotation C around the equator of
the Bloch sphere such that:

( )s= -u C C, A1z
1

where u is the generator of a given knownunitaryU, and it can always bewritten as:

( )q f s q f s q s= + +u sin cos sin sin cos , A2x y z

for some angles q f, .
In general C is of the form:

( )= g-C e , A3ci 2

where γ is its rotation angle and c its generator, whichmust lie on the equator and thus be a linear combination
of sx and sy. If we propose:

( )f s f s= -c sin cos , A4x y

and replace in equation (A1), wefind that the angle of rotationmust be:

( )g q= . A5

A.2.Writing a unitary as a product of two equatorial rotations
Wewill showhere how to decompose an arbitrary unitary as a product of two rotations around the equator of
the Bloch sphere, namely:

( )=U C C . A62 1

The target unitary can bewritten as:

( ) ( )

b b

q f s q f s q s

= -

´ + +

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠U cos

2
1 i sin

2
sin cos sin sin cos , A7x y z

whereβ is its rotation angle,and q f, determine its rotation axis. Similarly, the equatorial rotations can be
written as:

( ) ( )a a
f s f s= - ¢ + ¢⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠C cos

2
1 i sin

2
cos sin , A8i

i i
i x i y

for some rotation angles ai and phases f¢i .
We shall asume that:

( )a a a= = , A91 2

( )f f¢ = + D 2, A101

( )f f¢ = - D 2. A112

Replacing these into (A6) and solving forα andΔwe obtain:

( )a b
q= +⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟cos

2

1

2
cos

2
1 sin , A122 2
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( )( )
( ) ( )D =

-

-

a b

a
cos

cos cos

1 cos
. A13

2
2 2

2
2

A.3. Unitaries up to a collective Z rotation
Suppose that the unitaryUwewant to implement is followed by gates whose phase can be freely chosen. Then it
must only be specified up to an arbitrary collective rotation ¢Z , since this phase can be absorbed in the following
gates. To compileU, we shall consider a decomposition of the form (7):

( )= ¢ - -U Z C Z C Z C Z C . A14N N N1 1 2 2 1 1

Such a decomposition ismore convenient in this case because the last addressed pulseZN has been eliminated by
taking advantage of the additional degree of freedomprovided by ¢Z .We can now follow the same steps as in
section 2. The unitary CN is given by:

( )= ¢- - -
-

-C Z U C C C , A15N N N
1

1
1

2
1

1
1

and eliminating this factor from the rest of the equations we obtain:

( )


 

=

=

=

- -

- - -

-
-

- -
-

-
- -

U U C Z C

U U C C Z C C

U U C C C Z C C C

,

,

. A16

N

N

N N N N N

1
1 1

1
1 1

1
2 1

1
2

1
2 2 1

1
1 1

1
2

1
1

1
1 1 2 1

Equation (A16) canbe satisfied in exactly the sameway as explained in section 2. Inorder to satisfy equation (A15)
weneed tofind a rotation ¢Z such that the generator of CN lies on the equator. This canbedone as follows.

Wewish tofind how to satisfy equation (A15). For this we need tofind a rotationZ around the Z axis and a
rotation C around an axis on the equator of the Bloch sphere such that, for a given unitaryU, the following
equation holds:

( )=C ZU . A17

U is in general of the form:

( )= a-U e , A18ui 2

andZ is of the form:

( )= bs-Z e . A19i 2z

Wewillfirst find the angle of rotationβ. If wewrite out (A17) in terms of the generators ofU andZwehave:

( )

b b
s

a a

= -

´ -

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

C

u

cos
2

1 i sin
2

cos
2

1 i sin
2

. A20

z

Since the axis of rotation of C lies on the equator, its generatormust not have any Z component, and thus:

( )b a b a
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠u0 sin

2
cos

2
cos

2
sin

2
, A21z

that is:

( )b
a

= - ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟u2 arctan tan

2
. A22z

Onceβ is known, the unitary on the right-hand side of (A17) is fully determined, and thus C aswell.

A.4. Unitaries up to independent Z rotations
Finally, suppose that the unitarywewant to implement is defined up to arbitrary independent rotations for each
qubit around the Z axis. This is useful if the unitary is followed by a projectivemeasurement, since anyfinal
rotation around themeasurement axis for any qubit simply adds a phase andwill not change themeasured
probabilities.
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Let us again consider a sequence of the form (7). The decompositionmust now satisfy, for each qubit:

( )







¢ =
¢ =

¢ =

Z U C C Z C

Z U C Z C C

Z U Z C C C

,

,

, A23

N

N

N N N N

1 1 2 1 1

2 2 2 2 1

2 1

where the ¢Zi are arbitrary rotations around the Z axis. As before, we can set =Z 1N andfind CN :

( )= ¢ - -
-

-C Z U C C C . A24N N N N1
1

2
1

1
1

Eliminating CN from the remaining equationswe obtain:

( )


 

¢ ¢ =
¢ ¢ =

¢ ¢ =

- - -

- - - -

- -
- -

-
-

-
- -

U Z Z U C Z C

U Z Z U C C Z C C

U Z Z U C C Z C C

,

,

. A25

N N

N N

N N N N N N N

1 1
1 1 1

1
1 1

1 1
2 2 1

1
2

1
2 2 1

1 1
1 1 1

1
1

1
1 1 1

Each equation has now an extra degree of freedom coming from the angle of the ¢Zk rotation. Let us for
simplicity consider the case where the number of qubitsN is odd. If we group equation (A25) in pairs we get two
degrees of freedomper pair, which can be used to remove one of the global operations. Thereforewewill discard
every even-numbered global operation C k2 fromour decomposition and look for the solution of the following
systemof equations:

( )


 
 

 =

 =
 =
 =

 =
 =

- -

- -

- - -

- - -

-
- -

-
-

-
- -

-
- -

-
-

-
- -

U Z U C Z C

U Z U C Z C

U Z U C C Z C C

U Z U C C Z C C

U Z U C C Z C C

U Z U C C Z C C

,

,

,

,

,

, A26

N

N

N

N

N N N N N N

N N N N N N

1
1 1 1

1
1 1

1
2 2 1

1
2 1

1
3 3 1

1
3

1
3 3 1

1
4 4 1

1
3

1
4 3 1

1
2 2 1

1
2

1
2 2 1

1
1 1 1

1
2

1
1 2 1

where  = ¢ ¢-Z Z Zk N k
1 . If the number of qubitsN is even, then the last equation is simply left unpaired. It is easy to

verify that for each pair of equations the right-hand sides commute, and therefore wemust have:

[ ] ( )  =-
- -

-U Z U U Z U, 0, A27N k k N k k
1

2 1 2 1
1

2 2

or equivalently:

[ ] ( )  =- -
- -Z U U Z U U, 0. A28k k N k k N2 1 2 1

1
2 2

1

In order to solve equation (A28)weneed tofind rotations ( ) ( )b b= =Z Z Z Z,1 1 2 2 that satisfy a general
equation of the form:

[ ] ( )=Z U Z U, 0, A291 1 2 2

for given arbitraryU U,1 2, whose generators are u1 and u2 respectively.
Let us define:

( )=V Z U , A30i i i

and let vi be the generators of theVi. In order to satisfy (A29), the vimust satisfy:

( )= =v v v, A311 2

since if two unitaries commute their generatorsmust be the same.Our first goal is to determine the generator v.
Let us consider the unitary:

( )=W Z U Z . A32i i i i
1 2 1 2

Bywriting downWi explicitly in termsof the generators of each factor, it can be seen that its generatorwi satisfies:

{ [ ]} ( )s =w u, , 0. A33i z i

Sincewe have:

( )= -V Z W Z , A34i i i i
1 2 1 2
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from equation (A33)we see that:

{ [ ] } ( )s =-v Z u Z, , 0. A35i z i i
1 2 1 2

The geometricalmeaning of this equation is that the vector defined by v on the Bloch sphere is perpendicular to
that defined by [ ]s -Z u Z,i z i i

1 2 1 2. Since (A35)must hold for =i v1, 2, must correspond to the cross product
of these vectors:

[ [ ] [ ] ] ( ) s= - -v Z z u Z Z u Z, , , , A36z1
1 2

1 1
1 2

2
1 2

2 2
1 2

where  is chosen such that:

( ) ( )=v
1

2
tr 1. A372

Having found v, it remains tofind the rotation angles bi. Now, vmust satisfy [ ] =Z U v, 0i i , and therefore:

( ) ( ) ( )b b=- -U vU Z vZ . A38i i i i
1 1

Both v andUi are known, so v and
-U vUi i

1 can bewritten down explicitely as:

( )q f s q f s q s= + +v sin cos sin sin cos , A39x y z

( )q f s q f s q s= ¢ + ¢ +-U vU sin cos sin sin cos , A40i i i x i y z
1

and therefore:

( )b f f= - ¢. A41i i

Wehave shownhow tofind suitable rotations Z that fulfill condition (A28). Once these are found, all the
left-hand sides of (A26) are knownunitaries and the system can be solved as before. The last collective rotation
CN can be determined from (A24) as shown in appendix A.3.We have thus shownhow to compile the sought
unitaryU into a sequence of the form:

( )


= - - -

- -

⎧⎨⎩U
C Z Z C C Z Z C N
C Z C C Z Z C N

for odd ,
for even .

A42N N N N

N N N

1 2 2 3 2 1 1

1 1 3 2 1 1
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