
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 198.81.129.186

This content was downloaded on 31/01/2017 at 19:58

Please note that terms and conditions apply.

Quantum information processing with trapped electrons and superconducting electronics

View the table of contents for this issue, or go to the journal homepage for more

2013 New J. Phys. 15 073017

(http://iopscience.iop.org/1367-2630/15/7/073017)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Hybrid quantum devices and quantum engineering

M Wallquist, K Hammerer, P Rabl et al.

Progress in superconducting qubits from the perspective of coherence and readout

Zhong You-Peng, Li Chun-Yan, Wang Hao-Hua et al.

Two-dimensional arrays of radio-frequency ion traps with addressable interactions

Muir Kumph, Michael Brownnutt and Rainer Blatt

Wiring up single electron traps to perform quantum gates

Jorge R Zurita-Sánchez and Carsten Henkel

Phonon-mediated entanglement for trapped ion quantum computing

K-A Brickman Soderberg and C Monroe

Experimental quantum simulations of many-body physics with trapped ions

Ch Schneider, Diego Porras and Tobias Schaetz

Quantum control of the motional states of trapped ions through fast switching of trapping

potentials

J Alonso, F M Leupold, B C Keitch et al.

Single qubit manipulation in a microfabricated surface electrode ion trap

Emily Mount, So-Young Baek, Matthew Blain et al.

Superconducting qubits: poised for computing?

I Siddiqi

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/7
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/0031-8949/2009/T137/014001
http://iopscience.iop.org/article/10.1088/1674-1056/22/11/110313
http://iopscience.iop.org/article/10.1088/1367-2630/13/7/073043
http://iopscience.iop.org/article/10.1088/1367-2630/10/8/083021
http://iopscience.iop.org/article/10.1088/0034-4885/73/3/036401
http://iopscience.iop.org/article/10.1088/0034-4885/75/2/024401
http://iopscience.iop.org/article/10.1088/1367-2630/15/2/023001
http://iopscience.iop.org/article/10.1088/1367-2630/15/2/023001
http://iopscience.iop.org/article/10.1088/1367-2630/15/9/093018
http://iopscience.iop.org/article/10.1088/0953-2048/24/9/091002


Quantum information processing with trapped
electrons and superconducting electronics

Nikos Daniilidis1,4, Dylan J Gorman1, Lin Tian2

and Hartmut Häffner1,3
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Abstract. We describe a parametric frequency conversion scheme for trapped
charged particles, which enables a coherent interface between atomic and solid-
state quantum systems. The scheme uses geometric nonlinearities of the potential
of coupling electrodes near a trapped particle, and can be implemented using
standard charged-particle traps. Our scheme does not rely on actively driven
solid-state devices, and is hence largely immune to noise in such devices.
We present a toolbox which can be used to build electron-based quantum
information processing platforms, as well as quantum hybrid platforms using
trapped electrons and superconducting electronics.
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1. Introduction

The experimental realization of an operational quantum computer is a well defined problem [1],
but after nearly two decades of intense experimental pursuit, the choice of the optimal physical
system remains a difficult task [2]. Solid-state based systems offer fast gate operation times
and straightforward fabrication scalability, while atomic systems show remarkable coherence
times [2, 3]. It appears appealing to bridge the gap between atomic and solid-state based
quantum devices, and combine them into quantum hybrid systems that exploit the benefits of
both approaches. Such hybrids can combine the speed of the former with the long coherence
times of the latter. Moreover, such platforms can interconnect atomic qubits via a solid-state
quantum bus [4], and thus address the scalability challenges of atomic qubits. Finally, quantum
state initialization and read-out can be based on such hybrid interfaces. This is an essential
feature for atomic systems where these tasks are not straightforward, such as trapped-electron
based quantum information processing (QIP) [5]. A successful interface will allow sufficient
control over the long-lived internal state of the atomic system, such that we can initialize it in
an arbitrary quantum state, swap it with a quantum state in the circuit and read it out with high
fidelity.

In many cases, the atomic and solid-state qubits couple weakly to each other, and it
is beneficial to interconnect them via intermediate systems, acting as buses for quantum
information [6, 7]. A versatile solution is to use harmonic oscillators as buses, whose properties
can be tailored to specific applications. In this respect, electrical oscillators are useful for the
solid-state side, while trapped-particle motion offers benefits as a bus on the atomic side [7].
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The motional state of charged particles, for example ions trapped in radio frequency (Paul)
traps or electrons in Penning traps, couples to electrical oscillators [8] and thus the problem
of building a hybrid quantum interface relies on understanding and overcoming the constrains
imposed by the electrical and motional oscillators.

Single ions can be trapped with very long storage times, their motional and electronic
quantum state can be controlled to a very high degree, and the motional state can be mapped
onto a long-lived electronic or spin state of the ion using standard techniques [3]. A major
challenge lies in the frequency mismatch between the ion motion, typically 1–10 MHz, and the
superconducting circuits, with transitions between 4 and 10 GHz. The frequency gap can be
bridged with parametric frequency conversion [8]. One possibility is to actively drive some
circuit element, for example as proposed by Kielpinski et al [9] in a scheme suitable for
upconversion from 1 MHz to 1 GHz. An additional challenge for such frequency conversion
schemes is that the small charge induced by the ion motion, of order 10−4 elementary charges,
needs to overcome low-frequency noise in the solid state. Thus, there is need of a frequency
conversion mechanism which upconverts the trapped particle frequency to the microwave range
before this enters the solid state, since such a scheme would be naturally immune to 1/ f noise
in the solid state.

Electrons offer a number of benefits compared to ions, due to their large charge-to-mass
ratio. Most importantly, their motional state has a large electric dipole moment which can couple
strongly to electrical circuits [10, 11]. Electrons can be trapped with high motional frequencies
and long storage times, using oscillating trapping potentials in the microwave range [12, 13],
or in Penning traps. The frequencies of non-magnetically trapped electrons could reach the
microwave regime while operating the electron traps with realistic voltages, provided the
trapping structures are made sufficiently small, 1µm or smaller. Nevertheless, such miniaturized
traps for electrons are likely to face limitations due to poorly understood electric field noise
arising from nearby surfaces [14, 15]. Thus, alternative solutions which will work for electrons
trapped in larger trap structures, in the several micrometer range, are needed. Pennning traps
offer one such possibility [16], but complications arise due to the presence of strong magnetic
fields if the electrons are trapped in a Penning trap. Thus a frequency conversion scheme
for electrons trapped in the low magnetic environment of an RF trap would have significant
advantages over the above-mentioned approaches.

Here we describe a parametric frequency conversion scheme which uses the quadrupolar
potential of a trap electrode in combination with classically driven particle motion in order to
couple the motional degree of freedom of a trapped particle to electrical resonators. This scheme
uses the trapping structure itself to achieve the frequency conversion, i.e. it does not require
additional, actively driven elements. Moreover, it upconverts the motional signal of any charged
trapped particle before it enters the solid-state circuit, and thus reduces the impact of 1/ f noise,
which is present in typical solid-state devices. We show how, using this scheme, one can swap
and entangle the motion of a single electron with a transmon qubit. We also describe how to use
our scheme to cool the motion of a single electron to the ground state, and to couple electrons
in separate traps. Based on these tools, we describe hybrid QIP platforms which are based on
single electrons in Paul traps and superconducting microwave electronics. We also discuss the
possibility of using this scheme to parametrically couple electrons to circuit elements at higher
frequencies, above 100 GHz.

The paper is organized as follows. In section 2 we discuss the parametric coupling
mechanism, and in section 3 we describe the physical components needed to implement
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Figure 1. Basic setup for parametric frequency conversion. A particle (shown
in magenta) is trapped in a harmonic potential, between electrodes which create
a strong quadrupole potential around the trapping position. The electrodes are
connected to a resonant circuit, allowing the particle motion to couple to the
modes of the circuit.

this mechanism using a ring Paul trap for trapped electrons. We then describe some basic
applications of this scheme and outline the main decoherence sources which are expected to
limit basic operation fidelities. The applications we describe form a toolbox which can be used
to build several interesting devices such as: a QIP platform with electron–spin memory and
Josephson junction (JJ) processing qubits, and two variants of an all-electron QIP platform,
with JJ qubits used for the electron state readout.

2. Parametric coupling mechanism

A mechanism allowing to coherently swap the motion of a single trapped electron with the
field of a microwave resonator, opens up the possibility of coupling the electron to any type of
superconducting qubit which can be coupled to the microwave resonator. We now describe such
a coupling mechanism for electrons and microwave resonators.

In order to couple the motion of a trapped particle to a microwave resonator, the problem
of the frequency gap between the particle motion and the circuit resonance needs to be solved.
When a particle is trapped between electrodes which create a spatially nonlinear potential, the
force on the particle in response to voltages applied to the electrodes depends on the particle
position, in other words the coupling strength between the particle and a circuit connected to
the electrodes depends on the position. This implies that if we drive the particle position at
an appropriate frequency, then the coupling strength is modulated at the difference frequency
between the particle and the circuit resonance, and thus we can couple the two. Here we
consider this mechanism in trapping structures with a quadratic nonlinearity, i.e. electrodes with
a quadrupolar potential. The pump for this parametric coupling process is a classical voltage
which drives the particle motion.

We consider a charged particle trapped in a harmonic potential. The particle is located
between two sets of coupling electrodes which are connected to an electrical resonator, as
in figure 1. The circuit couples to the position of a particle in the trap via the voltage on
the coupling electrodes. The interaction energy is qU (r)V , where q is the charge and r
the position of the particle, V is the voltage between the coupling electrodes and U (r) the
potential at position r, when 1 V is applied to the coupling electrode. For simplicity, here we
consider coupling electrodes which create electric quadrupoles of the form

∑
i=x,y,z si(ri/D2,i)

2,
si = ±1, but the analysis can be generalized to potentials containing cross terms as well. For
a displacement in the direction ri , i = x, y, z, around the trapping position, the potential can
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be expanded as U (ri) = U (0) + (ri/D1,i) + si(ri/D2,i)
2 + O(r 3).5 Then, the Hamiltonian for the

trapped particle and the circuit is, to second order in ri

H = Hcircuit + Hmotion +
∑

i

q Q

C

(
ri

D1,i
+ si

r 2
i

D2
2,i

)
, (1)

where Hcircuit =
Q2

2C + 82

2L , Hmotion =
∑

i
p2

i
2m + mω2r2

i
2 are the Hamiltonians describing the circuit and

the particle motion. Here, ri is the particle displacement and pi = mṙi the particle canonical
momentum. C is the effective capacitance of the resonator and 8 the flux variable at the
coupling electrode. Also Q = C8̇ − q U (ri) + Qd(t) is the canonically conjugate charge, which
includes the charge, qU (ri), induced on the electrode by the moving particle, and a classical,
time-dependent charge Qd(t), induced from the classical parametric drive voltage. The latter
can interfere with coherent quantum operations, but, as we discuss in appendix A, it is detuned
by the trap frequency, ωi , from all resonant modes in the system and can be made negligibly
small by carefully balancing the different electrode capacitances in the device.

The coupling term linear in position, q Q ri/(C D1,i), couples the circuit and the particle
when the two are resonant, and the quadratic terms, q Q r 2

i /(C D2
2,i), lead to parametric coupling.

To switch on the parametric action, we drive classical particle motion, rd,i = Adcos(�dt),
in addition to the quantum motion in the trapping potential, r̂i . We decompose the particle
position as ri = rd,i + r̂i . Expanding the quadrupole part of the interaction energy, we obtain

the parametric coupling term 2 q Q̂ rd r̂i

C D2
2,i

=
2 q Ad

C D2
2,i

cos(�dt)Q̂r̂i , where Q̂ is the quantum charge

degree of freedom in the circuit. When driving motion in the y-direction, the Hamiltonian in
the interaction picture now becomes

Her = h̄g cos(�dt)(ei(�−ωy)ta†
φay + ei(�+ωy)ta†

φa†
y + h.c.). (2)

The aφ , and ay operators correspond to the circuit and particle modes respectively. � =

1/
√

LC is the circuit resonant frequency, ωy the particle frequency and h̄g =
2 q V0 Ad y0

D2
2,y

.

y0 =
√

h̄/(2 mωy) describes quantum fluctuations of the particle position, and V0 = �
√

h̄ Z/2
quantum fluctuations of the circuit charge variable, which depends on the characteristic
impedance Z =

√
L/C .

If �d = � − ωy , then the terms (i a†
φay + h.c.) of equation (2) survive in the rotating wave

approximation. The system operates as a parametric frequency converter, with the classical
drive providing pump photons which allow coherent coupling between the particle and the
resonator. Population exchange between the two modes occurs with a parametric coupling rate
gp = g/2 [17]. If �d = � + ωy , then the system behaves as a parametric amplifier [17]. The
effective Hamiltonian then has the form (i a†

φa†
y + h.c.) which generates two-mode squeezing of

the coupled modes [18]. Provided a sufficiently low-noise classical drive, parametric frequency
conversion can couple two non-resonant systems with no added noise [19]. The fidelity
of coupling between charged particles and electrical circuits will be limited by motional
decoherence of the particle motion, decoherence in the resonator and superconducting qubit
circuits, and classical noise in the trap drive and the parametric drive.

In what follows, we focus on using this mechanism as a frequency converter. We also focus
on electrons, which due to their large charge-to-mass ratio can couple strongly to microwave

5 At the trapping position, the terms of odd order can be made vanishingly small by symmetry, and the higher than
quadratic terms in ri can be made negligibly small.
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circuits using currently attainable experimental parameters. In section 4 we discuss applications
of this scheme: i.e. quantum state initialization for the electron, creation of entanglement and
quantum state transfer between single electrons and superconducting qubits, as well as creation
of entanglement and quantum state transfer between distant electrons.

3. Physical systems

As already mentioned, the central application we aim at, is the coherent coupling of trapped
electrons to superconducting qubits. To minimize the effects of decoherence, we choose to
couple electrons to the superconducting qubit which currently exhibits the longest coherence
times, namely the ‘three-dimensional’ (3D) transmon qubit [20, 21]. The transmon is a ‘Cooper
pair box’ qubit in which the JJ capacitance is increased to make the device largely immune to
charge noise [22], and operation of this qubit inside a 3D microwave cavity further suppresses
decoherence in this device [20]. Here we assume this implementation of superconducting qubits,
and assume decoherence times τ1 = 70 µs and τ2 = 92 µs, as those in [21].

For simplicity, we choose here a ring trap to trap single electrons (figure 2). This kind
of trap combines high trap depth, low anharmonicity of the trapping potential, and strong
parametric coupling. We simulated this design with D = 30 µm, R0 = 5 µm, α = 20◦ (see
figure 2 for an explanation of the parameters) using an electrostatics solver [23]. The effective
coupling length appearing in equation (1) is D2,y ≈ 15 µm. Single electrons with secular
frequencies ωy = 2 π × 500 MHz, ωx,z ≈ 2 π×400 MHz, can be trapped with trap depth of
1 meV using a trap drive on the central ring electrode (shown in yellow) at �tr ≈ 2π × 7 GHz,
amplitude of approximately 0.4 V, and with a static bias of a few hundred mV on the trap
electrodes. In what follows, we assume a heating rate of 8100 motional quanta s−1 for the
electron motion (i.e. τ1 ≈ 123 µs). We estimate this heating rate by assuming that the electric
field noise measured with ions in cryogenic traps is caused by noise sources on the electrode
surfaces [15], and by rescaling the measured values of ion trap noise [24] as appropriate for the
geometry and frequency of the electron trap (see appendix B).

To implement the parametric coupling scheme, we can drive electron motion in the
y-direction at �d = �tr and Ad = 750 nm, by applying opposite oscillating voltages of
amplitude 0.4 V on the top and bottom ring electrodes (orange). Numerical integration of the
equations of motion shows that the trap is stable under this condition (see appendix C). The
trapping potential and the parametric pump drive will not significantly limit the fidelities of
processes described in section 4, if they are stable to better than 1 part in 103. The capacitances
between the tip electrodes and the ring electrodes in this structure range from 0.3 to 0.8 fF. While
this will have only a small loading influence on the resonator to which the particle motion will
couple, the resonator can be off-resonantly excited by the parametric drive and the trapping
potential. We discuss solutions to these technical issues in appendix A.

To load single electrons in the ring trap, one option is to have the trap fabricated at the
end of a linear Paul trap with segmented electrodes [25]. The linear trap can have a taper from
large trap dimensions to smaller dimensions [26] to load electrons at high energy and resistively
cool them [10] in different stages (e.g. precooling to 10 K, followed by cooling to 1 K to load
into the ring trap). Electron clouds can be loaded in the linear trap using a heated filament, or,
in order to have better control on the number of created electrons, by photoionization of an
atomic vapor. After the electron cloud is cooled to 1 K, the number of electrons in the trap can
be distinguished by coupling their motion to an electrical resonator at the electron resonance
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Figure 2. A ring trap with two sharp tip electrodes (trapped electron in magenta).
The trapping ponderomotive pseudopotential is created by a ring electrode
(yellow) with inner diameter D. Two conical tip electrodes (gray) with opening
angle α are located a distance R0 from the trapping position in the y-direction.
These can be connected to an external circuit, allowing to couple the particle
motion to the circuit. Two ring electrodes (orange) can classically drive the
particle motion. With this configuration, the gray electrodes correspond to the
electrodes labeled ‘A’ in figure 1, while the yellow and orange correspond to
‘B’. To achieve parametric coupling, we drive electron motion in the y-direction
with amplitude Ad, but driving motion in the xz-plane is also possible. An
equivalent alternative configuration for trapping and parametric coupling, is to
connect the middle ring electrode (yellow) to an electrical resonator, connect the
top and bottom tip electrodes (gray) to the source of the trapping ponderomotive
potential, and use the top and bottom ring electrodes (orange) for the parametric
drive.

frequency [10], and the segmented trap electrodes can be used to heat and split the electron
cloud until a single electron is trapped [27]. Finally, the electron can be transported into the ring
trap, and ‘locked’ in place by modifying the ponderomotive trapping potentials of the linear trap
and the segmented trap [28, 29].

The resonator depicted schematically in figure 1 can be a lumped-element resonator, or
a coplanar waveguide (CPW) resonator. The coupling strength between an electrical resonator
and the particle in the trap will benefit from high characteristic impedance resonators, due to
the

√
Z dependence of quantum voltage fluctuations on the characteristic impedance Z . The

effective impedance Z for a CPW section with length nλ/4, n = 1, 2, . . . is related to the CPW
characteristic impedance, ZCPW, by Z =

4 ZCPW
n π

. In what follows, we consider a resonator with
characteristic impedance 1 k�. TiN-based high kinetic inductance resonators [32] are promising
in this respect. Using this technology, resonators with high inductance per unit length, exceeding
≈60 pH µm−1, have been achieved [33]. Designing resonators based on such films, with gap
between the center conductor and the ground plane in the tens of µm range would achieve the
required impedance of approximately 1 k�. In what follows, we assume a resonator with quality
factor similar to the best value obtained by Megrant et al [30] with τ1 = 45 µs at ≈2 π × 7 GHz
(see appendix D).
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(a) (b)

Figure 3. Circuits for electron–resonator and electron–transmon coupling. (a)
An electron in a ring trap, with the tip electrodes connected to a microwave LC
resonator with impedance Z =

√
L/C . (b) Schematic drawing of an electron

coupled via a λ/2 section of a coplanar transmission line to a transmon in a
cavity [20]. For superconducting coplanar resonators in the GHz range, internal
quality factors of more than 106, corresponding to damping times of ≈45 µs,
have been achieved [30]. To achieve high characteristic impedance, Z = 1 k�,
and internal quality factors Q > 106, high kinetic inductance resonators based
on thin TiN films can be used [31].

4. Applications

4.1. Electron–resonator coupling

In order to couple the electron to a microwave circuit, we consider the tip electrodes to be
connected to the open end of a λ/4 superconducting CPW resonator, or a lumped element
resonator (figure 3(a)). In the case of a CPW, quantization of the resonator mode can be
treated as in [34]. With trap frequency ωy = 2 π × 500 MHz, driven motion Ad = 750 nm,
� = 2π × 7 GHz and Z = 1 k�, the coupling rate is gp = 2 π × 1.1 MHz. This allows complete
population exchange between the motion of a single electron and a 2π × 7 GHz resonator in
τswap ≈ 230 ns. By turning on the parametric coupling between an electron resistively precooled
to ∼1 K [8] and a microwave resonator at 30 mK, for time τswap, the electron motion can be
prepared to its ground state with approximately 99.8% fidelity. The fidelity of this operation is
limited by the heating of the electron motion during the swap operation (see section 3), and can
serve as a quantum-state initialization step in the context of QIP.

4.2. Electron–transmon coupling

For a specific example of a hybrid quantum device realizable under our scheme, we consider the
case of coupling an electron to a transmon through an intermediary transmission line, as shown
schematically in figure 3. The tips of the Paul trap are connected to the open end of a λ/2 CPW
resonator, which couples the y electron oscillation to the resonator. The transmon is operated
inside a 3D cavity, an architecture which provides increased coherence times [20]. The second
open end of the λ/2 resonator extends into the cavity, allowing it to couple to the TE011 mode of
the cavity with a rate G lc ≈ 2 π×3 MHz (appendix E). The transmon is very strongly coupled to
the cavity, with coupling constant G tc in the 2π × 100 MHz regime [20]. The cavity–transmon
detuning satisfies 1 = �c − �t � G tc, i.e. the system is operated in the dispersive regime and
the state that the resonator couples to is a dressed transmon state with transition frequency ωt.
Adiabatically eliminating the cavity, yields an effective coupling rate G lt = G lcG tc/1 between
the transmission line and the dressed transmon (appendix F). The effective Hamiltonian for the
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electron–resonator–transmon system is

Het = Her + h̄gp(e
−iδta†

φσ
− + h.c.), (3)

where σ− is the Pauli spin lowering operator for the transmon qubit, we have allowed for a
detuning δ = �r − ωt between the resonator and the transmon, and we choose a parametric
drive �d = ωt − ωy − δ in Her (equation (2)). To optimize state transfer we choose 1 such that
G lt = gp.

The detuning δ is necessary to produce maximally entangled states of the electron motion
and the transmon (i.e. Bell states), and reduces the decoherence induced by losses in the bus.
For an arbitrary detuning, this Hamiltonian will not generate complete state transfer between the
electron and the transmon, because some population will, in general, be left in the transmission

line. However, by choosing a ‘magic’ detuning δn =

√
8n2

2n+1 gp, n = 1, 2, . . . full state exchange

will occur between the electron and the transmon in τswap =
π

gp

√
2n+1

2 , and the two are in a Bell
state at τswap/2. This situation is similar to the Mølmer–Sørensen gate for trapped ions [35].
Using the parameters quoted above for the electron traps and for the microwave resonator,
electron–transmon state transfer is achieved in 560 ns. By numerically solving the Lindblad
master equation of the coupled system (see figure 4), we find a fidelity for state exchange of
98.8% for the n = 1 magic detuning. At time τswap/2 ≈ 280 ns the electron and the transmon
are in the Bell state 1

√
2
(|0, 1〉 − i |1, 0〉) with fidelity 99.4%. With our set of parameters, these

fidelities are limited mainly by losses in the resonator and by heating of the electron motion (see
section 3). For the n = 0 magic detuning, an electron–transmon swap operation is completed in
320 ns with fidelity 99.4%.6

4.3. Electron–electron coupling

An additional application of this parametric scheme is in coupling electrons in separate traps via
a microwave bus. If both ends of the λ/2 CPW are connected to the coupling tips of two electron
traps, the electron in each trap gets coupled to the microwave bus with parametric coupling
constant gp. Using the same ‘magic’ detuning idea as above and the parameters of figure 4, we
find that the two motional states can be entangled with each other within τswap/2 ≈ 280 ns with
fidelity 99.2%, and swapped within τswap ≈ 560 ns, with fidelity 98.3%. For the n = 0 magic
detuning, an electron–electron swap operation is completed in 320 ns with fidelity 99.1%.

4.4. Spin–motion coupling

In order to take full advantage of the low decoherence of the trapped electron system, we now
consider mapping the electron motional state to its spin. We can define an electron spin manifold
with splitting in the radio-frequency range, e.g. ωs = 2π × 28 MHz using a static bias field of
10−3 T, see figure 5(a). To map the motional state on the spin and vice versa, we consider a
coupling mechanism implemented already with trapped ions [36, 37]. Microfabricated coils
near the trap generate an oscillating magnetic field with frequency ωy − ωs, thus driving a
transition between the electron motion and its spin. Using a Helmholtz coil geometry with

6 An additional possibility is to perform the swap operations by adiabatically changing the electron–resonator and
resonator–transmon coupling strengths. Such schemes will be significantly slower than the one we describe here
(requiring τswap � 1/gp), and will thus suffer more from decoherence sources.
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Figure 4. Populations derived from a numerical solution of the Lindblad master
equation for the electron motional mode (〈a†

yay〉, red), the transmission line

(〈a†
φaφ〉, blue) and the dressed transmon (〈σz〉, black), for the n = 1 magic

detuning (see text). The parametric coupling rate is gp = 2 π × 1.1 MHz. The
initial state is |1, 0, 0〉, and the fidelity of evolution to the state |0, 0, 1〉 after
τswap ≈ 560 ns is 98.8%. At τswap/2, the electron and the transmon are entangled
in the state |1, 0〉 − i |0, 1〉, with fidelity 99.4%. For the n = 0 detuning, an
electron–transmon swap operation is completed in 320 ns with fidelity 99.4%,
and an electron–electron swap with fidelity 99.1%. For these simulations, we
assumed the electron heating rate to be 8100 motional quanta s−1 (τ1 ≈ 123 µs),
the transmon decoherence times τ1 = 70 µs, τ2 = 92 µs [21], and the resonator
damping time τ1 = 45 µs [30] (see section 3).

radius 50 µm, driven such that only a quadrupole magnetic field is generated at the electron,
an oscillating current of 1 A, and frequency of 472 MHz can drive spin–motion transitions
with Rabi frequency 2π × 410 kHz. Here, we assumed again ωy = 2 π × 500 MHz, and ωs =

2π × 28 MHz, corresponding to a static bias field of 10−3 T. The electron motional state can be
mapped onto the spin in approximately 610 ns, with 99.5% fidelity. The coils which generate the
oscillating magnetic fields can be thermally anchored on a 1 K refrigeration stage to minimize
heat load on the 30 mK stage, which is necessary for the superconducting electronics.

In order to preserve the phase coherence of the electron spin, the magnetic field at the
electron needs to be stabilized. By stabilizing the magnetic field to 14 pT/

√
Hz, the coherence

time of the electron spin will exceed 1 s. This noise requirement is three orders of magnitude
less stringent than those achieved with magnetic field shielding in superconducting quantum
interference device (SQUID) magnetometery [38]. Heating of the electron motion in a spatially
inhomogeneous magnetic field will cause additional dephasing. This can be mitigated by
engineering a homogeneous static magnetic field, and by periodically cooling the electron
motion to its ground state.

5. Outlook

The elementary toolbox described in section 4 can be used in hybrid QIP platforms in which
the electron spin serves as a quantum memory, and the electron motion as a bus for coupling to

New Journal of Physics 15 (2013) 073017 (http://www.njp.org/)

http://www.njp.org/


11

(a) (b)

(c)

Figure 5. Single electron qubit, and devices using the toolbox developed here.
(a) Our scheme uses the electron spin as a quantum memory, and one mode of its
harmonic motion in the trap as a bus for coupling to electrical circuits. A static
magnetic field provides a splitting ωs of the electron spin manifold, defining
the two-level system used to store quantum information. Under a magnetic field
of 10−3 T, the electron Zeeman splitting is ωs = 2 π×28 MHz. Typical electron
frequencies for the applications we describe will be approximately ωx = ωz =

2 π×400 MHz, ωy = 2 π × 500 MHz. (b) Schematic of an electron–transmon
hybrid. Transmons operating inside 3D cavities are the processing qubits, and
each one is coupled to an electron quantum memory via a λ/2 resonator. (c)
Schematic of an all-electron architecture. Electrons are trapped on a segmented
Paul trap. They can be shuttled to regions where their motion is parametrically
coupled to microwave resonators and to transmon qubits (inside gray box).
Electron–electron gates can be performed via direct Coulomb interaction for
electrons on the same trap chip, and using a microwave bus for electrons on
different chips. In (b) and (c), the electron traps can be operated at a different
temperature stage (e.g. 1 K, yellow and orange) from the superconducting
electronics (30 mK, gray) to minimize the heat load on the latter.

superconducting circuits, see figure 5. One possibility is for the transmon qubits to function as
processing units, and the electron spins to serve as a quantum memory (figure 5(b)). A second
possibility is to use the trapped electrons as both processing and memory units, with a CPW
bus to perform state transfer and entangling gates between distant electrons, and the transmon
serving as a state readout device. A third option uses moving electron qubits in segmented linear
Paul traps, much the same way in which ion-trap based scalable QIP is pursued, and transmon
qubits for the electron state readout (figure 5(c)) [25, 39].

The first two types of architecture can be implemented using the building blocks shown
in figure 5(b). In both cases, the LC resonator-based ground state cooling of the electron,
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and the magnetic-field based spin–motion coupling serve to initialize the electron state.
If the superconducting qubits are used as computational qubits, the SWAP operation between
electron and transmon allows information exchange between the processing and memory qubits.
In the case of electron-based QIP, SWAP operations allow transfer of information between
different electrons. Single qubit rotations can be performed on the electron spin, which together
with the

√
SWAP gates between the motion of different electrons offer a universal set of

gates. One way to read out the state of the electron is by coupling the electron motion to a
dressed 3D transmon, as described above, but alternative architectures would be sufficient for
this task.

Our proposed parametric frequency conversion mechanism can be applied to linear
microfabricated Paul traps for electrons. In this case, ground state cooling of the electron motion,
state initialization and readout of the electron spins can be based on microwave circuits. This
enables a third distinct architecture, which uses moving electron qubits, similar what is currently
pursued with trapped ions [39]. Two-qubit entangling gates can be performed using a microwave
bus, the direct Coulomb interaction between nearby electrons [5], or with microwave gates [36].
Finally, nonlinear superconducting circuits can be used to read out the state of the electrons. This
approach will not require lasers for cooling, manipulating and detecting the electron qubits, as
trapped-ion based approaches do. In addition, it can be significantly faster than current ion-
trap based approaches. State initialization and read-out can be performed on the order of a
few µs, roughly two orders of magnitude faster than with ions. Owing to the higher electron
frequencies, particle transport can also be two orders of magnitude faster. Two-electron gates
based on the Coulomb interaction of nearby electrons, will be limited by the rate of spin–motion
coupling that can be achieved. This can be more than one order of magnitude faster than
the values achieved with ions, due to the larger extent of the electron’s wavefunction in the
ground state.

As a final, longer-term application, we consider scaling an architecture similar to that
of figure 5(c) to sub-micrometer dimensions, and operating it entirely on a 1 K refrigeration
stage. This would allow fast gate operation times and overcome the problem of limited cooling
power of dilution refrigerators, typically in the sub-mW range. Miniaturized linear Paul traps for
electrons, with typical electron–electrode distances of 500 nm could achieve secular frequencies
of 2 π × 20 GHz and depths of 10 meV, with moderate trapping voltages of less than 1 V.
The parametric upconversion mechanism, described in section 2, applied to this case would
allow coupling to superconducting resonators with frequencies above 2 π × 100 GHz [40, 41]
enabling ground-state cooling of the electrons in ∼4 ns, using a 1 K thermal bath. Electron
transport, swapping and entangling gates could be performed in time of order 0.1 ns. To read
out the electron motional state, mapping to a superconducting qubit, as outlined above, is one
option, but an alternative option would be dispersive circuit quantum electrodynamics (CQED)
type read-out [34] on the {|0〉 , |1〉} manifold of the electron motion.

A number of technical challenges would need to be overcome in such an approach. Device
miniaturization will not be feasible before the electrode surface noise sources are eliminated
at cryogenic temperatures, for example reduction by three orders of magnitude over current
values would imply electron heating rates of order 3 × 104 quanta s−1 in the example mentioned
here. In addition, the technology of millimeter wave sources and resonators in the millimeter
frequency band, above 2 π × 100 GHz, would need to be adapted to the high-fidelity, low-loss
demands of QIP applications.
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6. Conclusion

In summary, we have proposed a parametric frequency conversion scheme which can bridge the
frequency gap between the motion of trapped particles in Paul traps and solid-state quantum
circuits operating in the microwave regime. Our scheme uses geometric nonlinearities of the
trap electrodes, and can be implemented in standard trap geometries without the need for
actively driven, solid-state frequency conversion devices. In addition, it up-converts the trapped
particle signal before this enters the solid state, and can thus reduce the impact of 1/ f noise.
This scheme allows to implement swapping and entangling operations between electrons and
superconducting electronics, and can be used to initialize and read-out the state of an electron,
as well as to use the electron spin as a quantum memory for superconducting qubits. Using
currently achievable parameters for the device components, we find that all basic operations
necessary for QIP can be carried out with fidelities close to 99%. We have described applications
of this scheme to hybrid quantum architectures in which both trapped electron spins and
transmon circuits serve as processing qubits. Our toolbox enables a QIP architecture with
electrons, similar to the one currently pursued with trapped ions in segmented traps, but having
advantages in speed and scalability.
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Appendix A. Capacitive coupling of classical signals to the quantum bus

In the geometries outlined in figures 2 and 3, the classical drive used to trap the electrons and
to pump the parametric action can couple to the CPW used as a quantum bus, and cause off-
resonant excitations. Conversely, if the CPW couples to the transmission lines used to drive
the trap and the parametric action, then it will radiatively decay into the transmission lines. To
minimize these effects, one needs to capacitively drive opposite ends of the λ/2 CPW resonator
(figure 3(b)) in such a way that the most of the capacitive coupling cancels out, or use some
equivalent scheme. Capacitive coupling of the CPW to a 50 � feed line or LC resonator used
to drive the trap electrodes will only limit the quality factor at the 107 level if the coupling
capacitance is limited to below 0.2 fF. Here we describe a scheme which is mainly aimed at
cancelation of the off-resonant excitation, while achieving far greater reduction of the radiative
losses.

To minimize off-resonant excitations, we need to carefully balance capacitances in the
device and weakly couple in an additional ‘fine-tuning’ signal. One possible solution is outlined
in figure A.1. The signal, which is capacitively coupled via a parasitic capacitance Cp, to the
coupling electrode, is also coupled with an appropriate amplitude to the opposite end of the λ/2
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Figure A.1. Circuit to minimize classical pick-up on the CPW quantum bus,
and radiative decay of the bus. For simplicity, the ring electrodes (trapping and
parametric drive electrodes) are designated by the parasitic capacitances which
they contribute. The signal which is capacitively coupled via Cp to the coupling
electrode, is also coupled with an appropriate amplitude to the opposite end of
the λ/2 resonator, via the balancing capacitance Cb. An additional 50 � line is
directly coupled to one end of the CPW bus via a small coupling capacitance Cb′ .

resonator, via the balancing capacitance Cb ≈ Cp. Both capacitors are connected to a resonator
with characteristic impedance Z =

√
L/C ≈ 50 �, and moderate quality factor Q ≈ 103, which

is used to drive the trap electrodes, and helps minimize radiative losses of the λ/2 resonator. An
additional 50 � transmission line is capacitively coupled with Cb′ � Cp to one end of the λ/2
resonator, and driven with an adjustable amplitude and phase shift, in order to fine-tune the
cancelation of the off-resonant excitation. The parasitic capacitances in the ring trap described
here are on the order of 0.5 fF, and if they are balanced to Cp − Cb ≈ 10 aF, the off-resonant
excitation of the λ/2 resonator will amount to approximately 200 photons. To fine-tune the
cancelation to the level of 10−3 photons, the amplitude and phase in an additional 50 � line,
coupled by Cb′ ≈ 10 aF needs to be adjusted at the 0.4 mV level, provided the phase is controlled
to better than φ = 10◦.

This configuration also minimizes the inverse effect of radiating from the CPW into the
classical-signal transmission lines. Due to the use of an LC resonator which is far detuned from
the CPW bus and of a weakly coupled transmission line, the radiative loss of the CPW to the
external lines will be limited to the level of κ < 1/s.

Appendix B. Decoherence of the electron motion

To estimate the heating rate of the electron motion in the y-direction, we need to know the
spectral density of electric field noise at ωy ≈ 2 π × 500 MHz [15]. Johnson noise and electronic
technical noise can be made very small, so we focus on the so called ‘anomalous’ heating,
encountered in ion traps. The dominant contribution of this noise has been shown to arise from
the electrode surfaces [42]. We can model the noise as arising from a collection of independently
fluctuating electrical-dipole type sources on the trap electrodes, in which case the noise level is
determined by the surface density of electrical dipoles on the electrodes [43, 44]. In this model,
the magnitude of the noise for a given density of dipoles has been shown to depend on the
electrode geometry [45]. We take into account the non-planar geometry of the proposed trap by
incoherently summing the contributions of all dipoles on the surface of the electrodes. For each
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one of the conical tips with opening angle α, we find that the noise is reduced over the noise
generated by a flat surface. For low opening angles the noise level at distance R0 from the tip is
well approximated by

Stip
E (R0, α) ≈ (α/10)SE(R0, π), (B.1)

where SE(R0, π) is the noise at a distance R0 from a flat surface (i.e. a cone of opening angle π ).
Similarly, for a ring electrode similar to the one in figure 1, the noise contribution is estimated
at

Sring
E (D, a) ≈ 2

(
1 +

2a

D

)
SE(D/2, π), (B.2)

i.e. each one of the top and bottom surfaces of the ring contributes the same noise as a flat plane
located a distance D/2 from the ion (SE(D/2, π)), and the inside surface of the ring contributes
a fraction 2a/D of that noise. The two rings which are used to drive the electron motion (orange
in figure 2) can easily be placed a factor of 2 or more further away from the ion compared to the
trapping ring electrode, and their contribution can thus be neglected. Taking these results into
account, and based on the noise value measured in cryogenic traps [24], the heating rate for an
electron trapped at 2 π × 500 MHz in the ring trap discussed here, is estimated at 8100 motional
quanta/s if the frequency scaling of the noise is 1/ f , and at 690 quanta s−1 if the scaling is
1/ f 3/2.

Appendix C. Parametric drive of the electron motion

As discussed in the main text, the parametric coupling can be switched on by driving classical
electron motion. Electron motion can be driven in the y-direction, but also in the x-direction.
To achieve the latter, we can split the trapping ring electrode into two half rings on the sides
of the yz plane, and apply a classical out-of-phase drive to the two sides. This option comes
at the expense of a factor of 2 reduction in the parametric coupling rate and here we focus on
driving the y motion. The trap drive and the parametric drive of the electron motion are detuned
from the superconducting electronics by ≈2π × 500 MHz. In order to drive electron motion
in the y-direction at �d ≈ 2π × 6.5 GHz and Ad = 750 nm, we apply an oscillating voltage of
amplitude 0.4 V on the ring electrodes labeled ±Vd in figure C.1 below. Numerical integration
of the electron equations of motion, with both the trapping potential at �tr and the drive at
�d, shows that the trap is stable, and motional sidebands appear at frequencies �d + n�tr ± ωi ,
n = 0, ±1, . . .. If �tr = �d only sidebands at �d ± ωi are present, and this can be a preferable
configuration.

It is interesting to consider the limits of applying the proposed parametric scheme to
trapped ions, by analyzing the influence on the trapping pseudopotential when �tr = �d. The
parametric pump field generates a pseudopotential which is not significant for electrons under
the trapping conditions we described above. The situation is different for ions, because of
their lower secular frequencies. To see this, we compare two energy scales: The strength of
the pseudopotential, Ups,d, which arises from the parametric drive when the driven motion
amplitude is Ad, and the trapping potential with curvature 1

2mω2. The ratio of the two is
Ups,d

mω2 A2
d
≈

1
4

(
�d
ω

)2
. So the pseudopotential arising from the parametric drive scales quadratically

with the driven motion amplitude, and with the frequency step-up. For example, for 9Be+ with
secular frequency of 2 MHz in a trap such as the one described here, the limiting frequency is
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Figure C.1. Cross section of the trap, with the different electrodes labeled. We
use the parameters D = 30 µm, R0 = 5 µm, opening angle α = 20◦. In order to
drive electron motion in the y-direction at �d ≈ 2π × 6.5 GHz and Ad = 750 nm,
we apply to the top and bottom drive electrodes (orange) an oscillating drive with
opposite amplitudes ±Vd cos(�dt), where Vd = 0.4 V.

approximately 2π × 2 GHz. For higher frequencies it becomes hard to control nonlinearities in
the trap potential.

We note here that the mechanism described in section 2 applies to a particle in a harmonic
trap with coupling electrodes which produce a quadrupole potential. This mechanism does not
rely on the existence on the so-called ‘micromotion sidebands’, which in a Paul trap appear at
frequencies n �tr ± ωi , n = 1, 2, . . ., i = x, y, z. With our choice of parametric drive frequency
and coupling electrode (which creates a quadrupole potential), the micromotion sidebands do
not couple the particle and the circuit. Under a geometry in which the coupling electrodes
produce a dipole-type potential (e.g. parallel-plate capacitor type coupling electrodes), the
micromotion sidebands can couple the particle motion to a circuit at �tr ± ωi . This type of
frequency-conversion mechanism will have limited effectiveness for high frequency step-up
(large (�tr ± ωi)/ωi ), and its treatment is beyond the scope of this work.

Appendix D. Decoherence of the coplanar waveguide resonator

The internal quality factor (Qi) of CPW resonators is thought to be limited by fluctuating
two-level systems in the interface between the superconductor and the dielectric substrate on
which it is fabricated [46–48]. As a result, Qi decreases by one–two orders of magnitude as
the energy stored in the resonator decreases to the few photon level. In recent years, significant
efforts in dielectric substrate cleaning and materials engineering have resulted in an increase
of Qi [49, 50], with values at the single photon level currently exceeding 106 [30]. Moreover,
it has been realized that the resonator losses can be limited by reducing the participation of
the dielectric-superconductor interface in the resonant mode. One way to achieve this is by
building higher characteristic impedance CPW resonators [51]. This can prove advantageous
for the high characteristic impedance resonators ZCPW ∼ 1 k� needed in our application. TiN-
based high kinetic inductance resonators in the 2 π × 1–2 GHz range, already mentioned in
section 3, show very high quality factors [31], and due to their high kinetic inductance have
wavelength significantly lower than the vacuum wavelength, which significantly reduces their
radiative losses. In this work, we assume a resonator with quality factor similar to the best value
obtained by Megrant et al [30], with τ1 = 45 µs at ≈2π × 7 GHz.
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Appendix E. Electrical resonator and cavity interaction

In order to couple the CPW transmission line to the transmon cavity, perhaps the simplest option
is for the center conductor and one side of the ground plane of the line to extend into the cavity,
with an appropriate modification in geometry to maintain the impedance of the transmission line
constant. To estimate the interaction strength of the transverse electromagnetic (TEM) mode of
the CPW to the TE011 mode of the cavity, we treat the transmission line as a collection of
electrical dipoles formed between the center conductor and ground. The dipoles arise from the
local charge density on the CPW and they form a continuous distribution over its length. A
segment of length dz along the line direction (z) has dipole strength µ(z) ≈

2 πd0q0

λ
sin(2 π z/λ).

Here d0 is the spacing between the CPW center and signal return conductors q0 =

√
h̄

2Z is the
magnitude of charge fluctuations in the line, and λ is the wavelength of the wave in the CPW. If
the electric field of the TE011 cavity mode, EC(z), is aligned with the dipoles (i.e. if it is along
the line connecting the center conductor to ground), then an upper limit for the coupling strength

can be expressed as the integral h̄G lc =
1
l

∫ l
0 µ(z) EC(z) dz =

EC,0q0d0 leff

λ
, where EC,0 =

√
h̄ωC

2ε0 V is

the magnitude of electric field fluctuation in the cavity, and the effective length leff can be up to
order λ/2.

We consider a cavity at 2π × 7 GHz, and a CPW with effective impedance of 1 k�. A
lower limit for d0 is 200 µm, which implies that G lc/h̄ can be 2π × 10 MHz, for leff = λ/2. Our
architecture requires lower values, in the 3 MHz range, which can be achieved with appropriate
design.

Appendix F. Electron–transmon quantum electrodynamics

The electron–transmon system is at heart a problem of four coupled quantum systems: three
oscillators and a qubit. The electron motion, intermediate quarter wave resonator, and transmon
cavity function as harmonic oscillators, while the transmon acts as a qubit. It is illustrative to
write the effective four-system problem by an effective Hamiltonian

Heff = a†


ω gp 0 0
gp ω + δ G lc 0
0 G lc ω + 1 G tc

0 0 G tc ω′

 a = a†Ca (F.1)

with a = (ax , aφ, ac, σ−)T, the vector of excitation annihilation operators for the electron,
transmission line, transmon cavity and transmon respectively. For presentation, we have
absorbed all the time-dependent factors into the definitions of a and a†. Such a formulation
is useful because the coupling matrix C contains the relevant dynamics. The excitation energies
are read off from the diagonal elements, and the coupling rates are read off from the off-diagonal
elements.

In the limit where the cavity–transmon coupling is the strongest (G tc � G lc, gp), we can
view the eigenstates of the cavity–transmon system as the modes of interest, and focus on
coupling to the transmon dressed state. Then, the problem can be reduced to an effective three-
system problem in the following way. First, we diagonalize the cavity–transmon block in the
limit 1 � G tc. After the diagonalization we get two vectors: one with a projection mostly onto
the transmon mode (which we referred to as the ‘dressed transmon’), and with a projection onto
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the cavity mode only of order G tc/1. The second has a projection mostly onto the cavity mode
and projects onto the transmon mode also to order G tc/1.

The first vector represents the operator σ+ + (G tc/1)a†
c . This is a Hamiltonian operator

for a dressed transmon mode. The second vector is similar, representing a mode which lives
primarily in the cavity. Since we have earlier chosen the cavity to be far detuned from the
transmon, this mode can be adiabatically eliminated. Removing this dressed cavity mode from
the basis produces a reduced coupling matrix

Cred =

ω gp 0
gp ω + δ −G lcG tc/1

0 −G lcG tc/1 ω

 . (F.2)

By adjusting G lc and 1 so that G lt = G lcG tc/1 = gp, we can obtain complete state transfer
and entanglement between the electron motion and the dressed transmon, as we discuss in the
main text.
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