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Abstract. A collection of trapped atomic ions represents one of the most
attractive platforms for the quantum simulation of interacting spin networks
and quantum magnetism. Spin-dependent optical dipole forces applied to an
ion crystal create long-range effective spin–spin interactions and allow the
simulation of spin Hamiltonians that possess nontrivial phases and dynamics.
Here we show how the appropriate design of laser fields can provide for arbitrary
multidimensional spin–spin interaction graphs even for the case of a linear
spatial array of ions. This scheme uses currently available trap technology and is
scalable to levels where the classical methods of simulation are intractable.
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Quantum systems are notoriously difficult to model efficiently using classical computers, owing
to the exponential complexity in describing a general quantum state as the system grows in size.
In the 1980s, Richard Feynman proposed to circumvent this problem by employing a control
quantum system with tailored interactions and logic gates between quantum bits (qubits) in
order to simulate the quantum system under investigation [1, 2].

Quantum spin models such as the Ising model have become a proving ground for
Feynman’s proposal, with systems of qubits behaving as effective spins and interactions
engineered with external electromagnetic fields. The quantum Ising model is the simplest spin
Hamiltonian that exhibits nontrivial aspects of quantum magnetism such as spin frustration,
phase transitions [3] and poorly understood spin glass and spin liquid phases [4, 5]. Indeed,
solving for the ground state configuration of spins subject to a general fully connected Ising
interaction is known to be an NP-complete problem [6]. Here we show how a fully connected
Ising or more general Heisenberg spin model with arbitrary couplings across the spin network
can be generated in a scalable system of trapped atomic ions, even for a one-dimensional (1D)
chain in space. This may allow quantum simulations with hundreds of spins, where the physics
cannot generally be predicted otherwise.

Isolated atoms are an ideal control quantum system for quantum simulations, as they
exhibit very long coherence times, can be measured with high efficiency and can obviously be
replicated with nearly identical characteristics. There has been great progress in the use of atoms
trapped in optical lattices for the studies of transport phenomena such as those described by the
Hubbard models [7] and the fractional quantum Hall effect [8]. Following original proposals
to exploit atomic ions for the simulation of spin models [9–11], there has been steady progress
in simulating Ising models with an effective transverse magnetic field, showing the behavior of
quantum phase transitions in the limit of less than ten spins [12–18]. Recently, the Ising model
with an axial field was demonstrated in neutral atoms in optical lattices with nearest-neighbor
couplings [19]. All these studies involve global spin-dependent optical dipole forces to generate
trivial forms of the spin couplings, such as a uniform ferromagnet. Below we show how to
tailor optical forces to generate arbitrary fully connected networks of N spins that uniquely
specify each of the N (N − 1)/2 pairwise interactions. The scheme is independent of the spatial
geometry of the ion crystal and is compatible with 1D arrays of trapped ions used in current
experiments.

We start with the arbitrary fully connected Ising Hamiltonian on N spins,

H =

∑
i< j

Ji, jσ
(i)
x σ ( j)

x , (1)

where the matrix Ji, j is the strength of the spin–spin coupling between atoms i and j . The Pauli
spin operator σ (i)

x refers to the effective spin-1/2 system within each atom, here represented, for
example, by a pair of hyperfine ground states separated by frequency ωs [20].

The spins are coherently manipulated through a pair of counter-propagating laser beams
that drive stimulated Raman transitions between the spin states while also coupling off-
resonantly to the collective motion of the atomic chain [21, 22]. The atoms are arranged in
a linear array, as is typical in a linear radiofrequency ion trap, although this scheme can also
apply to other spatial geometries [11, 23, 24]. When the difference frequency between the
Raman fields is bichromatic, with two spectral components tuned symmetrically at ωs ± µ with
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Figure 1. Spectrum of transverse mode frequencies ωm for N = 10 ions
in an anisotropic harmonic linear trap (solid lines), with the highest mode
frequency ω1 corresponding to the center-of-mass (COM) motion. Raman
beatnote detunings µm from the qubit frequency ωs are denoted by the N = 10
dashed lines, with each spectral feature near a given motional sideband. The
height of the dashed lines represents the intensity of each beatnote for ion i . In
general, each ion will be illuminated with a different set of intensities.

µ � ωs, the effective spin–spin interaction of equation (1) emerges, mediated by the Coulomb-
coupled motion of the atomic ions crystal [25, 26]. The axis of the spin–spin interaction on the
Bloch sphere can be controlled by the relative optical phase of the two Raman fields [27, 28].
We assume that the Raman lasers have wave vector difference δk along the principal X -axis
of transverse motion of the ion crystal [29] so that each X -transverse normal mode m with
frequency ωm contributes to each spin–spin coupling [13],

Ji, j = �i� j

N∑
m=1

ηi,mη j,mωm

µ2 − ω2
m

. (2)

Here, the Lamb–Dicke parameter ηi,m = bi,mδk
√

h̄/(2Mωm) sets the scale for the coupling
between spin i and mode m, bi,m is the normal mode transformation matrix, M is the mass
of a single atom, and the single spin Rabi frequency �i is proportional to the optical intensity
at atom i . The above expression is valid when the transverse modes are all laser-cooled to the
Lamb–Dicke limit [21, 30], which is routine in typical linear traps [13]. We also assume that the
symmetric detuning µ is set sufficiently far from all motional sidebands (|ωm − µ| � ηi,m�i ),
so that the phonon states can be adiabatically eliminated, leaving the pure spin–spin coupling
above [13, 25, 26].

The above expression has N + 1 control parameters in the set of Rabi frequencies {�i}

and the global beatnote detuning µ. In order to generate an arbitrary Ising coupling matrix
Ji, j however, it is necessary to have at least N (N − 1)/2 independent controls [31]. Additional
control parameters can be introduced by adding multiple spectral beatnote detunings to the
Raman beams, one near each motional mode (see figure 1), with a unique pattern of spectral
components on each ion. There are several ways to achieve this, all involving some form of
individual ion addressing. For simplicity, we retain the same set of N Raman beatnote detunings
{µm} on each ion and allow the spectral amplitude pattern to vary between ions, all characterized
by the N × N Rabi frequency matrix �i,n of spectral component n at ion i . Note that the
relative signs of the Rabi frequency matrix elements can be controlled by adjusting the phase
of each spectral component. This individual spectral amplitude addressing provides N 2 control

New Journal of Physics 14 (2012) 095024 (http://www.njp.org/)

http://www.njp.org/


4

parameters, and the general Ising coupling matrix becomes

Ji, j =

N∑
n=1

�i,n� j,n

N∑
m=1

ηi,mη j,mωm

µ2
n − ω2

m

(3)

≡

N∑
n=1

�i,n� j,n Fi, j,n, (4)

where Fi, j,n characterizes the response of Ising coupling Ji, j to spectral component n. An exact
derivation of the effective Hamiltonian given a spectrum of spin-dependent forces gives rise
to new off-resonant cross terms, which can be shown to be negligible in the rotating wave
approximation, as long as the bandwidth is fixed and the transverse COM mode is set to
a frequency smaller than twice the transverse zigzag mode frequency. Thus the sums and
differences of beatnotes do not directly encroach on any sideband features in the motional
spectrum of the crystal [29].

We tune each beatnote frequency near a unique normal mode so that Fi, j,n has independent
contributions for each n. Given a desired Ising coupling matrix Ji, j , we use standard constrained
nonlinear optimization to find the corresponding Rabi frequency matrix �i,n, while minimizing
the total beam intensity. The deviation between the desired and the attained coupling was less
than typical round-off errors.

We now present two example solutions for �i,n that produce interesting interaction graph
topologies. First we calculate a Rabi frequency matrix that results in a 2D square lattice of
nearest-neighbor antiferromagnetic couplings with N = 25 ions (a 5 × 5 grid with periodic
boundary conditions), shown in figures 2(a) and (b). Next, we produce a 2D Kagome lattice
of antiferromagnetic interactions, a geometry that can support high levels of geometrical
frustration [32], shown in figures 2(d) and (e). In both cases, we assume the COM mode to
be ω1/2π = 5 MHz, and a fixed total optical intensity corresponding to

∑
i,n |�i,n| = 1 MHz.

The beatnote frequencies µm are each tuned blue of the mode m sideband by a fraction fs of
the spacing ω1 − ω2 between the most closely spaced modes (the COM and ‘tilt’ modes, see
figure 1), which itself scales as logN/N 2. In these examples, the sparse nearest-neighbor nature
of the interaction graphs requires that most of the Ising interactions vanish, indicating a high
level of coherent control over all of the Ising couplings.

In order to generate a unique spectrum of Raman beams for each of N ions, some type
of individual addressing is necessary. For simplicity, we assume that one of the two Raman
beams is uniform and monochromatic, and the high-frequency beatnote near the qubit frequency
ωs or other global offset frequencies can be set by tuning this monochromatic beam. We
focus on providing the requisite frequencies of the second beam, spread over a range given
by the bandwidth of the transverse motional mode frequencies of the ion chain, typically
in the range 1–5 MHz. We suggest three possible methods for providing spatial dependent
frequency modulation to one of the Raman beams. The first method (figure 3) splits a single
beam with a linear chain of N individual optical modulators (e.g. acousto-optic or electro-optic
devices), driven by N independent arbitrary waveform generators. The second method splits a
single monochromatic beam into an N × N square grid and directs them onto a 2D array of
N 2 micromirrors [33] that are each individually phase modulated at a single frequency (and
phase) [34] and are finally focused on the ion chain. The third method again splits the beam
into an N × N grid of beams, this time with the vertical direction split by a single acousto-optic
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Figure 2. (a) Calculated Rabi frequency matrix �i,n to generate two-dimensional
(2D) square lattice shown in (b), using the linear chain of N = 25 ions shown in
(c). The ion index refers to the order in the linear chain. The attained Ji, j nearest-
neighbor is 27.6 Hz for fs = 0.1. (d) Calculated Rabi frequency matrix �i,n to
generate 2D Kagome lattice shown in (e) using a linear chain of N = 36 ions.
The attained Ji, j nearest-neighbor is 93.4 Hz for fs = 0.03. In both cases the
total optical intensity corresponds to a Rabi frequency of 1 MHz if focused on a
single ion, the nearest-neighbor couplings are antiferromagnetic and we impose
periodic boundary conditions.

modulator, correlating the beam position to frequency. This beam is then directed into a spatial
light modulator that acts to mask (or phase shift) each of the N × N beams independently,
and again focused onto the ion chain. In these implementations, it may be desirable to work
with a uniformly spaced array of ions in the linear trap, so that the modulating elements are
also uniformly spaced. This can be accomplished by using a quartic or higher order linear
trap [35, 36].

As the number of spins N grows, the optical modulation scheme becomes more complex,
with either N or N 2 elements required. However, our schemes restrict most of the resources’
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Figure 3. Schematic diagram of individual spectral addressing of a linear chain
of N ions. A laser beam is split into a linear array of spots that each traverse
N independent acousto- or electro-optical modulators, driven by N independent
arbitrary waveform generators (AWG). Alternatively, as discussed in the text,
the beam can be broken into an array of N 2 beams that strike an N × N array of
micromirrors each independently modulated, or a spatial light modulator.

overhead to the design and fabrication of the micro-mirrors or phase modulator. As the ions
are equally spaced, the modulator can simply be imaged onto the ion chain without changing
imaging optics.

We now estimate how the Ising couplings are expected to scale with the number of spins
along with errors due to experimental fluctuations, phonon creation and spontaneous emission
scattering, assuming a fixed transverse mode bandwidth. The probability of phonon creation

scales as pph =
∑

i,m

(
ηi,m�i,m

ωm−µm

)2
. The off-resonant optical dipole forces are accompanied by a

finite rate of spontaneous emission scattering, given by 0 = ε
∑

i,m |�i,m|, where ε � 1 is the
ratio of the excited state linewidth to Raman detuning. The scaling of these potential errors
depends upon the particular graph, so we consider two extremes. A uniform fully connected
interaction graph can be trivially generated with a single spectral component tuned close to the
COM mode with a detuning |ω1 − µ|/ω1 � logN/N 2. For a fixed level of phonon error, the
total optical intensity should be reduced as logN/N , taking into account the intensity reduction
per ion as the beam is expanded to accommodate the linearly expanding chain in space. In this
case the uniform Ising coupling is expected to scale as N |Ji, j | ∝ logN/N 2, and the spontaneous
emission rate per spin actually decreases with N . For a sparse interaction graph, such as a 1D
(nearest-neighbor) Ising model, all modes are involved, and this time for a fixed phonon error
the total optical intensity can remain fixed, since the typical mode splitting falls only as 1/N ,
while spontaneous emission per ion is fixed. The calculation in figure 4 shows that the resulting
nearest-neighbor interaction scales as Ji,i+1 ∝ 1/N . In the case of a fully connected or local
Ising model, we thus expect to be able to support significant Ising interaction strengths with up
to a few hundreds of spins.

For a general Ising graph, from equation (4) we find that each pairwise interaction Ji, j

depends upon a balance of N terms, and errors will accumulate with N from fluctuations of
relative optical intensities of the various spectral components of the beam (which should be
stable if the spectral components are generated with high-quality radiofrequency sources and
modulators as shown in figure 3) or their detunings from the motional sidebands. The most
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Figure 4. Scaling of the nearest-neighbor coupling for the case of the production
of a 1D Ising chain for N = 3 up to N = 33 ions. The total optical intensity is
fixed at

∑
i,n |�i,n| = 1 MHz, and each spectral component is detuned from its

motional sideband by a fraction fs = 0.03 of the smallest mode splitting, with
a COM frequency of ω1/2π = 5 MHz. We find that the resulting Ising coupling
scales roughly as 1/N .

important source will likely be fluctuations in the motional trap frequencies, where we expect
the fractional error in the Ising coupling to grow as

√
N (δωm/ωm), so that a typical fractional

fluctuation in the motional trapping frequencies of ∼10−3 might be expected to cause Ising
coupling errors at the level of about 1% for N ∼ 100 ions.

The final limitation on simulation time is effective spin coherence. Assuming that the qubits
experience Markovian noise, the coherence time of the ensemble will go as 1/N , so that a qubit
coherence time of ∼10 s (as is typical of hyperfine qubits) will allow for a simulation time of
the order of ∼100 ms for ∼100 ions.

The scheme presented here can also be applied to more general Heisenberg spin models
involving other noncommuting spin–spin interactions, such as the XY model or the 2D
hexagonal Kitaev model relevant to topological quantum degrees of freedom [37]. Here,
additional Raman beams that couple to the other axes of motion can be exploited [9]. This
scheme may also be used to study phase transitions in a quantum transverse magnetic field [38].
Although this discussion concentrated on a linear array of ions in space, these ideas apply in
general to any stable ion crystal where the motional sidebands are resolved and prepared in the
Lamb–Dicke limit, and should be useful for higher-dimensional trap geometries such as trap
arrays [23, 24] or Penning traps [11, 39].
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