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Abstract. We propose and experimentally demonstrate a zero-sum game that
is in a fair Nash equilibrium for classical players, but has the property that a
quantum player can always win using an appropriate strategy. The gain of the
quantum player is measured experimentally for different quantum strategies and
input states. It is found that the quantum gain is maximized by a maximally
entangled state, but does not decrease to zero when entanglement disappears.
Instead, it links with another kind of quantum correlation described by discord
for the qubit case and the connection is demonstrated both theoretically and
experimentally.

Game theory describes competition and collaboration between a number of agents and has found
important applications in several branches of science [1]. With the development of quantum
information theory, it has been noted that quantum mechanics can help game players under
certain circumstances [2–5]. A central concept in classical game theory is the Nash equilibrium
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(or its various extensions, such as the correlated equilibrium) [1]. An equilibrium is a solution
to a game where no player can gain by changing his strategy unilaterally when the other players
maintain their strategies [1]. However, in a quantum version of the game, even in a Nash
equilibrium where no classical players can benefit by changing their strategies unilaterally,
a player who is allowed to play quantum mechanically can gain by unilaterally varying his
strategy. In this paper, we propose and experimentally demonstrate a zero-sum quantum game
that shows this kind of advantage for a quantum player who can win from a classical Nash
equilibrium.

Quantum games have attracted significant interest in recent years. Under a model first
proposed by Eisert et al [3] where a referee provides input states to the quantum players and
collects output states for measurement, it is found that an undesirable equilibrium in a classical
game (the prisoner’s dilemma) can be avoided if each game player is allowed to choose from
only a restricted set of quantum operations. This model has inspired many works and has been
generalized to the multi-player case [4]. The ideas of these games have been demonstrated in
nuclear magnetic resonance [6] and optical experiments [7, 8].

The game considered in this paper belongs to a different class. Firstly, we take a different
model for the quantization of the game where the referee provides quantum correlated input
states to the game players, but does not collect output states for measurement [5]. Instead, the
game players directly choose a strategy to measure the state and get their payoff according
to the measurement outcomes based on the classical payoff matrix. Following the convention
in [5], a Nash or correlated equilibrium corresponds to an input state in which no player can
apply any operation to achieve a positive gain, provided that all the other players directly
measure in the computational basis. This definition is an analogue of the notion in the classical
games where a referee provides classically correlated signals to the game players and an
equilibrium corresponds to a certain correlated input signal [1]. In the language of game theory,
this model corresponds to the strategic-form game, whereas the previous quantization model
actually corresponds to the extensive-form games in which the game players choose a unitary
operation instead of a strategy [3–5]. Secondly, we consider a zero-sum game which emphasizes
competition in game theory. The gain of one player is necessarily at the expense of another.
This helps us to show the advantage of a quantum player compared with the other classical
players. In this regard, the game demonstrated here is similar in spirit to the pioneering penny-
matching game proposed by Meyer [2]. The difference is that Meyer’s game has an extensive
form where the quantum players play two rounds while the classical player applies only one
step of operation. Here, to ensure fairness in the game protocol, we assume that the referee
sends only symmetric states to the game players, and both of the classical and the quantum
players only have one round to choose their strategies with symmetric payoff matrix. So the
advantage achieved by the quantum player is a hallmark of the quantum nature of the game.

We experimentally demonstrate this zero-sum quantum game in which the referee sends
out quantum correlated photons to the game players. We choose the states sent out by the
referee in such a way that they always correspond to a classical Nash equilibrium with each
player having a 50% chance of winning when both the players play classically. However, if one
player is allowed to play quantum mechanically, he can achieve the full quantum advantage by
winning almost certainly when the state sent out by the referee has maximum entanglement. We
demonstrate experimentally a winning chance of (94.3 ± 1.3)% for the quantum player under an
optimized strategy. To further understand the quantum nature of this game, we then investigate
the origin of the gain of the quantum player. Is that entanglement in the input state or something
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else? We show that the maximum gain can only be achieved under a maximally entangled
state; however, the gain does not decrease to zero when entanglement disappears. Instead, it
links with another kind of quantum correlation characterized by discord [9]. For a game with
qubits, the gain disappears when the quantum discord goes to zero. The discord is an important
quantity introduced to characterize quantum correlation beyond entanglement [9] and has found
interesting applications in quantum information protocols [10, 11]. For instance, the role of
discord has been discussed in the context of one-bit mixed state quantum computation [10] and
recently also in the prisoner’s dilemma quantum game [11]. In our experiment, we measure the
variation of the quantum gain under input states with different amounts of entanglement and
discord. The experimental data clearly demonstrate the connection between quantum gain and
discord.

We consider a zero-sum quantum game in the Hilbert space spanned by two qubits. The
referee provides input states ρab to the game players A and B, and ρab is required to be
symmetric to the game players under exchange of the subscripts a and b. For the classical game
players, A and B can apply any classical operations (such as the bit-flip X : |0〉 ↔ |1〉) and
then measure in the computational basis {|0〉, |1〉}. We assume that A wins if the measurement
outcomes are identical from A and B, and B wins otherwise. Clearly, only the diagonal elements
of ρab matter for the classical players. We assume that the game is in a classical Nash equilibrium
with each player having a 50% chance to win. This requires the diagonal elements of ρab to
be {1/4, 1/4, 1/4, 1/4}; otherwise one of the two classical players could increase the winning
probability by a bit-flip operation.

Now assume that player A has the secret power to play quantum mechanically. He can
apply arbitrary single-bit operations before the measurement in the computation basis. How
much can he gain from this classical balanced Nash equilibrium? The answer depends on the
form of the state ρab. Assume that ρab takes the form of a symmetric maximally entangled state
with ρab = ρe

ab = |91〉ab〈91|, where

|91〉ab = (|00〉ab + |01〉ab + |10〉ab − |11〉ab) /2. (1)

If A applies a Hadamard operation H before the measurement, the state |91〉ab is transformed to∣∣9 ′

1

〉
ab

= (|00〉ab + |11〉ab) /
√

2, for which A is certain to win. This shows that a quantum player
can win in principle with 100% certainty if the symmetric state ρab sent out by the referee has
maximum entanglement.

To demonstrate experimentally the gain of the quantum player, we prepare entangled
photons into the state described by equation (1) and send the photons to two separate
game players. The photonic entanglement is generated through spontaneous parametric down
conversion under the type-I configuration for phase matching [12]. The experimental setup is
shown in figure 1. Ultrafast laser pulses (with pulse duration less than 150 fs and a repetition rate
of 76 MHz) at the wavelength of 400 nm from a frequency doubled Ti:sapphire laser pump two
joint beta-barium-borate (BBO) crystals, each of 0.6 mm depth with a perpendicular optical axis,
to generate entangled photon pairs at the wavelength of 800 nm. The polarization of the pumping
laser pulse is controlled by two half-wave plates (HWPs) and two quarter-wave plates (QWPs).
The entangled photons emit into the modes a and b (fixed by two irises in figure 1) with an angle
of about 3

◦

from the pumping beam that is determined by the phase matching condition, and
their effective state is described by |8〉ab = cos α|H H〉ab + sin α eiϕ

|V V 〉ab, where |H〉 (|V 〉)
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Figure 1. Experimental setup for demonstrating the quantum game. (A) The
quantum game model taken in this paper, where a referee sends out correlated
states, and the game players apply optimized measurement strategies and get
their payoff according to the measurement outcomes. (B) The experimental setup
for the referee to generate entangled states of photons. Ultraviolet laser pulses,
after the mirrors M and the wave plates, are focused by a lens F into double BBO
crystals placed in type-I configuration. The generated entangled photons, after
the compensator C, are directed into the optical modes a and b through two irises.
(C) Players A and B use a polarizer and a single-photon detector to implement
their measurement strategies, and their measurement outcomes are compared
through the coincidence circuit to determine their payoff. An interference filter
(IF) of 3 nm bandwidth centered at 800 nm is used to filter out the background
light.

stands for the horizontal (vertical) polarization and α, ϕ are independently controlled by HWP1
and HWP2 in figure 1. To observe entanglement, the temporal walk-off between the polarization
components |H〉 and |V 〉 resulting from birefringence in the BBO crystals is compensated for
by two quartz rod compensators C in modes a and b, as shown in figure 1. Another HWP
(HWP3) in mode a, setting at 22.5

◦

, transforms the state |8〉ab (with α = π/4 and ϕ = π set
by HWP1 and HWP2) into the ideal form of |91〉ab shown in equation (1), where |0〉 and |1〉

are identified with the polarization states |H〉 and |V 〉, respectively. This serves as the state
sent out by the referee to the game players A and B. The game players use a polarizer and
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Figure 2. Real (A) and imaginary (B) parts of the density matrix elements of
the experimental state reconstructed through the measurements of quantum state
tomography.

a single-photon detector to implement their optimal measurement strategies and the detector
outcomes are registered through the coincidence circuit.

To confirm experimentally that the state sent out by the referee indeed has the right form
described by |91〉ab, we perform quantum state tomography to characterize this state. For two-
qubit states, the quantum state tomography is done with 16 independent measurements in
complementary bases and the density matrix is reconstructed using the maximum likelihood
method [13]. The real and imaginary parts of all the elements of the two-qubit density matrix
are shown in figures 2(a) and (b). The ideal density matrix corresponding to the state |91〉ab has
the form

ρe
ab = |91〉ab〈91| =

1

4


1 1 1 −1
1 1 1 −1
1 1 1 −1

−1 −1 −1 1


in the basis {|00〉, |01〉, |10〉, |11〉}. One can see from figure 2 that in the matrix ρab

reconstructed from experimental data, the imaginary parts are small and the real parts have
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Figure 3. The winning chance of the quantum player A as he varies his
measurement basis.

good correspondence with ρe
ab. We use the state fidelity F =ab 〈91|ρab|91〉ab, defined as the

overlap between the ideal state ρe
ab and the experimental state ρab, to characterize the quality

of the prepared state. The state fidelity calculated from the measurements of quantum state
tomography is F = (94.54 ± 0.83)%, where the error bar comes from the statistical error
associated with the photon counts (assuming the Poisson distribution). The degradation in
fidelity is mainly due to the residual small mismatch of the pulse shapes for the frequency
components |H〉 and |V 〉 from birefringence in the nonlinear crystal.

The input state |91〉ab corresponds to a Nash equilibrium for classical game players as
all the diagonal elements of ρe

ab = |91〉ab〈91| are 1/4 and no classical players can gain by
changing their measurement strategies (a bit-flip does not change the payoff). Now, for the
quantum player A, he has more choices about his measurement strategies and can measure
in any basis {cos θ |H〉a + sin θ |V 〉a, −sin θ |H〉a + cos θ |V 〉a} by rotating a polarizer before the
single-photon detector. Figure 3 shows the winning chance of player A when he rotates his
polarizer. At an angle of θ = 45

◦

, his winning chance is maximized, attaining (94.3 ± 1.3)%
in the experiment, representing a significant gain from the classical Nash equilibrium. So the
experiment clearly demonstrates the advantage of the quantum player.

The power of the quantum player depends on the input state ρab provided by the referee.
If ρab is an uncorrelated state with only diagonal elements (all of them are 1/4 for the Nash
equilibrium), clearly the quantum player cannot gain anything from whatever measurement
strategy he chooses. An interesting question is, what property of ρab characterizes the gain
of the quantum player? In particular, is entanglement needed for any gain of the quantum player
or just for the maximum gain? To characterize the gain of the quantum player under an arbitrary
symmetric state ρab corresponding to a classical Nash equilibrium, we consider its general form,
which can be expressed as

ρab =


1/4 b b c
b∗ 1/4 a d
b∗ a∗ 1/4 d
c∗ d∗ d∗ 1/4

 , (2)
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where a, b, c and d are arbitrary complex numbers (that make ρab a legal quantum state). The
quantum player needs to optimize his winning chance Pa by applying an optimized single-bit
rotation Ua. Let us denote by ρ ′

= Ua ⊗ IbρabU †
a ⊗ Ib the density matrix after the operation

Ua by the quantum player (Ib is the 2 × 2 identity matrix). The gain of the quantum player
G = Pa − Pb = 2Pa − 1, defined as the difference of the winning probabilities for the quantum
and the classical players, is expressed as G = ρ ′

11 + ρ ′

44 − (ρ ′

22 + ρ ′

33) in terms of the matrix
elements ρ ′

i j (i, j = 1, 2, 3, 4). We use 1[M] to denote M11 − M22 of a 2 × 2 matrix

M =

(
M11 M12

M21 M22

)
.

The gain G then has the form

G = 1

[
Ua

(
1/4 b

b∗ 1/4

)
U †

a

]
− 1

[
Ua

(
1/4 d

d∗ 1/4

)
U †

a

]

= 1

[
Ua

(
0 b − d

b∗
− d∗ 0

)
U †

a

]
. (3)

The optimal single-bit rotation Ua is just the one that diagonalizes the matrix(
0 b − d

b∗
− d∗ 0

)
and the optimal gain is G = 2|b − d|. Under the condition that ρab has no entanglement (with
positive partial transpose [14]), we numerically optimize the gain G = 2|b − d| and find that its
maximal value is 50%. This optimal value is achieved with the following unentangled state:

ρn
ab = (|H, +〉ab 〈H, +| + |+, H〉ab 〈+, H | + |V, −〉ab 〈V, −| + |−, V 〉ab 〈−, V |)/4, (4)

where |±〉 = (|H〉 ± |V 〉)/
√

2. This shows that entanglement is not necessary for the quantum
player to achieve a positive gain; however, for any unentangled state, the gain G is limited to
below 50% (in contrast to the maximum of 100% under the maximally entangled state |91〉ab).

The state in the form of ρn
ab has no entanglement; however, the discord for this state

is nonzero, showing that the state still has some kind of quantum correlation. The concept
of discord is introduced in [9]. It characterizes quantum correlation from the measurement
point of view (in contrast to entanglement, which characterizes quantum correlation from the
angle of state preparation). For the bipartite system AB, the discord is defined as δ(B/A) ≡

S(ρa) − S(ρab) − max{5a
j }

[S(ρd
a ) − S(ρd

ab)], where S(· · · ) denotes the von Neumann entropy
associated with the corresponding density operator, ρd

ab ≡
∑

j 5a
jρab5

a
j (ρd

a = trbρ
d
ab), and 5a

j
denotes a set of von Neumann projectors corresponding to an orthogonal measurement on the
subsystem A. For the state ρn

ab, the discord is found to be 0.31 [10]. For the bipartite qubit
system, if the discord is zero, the symmetric state ρab in equation (2) can be written into the
form ρab = cos 2β|+, +〉ab〈+, +| + sin 2β|−, −〉ab〈−, −| under single-bit phase rotation, and in
this case, one can see that the quantum player cannot gain anything from the classical Nash
equilibrium.
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Figure 4. The gain of the quantum player versus the entanglement and the
discord of the state sent out by the referee. The data points with error bars
represent the experimentally measured values, whereas the solid lines correspond
to the theoretically calculated values for the state in the form of equation (5)
characterized by a single parameter p.

To experimentally investigate the gain of the quantum player under quantum states with
different amounts of entanglement and discord, we prepare the following mixed state

ρm
ab = (1 − p)2

|91〉ab 〈91| + p2
|94〉ab 〈94| + 2p (1 − p) (|92〉ab 〈92| + |93〉ab 〈93|), (5)

where 06 p 6 1/2, |91〉ab is given by equation (1), and |92〉ab = (|00〉ab + |01〉ab − |10〉ab +
|11〉ab)/2, |93〉ab = (|00〉ab − |01〉ab + |10〉ab + |11〉ab)/2, |94〉ab = (−|00〉ab + |01〉ab + |10〉ab +
|11〉ab)/2. The states |92〉ab, |93〉ab and |94〉ab can be obtained experimentally from |91〉ab

by rotating HWPs 1 and 2 shown in figure 1. If we mix up the measurement outcomes
corresponding to the states |9i〉ab (i = 1, 2, 3, 4) with the weight (1 − p)2, p(1 − p), p(1 − p),
p2, respectively, we get the experimental outcomes corresponding to the mixed state ρm

ab. The
state ρm

ab has the form of equation (2) with b = −d = (p − 1/2)/2 and a = −c = (p − 1/2)2. In
figure 4, we show the measured gain G of the quantum player versus entanglement and discord
of the state ρm

ab as one varies the parameter p. The gain G is measured directly as the difference
of the winning chances between the quantum and the classical players, and the entanglement E
(characterized by the concurrence [14] ) and the discord δ are calculated from the experimental
density matrix reconstructed with the maximum likelihood method from the measurements of
quantum state tomography [13]. The solid curves represent the corresponding theoretical results
under the state ρm

ab. From the figure, one can see that the experimental data in general agree with
the theoretical prediction. In particular, the experiment confirms that the gain G is maximal
under the maximally entangled state, remains positive when entanglement disappears at p > 0.3
and approaches zero along with the discord.

In summary, we have experimentally demonstrated a new type of quantum game, where
the quantum player can gain from the classical Nash equilibrium. The advantage of the
quantum player is demonstrated by using entangled photons, and his winning chance attains
(94.3 ± 1.3)% in experiment under a near-maximally entangled state. The gain of the quantum
player is linked with quantum correlation in the input state provided by the referee, and this
connection is confirmed experimentally by observing the variation of the quantum gain as one
changes entanglement or discord in the input state.
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