
Naval Research Laboratory 
Washington, DC 20375-5320 

NRL/MR/5520--18-9769

Distributed Spectral Monitoring for
Emitter Localization

February 12, 2018

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Matthew Dillon 
Joseph A. Molnar
Andrew Robertson 

Networks and Communications Branch
Information and Technology Division

Er-Hsien (Frank) Fu
KEYW Corporation
Hanover, MD

 



i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Distributed Spectral Monitoring For Emitter Localization

Matthew Dillon, Joseph A. Molnar, Andrew Robertson and Er-Hsien (Frank) Fu* 

Naval Research Laboratory  
4555 Overlook Ave, SW  
Washington, DC 20375-5320   
    

NRL/MR/5520--18-9769

NRL

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

*KEYW Corporation, Hanover, MD

Unclassified
Unlimited

Unclassified
Unlimited

Unclassified
Unlimited

24

Joseph A. Molnar

(202) 767-0327

The geolocation of RF emitters is an important capability for DSA (dynamic spectrum access) enabled sensor networks. The purpose of 
this report is to present research and application of the various localization techniques in a DSA sensor network. The results of the research 
are presented through simulation of localization algorithms, emulation of a network on a wireless RF environment emulator, and field tests. 
The results of the various tests in both the lab and field are obtained and analyzed to determine whether the field tests and emulation results 
correspond to the theoretical simulations.

12-02-2018 Memorandum Report

6875

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

07-03-2015 - 07-03-2017

SAR

   55-6875-07

Blind localization, spectral monitoring, dynamic-spectrum-access (DSA), universal software radio peripheral (USRP),
software defined radio, cognitive radio, wireless channel emulation



This page intentionally left blank.

ii



 

 

 
 

CONTENTS 
 
 

1. BACKGROUND ................................................................................................................................... .1 
 

2. POWER DIFFERENCE OF ARRIVAL ................................................................................................ 2 
 

3. TIME DIFFERENCE OF ARRIVAL .................................................................................................... 6 
 

4. APPROACH .......................................................................................................................................... .6 

 4.1      SIMULATION ........................................................................................................................... .6 

 4.2      EMULATION ............................................................................................................................ .6 

 4.3      FIELD TESTING ........................................................................................................................ 8 
 

5. STATIC SENSOR NETWORK TEST .................................................................................................. 9 
 

6. PDOA ERROR ANALYSIS ................................................................................................................ 10 
 

7. PDOA MOBILE EMITTER FIELD TEST.......................................................................................... 17 
 

8. TDOA EMULATION .......................................................................................................................... 19 
 

9. CONCLUSIONS .................................................................................................................................. 20 
 

REFERENCES ............................................................................................................................................ 21 
 
 



This page intentionally left blank.

ii



1 

DISTRIBUTED SPECTRAL MONITORING FOR EMITTER LOCALIZATION 

1. BACKGROUND

The purpose of this effort is to investigate technologies needed to develop a network of sensors with 
spectrum monitoring capabilities and to provide a correlated perspective of extraneous emitters. This 
assessment of the environment can further be used to adjust spectral policy for a network, and optimize 
network throughput. 

The geolocation of RF emitters is an important capability for spectrum situational awareness. Several 
techniques exist to track the position of RF emitters. There are two main classes of localization 
techniques, and the technique to use will depend on the information available with the emitter. The first 
class of techniques assumes that a priori knowledge is available for the emitter, such as the emitter and 
sensors being time synchronized and knowing information about its waveform and transmit power. 
Knowing this information, techniques such as using the time of arrival (TOA) to determine the distance 
between the emitter and sensors [6] may be employed. The other class of localization techniques is used 
when there is no a priori knowledge available (blind localization). In this case, the sensors must use 
information such as the received signal strength indicator (RSSI) of the spectrum of interest and IQ 
samples and correlate the information to estimate a position of the emitter. 

 The class of localization techniques of interest in this research is blind localization. With the RSSI 
information available, power difference of arrival (PDOA) can be used by taking the difference in RSSI 
between multiple pairs of the sensors, where the results produce common geometrical intersections of 
circles as the estimated location [2]. Collecting emitter IQ samples at the receiver from the well 
synchronized sensors allows for the ability to cross-correlate the samples across sensors in the network. 
The cross-correlation of the received signals results in the difference in time at which each sensor 
received the signal. The time-difference results produces common geometrical intersections of multiple 
hyperbolas as the estimated position. This technique is known as time-difference of arrival (TDOA). 
Other techniques exist to estimate the position of an emitter such as frequency-difference of arrival 
(FDOA), which is useful for purposes of estimating the position of a fast-moving target and angle-of-
arrival (AOA) when antenna-arrays are available for the sensors [5]. 

For this research, two localization algorithms were studied in detail: Power-difference of arrival 
(PDOA) and Time-difference of arrival (TDOA). The sensor network design consisted of a star topology 
where a fusion node is used to triangulate the location of an unknown emitter. The localization algorithms 
were tested in simulation through MATLAB, emulation through use of the RF environment channel 
emulator, and multiple field-test scenarios. The accuracy of the geolocation of the emitter was measured 
under a variety of channel conditions and constraints. This report documents the details of the PDOA and 
TDOA localization algorithms, explains the various approaches used to develop the geolocation 
scenarios, and also explains the procedure, results and implications of each experiment executed 
throughout the study. 

____________
Manuscript approved January 3, 2018
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2. POWER DIFFERENCE OF ARRIVAL 
 
 Consider a number of transceivers distributed spatially over some area of operations (AO). Their 
goal is to locate a target emitter transmitting at a constant but unknown power PT from some unknown 
location denoted (xT , yT ). All of the sensors as well as the emitter are assumed to be at the same altitude, 
so the sensors are tasked only with measuring its own location and the RSSI at particular frequencies in 
the spectrum. The network architecture is shown in Fig. (1). 

 
Fig. 1 — An abstraction of the geolocation system. Quantities in red are not known and must be estimated 

 

The path loss is modeled as an exponential function of the distance di between the target emitter and 
the receiving sensor. That is, the received signal power is proportional to di

- a , where a is initially 
unknown path loss exponent, usually 2 for a free-space path-loss environment. The constant of 
proportionality C is also unknown, so both C and a  are estimated during sensor network initialization. A 
system of N equations exists, where N is the number of sensors. The dB path loss expression used in the 
localization algorithm is shown in (1) 

 
For PDOA, a minimum of three sensors is needed to estimate the location of an emitter. From the 

path loss, the difference in the received power between two sensors in shown in (2). 

 
The power difference and sensor location measurements result in a total of N circles with a 

maximum of N*(N – 1) intersections between the circles. The derivation of the equations of these circles 

from the given power-difference measurements are described in [2]. We define qij = 10 Pi- Pj( )/10a . The 
sensor coordinates are defined as (xi, yi) and (xj, yj) respectively. Pi – Pj is the power-difference between 
the received signal strength of two sensors. With the measurements from two sensors i and j, we are able 
to find the radio of distances from the two sensors to the target without knowing PT.   This constraint of 
the location along a set of points on a circle is called the Circle of Apollonius [7].  
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The equations for the Circle generated by power-difference measurements are shown in (3). These 
equations are vectorized for purposes of the experiment described later on in this report (Section 6 – 
PDOA Error Analysis).  

 
 

        Within Figure (2), each pair of circles yields a true point in the cell with an “X” and a false point in 
some other cell. A network of N sensors in a low-noise channel produces N*(N – 1) intersection points. In 
the event that there is no intersection between two circles, the midpoint of the shortest line-segment 
between the two circles is chosen as an intersection. In a theoretical no-noise scenario, all of the circles 
will have one common intersection point, which is equal to the actual location. For a realistic scenario, 
where the measurements are not perfect, the intersections tend to converge around the actual location, so a 
grid-search algorithm is used to find a small area where most of the intersection points lie. 

With the circle intersections found, a grid-density algorithm is used. The grid-search process 
overlays a configurable number of cells on the area of interest once all the intersections are determined. In 
this research, a 4x4 grid cell was used. The goal is for the cells to be large enough that the intersections 
corresponding to the true location easily fall into one cell but small enough such that localization of the 
emitter to a single cell meets the desired spatial resolution. Once the grid is created, the search algorithm 
finds the grid cell with the highest number of intersections. In the event two or more grid cells have the 
same number of intersections, the number of intersections in all adjacent cells break a tie. From the 
selected cell the intersections within the cell are averaged to find the final estimate of the target emitter’s 
location. An illustration of the grid density of Apollonian circle intersections is shown in Fig. (2). 
 

 
Fig. 2 — The grid search algorithm concludes that the cell with the highest number of intersection points contains the emitter. It 

then averages the locations of the intersections within that cell to estimate the location of the emitter. 
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3. TIME DIFFERENCE OF ARRIVAL 
 
        The TDOA algorithm locates an emitter source using the intersection of hyperbolic curves generated 
by cross-correlating IQ data from sensors. Unlike PDOA, which uses RSSI, the TDOA algorithm collects 
IQ samples from sensors and cross-correlates the IQ data for each pair of sensors to determine the time-
difference between the arrival of the emitter signal at each sensor pair. The technique used in this research 
is an approximation of the maximum likelihood (ML) estimator described in [4]. Applications of the 
TDOA algorithm are beneficial for environments with high-noise and high-bandwidth emitters, such as 
radar [5].  
 
        The time-difference between the emitter and two sensors will generate a hyperbola and a third sensor 
will generate another hyperbola. The intersection between the hyperbolae is used as the estimated emitter 
position [4]. Using a network architecture similar to the one depicted in Fig. (1), the distance between the 
sensor and actual emitter is ri

2 = (xi – x)2 + (yi – y)2 = Ki – 2yyi + x2 + y2, for all i = 1, 2, … M, where  
 

                            Ki = xi
2+ yi

2    (4) 
 

        If c is the signal propagation speed (assumed to be equal to the speed of light) and one of the sensors 
is selected as a reference sensor (sensor 1) with coordinates (x1, y1) and di,1 is the time-difference between 
sensor i and the reference sensor, then 
 

                  ri,1 = cdi,1 = ri – r1                                       (5) 
 

        For the case of three sensors, a closed-form solution exists. With three sensors, x and y can be solved 
in terms of r1 in (6) as follows: 
 

x
y

é

ë
ê
ê

ù

û
ú
ú
= -

x2,1 y2,1
x3,1 y3,1

é

ë

ê
ê

ù

û

ú
ú

- 1

´
r2,1
r3,1

é

ë

ê
ê

ù

û

ú
ú
r1+
1
2

r2,1
2 - K2 +K1
r3,1
2 - K3 +K1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

ì

í
ï

îï

ü

ý
ï

þï
   (6) 

 
        Inserting this intermediate result into (4) at i = 1 gives a quadratic in r1. Substitution of the positive 
root back into (6) produces the solution, which is used as the emitter estimate. In the event that there is 
more than one positive root, the ambiguity is resolved by restricting the emitter to a specific area of 
interest, where the general direction of the emitter is known. 
 
        For the case of four or more sensors, the system is over-determined as the number of measurements 
is greater than the number of unknowns. In the presence of noise, similar to the PDOA case, a set of 

equations will not intersect at the same point. Let za = zp
T , r1é

ë
ù
û
T

 be the unknown vector, where 

zp = x, y[ ]T . The solution to the system involves imposing the known relationship (4) to the computed 
result via another LS computation, which is a two-step procedure and is an approximation of the true ML 
estimator for emitter localization. The ML estimate of za is as follows, 
 

za » argmin h - Gaza( )T j - 1 h - Gaza( ){ } = GaTj - 1Ga( )- 1GaTj - 1h       (7) 
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where G, h and j are defined as follows. 
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    j =h - Gaza0            (8) 

 
        The expression in (7) is the generalized least-squares solution of (8). For this research, the source is 
assumed to be far-away so an approximation of (7) is found and expressed in (9), the explanation is 
described in [4]. 
 

             (9) 
 
 The elements of za can be expressed as follows, where e1, e2, and e3 are the estimation errors of za 
 

         (10) 
 

Subtracting the first two components by x1 and y1 and then squaring the elements leads to another set of 
equations. 
 

          (11) 
 

where h’, Ga
’ and za

’ are defined as follows. 
 

 
 
 
 (12) 

 
The overall solution and position estimate is obtained from za

’ and is defined as follows. The correct 
solution is the solution that lies within the particular area of interest. 
 

 or        (13) 
 

 
 
 
 
 
 

 
 
 
 



 
6 Matthew Dillon [et al.] 
 

 

4. APPROACH  
 
4.1 Simulation 

The first stage in researching the algorithms involved simulation through MATLAB. One of the 
experiments, referred to in section 3.2 used MATLABTM exclusively. Prior to RFnest emulation, all the 
implementations of algorithms were tested and debugged using MATLAB. For simulation of PDOA 
results, the goal was to simulate a channel model in MATLAB. The ideal case of a noiseless channel was 
first applied, and the path-loss model used was the same one defined in (1), which assumes a log-distance 
path-loss model. To create a more realistic channel, Additive White Gaussian Noise (AWGN) was added 
to the path-loss model to simulate the effects of environmental noise. The controllable parameters of the 
AWGN are the magnitude of the average noise floor and the variance of the sensor measurements due to 
the noise-floor. 

For TDOA due to the error in time-synchronization, the time-difference measurement can have a 
significant deviation from the actual time-difference. The AWGN was also added to the time-of-arrival 
measurements, which are calculated by the theoretical equation for propagation speed being equal to 
distance divided by time, where the speed of propagation is equal to the speed of light. 

 
4.2 Emulation 

It is useful to produce a network prototype that can be fully tested and debugged in a controlled 
laboratory environment with a channel emulator prior to field testing. Central to the RF wireless network 
environment emulator (RFNWEE) is the RFnest D512 series. This allows the user to control channel 
properties such as propagation loss, delay, Doppler effect, multipath, and fading profiles. Other 
components of the lab setup consist of GPS simulators and real-time spectrum analyzers (RSAs). The 
radios used in the research are Universal Software Radio Peripherals (USRPs), which run using GNU 
radio software on a computer connected to the USRP. The architecture of the RFNWEE is shown in Fig. 
(3) and a picture of the DSA lab setup at NRL is shown in Fig. (4). 

The RFnest consists of twelve bidirectional nodes. The radio under test (RUT) is interfaced with the 
D512 through the RF daughterboard within the RFnest, which converts RF to IF bands for signal 
processing. The digital daughterboard (DDB) interfaces with the RFDB and main FPGA of the emulator. 
The channel emulation properties utilize the tapped delay line within the DDB. A network of computers is 
integrated to execute emulation for scenarios and radio operations. The servers are connected into a local 
network via switches and patch panels, for purpose of running emulations remotely. More details of the 
RFWNEE and corresponding experiments can be found in [1]. The RFWNEE GUI is shown in Fig. (5) 

The advantage of using the RFNWEE for this work allows for repeatability, realism, cost and time 
saving and is used as an important first step to preparation for the field test. 
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Fig. 3 — RFWNEE Architecture 
 

 
Fig. 4 — RFWNEE Lab Setup 
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Fig. 5 — RFWNEE Channel Emulation GUI. The path-loss parameters can be controlled manually or automatically based on a 

particular path-loss model 
 
 
 
4.3 Field Testing 
 
        Field testing the sensor network technology was a final and important step toward assessing the 
performance of the geolocation sensor network. All experiments utilized the star topology referred to in 
Fig. (1). The programming language used to create the platforms was Python, because of its ability to use 
GNU radio blocks and start sampling at a specific time, which was particularly important for TDOA 
synchronization.  
 
        The backhaul communications used to obtain sensor data has differed for each experiment. There 
were three types of backhauls used throughout the course of the experiment: USRPs communicating, 
communications over standard wired or wireless Ethernet, and LoRa communication modules. The first 
type of communications backhaul used the USRPs acting as transceivers. They would collect sensor 
information from the environment (RSSI or IQ samples), and create their own GMSK modulated packets 
to be sent to another USRP used exclusively as the fusion radio. The computer connected to the fusion 
USRP would then read the demodulated packets and localize the emitter with one of the algorithms.  
 
        The main purpose of the USRPs was to act as passive sensors, that can detect RSSI or signal IQ 
samples. A disadvantage to using USRPs for the backhaul communications is the poor receiver 
sensitivity. Practical geolocation applications require a larger operational range, so a second backhaul 
employed was the use of WiFi. The WiFi backhaul was used for the TDOA system, where the IQ samples 
encapsulated in packets was sent over the network using Python scripts. The advantage of this backhaul is 
that the bit rate and maximum packet sizes are larger, and can send a packet of approximately 10,000 IQ 
samples. The disadvantage to the WiFi backhaul is its range. In order for packets to be transmitted over 
larger distances, WiFi extenders are needed, and another disadvantage is security. WiFi in a tactical 
environment is highly susceptible to intentional interference from an adversary. 
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        The third backhaul is the LoRa WAN protocol. This wireless technology allows for long-range and 
low-power transmission over the ISM band. The device used was the Microchip RN2903 modem. The 
receiver sensitivity is around -146 dBm, which enables reception for transmission coverage around 15 km 
in suburban areas and up to 5 km in urban areas. The disadvantage is the amount of system throughput. 
The data rate is approximately 100 bps and the maximum packet size is 255 bytes. This backhaul 
technology has only been used for the PDOA experiment with the mobile emitter, shown in section 3.3. 
This backhaul has not been field tested with TDOA because of the algorithm throughput requirements 
needed to compute the location based on IQ samples. Other TDOA methods, such as knowing about the 
emitter modulation, would allow for a simple time-of-arrival report, which would reduce the required 
throughput. 
 

 
5. STATIC SENSOR NETWORK TEST 

The purpose of this experiment is to demonstrate the PDOA algorithm in a proof-of-concept field 
test using a network of GNU radio sensors. The results and field test procedure are found in [3]. The 
geolocation algorithm would estimate the position of a single emitter at a frequency of 903 MHz 
transmitting a pure sinusoidal tone at 15 dBm. The USRP sensors were arranged in an enclosed triangular 
area (three sensors), and square (four/five sensors). This geometry results in an enclosed area of operation 
(AO) of sensor operation. The emitter was moved to three unique locations (inside AO, along AO 
boundary, well outside AO), and the PDOA algorithm ran for multiple iterations with the emitter 
stationary at the particular location. The receiver USRP gains were set to 19 dBm, resulting in a noise 
floor of -105.65 dBm. From calibration, the path-loss constants were found to be a =2.43 and C = 
0.004.  

 
Fig. 6 – Sensor and target placement for field test 

The results of the field test found that the position of the emitter relative to the sensors affects the 
estimated location accuracy. The reason for this is that moving an emitter further away from sensors 
decreases the received signal strength, resulting in greater noise variance and higher location ambiguity. 
The plots in Figs. (6) (7) shows the error measured for each iteration and the cumulative average of the 
error with respect to the overall average. The actual mean error for all three unique locations is found in 
Table 1. The RFnest results show a higher average error for each since the actual locations of the sensors 
was spread further apart to further test the limits of the algorithm. To improve accuracy, the path loss 
could be calibrated for multiple emitter locations versus just one location. 

 



 
10 Matthew Dillon [et al.] 
 

 

0 10 20 30 40 50 60
Iteration

0

50

100

150

200

250

Lo
ca

tio
n 

Es
tim

at
io

n 
Er

ro
r (

m
)

Within AO
Along AO Boundary
Outside AO

 
                                  Fig. 7 — Field Test Result                                                   Fig. 8 — RFnest Emulation Result 
 

Table 1 — Static PDOA Test (Estimation Accuracy)  
 

Scenario Field Test Error 
(m) 

RFnestTM Error 
(m) 

Within AO 8  22 
Along AO Boundary 38  79 

Outside AO 100 126 
 
 
 
 
 
 
6. PDOA ERROR ANALYSIS 
  
        The purpose of this experiment was to quantify the magnitude of error in location estimation based 
on the location of the emitter with respect to the sensor network. In particular, we analyze sources and 
magnitudes of errors when using the PDOA algorithm with a group of sensors. We show that the limit 
where the unknown transmitter is a large distance outside the sensors’ area of characteristic length, the 
error in the emitter’s location is amplified by a factor much greater than unity in the estimate of the  
location. This experiment quantifies the phenomenon wherein the error in the results of PDOA 
localization is exacerbated as the target is moved further from the sensor network. 
 
        The inputs to the PDOA algorithm are the sensors’ locations and differences in the received power as 
measured by these sensors. The emitter power need not be known; so PDOA is useful when a-priori 
information about the emitter is unknown. The set of possible emitter locations generated by each pair of 
sensors is a circle. The intersections of these circles are mapped to a 2D grid and a weighted average of 
the grid locations estimates the location of the target emitter.  
         
        Finding Apollonian circles and their intersections is a non-linear process, and it does have significant 
short-comings regarding accuracy and noise-amplification. Environmental effects such as multipath and 
fading break the assumption of an invertible function relating received power to the distance between the 
emitter and sensor. Furthermore, the algorithm can only locate one emitter at a particular frequency and 
geographic area. It cannot distinguish multiple emitters in the same band. 
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        From the experiment described in Section 5, an important observation was that the algorithm  
accuracy depended on how close the emitter was to the sensor network. The focus of this experiment is to 
quantitatively analyze the effect of the emitter being moved further away from the sensor network, area of 
operation. We employ two-dimensional geometric approximations to show that the non-linearity of the 
PDOA algorithm aggravates measurement noise. We show that even in the case of perfect channel signal 
measurement, the PDOA algorithm will amplify sensor location noise to an arbitrarily high level with 
increasing distance. We calculate the rate at which the errors accumulate and verify the analytical results 
with simulations. 
 

 
Fig. 9 — A diagram of model geometry 

 
      Consider a PDOA situation as in Fig. (9). A group of sensors will locate a transmitter of unknown 
power at an unknown location xtarget. Sensor i is located at xi and there exists a point in space at xcm 
which is much like the center of mass. This point need not actually be the center of mass. D is the vector 
representing the distance between xtarget and xcm. Di is the vector representing the distance between 
xtarget and xi. All we need is a point such that the following relation holds:  

D >> di , " i                           (13) 

        This is our quantitative way of saying that the target emitter is far outside the sensor area of 
operations. We assume that some data fusion node uses the PDOA path-loss equations to calculate the 
distance ratios to the target emitter. That is, for each pair of sensors i and j, the power-level Pi and Pj is 
measured at each sensor location, and Pi – Pj is the power-difference between the two sensors. For our 
application, we use the log-normal path-loss model for position estimation given in (14), where C and  
are path-loss constants. For this experiment,  = 2 and C = 0.004. These values represent the 
approximation of free-space path-loss. 
 

            (14) 
 

When taking the power-difference between two sensors, i and j, the result is as follows, 

            (15) 
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        As described in Section 2, the quantity qij is the ratio of the distances between the target emitter and 
a given sensor, that is defined in (16). In addition, the sensor location incurs a small measurement error 
and white Gaussian noise is used as the additive error (17). 
 

qij =
Di
D j

                                         (16) 

                (17) 
 

        The estimate  incurs a measurement error . We need not define a distribution over this random 
error just yet, but we shall see that the errors are amplified by the geometric assumption in (13), yielding 
larger error terms in the overall estimate of xtarget. We define a perturbation parameter in (18) to quantify 
how large the error becomes 
 

g= maxi di
D

<<1        (18) 

 
        The PDOA algorithm entails the determination of an Apollonian circle for each pair of sensors. On a 
2-dimensional plane, the target lies somewhere on the circle (with center Cij and radius Rij) of every pair 
of sensors. If there were no measurement errors (  = 0 for all i and j), then the estimates of these circles’ 
radii and centers would be exactly correct. However, the errors yield estimated circle parameters  and 

 that are corrupted by noise. The equations for the centers and radii are defined as follows, 
 
 
 
 

 
  (19) 
 

 

 
 

 Let us express the error terms on the right-hand sides of (19) and (20) in terms of the perturbation 
parameter. We do this by expressing the distance ratio for a pair of sensors explicitly separating out the 
part that is of order . Letting  and  for unit-vectors  and , we have, 

 
     (21) 

 
 
 
 

(20) 
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Putting this simplification into our expression for qij,, we have, 
 

 
 
 
where  is a function of the distances relative to the reference point xcm. Note that |H| << 1 
as a consequence of (13). In terms of these new variables, the circle parameter estimates in (19) and (20) 
can be rewritten as follows. 
 

 
                        (16) 
 

 
(17) 
 

 
        From (16) and (17), the terms such as 1/H and 1/H2 dominate. So, what should be expected is for the 
error for most of the circle terms to increase with respect to the change in H. 
 
        Given the expression for the circle center in (16), we can rearrange the equation by taking the 
magnitude of both sides, since the error is associated with the magnitude (distance from the actual circle 
center to the estimated circle center). We then take the expected value of both sides so that we obtain a 
linear equation shown in (18), which is dependent on the expected value of   and  with a slope that is 
dependent on H, which varies with the distance of the emitter from the sensor network. Thus, we can 
show that the variance of the error will increase by a factor inversely proportional to H2. 

 
             (18) 

 
Similarly, the expected value of the circle radius error is found in (19). 
 

       (19) 
 
Rearranging the equations into this form allows us to verify the relations using a sufficiently large sample 
size for a simulation to calculate the expected value and variance of error. 
 
        To find the intersection between circles, we use a coordinate independent system by letting two 
circles be represented by  for i = 0, 1 where i represents a particular circle. We define 

 and . The intersection points can be written in the form as shown in (20). 
 

        (20) 
 

(15) 
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The equation for s and t are shown in (21) and (22). 

 
      (21) 
 
 

 
 
             (22) 

 
        Expanding these equations to obtain the first-order term plus the error is difficult, so rather than 
using the same method for the center and radii, we inspect the terms according to their orders of 
magnitude. Looking at s, both the numerator and denominator are on the order of 1/H2, which means s is 
close to unity. Similarly, t is also close to unity. From (20) it is clear that the error in X is on the order of 
1/H, so we should expect to see the value of error increase linearly. 
  
        To verify the analytical results of the PDOA error analysis, MATLABTM was used to simulate the 
error for the circle centers, radii, intersections, and overall error in target estimation as the emitter is 
moved further outside the area of sensor operation. The locations of the sensors were arbitrarily chosen 
and the center of mass of the sensors was chosen as the reference point for the model geometry. At each 
emitter location, the ratio of the distance of the emitter and the furthest sensor from the center of mass 
was taken and at each of these points, the PDOA algorithm was performed at a given emitter location for 
n = 1000 iterations with   and  changing each time. Of the data (center and radii) generated by each 
iteration, the expected value and variance of the result is taken. The variance in terms of   and  , ranges 
from 1 to 10. Three locations of the emitter were chosen at 10, 20 and 30 kilometers from the network 
reference point respectively. 
 
        Figure 10 instances show the results of the expected error value of circle radii and centers as well as 
intersections and overall location estimation error over the entire emitter path extending outward from the 
sensor area of operation. In addition to the plot of experimental error, the slope of each line was 
calculated according to the formula for H. The equation for H can be rewritten as follows. 
 

   (23) 
 
        From (23), it follows that H is dependent on the distance of the emitter from the sensor network, 
where the sensors distance from the reference point are fixed. The values of H were calculated for each of 
the three distances and the slopes were calculated from (18) and (19) to give the theoretical slope. 
 
        The plots shown in Fig. (10) illustrate the slope of the line with theoretical data (solid line) compared 
to that of the experimental data (box-plot). From Fig. (10a) and Fig. (10b), the experimental mean or 
expected value of error for both the center and radii of an Apollonian circle is close to that of the 
theoretical expected value using the equation derived from the previous section. This shows that the 
simulated graphical results and the analytical equations derived are consistent. Similarly, it is shown from 
the box-plot that an increase in expected value of error will also correspond to an increase in the variance 
of the error of the Apollonian circle terms. 
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(a)                                                                                            (c)  

 
(b)                                                                                           (d) 

 
Fig. 10 — (a) Expected value of circle center error as a function of expected value of sensor noise. (b) Expected value of circle 
radii error as a function of expected value of sensor noise. (c) Expected value of error in Apollonian circle centers and radii as a 
function of distance of the emitter from the sensor network (d) Expected value of overall location error as a function of distance 

from the network   
 

        In addition to verifying the analytical Apollonian circle perturbation equations, the effect on the 
accuracy of the algorithm of emitter distance from the sensor network was also simulated. A range of 
emitter distances was chosen ranging from 1 kilometer to 45 kilometers from the reference point.  At each 
distance, the average error over n = 1000 iterations of PDOA algorithm was calculated at each distance 
for circle centers, radii, and intersections. The overall expected error of the estimated emitter location was 
also computed to demonstrate that errors in the Apollonian circle parameters accumulate, leading to an 
overall effect on the accuracy of the algorithm. Fig. (10c) shows the expected value of error for circle 
radii and centers. As expected, since the error in the center increases on the order of 1/H, the relationship 
should be linear and for the radii, the relationship should be quadratic as the error increases on the order 
of 1/H2. 
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        The plot in Fig. (10d) shows the expected error for circle intersections and the overall location 
estimation. While it is difficult to mathematically analyze the error in overall location, it is expected to be 
linear since it should correspond to error in the intersections, which also increases on the order of 1/H. 
 
        From these results, it is clear that the variance and expected value of error is amplified for all of the 
terms (centers, radii, and intersections) and the overall estimation error, the further the emitter is moved 
away from the area with respect to the center of mass of the sensors. These results support the finding of 
the analytical expressions of noise amplification linearity in all of the terms with respect to H. An 
important finding is that the analytical results do not support intuition that in a noisy environment, the 
noise should help to improve accuracy in some instances. The reason for the dominance of error in the 
algorithm arises from the noise terms being collected in the non-linear expressions for the circle centers 
and radii. 
 
        For a practical implementation of a sensor network, the sensor RSSI is not noise-free, so for a 
separate analysis, we now assume that some noise is added to the received power of a sensor. A modified 
equation (16) now has a noise term  added and we rewrite the equation as follows. 
 

    (24) 
 

        To find an expression for the modified terms for center and radii, we assume  << 1 and H << 1. 
The expression for the modified circle center is rewritten in (25) 
 

         (25) 

        If H >> , then  can be approximated as . Rewriting the center in terms of its 

first order plus the perturbation terms, the equation is rewritten in (26) 
     
(26) 

 

        The slope of the linear equation is now affected by the scalar . If the absolute value of this 
term is between zero and one, then the slope of the error function will be reduced. However, this is not 
always guaranteed as the sign of  and H have an equal chance of being positive and negative. While 
noise in power readings can sometimes help to reduce the location error due to sensor position noise, it is 
equally likely that it can exacerbate the error as well. 
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7. PDOA MOBILE EMITTER FIELD TEST 
 
 The purpose of this experiment was to measure the performance of PDOA algorithm with a 
mobile emitter traveling different combinations of paths and different sensor topologies. While the 
previous field test demonstrated how PDOA performs under more friendly sensor topologies and a fixed 
emitter, several of the emitter paths contain hostile conditions that are more realistic, such as obstruction 
of line-of-sight by buildings and irregular sensor topologies. A vehicle was used to drive the emitter 
USRP around NRL. For this experiment, the emitter consisted of a USRP N210 transmitting AM and FM 
signals. These two modulations were used to determine if there was any correlation between the 
modulation and the algorithm accuracy. 
 
       For this experiment, three different sensor topologies were chosen: a linear topology over a small 
area of operation (short linear), a linear topology over a larger AO (long linear), and a triangular topology. 
Three different emitter paths were also chosen and are shown in Fig. (11). The first path is a path around 
the NRL mall (orange path), with the least amount of obstruction to the line-of-sight. The second and 
third paths are the river (blue path) and partially obstructed path (green path), in which part of the path 
involves the mobile emitter vehicle driving behind building out of sight of most to all of the sensors. 
 

 
Fig. 11 — Google earth shows the three emitter paths: mall loop (orange), river (blue), and partially obstructed (green) 

 

 
Fig. 12a — Short Linear Topology. (Red icons indicate sensor locations) 
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Fig. 12b — Long Linear Topology. (Red icons indicate sensor locations) 

 
Fig. 12c — Triangular Topology. (Red icons indicate sensor locations) 

 
        For the fusion node, the LoRa WAN was used as a backhaul for the sensors to send their data to a 
computer containing the PDOA processing algorithm. In addition, the fusion node would generate and 
update a KML file consisting of the real-time locations of all sensors and the latest estimation of the 
emitter. This Google-Earth interface of the sensor topologies is shown in Fig. (12a-c).  

 
 For each scenario, the algorithm’s accuracy was calculated by the measured error of all estimated 
points. Fig. (13a-c) shows three different plots of the accuracy of the location estimation for the three 
different emitter paths. Each plot contains the error, calculated every 20 seconds over the entire course of 
the path for each sensor topology.  

     
(a)                                                                                      (b) 
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      (c) 

Fig. 13 — Geolocation estimation error for (a) Mall path (b) River path (c) partially obstructed path 
 

 From the results, it is clear that there is a direct correlation between the percentage of accuracy 
and the average error for each particular scenario. This is to be expected since a larger average RMSE in 
the distance from the actual emitter to the estimated emitter resulted in fewer measurements being within 
the 20 m range of tolerance. Some important findings were the large drop-off in accuracy from the mall 
emitter path to the river and the partially obstructed paths. This significant decrease in performance was 
due to the emitter being obstructed by more buildings throughout most of the duration of the scenario. 
Oftentimes, the fusion node was not able to triangulate a position, because the emitter was below the 
noise floor of -106.65 dBm. One important result was the slight decrease in accuracy from the linear to 
triangular topologies of the mall path. A triangular topology should be more accurate since there is less 
ambiguity in the geometry of the Apollonian circle intersections. The reason for the less accurate outcome 
is that one of the sensors was obstructed from the line-of-sight with the NRL mall, which led to less 
accurate RSSI measurements for that particular sensor. 
 
8. TDOA EMULATION 
 
        For the TDOA measurement to be accurate, the receiver radios should be well synchronized. 
Utilizing the GPSDO provided in the USRP to receive the GPS signal, the radios are able to be 
synchronized to a common clock to achieve time-aligned samples on the order of nanosecond resolution. 
Once all sensors are synchronized, each sensor collects IQ samples. The emitter used in this experiment is 
a BPSK modulated signal with its data generated using PN23 randomization. BPSK was chosen due to its 
correlation properties, which is needed to measure the time difference. Each pair of sensor data is cross-
correlated to measure this time-difference. The result of the correlation contains a peak in the time-
domain, where the peak represents the time-difference between the two correlated sensors. When the data 
is computed, the position is estimated using the algorithm described in section 1.3. The TDOA system is 
shown in Fig. (14).  
 
        This experiment was performed using the RFWNEE described in section 2.2. Three sensors are used 
in this experiment, and the emitter was mobile, and traveled the NRL mall loop path similar to the 
experiment described in section 3.3. The accuracy was evaluated using the same three topologies from the 
experiment in section 3.2 (short linear, long linear, and triangular).  
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Fig. 15 — Block diagram of TDOA system 

 
 
 

     The results of the emulation are shown in Table 3. From these, it was found that the short-linear 
topology had the highest error. This was because since the sensors were spaced closer together, the time-
difference between them was smaller. For this experiment, the USRP N210 hardware was used, and the 
maximum sampling rate was 25 MHz, resulting in a sample resolution of 40 nanoseconds. This lower 
resolution restricts the accuracy of the time-difference measurement, and as a result the accuracy of the 
localization algorithm. Another finding was that when the emitter was further away from the sensors, the 
accuracy was improved, because of larger time-differences to offset the 40-nanosecond resolution.  
 
 

Scenario Error (m) 
Short-Linear 37.2 
Long-Linear 26.8 
Triangular 31.0 

 
9. CONCLUSIONS  

The experiments conducted have given valuable insight into the various methods of emitter 
localization and the practicality of different network technologies used for a geolocation system. We have 
tested with multiple sensor configurations, mobile emitter paths, and obtained results for a variety of 
target signals, continuous waveforms and analog and digital modulations. Two of the algorithms studied: 
TDOA and PDOA and their associated experiments demonstrated important trends in sensor geometry 
with respect to the target emitter. Through simulation, emulation and field-testing, it was found that in 
PDOA, the further an emitter is away from the sensor network, the larger the error. This trend was not 
present in TDOA due to its noise-resilience. While PDOA has been field tested, potential future work 
would relate to studying field test implementations of TDOA, using LoRa backhaul to implement a 
coastal-monitoring sensor network to track ship radar or other commercial signals of interest. Other 
potential future work is using more detailed path-loss models to track emitters in an urban environment 
with increased accuracy.  
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