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Novel numerical methods for optimal control and optimization problems
involving fractional-order differential equations

US Airforce Project 1510A095
Principal Investigators: Song Wang and Volker Rehbock
Department of Mathematics & Statistics
Curtin University

Aims of the project

The aim of this project is to develop numerical solution methods for optimal control
problems which are subject to systems of fractional differential equations. These systems
yield more accurate representations of many real world systems and can incorporate a more
global view of the system state. Amongst other advantages, this allows modellers to include
features such as memory effects in either space or time. As fractional order systems require
quite distinct numerical solution methods, it is a major task to develop numerical methods for
both optimal open and closed loop control problems. Our aim is to develop effective and
efficient numerical methods for the construction of solutions to fractional order optimal
control problems. As very few, if any, such methods currently exist, our work will enable
future researchers and practitioners to address and solve practically important optimal control
and optimization problems involving fractional-order differential equations.

Activities and achievements within this project

This project officially started on 23 September 2015 and ended on 22 September 2017.
However, our investigation and research activities in the area started early 2015 since we first
proposed the project. The research associate, Dr Wen den Hollander started her employment
on 24 October 2015. The past two year are very fruitful years during which we have studies
various optimal control and optimization problems and their applications arising in both
control engineering and financial engineering. Various research activities have been
supported by the project in the as outlined below.

1. A 2"-order one-point numerical integration scheme has been developed and analysed
for solving fractional dynamical systems which is an integral part of optimal control
problem. Efficient and accurate numerical methods, essential for solving fractional
optional control problems, are scarce in the open literature. In this paper we propose
an efficient and easy-to-implement numerical method for an a-th order ordinary
differential equation when o € (0,1), based on a one-point quadrature rule. The
quadrature point in each sub-interval of a given partition with mesh size h is chosen
judiciously so that the degree of accuracy of the quadrature rule is 2 in the presence of
the singular integral kernel. The resulting time-stepping method can be regarded as
the counterpart for fractional ODEs of the well-known mid-point method for the 1st-
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order ODEs. We show that the global error in a numerical solution generated by this
method is of the 2"-order accuracy, independently of a. An extension of this method
to dynamical systems involved in optimal control problems has been discussed.
Numerical results are presented to demonstrate that the computed rates of
convergence match the theoretical one very well and that our method is much more
accurate than a well-known one-step method when o is small.

A research paper containing the developed theoretical and numerical results has been
published in an international journal.

A numerical algorithm combining a generalization of the algorithm in Item 2 above to
a system of equations and a gradient-based method is developed for solving general
fractional optimal open-loop control problems (a € (0,1)) with multiple states and
control variables. This algorithm has the merit that it has a 2"*order convergence rate
and is computationally efficient, and thus can handle large-scale fractional optimal
control problems. A gradient formula has been developed which forms the basis of the
numerical method for multiple state and control problems. Convergence of the
method has been proven. The combined method has been coded using Matlab
programming language and extensive numerical experiments have been conducted to
demonstrate the performance of the method using optimal control problems with
multiple states and controls. The numerical results show that the numerical scheme
developed in this project is able to solve fractional optimal control problems of
practical significance.

A research paper containing the detailed description of the method and numerical
experimental results has been submitted to an international journal for publication.

A 2"-order finite-difference method for a fractional differential complementarity
(variational inequality) problem of order ¢ € (1,2) arising from the stochastic optimal
feedback (closed loop) control in financial engineering. In this work we have

designed the finite-difference method for solving the 2"-order fractional partial
differential equation and showed that the truncation error of the method is of 2"-order.
Numerical experiments have been performed to demonstrate the accuracy and
efficiency of the method. Dr. Song Wang presented the results as a plenary speaker at
the 6™ Conference on Numerical Analysis & Applications held in June, 2016 in
Lozenets, Bulgaria.

Two research papers have been in published respectively in an edited volume of
Lecture Notes in Computer Science and an international journal.

Numerical solution of a high-dimensional Hamilton-Jacobi-Bellman (HJB) equation
arising from an optimal control feedback problem in engineering. In this paper we
propose a combination of a penalty method and a finite volume scheme for a four-
dimensional time-dependent (HJB) equation arising from a stochastic optimal control
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problem in pricing financial options with proportional transaction costs and stochastic
volatility. The HIB equation is first approximated by a nonlinear differential equation
containing penalty terms. A finite volume method along with an upwind technique is
then developed for the spatial discrtization of the nonlinear penalty equation. We
show that the coefficient matrix of the discretized system is an M-matrix. An iterative
method is proposed for solving the nonlinear algebraic system and a convergence
theory is established for the iterative method. Numerical experiments are performed
using a non-trivial model pricing problem and the numerical results demonstrate the
usefulness of the proposed method.

During the period of this project, S. Wang has also in-kind contributions towards the
development of efficient numerical methods for the optimal control of robots.

Use of funds

The funds have mostly been used for the employment of the research associate, Dr. W. den
Hollande. Dr. S. Wang’s travels to the Bulgarian conference to deliver his plenary address
was also partially supported by the project. Dr. S. Wang has also travelled to HK in
December 2017, supported by Curtin University and this project, to deliver an invited talk
entitled “Numerical solution of fractional optimal control problems’ at *“The Workshop on
Variational Analysis & Stochastic Optimization’ organized by HK Polytechnic University.

Publications and reports within this project

(W. Li is the maiden name of W. den Hollander.)

1.

W. Li, S. Wang, V. Rehbock, Numerical solution of fractional optimal control,
submitted for publication.

W. Li, S. Wang, V. Rehbock, A 2"-order one-point numerical integration scheme for
fractional ordinary differential equations, Numerical Algebra, Control & Optimization,
Vol.7, No.3, 273-287 (2017).

W. Chen, S. Wang, A 2nd-Order FDM for a 2D Fractional Black-Scholes Equation.
In: Dimov ., Farago ., Vulkov L. (eds) Numerical Analysis and Its Applications.
NAA 2016. Lecture Notes in Computer Science, Vol. 10187. Springer, Cham, 46-57,
(2017).

W. Chen, S. Wang, A power penalty method for a 2D fractional partial differential
linear complementarity problem governing two-asset American options pricing, Appl.
Math. Comp. Vol.305, 174-187 (2017)

W. Li, S. Wang, Pricing European options with proportional transaction costs and
stochastic volatility using a penalty approach and a finite volume scheme, Computer
& Mathematics with Applications, VVol.73, 2454-2469 (2017).
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6. M. Tan, L.S. Jennings, S. Wang, Analysing human periodic walking at different
speeds using parametrization enhancing transform in dynamic optimization, Pacific
Journal of Optimization, Vol.12, 557-586 (2016).

Attachments: Papers and reports listed above.
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Numerical solution of fractional optimal control *I

Wen Li, Song Wang and Volker Rehbock

Department of Mathematics & Statistics
Curtin University, GPO Box U1987, Perth WA6845, Australia
wen.li@curtin.edu.au; song.wang@curtin.edu.au
V.Rehbock@curtin.edu.au

Abstract

This paper presents a numerical algorithm for solving a class of optimal con-
trol problems with a dynamic system containing fractional differential equations.
We first propose a robust 2nd-order numerical integration scheme for the fractional
system, based a set of judiciously chosen quadrature points. The objective is ap-
proximated by the trapezoidal rule. We then apply a gradient-based optimization
method to solve the discretized optimal control problem. Formulas for calculat-
ing the gradients with respect to the unknown discrete control values are derived.
Computational results demonstrate that the proposed method is able to generate
good numerical approximations for optimal problems with multiple state and con-
trol variables. The results also show that the method is robust with respect to the
fractional orders of derivatives involved in the dynamics.

1 Introduction

A fractional order optimal control problem (FOCP) involves dynamics which are described
by fractional differential equations. In the last decade, fractional order optimal control
problems have arisen in many fields such as mathematics, engineering, biology, economics,
finance and management. Various methods have been developed for solving these prob-
lems (see, for example,[1, 2, 3, 4, 5, 7, 12, 18, 19, 25, 26, 32, 37]). In [1, 2|, Agrawal
extended the classical control theory to fractional dynamic systems and derived fractional
Euler-Lagrange equations for FOCPs. These equations give the necessary conditions of
optimality for unconstrained FOCPs. The fractional Euler-Lagrange equations have been
solved numerically in [1, 3, 5] where the performance index is assumed to be a quadratic
function. Based on the work of [1, 2], Singha and Nahak [36] derived necessary optimality
conditions for a class of FOCP, where the dynamical constraints comprise a combination
of classical and fractional derivatives. In [4, 7, 12, 18, 19, 26, 32, 37]), the authors solved

*This work is supported by the AOARD Project # 1510A095 from the US Air Force.
TSubmitted to an international journal for publication.
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the FOCPs directly without reference to the necessary optimality conditions of the con-
tinuous problem. Tricand and Chen [37] converted FOCPs into a general, rational form of
optimal control problem by a rational approximation method. In [4, 7, 12, 18, 19, 26, 32])
the authors used polynomial approximations of the state and control to solve an FOCP.
In these methods, they first derived an operational matrix for the fractional derivatives
based on the polynomial approximation. Then, the system of equations derived from the
dynamic constraints was adjoined to the performance index. By deriving the necessary
conditions for the optimality of the performance index, the given FOCP reduces to a
problem of solving a system of algebraic equations which can be solved by an iterative
method. Bernstein polynomials [4, 32], Jacobi polynomials [12, 18], Legendre polynomials
26, 19] and Chebyshev polynomials [6] have been used in these papers.

Although many researchers have studied FOCPs, most of them considered only one-
dimensional FOCPs involving one state variable and one control variable. Recently,
Alipour et al. [4] and Bhrawy et al. [7] developed numerical schemes for multi-dimensional
FOCPs. In [4], the authors considered a FOCP in which the performance index and the
constraint conditions of fractional differential equations are polynomial functions of the
state and control variables. Bhrawy et al. [7] solved a multi-dimensional FOCP with
a quadratic performance index and linear fractional dynamic constraints. Both of these
papers used polynomial approximation methods for solving the FOCPs. In [4], Alipour
et al. used Bernstein polynomials, whereas Bhrawy et al.[7] used orthonormal Legendre
polynomials. It is well known that approximation of the solution to a differential equation
by high-order polynomials often results in ill-conditioned algebraic systems and numerical
instability. To our best knowledge, there are no numerical methods in the open literature
for general FOCPs with multiple states and controls which are comparable to popular
existing numerical methods for conventional optimal control problems.

There are two commonly used definitions of a fractional derivative: the Riemann-
Liouville and the Caputo fractional derivative representations [34]. In the paper, we use
the Caputo fractional derivative which is defined as follows.

Definition 1.1 Assume that y(t) is differentiable on [0,00) for a positive constant T and
0 < B < 1. The Caputo derivative of order (3 of the function y(t) is defined as

3 B 1 Loy(n) -
DI = 5 |

fort >0, where I'(-) denotes the Gamma function.

In what follows, we present a new direct numerical method for a general multi-
dimensional FOCPs. The aim is to present a tractable method which can be applied
to many FOCPs of practical significance. The general problem considered in the paper is
described as follows.

I :/0 L(t, o(t), u(t)) dt + S(x(T)), (1.1)
subject to { ;%(;xitli J(t2(t)ut), te(0T], (1.2)
g(u(t)) <0, t € (0,7T], (1.3)
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where z(t) = (z1(t), 22(t),...,2,(t))" € R™ and u(t) = (ui(t),ua(t), ..., un(t))’ € R™
are the state and control variables for some positive integers n and m respectively, T' > 0
is a fixed constant, f = (f1, fo,..-, fu)", L, S and g = (91, g2, .-, gp) " are known functions
for a positive integer p, 2° € R™ is a given vector, U C R™ is the set all bounded piecewise
continuous functions on [0, 7], and

OD?.%'(t) = (thal.I'l(t), 0D?2x2(t), Ce ,OD?"In(t))T

with (D;"z;(t) denoting Caputo’s «a;-th derivative of z;(t) defined in Definition 1.1. In
the literature, almost all papers on FOCPs only consider a fractional order o € [0.5,1).
In this paper, we consider FOCPs for all o; € (0,1) ,i=1,2,...,n.

To solve (1.1)—(1.3) numerically, we need to first introduce an approximation scheme
for the system of fractional differential equations (1.2). In the open literature, there
are a number of different methods for solving the initial value problem (1.2). See, for
example, [14, 15, 16, 17, 9, 21, 22, 23, 24, 27, 28, 31|. However, none of these methods
have a satisfactory rate of convergence when « is close to zero. In our recent work
[30], we proposed a one-step 2nd-order numerical integration scheme for solving a scalar
fractional differential equation based on a one-point quadrature rule with a judiciously
chosen point in each mesh subinterval. This one-step numerical integration scheme has
a 2nd-order rate of convergence which is independent of a.. It is also easy to implement
and computationally inexpensive. In this paper, we will first extend this method to the
system (1.2).

The rest of the paper is organized as the follows. In Section 2, we first approximate
the constrained problem (1.1)—(1.3) by an unconstrained one using a well-known penalty
approach. Then we convert (1.2) to an equivalent system of Volterra integral equations.
In Section 3, we propose a discrete approximation of the objective function and then
derive an explicit scheme for the Volterra integral equations based on a Taylor expansion.
In Section 4, we derive a formula for calculating the gradient of the discretized objective
with respect to the decision variables. Finally, we propose a gradient-based algorithm for
the problem on the basis of this gradient formula. In Section 5, numerical examples are
presented to demonstrate the accuracy and effectiveness of the proposed method. Section
6 concludes the paper.

2 Preliminaries

We first make the following assumptions on the given functions in (1.1)—(1.3):
Al. f is twice continuously differentiable with respect to all its arguments.
A2. L is continuously differentiable in x and w.
A3. S and g are continuously differentiable with respect to x and u respectively.

Clearly, (1.1)—(1.3) is a constrained optimal control problem. We first approximate
the problem by the following unconstrained optimal control problem using a penalty
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approach.

min  F(u) = Fu) + A / g5 (u(t)))2 dt (2.1)

ueU

subject to { (2.2)

where [z], = max {0,z} and A > 1 is the penalty constant. This penalty approach has
been used extensively in optimization and conventional optimal control [10, 11, 20, 29,
33, 35, 38] and it has been shown that this penalty method is exact in [13, 38].

Since the penalty term in the integrand of (2.1) is smooth, it can be combined with
the original objective integrand L to form a new integrand which is still continuously
differentiable in x and u. Therefore, we may rewrite the penalized problem (2.1)-(2.2) as
the following general unconstrained form:

min  F(u) (2.3)

ueU
subject to { - it 2(t)ut), te(01], (2.4)

where z(t),u(t), f, L, S,2° and (D@z(t) are as defined before and F' now contains the
penalized constraints.

Using Definition 1.1, one can show the following initial value problem is equivalent to
a Volterra integral equation as given in the following lemma.

Lemma 2.1 Let § € (0,1) be a constant and ¢(t,y(t)) a continuous function. Then the
1matial value problem

{ oD y(t) = ¢(t,y(t), te€(0,T],
y(0) = yo

18 equivalent to the following Volterra integral equation:

y(t)ZyovLﬁ / (t — )" o(r.y(r) dr, B e (0,1),

fort > 0, where yqy is a given initial condition.

PROOF. The proof can be found in [8] and is therefore omitted. O

Using Lemma 2.1, we rewrite (2.3)-(2.4) in the following optimal control problem:

min  F(u) (2.5)
subject to  x;(t) = 2V + I‘(;) /0 (t — 1) fi(r, 2(7), u(T)) dr, (2.6)

te (0, 7], i=1,2,...n.
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3 Discretization of (2.5) and (2.6)

In this section, we propose an algorithm for the numerical solution of (2.5)—(2.6).

Let N be a given positive integer. We divide [0, 7] into a uniform mesh with the mesh
points t; = jh for j =0,1,..., N, where h = T/N. Using this partition, we approximate
the objective F' in (2.5) with the trapezoidal rule as follows.

Flu) g Lty 2(to), i) b+ Y L, a(ty), u(t)h
b5 Lltn altn), ultn)h+ S(a(ty). (3.1)

By (2.6), for each i = 1,2,....n and j = 1,2,..., N, we have

vi(t;) = @i+

0 L ! T a(), u(T)) dr
g [ G ). ) d

0 1 d o . a;—1 ¢
= @t 5y ; /<k_1>h (jh = 1) fi(r, (7)), ul(r))dr, (3.2)

We now consider an approximation for the integral on the right hand side of (3.2).
By Assumption A1, f;(¢, x(t),u(t)) is twice continuously differentiable with respect to ¢,
x and u. Thus, for k = 1,2,...,j, we use Taylor’s theorem for f;(7,z(7),u(7)) at any
point 75, € ((k — 1)h, kh) to yield

filr,z(7),u(r)) = fz’(T;ka x(T;k>a U<T]Zk)) + K;k(T - T;k) + Cj’k(T - T;k)2v (3.3)

where ¢’ is the coefficient of the reminder of the expansion and

i ofi - O f; Oz,
K== Y - -l
01 l(7i (i) ulriy) — Oz (7 a(ri) u(rh) OT
+> o -
Ou, I( (Thert(Th) () ot I(

Therefore, replacing f;(7,z(7),u(7)) in the integrand of the last term in (3.2) with the
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RHS of (3.3), we have, for any k =1, ..., j,

1 kh ' -
r /( (jh —7)* 7 fi(r, a(7), u(r))dT

@) k—1)h
Iﬁ[ (3 = 7 il () ulr)) + Ky = Thldr + Rl

k—1)h
= i (T 2 (750), ulTy) {(Jh —(k=1Dh)*  (jh —kh)~

( i)

K]’-k kh . . 4
+ / jh—1)%" (1t —714)dr + R:
F(al) (h—1)h ( ) ( ]k) ik

Q; %

L i . i . o
:F(a )fl( le (7] )7U<Tjk>>[(j_k+1) L= (= k)™
K]?k kh . o i i
+ F(OC) /(k " (]h_T) ¢ (T_Tjk)dT+Rjk; (34)
) 1 kh L .
where 1, = —/ Jh—T7)% (T — 73)7dT
ik [ay) (k—l)h( ) in( i)

We now consider the choice of 7/,. From (3.4) it is clear that 7}, should be chosen
such that the second term becomes zero so that the truncation error in (3.4) is R;k This
choice of 77, is given in the following theorem.

Theorem 3.1 For any given j € {1,2,...,N} and k € {1,2...,5}, the unique solution

to
kh A
/ (jh — 1) Y1 — Tj)dT =0
(k—1)h
s given by
G R0 G R o+ D)IG ko Dk = 1) — (= )
" (i + D[ =k + 1) = (G — k)]
(3.5)
Furthermore, (k —1)h < 7, < kh.
PROOF. See the proof of Theorem 2.1 in [30]. O

Substituting the expression for 7, in (3.5) into (3.4) and combining the resulting
expression with (3.2), we have the following representation for x;(t;).

0 hei 2 i i i . o . i i
xi(tj) =x; + m ; fi(ijx(Tjk)? U(Tjk))[(J —k+1)" = (j— k)] + Rj’ (3.6)

for j = 1,2,..., N, where T;k is given in (3.5) for k = 1,2,...,j and Rg- = i=1 R;,C
Omitting the remainder Ré- in (3.6), we have an equation approximating (3.2) which has

the truncation error Rj. An upper bound for RY is given in the following theorem.
DISTRIBUTION A. Approved for public release: distribution unlimited.
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Theorem 3.2 Let Assumption A1 be fulfilled. Then the following estimate holds:
|R!| < Ch?,
where C' denotes a positive constant independent of h.

PROOF. See the proof of Theorem 2.2 in [30]. O

From (3.6) it is clear that to compute x;(t;), we need to calculate f;(7} Jk, (T;k), u(Tj’k)),

where (7 ]k) = (z1(7, ]k) (T jk) -’?n( ]k)) u(T, ]k) = (u (7, ]k) us(T ]k) Um(T;k)) and
k =1,2,...,5. However, x(T;k),u(T]’k) are not available directly from the scheme, al-
though the points T;k for feasible 7, j and k are known. Thus, approximations for SL’(T;k)
and U(T;k) need to be determined. Next, we propose a numerical scheme based on a linear
interpolation and a Taylor expansion for approximating :L“(T;k) and u(7; ).

For any indices j and k satisfying 1 <k < j < N, since 7j;, € = (ty—1,tx) by Theorem
3.1, we use the following linear interpolation to approximate z;(7j,) and u,(7j,):

where
p;.k = T € (0,1). (3.9)

The truncation error in the above linear interpolation is of order O(h?). Using (3.7) and
(3.8), we approximate fi(7}y, z(7};), u(7};)) as follows.

fz(T;kvx(T;k)vu(T;k))
~ fi (T @ (ter) + (@ (tn) — 2(te-r)), ulti—1) + pjp(u(ky) — uts-1)))  (3.10)

The truncation error for the above approximation is also of order O(h?).
Replacing fi(7},, ©(7};.), u(7};,)) in (3.6) with the RHS of (3.10), we have, up to some
terms of order O(h?), the following scheme for (2.6):
j . .
2i(t) = £4ha, [fz (T 2 (teo1) + Pl (@ (te) — 2(ti-1)), ulte-1) + Pl (u(te) — ulti-1)))

k=1

(G =R+ ) = (= k™) (3.11)

forj=1,2,..., N, where ho, = 7075 Z+1) and 7/, is defined by (3.5). Clearly, (3.11) defines a

time-stepping scheme for (2.6) with a truncation error of order O(h?) because of Theorem
3.2 and the truncation error in (3.10).

The above scheme is implicit as it constitutes a nonlinear system in z(¢;) = (z1(¢;), -+ , 2. ()"
An iterative method such as a Newton’s method can be used for solving (3.11). However,
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it is also possible to define an explicit single step scheme by further approximating the
jth term in the sum in (3.11) by the following Taylor expansion:

(2t 1) +P§j($(tj) — 2(tj—1)), u(tj—1) + Pl (u(t;) — ult;—1)))
—fz( 7552 (tioa), ultia) + o5 (ulty) — u(t;—1)))

o i
" Z Az I (Pl (@(ty) — xi(tj-1)))
+ (’)(hQ). (3.12)
Thus, combining (3.12) and (3.11) yields

(7552 (ti—1)u(tj—1)+p%; (ucts) —ucti-1)))

i(t;) =17 + ha, [f, (Tji (ti1) + Pl (2 (tr) — 2(tr-1)) ulti-1) + Pl (ulty) — u(ti-1)))

§~

??‘

((J—Fk+ 1)6” —(j— k)" )} + Do fi (7552t 1), ulty—1) + pj(ulty) — u(t;-1)))
+ h Y [2—2

=1

’(T]?j,z(tj—l)m(tj—l)+ﬁ§-j(U(tj)—u(tj—l)))<p§'j (xl(tj) - xl(tjfl)))] + O(hz)-
(3.13)

Let 27 = (z1(t;)), xa(t;), ., xn(t;))T and v/ = (ui(t;),ua(t;), - ,um(t;))" for j =

0,1,...,N with the given initial condition x°. Omitting the truncation error terms of

order O(h?) and re-organising (3.13), we have the following linear system for 2.
B2 ui™ w)a? = O (a0, 2t 2, ! ), j=1,2,...,N.  (3.14)

where B7 is the n x n matrix given by

1—bl, —b, ... —b,
Y Y —b
B byy  1—by ... b3n (3.15)
P
with of;i
b Z 1, O 3.16
il J] 101‘1 7- Y A TV A 1+p (uﬂ —ui—1)) ( )

fori=1,2,...,n,1=1,2,...,n and CY :(C{,C’%,...,cﬁl) with

j—1

o =+ ha, D | i (Tho o0+ ply (@ — 87 0+ gl (0 — w )

k=1

(G =k +1)% = (G = B)™N)] + ke fi (7 27~ 0™ 4ty (00— w3 ))
—~ ixg—lbgl. (3.17)

It is clear that to calculate 7, we need to solve the system of equations (3.14)-(3.17).
Next we show that (3.14)-(3.17) is uniquely solvable when h is sufficiently small.
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Theorem 3.3 The system (3.14)-(3.17) has a unique solution when h is sufficiently
small.

PROOF. We will first show that for j = 1,2,..., N, B’ is a strictly diagonally dominant
matrix, i.e.,

L=t > Y b, i=12..n
1=1,l#i
Since ‘ A
1- bgz >1- |bZz|7
we only need to show that
L= (o > > b,
I=1,li

or equivalently,
S o<1, Vi
I=1
Note that p%; € (0,1) by (3.9) and h,, > 0. We have, from (3.16),

|b | < ha, afz

|<”, (tj-1), (tj1>+p;‘-j<u<tj>—u<tj1)>>‘-

Since f; is twice differentiable in z on [0,1], 3 f L is bounded on [0, 1]. Let

M = max Of;
1<i<n a:L'l
1<li<n
We have B
V| <hoM=———M
1l ' o +1)

Choose h; = ( O"H))”‘Z and h = minj<;<,{h;}. When h < h, we have

Ol < -n=1, Vi
=1 n

Thus, B’ is a strictly diagonally dominant matrix for all j. By the well-known Levy-
Desplanques theorem, we conclude that B’ is a non-singular matrix and therefore the
system (3.14)-(3.17) has a unique solution. O

Note that, for a given initial condition 2z, (3.14) provides a one-step explicit scheme
for approximating the solution to (2.6). Introduce X/ = (2,2}, ...,27)7 and U/ =
(w,ud, .. ul )T for j = 0,1,..,N, and let X = (X0 X' .. XVN) ¢ R”X(NH) and U =
(U°, U, ..., UN) € RN+ Using the approximation schemes defined in (3.1) and (3.14),
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we pose the following finite-dimensional optimal control problem approximating (2.5)—

(2.6):

1
ety FWX0) = 5 (Lo, X0, U%) + Lt XN, UM))
N—-1
+ 3 L(ty, X7, U)h + S(XN), (3.18)
j=1
Bi(X3=1 Ui=t U XI = C9(X0, XY, .., X3 U0 Ut L U,
subject to j=1,2,...,N, (3.19)
X0 =20

A solution (X, U) to (3. 18) (3 19) is an approximation to a solution (z(t),u(t)) of (2.5)—
(2.6) at the mesh nodes t;,7 =0,1,..., N.

4 Solution strategy

In this section, we first determine the gradient of the objective (3.18) with respect to
all U. We then develop an algorithm for finding approximate solutions to the problem
(3.18)-(3.19).
From the definition of U we see that the 1st-order optimality conditions for (3.18) and
(3.19) are
oF,
-0, r=1,2,....m, j=0,1,...,N. (4.1)
oui
We now determine the LHS of (4.1). From (3.18) and (3.14)—(3.17), we have

N-1

OF, 1, OL(to, X°,U +h "\ OL(t,, X?,UP) Ox¥
oud 2 ou? ozt ou?
p=1 i=1
1. = OL(ty, XN, UN)) 0z < 0S(Xy) 0z
_h K] NN K3
* ; OxN oul * —~  Ox} Oud’
OF,  OL(t;, X7,U7) T2 OL(t XP Up) oz?
L :h VR ' ) + h p7
ou; ou. ZZ ou)

_hzaL tN,X UN) + aS(XN)ﬁa;
8ur ‘ 333' o

=1

fory=1,...,.Nandr=1,2,...,m
From (3.19)

p
gz;i = 0 when p < j. Thus, the above expression can be
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rewritten as

OF, _1, 0L +hN1 " OL oa”
oud 2 Ou, l(te,x0,U0) e Ox; |(tp,x7,0r) Oul)
_hz &UZ (tn, XN UN)anZ]': * lzi; gai (XN)ng;’
_hz 8931 (b XN, UN)??Z +; gi (XN)??ZZ’ Sz

,1,2,...,N. By (3.14), we have

BPX?P =C? p=1,2,...,N.
Taking the derivative w.r.t. u on both sides of the above equation gives
oBP oxr  oCe
- XP + BP—— = -
ou oul.  Oul
Rearranging the above equation, we have
Bané _ 80%’ B 8BéXp,
oul  Oul  Oul
oXxP oz 0xh OxP
where BP? is defined in (3.15), - = ( xl., xQ., ce xﬂ)T,
ous ouy- du;. ouy
ocr ( o och ock ) T
oul  \oul oul T oul/
and
ok, ok, _onh,
. . Uy
OBP gbgﬁ gbgg gb”
- = oul. oul. Bur
ous . . .
Oy Ol _ Obhn
ol ol oul

Using (3.16) and (3.17) we see that the entries of the above matrices are given by

<r;p,XP—1,Up—1+p;;p(Uprp—1>))

o,

(4.4)

(4.5)

ol ~Ppplle ol ’
o _ g o (Uil X704 pp(XF = XPT), UR 4 gy (U — U
oul pt “ ol
((p—k+1)% = (p—k)™)))
Of; (i XL UP 4 b (UP = UPTY)) S D2l 1 O,
h i \Tpp> pp _ L_pp p—1 il
- o lz:;( oul " T aurj)
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fori=1,2,. nl—12

p
To Calculate alJl and 2
u-

J’ in (4.5)-(4.6) forp=1,2,...,N and j =0,1,..., N, we use

the following algomthm
Algorithm A

1. When 5 =0, if p =1, then

oby 0 fi (1—pi)

ou? Pl g 0y i, x0.001 gt @r—voy P

det of; ; —, o 0bj

00 haiaT L x0 004, -0y (1= ph) — Z(x? U 5):
T T =1 "

If p>1, then

vy, . 0" fi Oy '
oul prphai; ((91'18:1; ey M) ou? )
aCf afl ; o
a0 e gy (e X0y (0 -x0 U0 100y (1~ Pp) (™ — (p = 1)™)

~ of; ;O
_’_hai Z Z ( pk,Xk—1+P;k(Xk*Xk—l),Uk_1+P;k(Uk*Uk_l))(1 — ppk) auo
g=1 T

k=2

+8fz- ax >

i Xk—1 Xk_xk—1) k-1 UkUklp
(9xq( . ( ) UF =4y ( ) pkauo

o o 8f’b a$p_1
((p —k+ 1) t (p o k) 2):| } i hai< a | (T XP~HUP= 1 4pp, (UP=UP~1)) aZO )

0 oW
_Z< xlg b+ 18u19l>'

2. For j=1,2,..., N, if p < j, then 24 =0, %4 — .

Oul
If p =7, then
o, 0 f;
PV LY e w [C SRR NER RN
oc afl PN~ (100
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If p=j+41, then

% o h O
au{n bp ala 8u

‘ i
(T;p,Xp71,Up71+p;p(Up—Up71))(1 - ppp)

02 f; Oxh~ ! )

i
+ e X gt oty -y
=1 10y Wy

o of,
;= he | Gy e, 0o —xmn v - 1P
"L/ 0f; - Ox)!
- gé; <81@ (i X34 (X3 = X3—1) U3 1 i, (U3 U3 ~1)) Ppj Dl )
o df; ;
(2 Qe 1) + hozi 87 (Tép,XP*1,UP*1+p;i)p(Up—Up*1))(1 — ppp)
"/ Of; dah~!

N _, o
- 2 Gt )

T

If p>j+1, then

o
oct
o

where

h n asz 833{1’_1
= i E i XP—lup—lypi (UP—UP—L i
o ax axq pp ppp( )) aui

afl (4
= hai{ Z [au ‘ pk’ 1+p;k(Xk—Xk*1),Uk*1+p;k(Uk—kal))w(pplQ
k=j

o, NG,
+ Z < Pk’ 1+p;k(Xk—Xk71),Uk*1+p;k(Uk—kal))(1 - ppk) aZ]
+8_Iq (Téka—l_i_p;k(xk_xk—1)7Uk—1+p;k(Uk_Uk—l))ppk 8uj

(pP—k+1)%—(p— k‘)“”] }

n 8f axp—l
hOl' ( : p—1 [/p—1 p_[/p—1 q. )
+ i (Z (%q (i, XP=1UP=14pi (UP—UP—1) o

q=1 "
N ;
- b _l>
=1 < 3u¥~ K * i 8U'r]
. p;)kﬂ k= j7
V(o) =1 — Py k=7 +1,
0, k>j7+1.
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Using Algorithm A, we propose the following gradient-based search algorithm for
solving (3.18)—(3.19):

Algorithm B

1.
2.

8.

For a given positive integer N, let t; = jh for j =0,1,..., N, where h = T/N.

Set k = 0. Choose a tolerance ¢ > 0 and an initial value U = (U°, U, ..., UM)©® ¢
RmX(N+1).

Calculate X*) = (X0 X1 . XN)®) ¢ RPN+ ysing (3.19).

(k) (k)
Use Algorithm A and X® U®) obtained to calculate (8655?7) and (835) for
p=12,....,N,7=0,1,2,....,N,and r=1,2,...,m.

aX{J><k> _ <aa;§ O ax@)(’“”
ous oul oul” T ol

oF, OFy oF},
. ou°e’ out’ T QUN
oF, (g% = g%) for j = 0,1,..., N. If||[VF,(X®, UM)|| < ¢, goto Step
8. Otherwise, continue.

Solve (4.4) for (

(B)T
Compute VE,(X® U®) = ( ) using (4.2) and (4.3), where

. Compute (X #+1) U#+1)) using the backtracking line search method as follows:

7a. Choose ¢ >0, 8 € (0,1) and v € (0,1). Let [ = 1.

7b. Update ¢! = o',

7c. Let U =U® — ¢!VF,(X® U®) and compute X using (3.19) and U.

7d. If F(X,U) < F(X®, UR) 0! || VE, (X, UD)|12, set UEHD = U, X E+D =
X and k =k + 1, and goto Step 4. Otherwise, let [ =+ 1 and goto Step 7b.

Let (X* U*) = (X® U®) and evaluate Fj,(X*,U*) using (3.18).

Remark: When using Algorithm B, we need to solve the two systems (3.14) and (4.4).
Note that the square coefficient matrices in these two systems are the same. Thus, we only
need to calculate one matrix inverse. It is also worth pointing out that when implementing

Algorithm A we can calculate (

oB? CP
oul.’ oul

) for t;,7 =1,2,..., N in parallel. This can save

a considerable amount of CPU time when N is large .

5

Numerical Results

In this section, we will use Algorithm B to solve several non-trivial examples. In our
numerical experiments, we choose § = 0.6, v = 0.05 and oy = 10 in Algorithm B.
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Example 1. Consider the following FOCP with two state variables

1 1
min F(u) = 3 / (@2(t) + 23(8) + (1)) dt, (5.1)

0

UDa $1<t> = —l'l(t) + I'Q(t) + U(t),
subject to oD xo(t) = —2:62( )
21(0) = 72(0) =
The exact solution for oy = ay = 1 is
1i(t) = “;’ —2 4 9.48164¢V? 4 0.018352¢V?, (5.2)
xo(t) = (5.3)
1

u(t) = 56_ — 1.02793¢ V% + 0.0443056¢Y . (5.4)

This test problem is taken from [7]. Substituting (5.2), (5.3) and (5.4) into (5.1), we find
the exact cost F' is
F'=0.431984

We first solve the problem for various choices of N when a; = as = 1. The optimal
values of F' are listed in Table (5.1). It is clear from Table 5.1 that the computed optimal

Table 5.1: Optimal cost F' for different choices of N with oy = as = 1 for Example 1.
N 20 40 80 160 320
F | 0.432743 | 0.432180 | 0.432036 | 0.431999 | 0.431990

cost approaches the theoretical one as N becomes larger and all the computed costs
over-estimate the exact one.

We then solve Example 1 for various choices of a; and ap when N = 200. The results
are shown in Table 5.2 and Figures 5.1-5.3. From Table 5.2 we see that the total cost
decreases as the values of o and as decrease.

Table 5.2: Optimal value of F for different choices of ay, as for Example 1; N = 200
aloag=as=1]a; =09 a,=05]a; =02,a,=0.3
F | 0.431995 0.347784 0.267591

Example 2. Consider the following FOCP with bound constraints on the control.

min F(u) = /0 (@2(t) + 22(0) + u2(2) db,

oDy i (8) = —x1(t) + 22(F) + u(?),
subject to oD xs(t) = —2332( ),
21(0) = 22(0 )
—0.2 <wu(t) <
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Optimal X, and X, for Example 1 with o, =a,=1 Optimal u for Example 1 with a,=a,=1

1 ‘ : : : 0 ‘ : : ‘
09 J -0.05 ]
. j//"

L | 0.1 o 1
0.8 j,»"f’
07t 1 015r f,,»"" 1
0.2f - g
061 1 o
-0.25 - —
05t i o
03F //.» 4
o~
04t i P
-0.35 - —
03f 1 e
04f = g
.*‘/
02t ”‘"\MM; 0450 7
-
o
o1 ‘ ‘ ‘ ‘ ¢ 05 ‘ ‘ ‘ ‘ ¢
0 0.2 04 06 08 1 0 0.2 04 06 08 1

Figure 5.1: Optimal values of x1, x5 and u for Example 1 with a; = as =1

Optimal x, and x, for Example 1 witha,=0.9 and a,,=0.5 Optimal u for Example 1 witha,=0.9 and a,=0.5
1 T T T T 0 T T T T
N L .» i
09r 0.05 o
I 0.1f d 1
081
. 015 1
07f 02} 1
0.6r -0.25F ]
05k -0.3f 1
-
0.35 /x"f 1
041 -
04F 1
0.3 "'!l
’ -0.45 (" 1
0.2 . . . . t 05 . . . . t
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5.2: Optimal values of x1, 25 and u for Example 1 with a; = 0.9, a5 = 0.5

Optimal X, and X, for Example 1 with ,=0.2 and @,=0.3 Optimal u for Example 1 witha1=0.2 and a,=0.3
1 T T T T 0 T T T T
09 ] 01k i
081 1 R
-0.2 1
07 [, “ —
| 03f i
06 ]
0.4 ]
051 ™ 4
"'»-.,_\\ -0.5° 1
0.4r }\. 4 .
0sl X, \\; ok |
0.2 . . . . t 07l . . . . t
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5.3: Optimal values of x1, x5 and u for Example 1 with ay = 0.2, 5 = 0.3

This example is the same as Example 1 with lower and upper bounds on the control w.
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To solve this problem, we first transform the FOCP to the following form:

min F(u) = %/0 (x%(t) + 22(t) + u2(t)) dt + A/o ((UQ(t)Jr + (—u(t) - 02)1) dt,

subject to the system of dynamic constraints

ODtall'l(t) = —l’l(t) + xg(t) + U(t),
0D?2I2<t) = —2$2(t),

We choose A = 10,000. The computed optimal values of F' corresponding to different
values of a are shown in Table 5.3 in which we also list the computed optimal costs of
Example 1 for comparison. From the table we see that computed optimal costs for the
constrained problem are slightly bigger than the corresponding optimal costs of the uncon-
strained problem which is reasonable. To further see the difference between results from
the unconstrained and constrained problems, we plot the optimal values of x(t), z2(t)
and u(t) for the different values of « in Figures 5.5-5.6. From the figures we see that u
satisfies the constraints.

Table 5.3: Optimal value of F' from different choice of a1, a5 for Example 1 and 2; N = 200

- ar=ay=1|a;=09a,=05]| a; =02,a0=0.3
Example 1 0.431995 0.347784 0.267591
Example 2 0.442711 0.356319 0.272743
Optimal X, and X, for Example 2 withalzuzzl Optimal u for Example 2 withulzazzl
09r .. X, 1 -0.02}
Y L / | vodl
e
o \\“m\ | -0.06
. | 008l
06 \ il
05F g
-0.12f
o4y Xz/ T 1 0.4
o S N ] 0.16F
o2t T "'-«...,__% -0.18
1y o.‘z o.‘4 o.‘e 0.‘8 1 ! 02y o.‘z o.‘4 o.‘s o.‘s 1 '

Figure 5.4: Optimal values of x1, x5 and u for Example 2 with a; = as =1

Example 3. Consider the following FOCP containing two states and two controls.

1 (!
win F(u) =5 [ (53(0) + 230 + ult) + 3(0)
0
ODtal.Tl(t) = —.Z’l(t) + xg(t) + Ul(t),
subject to 0D xo(t) = —2xo(t) 4 ua(t),
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Optimal X, and X, for Example 2 with @,=0.9 and ,=0.5 Optimal u for Example 2 withu1:0.9 and @,=0.5
T T T T T T T

1
-
. -0.02
0.9+ o, i
3 .‘m‘"«
o -0.04 1
0.8 S, X, ]
R e -0.06
- ~Y
07 T, -0.08
06& \ 011
05t . 012
\"'..
., 014
04t e . —
/ "'*’m\\ -0.16
031 X, \ 018k
0.2 L L L L t 0.2 . L L L t
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5.5: Optimal values of x1, 29 and u for Example 2 with a; = 0.9, a5 = 0.5

Optimal values of x1 and x2 for Example 2 ato, =0.2 and a,,=0.3 Optimal value of u for Example 2 ata, =0.2 and @,=0.3
T T T T -0.02 T T T T
09l -0.04 -
. -0.06 [
0.8,
X1 -0.08 -
0.7 I ., / 4 oal
061 \\‘-—; 012}
o5k ™ 1 ouE e
S owF e
041 (" — e
/ M\\\\” 018F e
L x2 1
0.3 o] P—
0.2 . . . . t 022 . . . . t
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5.6: Optimal values of x1, 25 and u for Example 2 with a; = 0.2, a5 = 0.3

This problem is an extension of Example 1 and reduces to Example 1 when uy = 0. The
optimal values of F' corresponding to various values of « are listed in Table 5.4 in which
we also list the optimal costs from Example 1 for comparison. From the table we see that
optimal costs from Example 3 are smaller than the corresponding ones from Example 1.
This is expected as Example 1 is a special case of Example 3. We also plot some of the
optimal states and controls in Figures 5.7-5.9.

Table 5.4: Optimal value of F at different choice of oy, as for Example 1 and 3 with
N =200

- ar=ay=1|a;=09,a,=05]| a; =02,00=0.3
Example 1 0.431995 0.347784 0.267591
Example 3 0.417228 0.332577 0.259506

DISTRIBUTION A. Approved for public release: distribution unlimited.
18



Optimal X =X, for Example 3 with a,=a,=1

ool %

08 X
0.7
06
0.5 e,

04 71

03[

Iy

N

02r

01 L L L L L L L L T t

Optimal u i for Example 3 with a1=02=1 Optimal u » for Example 3 with a1=a2=1

0151
02r
-0.25F &
031

0351

Figure 5.7: Optimal values of x1, o and uy, uy for Example 3 with ay = as =1

Example 4.
10
min  F(u) = / (23(t) + 23(t) + u?(t)) dt + 27(10) + 23(10),
0
oD w1 (1) = wa(t),
subject to 0D 2xo(t) = 0.229(t) — z1(t) — 0.123(t) + u(?),

When « = (1, 1), the dynamical system in this example is the Duffing equation which is
known to display chaotic behaviour without any controls. We first solve the problem for
various choices of N when a; = as = 1 to demonstrate that our method converges. The
computed optimal values of F' are listed in Table 5.5. As can be seen from the table, the
numerical solution improves as /N increases. The computed x1, x5 and u when N = 1000
and a; = ap = 1 are shown in Figure 5.10.
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Optimal X, and X, for Example 3 with al=0.9 and a2=0.5

0.9
0.8 i
0.7 X
0.6
05
0.4

03[ A

0.2 I I I I I I I I I t
0 01 02 03 04 05 06 07 08 09 1

Optimal u i for Example 3 with a1=0.9 and a2=0.5 Optimal u 5 for Example 3 with a1=0.9 and a2=0.5

0 0
-0.05 1 0.1
0.1 0.2
015 1 03[
0.2f 1 041
0.5} 1 05,
03 ] 06
035 4 0.7F
0.4 t 0.8
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09

Figure 5.8: Optimal values of x1, 9 and uq, uy for Example 3 with a; = 0.9, a5 = 0.5

N 300 600 800 1000 1200
F 1 10.5906 | 9.3284 | 9.2114 | 9.1659 | 9.1464

Table 5.5: Optimal costs of Example 4 when oy = ay = 1.

We now solve Example 4 when o7 = 0.7, = 0.8 using the uniform mesh with
N = 1200. The computed optimal value of F'is 6.9390 and the computed optimal 1, x5
and u are shown in Figures 5.11. From this example we see that the fractional optimal
control can achieve a better optimal solution than its integer counterpart. In fact, this
phenomenon is true for all of our examples in this section.
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Optimal x, and x,, for Example 3 with a =0.2 and «,=0.3

09F
08f
07F

~
0.6 ™
05
04 ™

03r A

0.2 L L L L L L L L L t

optimal u . for Example 3 with al=0.2 and a2=0.3 Optimal u » for Example 3 with al=0.2 and a2=0.3

0.1 ]
0.2} ]
0.2 ] f
03 ] E
. 04 F 1
0.4 ] R

05F 4 0.6

06
. 08

0.7~

08

-09

Figure 5.9: Optimal 1, x5 and uy, us for Example 3 with a; = 0.2, a5 = 0.3

6 Conclusion

In this paper, we presented a numerical method for solving nonlinear fractional optimal
control problems with multiple states and controls. We first devised a novel 2nd-order
numerical integration technique for the fractional dynamical system using a set of ju-
diciously chosen quadrature points. Based on this numerical integration technique, we
then proposed a scheme for the discretization of the continuous fractional optimal con-
trol problem. A formula for calculating the gradient of the discretized cost function with
respect to the decision variables has been derived and a gradient-based algorithm has
been proposed for finding an optimal solution to the discretized optimal control problem.
Numerical experiments on several non-trivial fractional optimal control problems have
been conducted and numerical results from these experiments show that our method is
accurate and robust with respect to the orders of the fractional systems. The numerical
results also show that the method is able to solve real-world fractional optimal control
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Optimal value of x | for example 4 at a, =a,=1 Optimal value of x , for Example 4at a =a,=1

2 0.4
0.2
151 b ot
02
1 -0.4 ﬁ
-0.6 ’
05 4 0.8
1
0 -1.2
14f
05 L L . L L L L . L t 16
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problems with multiple states and controls.
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A 2ND-ORDER ONE-POINT NUMERICAL
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ORDINARY DIFFERENTIAL EQUATIONS
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ABSTRACT. In this paper we propose an efficient and easy-to-implement nu-
merical method for an a-th order Ordinary Differential Equation (ODE) when
a € (0,1), based on a one-point quadrature rule. The quadrature point in each
sub-interval of a given partition with mesh size h is chosen judiciously so that
the degree of accuracy of the quadrature rule is 2 in the presence of the singu-
lar integral kernel. The resulting time-stepping method can be regarded as the
counterpart for fractional ODEs of the well-known mid-point method for 1st-
order ODEs. We show that the global error in a numerical solution generated
by this method is of the order @(h?), independently of a. Numerical results
are presented to demonstrate that the computed rates of convergence match
the theoretical one very well and that our method is much more accurate than
a well-known one-step method when « is small.

1. Introduction. Modelling and optimal control of many practical systems in engi-
neering, science and economics traditionally involve Ordinary Differential Equation
(ODE) systems of integer orders [2, 24, 25, 27, 28, 29, 30]. While integer order ODE
systems are adequate for capturing the evolution of most standard phenomena, it
has been shown over the last two decades that many complex systems in solid me-
chanics, viscoelastics, gas diffusion and heat conduction in porous media, signal
and image processing, bio-engineering, biology, economics and financial engineer-
ing are better modelled by systems with fractional or non-integer-order differential
equations (cf., for example, [3, 4, 5, 6, 7, 8, 22, 23, 26]). In particular, complex
phenomena involving memory effects can be modelled more appropriately and ac-
curately by fractional dynamical systems than by classical (integer) ones. As it
is very rare that a system of practical significance can be solved analytically, one
needs to be able to solve the system numerically. Clearly, an accurate and compu-
tationally efficient numerical scheme is crucial for solving fractional ODEs. This is
particularly true when solving an optimal control problem involving such a system
as an iterative computational procedure for computing the optimal control requires
the solving the system repeatedly.
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We consider the following fractional initial value problem:
oDfa(t) = f(t,x(t), te(0,T], (1)
x(0) = xo, (2)

where z¢ and T are positive constants. f is a known function and ¢D*z(t) denotes
the following Captuto’s ath-order derivative of z(¢) in (0,7] with a € (0,1):

a iy L boa(r)
ODtx(t)_F(l—a)/o (t—T)O‘dT'

In the above I'(+) denotes the Gamma function. Higher-order fractional initial value
problems can be transformed into a system of fractional initial value problems of
the form (1)-(2) and any efficient numerical method developed for (1)—(2) can be
extended to a vector-valued initial value problem. There is also another repre-
sentation of the ath-derivative called the Riemann-Liouville fractional derivative.
However, initial value problems involving the Riemann-Liouville fractional deriv-
ative can be readily transformed into (1)—(2) as demonstrated in [10, 14]. It has
been proven [10, 14, 16] that solving (1)-(2) is equivalent to solving the following
Volterra integral equation:

1 ! a—1
2(t) = a0 + m/O (t— 7)1 f(r,2(r)) dr, @€ (0,1). 3)

In the open literature, there are four main numerical methods for solving (3): Eu-
ler’s method [20], an Adams type predictor-corrector method [11, 12, 13, 19, 20], the
p-th order method [20, 21] and the block by block method [1, 15, 17]. Euler’s method
is simple, but the convergence order is only O(h*), where h denotes the mesh size of
a uniform partition of (0,7"). The Adams type predictor-corrector method was first
proposed by Diethelem et al. [11]. They showed that the convergence order of this
method is O(h'T%). Based on the work of Diethelem et al., Deng and Li [9] have
developed another improved predictor-corrector method. They proved that the or-
der of convergence of the improved version is O(h™n(1+22:2))  Both of the schemes
in [9] and [11] are single step methods. The p-th order and block-by-block methods
have convergence rates of orders O(h3) and O(h3T®), respectively. However, these
methods are linear multiple step methods and thus computationally much more
expensive than single step methods. Therefore, a question that arises is whether
it is possible to design a single step method for (3) with an upper error bound
better than O(h™"(1+2%2)) when a < 0.5. In the integer case that a = 1, the
mid-point one step method has an upper error bound of order O(h?). This method
takes advantage of the property that the mid-point quadrature rule yields a ‘super-
convergence’ point for numerical integration, i.e., the mid-point is the only one in
an interval which gives the exact numerical integral when the integrand is a linear
polynomial. Clearly, this super-convergence property of the mid-point quadrature
rule does not hold true for integrals of the type (3), because the kernel becomes
singular when 7 approaches ¢. Thus, the question of what is the counterpart of the
classical implicit mid-point numerical integration method for (3) arises.

In this work, we design a one-step numerical method for (3) which is easy to im-
plement, computationally inexpensive, and results in a global error of order O(h?)
for any o € (0,1). This method can be regarded as the counterpart for frac-
tional ODEs of the implicit mid-point numerical integration method for first-order
ODEs. In this method, we choose a numerical quadrature point in each of the sub-
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intervals of a given partition judiciously so that the local approximation error is of a
higher order than that from the conventional one-point quadrature rule. This is the
counterpart of the mid-point quadrature rule in conventional numerical integration.
Based on this special numerical quadrature rule, we develop a one-step numerical
integration method for (3) and prove that the global error in the numerical solutions
generated by this method is of order O(h?).

The rest of the paper is organized as the follows. In Section 2, we propose an
approximation of (3) based on a Taylor expansion. An error analysis of the approx-
imation is also presented. In Section 3, we propose an algorithm for implementing
the approximate equation and analyse its convergence. In Section 4 we apply our
method to several factional ODEs with known exact solutions to confirm the theo-
retical error estimate and demonstrate the superiority of our method over some of
the existing ones. Section 5 concludes the paper.

2. Approximation. For a given positive integer N, we first divide (0,7] into N
sub-intervals with mesh points ¢; = ih for i = 0,1,..., N, where h = T/N. Thus,
(3) can be written as follows.

1 b a—1
o) = 20+ / (t; — 7)1 f (1 (7)) dr

1 ih -
F(a) / (th — 1) f(r,z(7)) dr
1

i jh . .
+ 5 o) 2 Z /( (ih — 1)~ f (7, (7)) dr. (4)

ji—1)h

We now consider approximation of the integral on right hand side of (4). Assume
that f(t,x(t)) is twice continuously differentiable with respect to both ¢ and z. For
j=1,2,...,i, we apply Taylor’s theorem to f(r,z(7)) at 7;; to get

f(r, (7)) = f(7ij, 2(ri) + Kij (T = 7i) + cij (T — 735)%, (5)

where c;; a constant representing the 2nd derivative of f at a point between 7;; and
7 and

Tigs ©(Ti)) + fo(Tij, (7i5)) 27 (Ti5)-

I
Therefore, replacing f (7' z(7)) in the integrand of the last term in (4) with the RHS
of (5), we have, for any j =1

) 7

%a) /(jhl)h(ih — 1) f(a(r))dr
:%a) /;:)h (ih — 1) [ (7ig, 2(7i)) + Kij (T = 735))dT + Rij
~ g sty [ (2 U= DR ("
4o /<h>; (ih =) = mig) dr + Ry
:p(o?(jmf(ﬁj,ﬂ?(m))[(i —j+ 1D = (i — )]
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+ K /jh (ih — 7)Y )dr + R (6)
—T T — T;i )AT i
L(a) Ji—1)n ! !

1 [
where R;; = —— ih — 1) Yei (1 — 13;)2dr.
5=ty L, B el )

We now consider the choice of 7;;. From (6) it is clear that 7;; should be chosen
such that the second term becomes zero so that the truncation error in (6) is just

R;j. The choice of 7;; is given in the following theorem.

Theorem 2.1. For any giveni=1,2,...,N and j = 1,2...,1, the unique solution
to i
/ (ih — )2 (7 — 7i5)dr = 0 (7)
(G—1h
is given by
M= )T G )T (D= DG = 1) (- )]
N (a+D[(E—j+1)* = (i —j)
(8)
Furthermore, (j —1)h < 7;; < jh.
Proof. We first integrate the LHS of (7) using integration by parts as follows.
jh ih— )2 Jh ih — )+l Jh
/ (ih — T)O‘fl(T — Ty)dT = — 7(1 7) (1 —745) - 7(1 7)
G=Dh o G-vn e+ 1) G,
=)~ (= g+ )G - Dt
o
(=g +D*= =5
_ Tij
e’
(=4 )™ = ()™
ala+1)
=0.

From the above, we have
(=7 + 1) = (= 5)my
(i—j+ 1)+ — (i) . , e
= — DY = 1) = (i — §)*j]h.
o ht (=7 +1)%G = 1) = (= 5)%ln
Solving this for 7;;, we get (8).
We now show that (j — 1)h < 7;; < jh. From (8),
Tij .
- —J

h

-+ = (=) +(a+ D -+ DG —1) — (i —5)*]]
(a+ D[ —j+1)* = (i —j)°]
[ =g+ D = (=) T+ (a+ DIE—j+ DG 1) = (i = §)]]
(a+ D[ —j+1)* = (i—j)°]
(a+Djlli =g +1)* = (@ = 5)7]
(a+ D[ —j+1)* = (i —j)°]

—J
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=g+ (=) —(a+ (- +1)*

a (a+D[@—j+1)* = (@ —5)*] '
To prove 7;; — jh < 0, we only need to show that

(i—j+ 1) — (=T —(a+1)(i—j+1)* <0.
Using the mean value theorem, we have
(i—j+1)*T = (=) = (a+1)(i—j+1)* = (a+1)* = (a+1)(i—j+1)* <0,

since £ € (i — j,7 — j + 1). Thus, we conclude that 7;; — jh < 0. In a similar way,
we can prove that 7;; — (j — 1)h > 0. O

Combining Theorem 2.1 and (4), we have the following representation for x(t;).

Y frp )i =i+ 1) = (=) T+ R (9)
=1

ZL’(tz) = Xo + m <

for i = 1,2,..., N, where 7;; is given in (8) for j = 1,2,...,7 and R; = 22:1 R;j.
Omitting the remainder R; in (9), we have an equation approximating (4) which has
the truncation error R;. An upper bound for R; is given in the following theorem.

Theorem 2.2. Suppose that f(t,z(t)) is twice continuously differentiable in t and
x. Then, for any i =1,2,.., N, the following estimate holds:

|R;| < Ch?, (10)
where C' denotes a positive constant independent of h and «.

Proof. For j =1,2,...,14, from the definition of R; and Theorem 2.1 we have

ciy [ ; a—1 2
Rl = |5 /(jl)h (ih — 1)~ (r — 7i5)%dr
\Cij|h2 in . a—1
T(a) /(jl)h (th — 7)) dr
lei|P? (1@ =g+ DR]* [ —j)h*
() { a a } ’

Since f is twice continuously differentiable, ¢;; is bounded on [0,7]. Let ¢ =
max;(maxi<;<;|c;|). Then, from the definition of R; and the above estimate,
we have

| Ri|

IN

ZIRMI
ch? = ([(i— i+ 1A [(i — )R]
Z{[( J+DA~ [ J)]}

T'(@) ! !

IN

j=1

ch? (ih)~
(o) «

ch? T«

o) a

= C1h%,
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where C} = ﬁ%ﬂ = rafay I Since a € (0,1), from [18] we have 207! <
I'(l1 +a) < 1. Also, it is obvious that 7% < max{1,T} for a € (0,1). Therefore,
from the above estimates we see that (10) holds true for a C independent of both
h and a. Thus, we have proved the theorem. O

From (9) it is clear that to compute z(¢;), we need to calculate f(7;;,2(7:5)),7 =
1,2,...,i. However, z(7;;),j = 1,...,14, are not available directly from the scheme,
although the 7;; are known. Thus, approximations for z(7;;),j = 1,...,1, need to
be determined. In the next section, we propose a single step numerical scheme for
implementing (9) when the remainder R; is omitted.

3. Algorithm and convergence. In this section, we propose an explicit time-
stepping algorithm for approximating the solution of (9) when R; is omitted, based
on the linearization of the nonlinear term in z(t;) in (9).

For any indices ¢ and j satisfying 1 < j < ¢ < N, since 7;; € (¢j_1,t;) by Theorem
2.1, we use the following linear interpolation to approximate x(7;;):

w(735) = @(tj—1) + pij(a(ty) — x(t;j-1)) + O(h?), (11)
where
Then, we approximate f(7;;,z(7;;)) as follows.
F(rijyx(ri3)) = F(mig, 2(tj-1) + pig((t) — x(tj-1))) + O(h?) (13)

for 1 < j <i < N. Clearly, if we replace f(7;;,2(7;)) in (9) with the above expres-
sion and omit the truncation error terms of order O(h?), we define the following
single step time-stepping scheme for (3):

T; =T+ haZf(Tijqu + pij(rj —xj-1)) [(1 =5+ 1)% = (i = 5)7]

=1
=20 + hagi(To, 71, s Tio1) + ha f(Tiis Tim1 + pii(Ti — 1)) (14)
fori=1,2,..., N, where 7;; is defined by (8) and
he = h%/T(1 + ), (15)
Gi (X0, T1yeeey i)
0, 1=1,
i1
TS F i ey —wm)) -G+ D) = (- 5)°), P> L
j=1

(16)

The above scheme is implicit as the last term on the RHS of (14) contains a

nonlinear function of x;. We can use an iterative method such as the conventional

Newton’s method to solve (14) which is usually computationally more expensive

than the predictor-corrector process. However, for this case, we may define an

explicit single step scheme by further approximating the last term in (14) by the
following truncated Taylor’s expansion:

[T wicy+pii(wi—2im1)) = f(7is, wi1) + fo (i, i1 pii (xi — wim1) + O(R?). (17)
Combining (14) and (17), we propose the following explicit one-step algorithm for

(3).
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Algorithm A:
1. For a given positive integer N, let t; = ih for i = 0,1, ..., N, where h = T/N.
2. Fort=1,2,..., N, compute

oo Tt hagi(o, 21, o im1) + ho (f (Tiss Tim1) — pis fo(Tiis Tim1) i) (18)
' 1 — hapii fo(Tii, Tiz1) ’
where 7,5, pij, ha and g;(zo,...,z,—1) are defined in (8), (12), (15) and (16),
respectively.

As can be seen later, Algorithm A provides an efficient and stable 2nd-order
method for (3). Strictly speaking, Algorithm A is a multiple step method. This is
because the fractional derivative is a global operator and thus all x;, j < ¢ are needed
in order to evaluate z; in Algorithm A. However, since the last two terms in the
numerator on the RHS of (18) only involve x;_1, we still call it a one-step method.
Also, unlike the case of the explicit mid-point method for first-order ODEs, it is
generally very hard to construct a one-step explicit or predictor-correct method
based on (9). This is because construction of such a scheme usually requires a
fractional Taylor expansion which typically has a truncation error of order O(h"%)
for some positive integer n. Clearly, na — 0 as « approaches 0.

Using linear interpolation theory and Taylor’s theorem, we are able to prove that,
forany i =1,2,..., N, x; generated by Algorithm A converges to z(t;) at the rate
O(h?) when h — 0F. This is formalized in the following theorem.

Theorem 3.1. Let x(t) be the exact solution of (3)/(4). If f(t,z) is twice con-

tinuously differentiable in t and x, then there exists an h > 0 such that h, < h
implies

lz(t;) — ;] <Ch?, i=1,2,...,N, (19)
where {x;} is the sequence generated by Algorithm A, C is a positive constant,
independent of h and o, and he, is defined in (15).

Proof. In what follows, we let C' denote a generic positive constant, independent of
h. We now prove this theorem by mathematical induction. Firstly, we show that
(19) holds for ¢ = 1.

By (9), we have

x(t1) = 2o + haf(T11,2(111)) + R1.

Furthermore, from (11) and (13), we have

x(tl) =20+ haf(Tu,SCo + pn(.%'(tl) — mo) + O(hQ) + Ry
= 20 + ha{f(T11,20) + fo(T11, m0) [p11(x(t1) — 20) + O(R*)] + O(h*)} + Ry
= 20 + ho [f (711, T0) — fu(T11, T0)p1170] + ha fu(T11, T0) pr12(t1) + O(h?)
+R13

where pi; is defined in (12). Solving this equation for z(¢1) and using (18) with
1 =1 we have

2o + ha [f(T11, 0) — fo(T11, T0)p1120] + O(h?) + Ry
1 — hafe(T11,20) P11
O(hQ) + Ry
1 — hafa(Ti1,20)p11

z(t1) =

= x4+
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Therefore, using (10), the previous equation yields the inequality

Ch?
|1 — hofol(Ti1, o) p1a |

Note p11 € (0,1) by (12) and hy > 0. So, if fi(711,20) < 0, from (20) we see
that (19) is satisfied for ¢ = 1. However, when f,(m11,20) > 0, we need to choose
an upper bound for h, so that the denominator of (20) is bounded below by a
positive constant. Clearly, for a given constant o € (0,1), if we choose h; :=

max{pu};(im%)’l}, then (19) is satisfied for i = 1, when h, < h;. To be more

general, we choose

|(t1) — ] < (20)

_ 1—0
h:= , 21
max{maxi<i<n piifz(Tis, Tiz1), 1} 1)
and when h, < h, (19) is satisfied for i = 1.
We now consider the case of 7 > 2. Assume that

A 2
(Jnax o(ty) — ;| < Ch (22)

when h, < h. We now show that ax |z(t;) — x;] < Ch?, or equivalently, |z(t;) —
<j<i

Using (13) and (17), we have, from (9) and (10)

.Z'(ti)
_x0+h Z{ 7—137 7 1 +p17( ( )_l‘( ))+O<h2))]

[(Z*JJrl) — (=0} + R
=X

+haZfT7jv ti-1) + pij(a(ty) — a(tj-1)) + O(h)[(i — j + 1)* = (i = 5)°]

+ ha [f(% @(ti-1)) + fo(mi, a(tiz1))pii(a(ts) — 2(tio1))] + O(A?) +

where

Ai—1 =ha Zlej7 tj—1 +plj< ( )_x(tj 1))

+(9(h2))[(l—J+1) — (i —4)7],
Bi =ho[f (Tii, x(ti—1)) + fo(Tis, x(ti-1)) pis(e(t:) — x(ti-1))]- (25)

Note that (18) can be re-written in the following form.

i1
2 = xo+ha Yy f(rijizio1+pijla; —z-1))[(i — j+1)* = (i — 5)°]
=
+holf(Tiis @iz1) + fo(Tis, i) pii(@i — 2i—1)]
= w0+ A+ B, (26)
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where
i—1
Aicr = ha ) fmigajo1 + pig(ay — -l =+ D) = (= §)°], (27)
=1
Bi - a [f(’rna Tij— 1) + f:v(’ruvl'z 1)pn( T xi*l)] . (28)
Subtracting (26) from (23) gives
x(t;) — @i = (Aim1 — /L‘—l) +(B; — Bl) + O(h?). (29)

Let us first estimate B; — B;. From (25) and (28), we have

B; = Bi = [haf (7is, #(tio1)) + fo(Tis, 2(tim1)) pis (2(t:) — 2(ti-1))]
— half(Tiss xi—1) + fo(Tii, xim1) pii(Ti — 2i-1)]]
=half (Tii, x(ti=1)) — f(Tiis wi-1)]
+ hapiil fo(Tis, ©(tio1))w(t) — folTi, 1) x4

— hapiilfo(Tii, x(ti-1))2(ti-1) — fo(Tii, Tic1)Tioa]. (30)
Note that f is twice continuously differentiable. Using a Taylor expansion, we get
fo(Tiis x(tiz1)) = fu(Tia, wio1) + 14, (31)

where
7i = fuu(Tii, ) (@(tio1) — Ti-1)
with & being a point between z(t;_1) and x;_1. Since |z(t;—1) — z;_1] < Ch? by
Assumption (22), we have
Ty = faca:(Tiiag) : O(h2) = O(hQ)
Similarly, we have
f(rii a(tizn)) = f (i, mim1) = O(R?).
Using (31) and the above estimate we have, from (30),
Bi — Bl =h O(h2) + ha,()ii[,]“95(7'”,.13z 1)( (t) — J?Z) + x(ti)ﬁ}
— hapiilfo(Tiis Tim1)(@(ti-1)) — Ti—1) + 2(tim1)7i]
:hapiifx(’riiaxifl)[ (tz) - xz] + hozpufx(’rna Tq— 1)[‘r7, 1= m(tz 1)]
+ O(h2+a)
=hapii fo(Tii, vio1) [T (ts) — 23] + O(R*T),
since hy = h*/T(1 + ) and |z;_1 — z(t;_1)| < Ch? from Assumption (22). Thus,
from the above expression and (29), we get
x(t;) —x; =(Ai—1 — Aifl) + hapii fo(Tii, i) [x (&) — (@3)] + O(h2)~
This implies )
(Aic1 — Ais1) + O(h?)

X ti — X; =
(t:) 1 — hapiifa(Tii, Tiz1)

)

and so
|41 — Ai| O(n?)

x(t;) — x| <
l2(t:) | 11— hapiifo(Tii, ziz1)| |1 — hapiifo(Tis, iz1)|

(32)

To estimate |x(t;) — 4], we need to estimate |A;_; — A;_1|. To simplify our
notation, we let x;; = x;_1 + p;; (xj — xj,l). We also use either the RHS or LHS
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of (11) to represent the point z(7;;). From the definitions of A; ; and A;_; in (24)
and (27), respectively, and using (11), we have

|Ai1 — Ai_1| =hq z_:[f(ﬁjvﬂ?(ﬁj)) = f(rigywag)][(F =+ )% — (i — 5)7]
i—1
<ha Z [ (7ij, 2(735)) — f(7iz o wip)][(6 — 5+ 1) = (i — 5)°]|

=ha Z_: |f (7igs 2(7i)) = f(Tijo wig) | [0 =5 + 1) = (i = 5)%],  (33)

since z® is an increasing function of z for o € (0,1). Because f is twice continuously
differentiable, we have (recall that C' is a generic positive constant, independent of
h)

| (i, 2(735)) — f(Tij, @ij)

<Cla(riz) — w1

=C|la(t;-1) + pig(a(t;) = w(t;—1) + O(?)]
= [zj—1 + pij(z; — Ij—l)]’

=C|[(tj-1) = 251] + pislaty) — ;)]
iy g1 = a(t-)]| + O(?)

<C(|x(tj—1) —xj-1| + |z(t;) — z5)| + |z(tj—1) — zj-1])
+ O(h2),

since p;; € (0,1). In the above we have used (11). Thus, from Assumption (22), we
have

|f(7ij, 2(Ti5)) — f(Tig, ;)| < Ch*.
Replacing | f(7i;, x(755)) — f(7ij, 27,,;)| in (33) with the above upper bound, we have

Aics = Aia] < haOR? f[(z’ —j D)% = (i— )]
j=1
= %Ciﬂ(ia —1)
< P(:H)Chwa
_ F(Cﬁl)h?(m)a
- F(@i 1)hQT“
< Ch2.

Combining the above error bound with (32), we have
Ch?
|1 — hapii fo(Tii, 2io1)|

|z(ti) — x| <
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Therefore, when h,, < h, where h is defined in (21), we have
Ch? < Ch?
hapii fo(Tii, xic1)] — o

|lz(t:) — @] < =

for a given o > 0.

Careful readers may have noticed the positive constant C used in the above
proof is independent of h, but a function of T%/T'(1 + «). However, in the proof
of Theorem 2.2 we have shown that 7%/T'(1 4+ «) is bounded above by a positive
constant, independent of . Thus, we have proved the theorem. O

We comment that in the above theorem we have established an upper error
bound of order O(h?) for the numerical approximation to (1)—(2) generated by
our proposed single-step Algorithm A, while all of the existing single-step methods
proposed in [9, 11, 12, 13, 19, 20] have the drawback that their rates of convergence
approach O(h) as « decreases.

We also comment that Algorithm A is a linearized form of our implicit method
(14). This linearization does not affect the O(h?)-order rate of convergence of (14).
In other words, our explicit method represented in Algorithm A performs only one
Newton iteration for (14) as performing more Newton iterations will not increase
the accuracy of the numerical method due to the discretization errors.

4. Numerical Results. In this section, we solve two examples using our proposed
method.
Example 1. Consider the following fractional differential equation

() 4 4
Dfx(t) = ————t"7%—2(t t t 1
0 tx() F(5—a) CC()—i— ’ 6(07 ]v
z(0) = 0.
The exact solution is
x(t) =t

This test problem is taken from [9] and it is solved by Algorithm A for various
values of o and mesh sizes h. The computed errors Ej, = maxi<ij<i/p, |7: — ()]
for hy, = 1/(2% x 10),k = 0,1, ...,6 and the chosen values of « are listed in Table 1.
To estimate the rates of convergence, we calculate log, (Eh, /Ep,,,) for k =0,1,...,5
and the computed rates of convergence are also listed in Table 1. From the table
we see that the computed rates of convergence are very close to the theoretical one
in Theorem 3.1. In Table 1, we also compare our results with those obtained by the
method in [9]. The latter method is a single-step predictor-corrector method with
a theoretical rate of convergence of order O(h™n(1+22:2)) " The rates of convergence
of our method are much higher than those of the method in [9] for @ = 0.1. From
the table we also see that the absolute errors from our method are much smaller
than those in [9] unless « is close to 1 in which case classic methods apply. Clearly,
our proposed method is superior to that in [9]. In addition, one can expect that
a predictor-corrector method should be computationally more expensive than our
method.

From Table 1 we see that when « is close to zero, the computed rate of con-
vergence is slight worse than O(h?). This may be because the constant C in (19)
contains the term 1/T(1 + «), as noted in the previous section. However, when h
decreases, the rate of convergence of our method increases.
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TABLE 1. Maximum Errors and Convergence Rates for Example 1.

L Our results | Results from [9] Our results Results from [9]
a=0.1 | Order | @=0.1 | Order | a=0.3 | Order | @=0.3 | Order
1/10 | 4.06e-3 0.364 7.67¢-3 - -

1/20 | 1.11e-3 | 1.86 0.170 1.10 2.00e-3 | 1.94 - -
1/40 | 3.02e-4 | 1.89 |7.13e-2 | 1.26 |5.17e4| 1.95 - -
1/80 | 8.08¢-5 | 1.90 | 2.88e-2 | 1.31 1.32e-4 | 1.97 - -
1/160 | 2.14e-5 | 1.92 | 1.15e-2 | 1.32 | 3.37¢-5 | 1.97 - -
1/320 | 5.65e-6 | 1.93 | 4.64e-3 | 1.31 8.55e-6 | 1.98 - -
1/640 | 1.47e-6 | 1.93 | 1.88e-3 | 1.30 2.16e-6 | 1.98 - -

1/1280 | 3.84e-7 | 1.94 5.46e-7 | 1.99 - -
L Our results | Results from [9] | Our results | Results from [9]
a=0.5 | Order | a=0.5 | Order | a=0.9 | Order | a=0.9 | Order

1/10 | 8.49e-3 0.0355 7.88e-3 0.0107 -

1/20 | 2.16e-3 | 1.98 | 0.00879 | 2.01 | 1.97e-3 | 2.00 | 0.00231 | 2.21
1/40 | 543e-4| 1.99 | 2.16e-3 | 2.03 | 4.93e-4 | 2.00 | 5.21e-4 | 2.15
1/80 | 1.37e-4 | 1.99 | 5.3le-4 | 2.02 | 1.23e-4 | 2.00 | 1.22e-4 | 2.09
1/160 | 3.43e-5 | 2.00 | 1.31le-4 | 2.02 | 3.08¢-5 | 2.00 | 2.94e-5 | 2.06
1/320 | 8.58¢-6 | 2.00 | 3.24e-5 | 2.02 | 7.70e-6 | 2.00 | 7.18e-6 | 2.03
1/640 | 2.15e-6 | 2.00 | 8.03e-6 | 2.01 | 1.92e-6 | 2.00 | 1.77e-6 | 2.01
1/1280 | 5.38e-7 | 2.00 - - 4.81e-7 | 2.00 - -

Example 2. Consider the following fractional differential equation

(4
oDYx(t) = %t?’ + 3T —x(t), te(0,1],

z(0) = 0.
The exact solution is x(t) = t37®. This example is from [1] and it is solved using
Algorithm A for various values of h and «. The computed errors and rates of

convergence are listed in Table 2 from which we see that the computed rates of
convergence are close to the theoretical one in Theorem 3.1.

TABLE 2. Maximum Errors and Convergence Rates for Example 2.

h a=0.1 | Order | a=0.3 | Order | «=0.5 | Order | «=0.9 | Order

1/10 | 2.37e-3 - 5.08e-3 - 6.40e-3 - 7.50e-3 -
1/20 | 6.45e-4 | 1.88 | 1.31e-3 | 1.95 | 1.62e-3 | 1.98 | 1.88e-3 | 2.00
1/40 | 1.73e-4 | 1.90 | 3.39e-4 | 1.96 | 4.08¢-4| 1.99 |4.69e-4 | 2.00
1/80 | 4.60e-5| 1.91 | 8.65e-5 | 1.97 | 1.03e-4 | 1.99 | 1.17e-4 | 2.00
1/160 | 1.21e-5 | 1.92 | 2.20e-5 | 1.98 | 2.57e-5 | 2.00 | 2.93e-5| 2.00
1/320 | 3.18e-6 | 1.93 | 5.58¢-6 | 1.98 | 6.44e-6 | 2.00 | 7.32e-6 | 2.00
1/640 | 8.30e-7 | 1.94 | 1.41e-6 | 1.98 | 1.61e-6 | 2.00 | 1.83e-6 | 2.00
1/1280 | 2.15e-7 | 1.95 | 3.55e-7 | 1.99 | 4.04e-7 | 2.00 | 4.57e-7 | 2.00

Example 3. Consider the following fractional differential equation
I'd+a)

oDfx(t) = Tti“’+t4<3+“) —a*(t), te(0,1],
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z(0) = 0.
The exact solution is also x(t) = t37®. Note that the RHS of the above equation is
nonlinear in both ¢ and x. This example is solved using Algorithm A for various
values of h and o and the computed errors and rates of convergence are listed in
Table 3. From the table we see that the computed order of convergence is greater
than 2 when « is small.

TABLE 3. Maximum Errors and Convergence Rates for Example 3.

h a=0.1 | Order | a=0.3 | Order | «=0.5 | Order | «=0.9 | Order

1/10 | 6.19e-2 - 4.27e-2 - 2.56e-2 - 3.70e-3 -
1/20 | 1.69e-2 | 1.87 | 1.03e-2 | 2.05 |5.70e-3 | 2.17 | 6.90e-4 | 2.42
1/40 | 4.42e-3 | 1.93 |2.368e-3 | 2.13 | 1.10e-3 | 2.37 | 1.88e-4 | 1.88
1/80 | 1.10e-3 | 2.00 | 5.055e-4 | 2.23 | 1.85e-4 | 2.57 | 5.92e-5| 1.67
1/160 | 2.65e-4 | 2.05 | 1.025e-4 | 2.30 | 2.63e-5 | 2.82 | 2.11le-5 | 1.49
1/320 | 6.26e-5 | 2.08 | 2.00e-5 | 2.36 |2.63e-6 | 3.32 | 6.19e-6 | 1.77
1/640 | 1.46e-5 | 2.10 | 3.77e-6 | 2.41 | 5.30e-7 | 2.31 | 1.68e-6 | 1.88
1/1280 | 3.41e-6 | 2.10 | 6.86e-7 | 2.46 | 1.55e-7 | 1.77 | 4.37e-7| 1.94

To summarise, from Tables 1-3 we see that, although computed convergence rates
fluctuate for different values of o and h, when A® is small enough, the convergence
order is 2 confirming our theoretical analysis. This can also be seen from the last
row of each of the tables corresponding to h = 1/1280. All the errors are of the
magnitude h? ~ 6 x 10~7. To check the robustness of our method in «, we have
also solved Example 3 for o = 107%, ¢ = 1,...,8 and the computed results show
that the orders of convergence are roughly 2, particularly when A is small. The
robustness of our method may provide an effective way for solving problems with
algebraic constraints, or differential algebraic equations. We will discuss this in a
future paper.

5. Conclusion. In this paper, we proposed a new numerical method based on Tay-
lor’s theorem and linear interpolation for solving fractional differential equations.
The proposed method is simple and easy to use. We have proved that the con-
vergence order of the method is 2. The numerical results confirm our theoretical
analysis.
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Abstract. We develop a finite difference method (FDM) for a 2D frac-
tional Black-Scholes equation arising in the optimal control problem of
pricing European options on two assets under two independent geometric
Lévy processes. We establish the convergence of the method by showing
that the FDM is consistent, stable and monotone. We also show that
the truncation error of the FDM is of 2nd order. Numerical experiments
demonstrate that the method produces financially meaningful results
when used for solving practical problems.

1 Introduction

In this paper we propose a 2nd-order numerical scheme for a 2D fractional Black-
Scholes (fBS) equation arising in pricing options with two underlying assets [2],
based the schemes in [4] for a 1D {BS equation. We prove that the developed
discretization method is consistent, stable and monotone, and thus the solu-
tion generated by the numerical method converges to the exact one. Numerical
experiments have been performed to demonstrate the order of convergence and
usefulness of the scheme.

It is shown in [2] that the value of an option whose underlying asset price
follows a geometric Lévy process is governed by a 1D fBS equation. Under the
same assumptions, it is easy to show that the value U of a two-asset option (eg.
Rainbow or Basket Option) which is written on two stocks whose prices S; and
Sy following two independent geometric Lévy processes (with zero correlation
coefficient) is determined by the following 2D {BS equation:

LU = —Up + a1U; + axUy — bi[oc DSU] = ba[—oc DIU] +7U =0 (1a)

for (z,y,t) € R? x [0,T), where # = InS1, y = In Sy, DU and _DJU
denote respectively the a-th and [-th derivatives of U in = and y for o, €
(1,2), T > 0 is the terminal time, » > 0 is the risk-free rate, & > 0 is the
volatility of the underlying asset prices, and a; = —r— %a sec ( ) b1 = a1+,

ay = —r — 505 sec (%) , and by = as + 7. In computation, the domain R? has

© Springer International Publishing AG 2017
I. Dimov et al. (Eds.): NAA 2016, LNCS 10187, pp. 46-57, 2017.
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A 2nd-Order FDM for a 2D Fractional BS Equation 47

to be truncated into 2 = (Zmin, Tmax) X (Ymin, Ymax) Satisfying Tmin, Ymin < 0
and Zpax, Ymax > 0. We impose the following boundary and initial conditions

Uz, y,t) = Uo(z,y,t), (z,y) € 02, U(x,y,T) = U*(,y), (1b)

where Uy and U*, satisfying Uy(x,y,T) = U*(x,y) for (z,y) € 92, are known
functions depending on the types of option and the strike prices K of the
options. Using the aforementioned logarithmic forms, it is easy to show that
limg oo Uy = 0 and limy,_ o, Uy = 0 [4]. Thus, when &min and ymin are suffi-
ciently small, the fractional derivatives in (1a) become, up to a truncation error,
the following Caputo’s type

Ceain Dt Dy )V = </a Iy - (:c—é)o‘fld&/ I's ~yzly—§)ﬁ71d£ 7

min Ymin
where Iy = 1/I'(2 — w). In what following we will omit the subscripts zm;, and
Ymin in the above derivative representations. Also, for any ¢ = ((1,¢2) € (0,1]?,

we use VU = (Dgl U, D7§2 U )T to denote the (-th order gradient operator, where
the fractional derivatives are of the Caputo type.

2 Solvability

We first reformulate (1a)—(1b) as a variational problem, and then show that the
variational problem has a unique solution. Before starting this discussion, we
introduce some function spaces. For any ¢ = ((1,¢2) and (1, € (0,1], we let
HS(02) :={v:v,V € (L?(12))?} . Define |- ¢ and || - ||¢ by |v|g = ||VCU||%2(Q)
and [|ull? = HUH%Q(Q) + |ulZ. Then it is easy to show that |-|¢ and | -||¢ are semi-
norm and norm on H¢({2) respectively. It has been shown in [7], that HS(2)
equipped with || ||¢ is a Sobolev space. We also define the Sobolev space of func-
tions the homogeneous boundary trace by Hg(Q) = {v:ve H(N),v]se =0}

Without loss of generality, we assume that Uy defined in (1b) satisfies Uy €
H7(02), where v = (a, #). Then, under the transformation V' = Uy — U, (1a) can
be written as the following equation with boundary and payoff conditions:

LV :=-V,—-V- (BV("Y_”V —aV)+rV =F, (2a)
V=00nd92, V=V*xy):=Uy(x,y,T)—U"(z,y), (2b)

where a = (ay,a2)", B = diag(by, bs), v—1 := (a—1,5-1),and f(z,y,t) = LUj.
Using the notation defined above, we pose the following problem:

Problem 1. Find u(t) € Hg/2(!2), such that, for all v € HJ/Z(Q),

Ou(t
(=250} + Atu(v.0) = (70,0
almost everywhere (a.e) in (0,7T) satisfying terminal condition (2b) a.e. in {2,

where A(u,v) = a (Vu,v)+(BVO =Dy, Vo) +r(u,v) with (-) denoting a duality
of a pair of dual spaces.
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It is easy to verify that Problem 1 is the variational problem of (2a)—(2b) (cf
[7]). From Lemma 2.1 in [4], we have shown that in the 1D case A(-, ) is coercive
and continuous. Using the lemma we now prove that A(-,-) is also coercive and
continuous, as given in the following lemma:

Lemma 1. There ezists a positive constant C, such that for any v,w €
Hg/z((}), and t € (0,T) a.e. A(v,v) > C’||v||,2y/2 and A(v,w) < C|\v||,y/2|\w||7/2.

The proof of this lemma, based on Lemma 2.1 in [4], is trivial and thus omitted.
Using this lemma, we have the following result.

Theorem 1. There exists a unique solution to Problem 1.

This theorem is a consequence of Lemma 1 and Theorem 1.33 in [9], in which the
unique solvability for an abstract variational inequality problem is established.
The proof to Theorem 1 is thus omitted here.

3 Discretization

Numerical solution of standard BS equations has been discussed extensively in
the open literature [11-14,19,21,23,24]. However, there is a very limited work
available on the numerical solution of spatial {BS equations [4,10]. Various dis-
cretization schemes have been developed for fractional DEs such as those in
[8,15-18]. In this section we will present a 2nd-order scheme for (1a), based on
that in [4] for a 1D fBS equation.

For given positive integers M, and M, let {2 be divided into rectangular
meshes with nodes (z;,y;), ¢ = 0,.., My, j =0,. , where z; = Tpin + 1h
and Yj = Ymin + ]hQ with hl = (xmax xnnn)/M and hQ = (ymax - ymin)/My~
For a positive integer N, let (0,7") be divided into N sub-intervals with the
mesh points ¢, = T — nAt,n = 0,1,..., N, where At = T/N. The a-th partial
derivative can be approximated as follows [4]:

—a 1+1
Dy V(xmyj ngv k41,5 (3)

for any ¢ € {1,2,..., M, — 1} and j € {1,2,..., M, — 1}, where V;_j41; is an

approximation to V(z;—x+1,¥;,t) and gi’s are given by, for k =3,4,...,i+1,
1 . P-a_y a4 x93t

o o N = a2 = , (4

(2—a)(3—q) 2-a)(3—a) 2-a)(3—a)

gi = g5 l(k + 1% —4k*7 1 6(k —1)°7 —4(k - 2)°"* + (k= 3)°"°]. (5)

90 =

Lemma 2. For any o € (1,2), the coefficients gy, k =0,1,...,1+ 1 satisfy:

(1) g§ >0, g¢ <0, and g >0 for k=3,4,5,...,i+1,
(2) there exists an a* € (1,2) such that g§& < 0 when a € (1,a*) and g§ > 0
when a € (a*,2), and
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(3) Sitogs <

The proof of Lemma?2 can be found in [4]. Using (3) and its counterpart for
DgV(xi, y;), we define the following operators:

h a i+1 — j+1
(5$755) :< ng i~k+1.5 g _ 3) ng ij— k+1>a (6a)

1

n 1 n n n n n
5zUi,j = %( i+1,5 iﬂ,j)a 5in,j = %( i,j+1 _Ui,jﬂ)a (Gb)

where U}, denotes an approximation to U(x, y1,t,). Using (6a)—-(6b), we define
the following scheme for (1):

urtt —ur,
o O (@O UL = bioUN + axd Up — bad UL 40U )
+ (1= 0) (016,075 = 0103 U7y + 020, U7y — ba0 ULy +7U7;) =0 (7a)

fori=1,...,M,—-1,5=1,...,.My —1,and n=0,...,N — 1 with 6 € [0.5,1].
The boundary and payoff conditions are:

Uoj = Uo(®0, Y5, tn)s  Upr, j = Uo(a,, yj5tn), Ul = Uo(wi, yo, tn), (7b)
Ui, = Uo(@isyn, tn),  URy = U™ (24,95, Tw) (7c)

for all feasible (i,j,n), To rewrite (7a) into a matrix form, we let
U™ = (U, Ui 10Ut Uk o Ulagy — 10 Ubty —1ar,—1) -
Rearranging (7a), we have
(I+6M)U = (I— (1 —6)M)U" 4 fH1=0, (8)

where I is (M, — 1)(M, — 1) dimensional identity. The matrix M is a block
matrix which has (M, — 1) x (M, — 1) blocks, and the size of each block matrix
is (My — 1) x (M, —1).

A+B, By 0 - .- 0
B A+B; By, 0
B B: A+B;Bg
M= )
B, -3 . By A+B; By 0
B, -2 B; B A+B; By
_BMyf1 -+ Bs B, A+Bi| (M, —1)x (M, —1)
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where
mgs +m, j=i+1 (uzgo +m)ly,  j=0
pagy + 54t j=i (n2gy + SANL, j=1
A= Jmgs —m, o j=i—l B. — (M292—772)Iy7 Jj=2
ij — - . . 5 j = . 5
H1Gg » ]:Zik+1 (.[1“29])?/7 J:3a4a
k=3,4,...,1 M, -1
0, otherwise 0, otherwise
—b1 At At —by At At
1y = 1 o 2 a (10)

ma 771—%, Mzzm, 772:7127

and I, is the (M, — 1) x (M, — 1) identity matrix. The column vector f*+1~¢ =
(1 — 0)f™ + 6f"*! is the contribution from the boundary conditions (7b)—(7c),
where f and f"*! consist of contributions of boundary values at t,, and #,,
respectively. In the rest of this paper, we choose § = 0.5 which is the Crank-
Nicolson method with a 2nd-order truncation error.

We comment that though the discretization method is developed for Euro-
pean option pricing problems, the principle developed is applicable to com-
plementarity problems involving the fractional differential operators in (la)
governing American option valuation if a penalty method such as those in
[3,14,20,22,24] is used. We will discuss this in a future paper.

4 Convergence Analysis

In this section, we show that the solution to (7) converges to the viscosity solution
to (1). We start the discussion with the following theorem:

Theorem 2. (Consistency) The finite difference scheme for (7a) is consistent
with a truncation error of order O(At? + h3 + h3) when 6 = 0.5.

Proof. In [4], we have shown that the finite difference scheme for the deriva-
tives in o in (6) have the 2nd-order truncation error O(h?). By symmetry, the
finite difference schemes in y-direction in (6a) and (7a) have the truncation error
O(h3). Tt is also known that the Crank-Nicolson’s scheme used in (7) has the
truncation error of order O(At?). Therefore, the discretization scheme (7a) has
the truncation error O(At? + h? + h3).

Theorem 3. (Stability) The finite difference scheme defined by (7) is uncondi-
tionally stable.

Proof. we use the semi-discrete Fourier transform to prove the stability of the
Crank-Nicolson method with § = 1/2. From the definition, we see that all the
coefficient matrices in (9) are Toeplitz matrices. Thus, each of the terms in
(9) can be written as convolution of one the following vectors with a finite
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support (---,0,(UF)T,0,---)T and (---,0,(f**/2)T,0,---)7 for k = n and
n+1. Applying the discrete Fourier transform via the semidiscrete Fourier trans-

form pair Uy = gk 7000 [T, /@5t D (©)dgudgs and U"(6,6) =

hohi 3052 30 Ule “i&1ri+8295) 10 (8), or equivalently replacing UF; and

i=—00 1 ]

FI? with UkeG&imtitsha)i ang frt1/2e(i€ihitieha)i with i = /=1 for all

admissible ¢, j and k = n,n + 1, we obtain a system in Untt, Solving the
transformed system for U"*! we have

pnt 2- {771 + o Yoy gredmRamt 4 gy 4y S gle0mRgahat 4 rAt} -
2+ [771 + o Xy gpret g 4y 4y YA gle(-RIEahat rAt}
QAtfn+1/2

2+ {771 o Sl gre=Rghi 4y 4y SYIHL g e(1=k)Eahai 4 rAt]

+

where 7y = ny (57 —emSthl) gy = gy (82021 — em02h2l) gy € [—m/hy, /B,
& € [=m/ha,7/he] and py, pi2, n1, 12 are defined in (10). Using Euler’s formula,
we rewrite the above equality as follows.

1—[(A; + A2) + (B1 + B»)i] At

Un+1 _ : Zj'n + : An+%7
+ [(A1 + A2) + (B1 + Bs)i] 14 (A1 + A2) + (B1 + Bs)i] /
where
1+1
rAt
=& ng cos((1 — k)&1ha) + R
sin(&1h1) L
By = % ng sin((1 — k)& ha),

and As and Bs are defined by replacing the superscript-subscript pair («, 1) with
(8,2). Taking magnitudes on both sides of the above equation, we have

1—A)2+ B2 L At
e HfM e, (11)

UnJrl:f]n
v = e Ay B (1+ A2+ B2

where A = A1 + Ay and B = By + By. We now show that mizigg <1, or
A > 0. Omitting the superscripts, we have from Item 3 of in Lemma 2 that —g; >
Z;CHO k21 9k, With g > 0 when k£ > 3 for all ¢ > 3. From the representations of
gk in (4) (5), we have that go + g2 > 0. In order to estimate A; and Ag, we first
derive the following estimate

i+1 41

Z gr cos((1 — k)Eh) = go cos(Eh) + g1 cos 0 + g2 cos(—Eh) + Z gr cos((k — 1)Eh)
k= k=
’ i+1 i+1 ’
= g1 + (g0 + g2) cos(§h) + Y _ g cos((k — 1)¢h) <> gr < 0.
k=3 —0
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Since p1, pa < 0, we have the following estimations

1 i+1 r At 1z i+1 5 r AL
ngcos ((1- )§h1)+7>0 5 ngcos((l—k)fhg)—&—TZO.

Therefore, Ay, A3 > 0 and so A > 0. Using this result we have from (11) that,

forall § € [-7-, -], 1 =1,2,

’0”*1 + At

< \fJ"

o<

fn+1/2‘ n

fn71/2H
. LI . T <N -
0 k+1/2 ol , 4 k+1/2
<|oefranys|p] <o)« 5 30|,
k=0 k=
Using Cauchy-Schwarz inequality, we have

1) ol? / ER It
’U +1’ SO(‘UO‘ i Z‘karl 2‘) (‘UO‘ +Nk_0 Frtt 2‘)

for any n < N — 1, where C denotes a generic positive constant, inde-
pendent of n and N, U1, U° and fF+1/2 are all functions of & &
[, 7] for @ = 1,2. For any continuous function W on 2, let [|Wllon =

/2
<h2hlz Myt Mo =1y, 2 ) denote the discrete L?norm of W. Using

the properties of the discrete Fourier and its inverse transforms (particularly
Parseval’s equality) we have

1112 m/ha /i 12
U2, = / / 07 Py de

7/ho 7/hy
w/hz 7/h1 012 7/ho 7/h1 Set1/2)2
U°Pdgydés + / / PR TS
271— w/hg/w/hl Z 7/ho J—m/h1

=C <|U0|0h+ ZIIf’““/2|\o h> < C(IIU°1[5 5 + 1IE11Z)

k=0

where f = ((f7,...,(f¥)")T. Thus, we obtain [[U'*|,, < C
(1T o,n + |I£]|sc ). Therefore, the numerical method is unconditionally stable.

We now show that the numerical scheme is monotone.

Theorem 4. (Monotonicity) The discretization scheme established in (7) is
monotone when At < %

Proof. By rearranging the discretizated equation (7a), we define a linear function
E} of U™ and U™ as follows:
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n+1 n+1 n+1 n+1 n+1 n+1 n+1 n n
2N (U UM Uy U U U U, U

Uin—l,jw"7U(’;1;jaU7;r:‘j+lvUi7?j—l7"’7U£O) = [2+ (I,ngl +/,L291 +rAt):|U"+l
i+1

+ (m + pagd) UMY = (m — mags) UMY + ng L (nz - M2gg) Ul

41
— (2 = w2 ) U +uzzgk T e — [2 — (mg? + p2g? +TAt):|Ui7?j
i1
+ (4 1g8) Ulr — (m = pags) Uy + Y ge Ul s
k=3
Jj+1
+ (772 + uzgg) Ulj1 — (772 - uzgg) Ulior + 12 Y gRUN 1
k=3

We also define the following two functions:

n+l __ n+1 n+l n+1 n+1 n+l n n n
FL = Frri(urtt 4 e, Urt L, U LU Uij+1,Ui,j_1,...,Ui70)

1,j,t€ i+1,50 Fi—1,5"
n+1l n—i—l n+1 n+1 n+1 n+1 n
Fyle = FLU UG L U + e U+ UGS+ Ul + e,

Ui,j—l +e,...,U +e),

where € > 0. It has been proved in [4] that (Zzﬂo gk) —1g¢ > 0fori =

1,2,...,M, — 1. This inequality also holds true for {gk} with ¢ + 1 and M,
replaced with j + 1 and M, respectlvely We now use this result to prove the

monotonicity of F ”7+ ! When At < , we have from the definition of F{‘fl that,
for any € > 0 and feasible ¢ and 7,

n n 1 & 0 2
S {17 5 (#191 +uzgf+mt)}s+u1(go +g2)e

il j+1
Y gie+pa(gs +95)e+pa D gie
k=3 k=3
i+1 1 Jj+1 1
< an;rl (ng - 291) €+ p2 (ng - 291) € — (1 - *TAt) e< Fir,b;rla
k=0 k=0

since fu1, po < 0. Furthermore, from Lemma 2, we know that ¢{ < 0 and glﬁ <0,
thus we have

1
F =F T+ [1 +t3 (ng? + pagt + TAt) ]5 > Fif

Therefore, the scheme is monotone.

Combining Theorems 2, 3 and 4, we have the following convergence result.
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Theorem 5. (Convergence) Let U be the viscosity solution to (1) and Up, h,, At
be the numerical solution to (7) with spatial and time mesh size triple
(h1, ha, At). Then, Up, h, At converges to U as (hy, he, At) — (07,07,07).

In [1] the authors show that any finite difference scheme for a general nonlin-
ear 2nd-order PDE which is locally consistent, stable and monotone generates a
solution converging uniformly on a compact subset of (0,7) x R to the unique
viscosity solution of the PDE. In [5,6], Cont and Tankov extended this result to
partial integro-differential equations (PIDEs). Since (1a) is an PIDE, Theorem 5
is a consequence of the results established in [1,5,6] and Theorems2, 3 and 4.

5 Numerical Experiments

We now apply our method to the following test problem.

Ezample 1. Call-on-Min and Basket options: Eq. (1), with the system and mar-
ket parameters o = 0.25, r = 0.05, K = 50, a; = as = 0.384, by = by = 0.884,
Zmin = Ymin = I0(0.1), Tmax = Ymax = In(100) and T = 1. Initial and boundary
conditions can be obtained by setting t = T, * = Zmin, Tmax OF ¥ = Ymin, Ymax
in the following functions.

Call-on-Min option: U(z,y,t) = [min(eﬂc’ey) _ Ke—r(T—t)]Jr7
Basket option: U(x,y,t) = [(e”“' +ev)/2 — Ke—T-(T—t)L__

To solve this problem, we choose a uniform mesh with mesh sizes Az = Ay = 155

and At = 1(1)—0. The numerical solutions for these options at ¢ = 0 from our
method are plotted in Fig. 1 in the original independent variable S, = e* and
Sy = €Y. From the figures we see that these numerical solutions are qualitatively

correct.
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Fig. 1. Computed prices of Call-on-Min and Basket options; a = = 1.5
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To see the influence of @ and 3 on the option prices, we solve the problem for
four different values of « = 8 = 1.3,1.5,1.7,1.9 and plot the differences between
the numerical solutions of the standard BS equation (i.e., « = § = 2) and the
fractional BS equation and at ¢t = 0 for Call-on-Min (Fig. 2) and Basket Option
(Fig. 3). From the figures we see that the Call-on-Min and Basket options from
fBS model are more expensive than their counterparts of the standard BS model.
From these figures, we also see that the call prices increase as a decreases when
S1 and S are greater than some critical values. This phenomenon has been
observed in published results for of the 1D fBS equation [2,4] and thus our
numerical results for the 2D problem are consistent with those from [2]. The
figures also indicate that when o and 8 approach 2, the numerical solutions to
the fBS equation approach to those of the BS equation.
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In this paper, an FDM is proposed to solve the 2D fractional Black-Scholes
equation. The discretization method is shown to be unconditionally stable and
convergent. Numerical experiments are performed to demonstrate the usefulness

of the methods for pricing two-asset European options of practical significance.
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ARTICLE INFO ABSTRACT
KeyW‘?TdSI ] - In this paper we propose a power penalty method for a linear complementarity problem
American option pricing (LCP) involving a fractional partial differential operator in two spatial dimensions arising in

Optimal control

. . pricing American options on two underlying assets whose prices follow two independent
Linear complementarity problem

; : . . geometric Lévy processes. We first approximate the LCP by a nonlinear 2D fractional partial
Fractional differential equation X . . . .
Penalty method differential equation (fPDE) with a penalty term. We then prove that the solution to the
Finite difference method fPDE converges to that of the LCP in a Sobolev norm at an exponential rate depending on
the parameters used in the penalty term. The 2D fPDE is discretized by a 2nd-order finite
difference method in space and Crank-Nicolson method in time. Numerical experiments
on a model Basket Option pricing problem were performed to demonstrate the convergent
rates and the effectiveness of the penalty method.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Option valuation through a partial differential equation approach has been increasingly attracting much attention from
financial engineers, mathematicians and statisticians, ever since the publication of the two seminal papers [4] and [20].
In [4] the authors showed that in a complete market the price of an option on a stock whose price follows a geometric
Brownian motion with constant drift and volatility satisfies a second order parabolic partial differential equation, known
as the Black-Scholes (BS) equation. However, Gaussian shocks used in BS model often underestimate the probability that
stock prices usually exhibit large movements over small time steps which can be demonstrated by empirical financial mar-
ket data. When jumps are large and rare, a jump-diffusion pricing model can be used to capture them. More details of
these models and their numerical solutions can be found in, for example, [1,2,13,30,31]. If there are infinitely many jumps
in a finite time interval, an infinite activity Lévy process can be used to capture both frequent small and rare large moves.
It has been shown in [6] that, the price of an option on a single asset satisfies a 1D parabolic fractional Black-Scholes
(fBS) equation when its underlying asset price follows a geometric Lévy process. This 1D fBS equation and the correspond-
ing American option pricing problem can be solved numerically by the numerical methods proposed recently by us in
[7,8]. In [10], Clift and Forsyth proposed an implicit finite difference method for the two dimensional parabolic partial
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E-mail addresses: Wen.Chen@data61.csiro.au (W. Chen), song.wang@curtin.edu.au, songwang58@gmail.com (S. Wang).
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integro-differential equation (PIDE) to price two-asset European and American options whose assets follow the correlated
finite activity jump diffusion model.

In this work, we shall present a numerical method consisting of a penalty approach and a discretization scheme for
pricing American options written on two assets whose prices follow two independent geometric Lévy processes. Under the
same assumptions as in [6], it is easy to show that the value of such a two-asset option of European type (eg. Rainbow or
Basket Option) is determined by a 2D fBS equation and the value of the corresponding American option is governed by a
linear complementarity problem involving the fractional partial differential operator used in the European option model. The
latter can also be formulated as a fractional partial differential variational inequality. We comment that, the CGMY jump-
diffusion process [5] is also popular in option pricing. An fBS equation for pricing European options has also been developed
in [6]. However, in the present work, we only consider the fBS equations and inequalities associated with the geometric
Lévy process and will develop algorithms for the fractional differential LCPs based on the CGMY jump-diffusion process in
a future paper.

Penalty approaches have been used very successfully for solving constrained optimization problems. In recent years,
penalty methods have been used for complementarity or variational inequality problems in both finite and infinite dimen-
sions [3,25,35], particularly those from the valuation of financial options [15,18,19,22,27,33,34,36]. Recently, modern opti-
mization techniques such as the use of grossone theory proposed in [24] in nonlinear programming problems with differ-
entiable penalty functions to determine the penalty parameters has been developed in [11]. In [8], we proposed a power
penalty method for solving the fBS equation governing single-asset American option pricing. In this paper, we construct and
analyze a power penalty method for the fractional differential complementarity problem arising in pricing the aforemen-
tioned two-asset American options. In particular, we will establish a convergence theory for the penalty method proposed.
We will then propose a 2nd-order accurate scheme for the discretization of the 2D nonlinear fBS equation in two spatial
dimensions generated by the penalty method, based on our recent work in [7] for the 1D fBS equation arising in pricing
one-asset options.

While the numerical solution of fractional differential LCPs and fBS equations arising in pricing options written on one
risky asset has been discussed in various existing works, to our best knowledge, there are no numerical methods for their
2D counterparts governing the valuation of options on two assets. Therefore, the present work will fill this gap and provide
a numerical tool for pricing European and American options of the aforementioned type.

The organization of this paper is as follows. In the next section, we will give a brief account of the fBS equation and frac-
tional differential LCP, along with their initial and boundary conditions, governing the valuation of European and American
options written on two independent risky assets. We will also formulate the LCP as a variational inequality and show that
the latter problem is uniquely solvable. In Section 3, we will first propose the power penalty method with positive penalty
parameters A > 1 and k, and consider the unique solvability of the penalty equation. We will then prove that the solution to
the penalty equation converges to that of the variational inequality at the rate @(A~%/2). A 2nd-order accurate discretization
scheme is proposed in Section 4 for the penalty equation. In Section 5, we will present some numerical experimental results
using an American Basket option pricing problem to numerically demonstrate the rates of convergence and usefulness of the
numerical method.

2. The option pricing problem

It is shown in [6] that the value of an option whose price follows a geometric Lévy process is governed by a 1D fBS
equation. Under the same assumptions as in [6], it is trivial to show that the value U of a European option written on
two assets (eg. Rainbow or Basket Option) whose prices S; and S, follow two independent geometric Lévy processes is
determined by the following two-dimensional fBS equation:

LU := ~U; + aiUx + aUy — by[—ocDSU] — by o DEU] +1U = 0 (1a)

for (x,y,t) € (=00, 00)? x [0,T), where x =InS;, y =1InS,, _D¢U and _OODJ’,SU denote respectively the ath and Sth deriva-
tives of U in x and y for o, B € (1, 2), T > 0 is the expiry date, r > 0 is the risk-free rate, o > 0 is the volatility of the
underlying asset price, and

1, (%4 1, or
al_frfia sec(T), b1_f§cr sec(7)>0,

a2=—r—20ﬁsec<’3n> bzz—zoﬁsec<ﬂn> > 0.

Boundary and terminal conditions can be defined for the above equation depending on the types of options and the strike
price K. From the transformations x = InS; and y = InS,, we have

lim Uy = lim Use*=0, lim Uy = lim Us,e =0,
X——00 X——00 y—>—o0 y——00

since Us, and Us, are bounded as S;,S; — Ot in practice. In computation, the infinite solution domain (=00, 00)2
has to be truncated into € = (Xmin, Xmax) X Vmin» Ymax), Where Xmin, Xmax, Ymin and Ymax are four constants satisfying
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Xmin» Ymin < 0 and Xmax, ¥max > 0. Therefore, since both Uy and U, go to zero exponentially as x and y approach —oo,
when X0, Ymin < 0, the following conditions for (1a), up to a truncation error, are satisfied:

Ux(x,y.t) =0, X <Xpin, . 1) € Wmin» Ymax) % [0, T), (1b)

Uy(x,y.t) =0, ¥ <Ymin. X. 1) € Xmin. Xmax) x [0, T). (1¢c)

Clearly, for put options, the strike price K should satisfy max(e*min, e¥min) < K < min(e*max, e¥max),
As in the conventional case, the two-asset American option price satisfies the following fractional differential linear com-
plementarity problem

U >0, Ux>U, (2a)

LU . (U -U*) =0, (2b)

where U* is a given function of (x, y, t) defining a ‘lower bound’ on the solution which is usually the payoff function of
the pricing problem. Note that (2a) and (2b) contain (1a) as the special case when U* < 0. This is because U > 0 and thus
the 2nd inequality in (2a) is always satisfied if U* < 0. In this case, the complementarity condition (2b) yields (1a). In what
follows, we only consider pricing American puts as the price of an American call is equal to that of its European counterpart.
For brevity, we assume in the rest of this work that U* is the payoff function of the problem.

On the boundary of €2, we impose the following boundary and terminal conditions for an American put:

U(Xminwyi t) =g10/, t)’ U(X’yminvt) =g2(x,t), U(xmax,.yst) :OZU(X’Ymath) (2(2)
for (x,y,t) € 2 x [0, T), and
Uy, T)=U"Rxy), xy)e, (2d)

where g1, g, are given functions and U* is the payoff of the option defined below.
For brevity, we only consider two-asset American Basket options in this work whose pay-off function is

U*(x,y) = [K — wie* —wqe’],, (3)

where [z], = max{z, 0} and wy, w, > 0 are weights. Clearly, the weights are arbitrary as long as (2c) and (2d) are consistent.
We also assume that the computational domain €2 is sufficiently large so that K —w}, — w5, =0 is a curve in the interior
of Q.

It is normally not possible to derive explicit analytical expressions for the boundary conditions g; and g, in this case, as
they are usually the solutions of one-dimensional American option pricing problems or LCPs of the form (2a) and (2b). In
practice, numerical approximations to these 1D American option pricing problem are sought as discussed in [16,17].

To determine g;, one needs to solve a 1D LCP obtained by taking the limit of (2) as x — xp;,. Using (1b), we see that g,
should satisfy the following 1D LCP:

~g1; + 281, — byl _oDigi] + 181 = 0,
&1 =2 U* (Xmin,» ¥), (4)
(- &1+ agy — bo[-Dfg1] +181) - (81— U* (min. ) = 0,

with the boundary and terminal conditions

&1 (.Vminv t) = U*(xminvymin>v 81 (Vmax, t) =0, &1 0’, T) = U*(Xminv}’)- (5)

According to [29], the upper bound of the asset prices are usually three to four times the strike price. Choosing a reasonable
large upper bound, we can have the above artificial boundary conditions at (ymax, t).
Similarly, g>(x, t) is determined by the following LCP:

—82¢ + @282y — b1 D582+ 782 = 0,
82 > U*(X, Ymin)> (6)
(—82¢ + 0282y — b1[ D& +182) - (82 — U* (X, Ymin)) =0,

with the boundary and terminal conditions:

b2} (Xmin: t) =U" (Xmin’}/min): &2 (xmaXv t) = 0, 82 (X, T) =U" (vamin)- (7)

Both (4) and (6) are single-asset American option pricing problems with fractional Black-Scholes operators. Note that
the boundary and payoff conditions (5) and (7) are exact. The above 1D problems can be solved numerically using the
discretization and penalty methods proposed in [7,8] to yield approximations to g; and g;. The computational errors in the
numerical solutions of the boundary conditions are of the order O(h? + At? + AX/2) as proved in [7,8], where h and At are
respectively the maximal mesh sizes in space and time, and A > 1 and k > O are the penalty parameter and power used in
the power penalty method.
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There are various representations of the fractional derivative _D$U(x,y) such as those of Riemann-Liouville and
Gritwald-Letnikov [21,23]. For a given xo, one form for », DYV (x.y) is

U(XO’yst) + UX(X05yst) + 1 XUXX(E’y’t)
Fd-a)(x—x)* TER-a)x—x)*1 T'QR-a)l, x-§)1!

for x > xo, where I'(-) denotes the Gamma function. Using (1b) it is easily seen that, for xg < Xy, (8) reduces to

U(Xmil’hy’t) 1 X Uxx(é,y,t)
T - o))" T T @) oy, - B 10

since Ux(x,y,t) = 0 and U(xg, ¥, t) = U(Xpin, ¥, t) When x < x,;, (up to a truncation error). Therefore, we have

DU Y. t) = 3 (8)

DU Y. t) =

o _ : U(Xmil‘lsyst) 1 X UXX(S’y’t)
_DYU (X, y,t) = xoll“lc [F(] o) (x — x)° + T2 ). =By dg}
1 * Un(§.y, t)dS (9)

TTQ2-a) ), x—&)T

for x > Xxp,i,. This is Caputo’s representation of the oth derivative of our solution U with respect to x. Similarly, using (1c),
we can derive, for y > y,;, and up to a truncation error,

1 y Uyy(X,g,t)d&_
F@=B) Jyo =81

2.1. The variational formulation and unique solvability

_DODJ/?U(X, y,t) =

In this section, we first formulate (2) as a variational inequality problem and then show that the problem has a unique
solution. We start this discussion by introducing some function spaces.

For the open set 2 CR? and 1 < p < oo, we let LP(Q) = {v: (J, |[v|PdS2)!/P < oo} denote the space of all p-power inte-
grable functions on 2 equipped with the usual LP-norm || - [|;p(). We use (., ) to denote the usual inner product. For any

¢ =1[81.42] € (0,12, we let
HY(R?) == {v:v, _Divand Djtv e [*(R?)}.
On H¢ (R?) we introduce an energy norm || - ll; such that for any v e H¢ (R2),
2
1012 = 10112z + |-oeD Ul gy + | D5V g (10)

It has been shown in [12] that H¢ (R?) equipped with || - [l is a Sobolev space.

Similarly to H¢ (R2?), we also define the Sobolev space of functions having a support on € = (Xmin, Xmax) X Vmin» Ymax)
given by

H(Q) = {v: v e H (R),v]yq = 0}
with the energy norm defined in (10) (with R2 replaced with ), where XminDﬁ‘u and yminD§2u are defined in (8) with xq
and y, replaced with x,;; and yq;, respectively and 92 denotes the boundary of Q. In what follows, we also use (., -)
to denote the duality pairing between Hg(Q) and its dual space Haz (2) defined by (v, w) = [ vwdQ2 for v e Hé (2) and

we Hy* (Q).
We first rewrite the operator in (1a) as the following conservative form:

LU=-U -V .- (—aU+BVEU) +1U,

(& _ b1 0
a= (az)’ and B= (0 bz)'
Letting y = [, B] and ¢ = [a — 1, B — 1], we define
9e-1y aﬂlu]T

where

5 —
VEU = |:8x°l—1 T 9yp-1

Let Uy € H%(2) be a known function satisfying the boundary conditions (2c). (For example, Uy can be the solution of
a bi-harmonic equation satisfying (2c) and the homogeneous Neumann boundary condition.) Then we introduce a new
function

ux.y.t) =Ug(x,y) —U(x,y.t). (11)
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Taking LUy away from both sides of (2a) and using (11), we have
Lu < f,
u < u*, (12a)
(Lu—f)-(u-u)=0

for feasible t and (x, y) with the boundary and terminal conditions:

ux,y,0le =0, uxyT)=u"xy), (12b)

where f(x,y) = LUy(x,y) and u*(x,y) = Up(x,y) — U*(x,y).
We now define

K= {v(t) :v(t) € HI? (), v(t) < u*(t) almost everywhere in (0, T)}.
It is easy to verify K is a convex and closed subset of Hg 2 (€2). Using this convex set, we pose the following problem:
Problem 2.1. Find u € K, such that, for all v € £,

au
—ap v +A@U,v—u)=> (f.v-u), (13)

almost everywhere (a.e.) in (0, T), satisfying the boundary and terminal condition (12b), where A(-, -) is a bilinear form
defined by:

A(u,v) = (Vu,av) + (BV©u, Vo) +r(w,v), u,veH'*(Q). (14)

it can be easily shown that Problem 2.1 is the variational form of (12a).
In [7] (also [12]), we have proved the following lemma.

Lemma 2.2. For A(u,v) = a(3%, v) + b
v,weHY?(), a € (1, 2).

AW v) = G [[V]IZ . (15)

D¢y, %) +r(u,v), there exist positive constants C; and C,, such that for any

Xmin

.A(U, W) SCZHUH(X/Z”W”(X/Z’ (16)
forallt € (0, T) ae.
Using this lemma, we can derive the following lemma.
Lemma 2.3. There exist two positive constants C; and C;, such that for any v, w e Hg/z (2),
A v) = G2 ,. (17)
AW, w) < Gllvlly 2 Wl . (18)
fort € (0, T) ae.

Proof. Let C be a generic positive constant. Using (15) and Cauchy-Schwarz inequality, we have, for u, v € H(’)’ / Z(Q),

av av av 1 0V
A(v,v) = a1<ax, v> + b1<xmmD,‘f1v, 8x> + az<8y, v> + b2<ymi“D5 ', 3y> +r(v,v)
> G ||U||(2¥/2 + C2||U||%3/2
2
> C(Ivllarz + IVllg 2)

= Cllvll3 -

Similarly, using (16) and Cauchy-Schwarz inequality, we can have

A(v,w) = a1<3z, w> + b1<xmmD§j‘“v, %\;v> + a2<gz, w> + b2<ymmDy51v, ?;/V> +r(v,w)

< Glvllazlwlasz +Cllvligllwlg

12 1/2
< (W22 + I13,0) " (IWli2 o + 1wl )

= Cllvll3 2wl -

Using Lemmas 2.2 and 2.3, we are able to prove the following theorem.
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Theorem 2.4. There exists a unique solution to Problem 2.1.

This theorem is just a consequence of Lemma 2.3 and Theorem 1.33 in [14], in which the unique solvability for an
abstract variational inequality problem is established. Thus, the proof is omitted here.

To conclude this section, we comment that the transformation (11) is necessary only for theoretical discussions. It is not
necessary to use (11) in practical computations.

3. Penalty method and convergence

Penalty methods have been used successfully for solving conventional constrained optimization problems. In this section
we will propose such a penalty method for (12a) and (12b). We then establish a convergence theory for the penalty method.
The penalized equation to solve American-style option pricing problem is given below:

Lup (%Y, 0) + Ay, ) —w eI = fxy),  (y.0) eQx(0,T) (19a)
satisfying the following boundary and terminal conditions:
LY. Ole =0 u &y T)=u"xy), (19b)

where A > 1 and k > 0 are penalty parameters. The variational form of (19) is as follows.

Problem 3.1. Find u, (t) € Hg/z () satisfying the initial condition in (19b), such that, for all v e Hg/z(fz),

u, (t)
ot

,v> AW (0. 0) + (Mo, ©) — w17 v) = () (20)

for t € (0, T) a.e., where A(-, -) is a bilinear form defined in (14).
Theorem 3.2. Problem 3.1 has a unique solution.

Proof. To prove this theorem, it suffices to show that the nonlinear operator on the LHS of (20) is strongly monotone and
continuous. Since the linear part A of the LHS of (20) is coercive by (17) and the nonlinear penalty term in (20) is clearly
monotone, the operator is strongly monotone.

From (18) we see that A(u,, v) is Lipschitz continuous in both u, and v. Also, it is obvious that the nonlinear term is
continuous in both u, and v. Therefore, Problem 3.1 is uniquely solvable by the standard result in [14, p. 37]. For a more
rigorous proof of this theorem, we refer to Theorem 3.2 of [8]. O

We now show that the solution to Problem 3.1 converges to that of (12a) as the penalty parameters A or/and k — oo in
a proper norm. Before further discussion, it is necessary to introduce the usual Hilbert space in space and time given by

LP(0,T: H(S)) == {v(-. <) 1 v(., 1 t) e H(R) a.e. in (0, T): [[v(., -1 )|l € LP((0.T))}

with the norm

T 1/p
lvC. s O llwo.rne) = <f0 lv(., - f)||f,(9)dt> ,

where H(€2) denotes a Hilbert space on €2 with the norm || - ||yq). Using this space we present the following lemma.

Lemma 3.3. Let u, be the solution to Problem 3.1 and assume that u, e [P(2 x (0, T)), where p =1+ 1/k. Then there exists a
positive constant C, independent of u, and A, such that

. C
s — vl @xory) < T (21)

* * C
”[uk —u ]+||L°°(0,T;L2(Q)) + ”[uA —u ]+||L2(01T;HK/Z(Q)) = W (22)

Proof. Let C be a generic positive constant, independent of u; and A. To simplify notation, we put ¢ (x,y,t) = [u; (X,y.t) —
u*(x,y)]+. It is easy to see that ¢ (-, -, t) € H(})//Z(Q) for t € (0, T) a.e. Thus, setting v = ¢ in (20), we have

<_83L?’¢>+A(“x,¢) +A(pV*. b)) =(f.¢) ae.in (0.T).

Taking (9. @) + A(u*. ¢) away from both sides of the above equality gives
<—3(“A3;“’, ¢>+A(ux ' §) 4 A($9) = (. 0) + <33“t,¢> AW, ).
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or
8¢ 1/k *
Spe @) FAG.9) + 1PV 9) = (f.9) AW ). (23)

since ¢ =0 when u; —u* <0 and 88%* =0.
Note ¢ (x,y.T) = [u; (x,¥,T) — u*(x,¥)]+ = 0 by (19b). Integrating by parts gives

T
| < WO g >>dr—<¢<r> ¢<t>)—/ < _$(0). ad’(”>

from which, we get

T
/< 9O >> — G040 (24)

Integrating (23) from t to T and using (24), (15) and Hoélder Inequality , we obtain

1 T 5 T
@09 +C [ 1Bzt + 1 [ 16 ] g dr

T T
< f (F(0). $())dT — / A, ¢(T))dT

T 1/p T
< c( | ||¢(r>||f,,(mdr) - [ Aw . gar. (25)
From the definition of A(-, -) in (14), we see that the integrand of the last term in (25) is
—A®*, ¢ (1)) = (au* + BVOu*, V) + r(u*, ¢).

By Green’s theorem, we have

—/T(au*,V¢)dr = /T/ V. (au*)¢(x,y, T)dxdydt —/T/ (au* -n)¢(x,y, T)dxdydt
t t Q t Iy

T T 1/p
sc[ [ dxdy¢<x,y,r>drsc<ft ||¢<r>||fp(g>dr) ,

because U* and V - (au*) are both bounded on €2, where n denotes the unit vector outward-normal to 9.

Let Q1 = {(x.y) € Q: K —wje* —wye¥ > 0} and ©, = Q\ € such that U*(x,y) = 0 on ,. We also let I’y be the inter-
face of ©2; and €2, so that I'y has two opposite orientations: I'j which is oriented in the same direction as d€2;, and I'y
which is oriented in the same direction as d£2;. Since ¢ = 0 on I'g, we have, using integration by parts,

_(BVOw, V) = — / (BY©u*)TVddxdy — / (BY ©u")TV paxdy
Q Q2
:/ V.(Bv@)u*)(pdxdy—/ BV . nghds
Q Ty

+/ v.(3v<€>u*)¢dxay_/ BV©Ou* . ngpds
Q, Ty

—/wB(V(“u’i —V<¢>uj).n¢ds+22:/9 V. (BV©u)gdxdy, (26)
0 i i

where n is the unit outward normal direction of the boundary and Vu* and Vu* denote the value of Vu* on the left and
right sides of I'} respectively. Since u* = Uy — U*,

V(é“)u*:t — V(E)Uo,j: _ V(C)U;
Note that Uy € H3(R2), VU is continuous in €. From this and (3) we have

VOy* — V(C)ui - V(C)Ui —VOU* = —(wre*, wye?)T,
since V&U* = 0. Since Iy is characterized by K — w;e¥ — w,e¥ = 0, the unit vector outward-normal to It is

VK —wiet—wyeY)  (—wie¥, —wye)T
T IVK — wieX —woeY)|| (W2e2x + wle)1/2’

Based on the above results, (26) has the following upper bound:
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(wre*, wyeV)TB(we*, wyed)T
202 202y)1/2
(wieX +wze)l/

~(BV©u, V) < — /
.

0

2
bds + Z/Q V. (BV©u*)pdxdy
i=1 i

<C / pdxdy,
Q

since B is positive-definite, ¢ is non-negative and V - (BV(?)u*) is bounded above on both ; and 2, from its definition.
Therefore, replacing the last term in (25) by the above upper bound gives

T 1/p
S@O.9©)+C / Ip (D2 d7 + / ll¢<f>llm>df56</t ||¢<z>||fp(mdr) (27)

for all t € (0, T) a.e. This implies that

1/p
)\/ ”¢(T)”Lp(g)dtfc</ ||¢(T)||LP(Q) ) ’

and so

T 1-1/p
( [ ||¢><r>||fp<mdr) <o,

From the choice of p we see that 1 —1/p = 1/(kp). Thus, from the above estimate we have

1/p
(/ 162, g, ) <Ok,

This is (21). Combining (27) and the above estimate yields

1 T C
@O0 + [ 19O pdr < 57
for any feasible t. Finally, noting that t is arbitrary, the above inequality implies (22). O
Using Lemma 3.3, we are able to prove the following theorem.

Theorem 3.4. Let u and u, be the solutions to Problems 2.1 and 3.1, respectively. If %—Lt’ € L17K(Q x (0, T)), then there exists a
constant C > 0, independent of A, such that

C
”u)\ - u”L”C(O,T;LZ(Q)) + ”uk - u”LZ(O,T;Hg/Z(Q)) = Wa (28)

where A and k are the parameters used in (19a).

Proof. Following the notation used in the proof of Lemma 3.3, we decompose u — u; as

u—uy =u—u+u; —ulo —[u, —uly =R, - @, (29)
where [z]_ = —min{z, 0} for any z and
Ry =u—u*+[u; —u*]_. (30)

Let us first consider R;. Setting v =u — R, in (13) and v =R, in (20) gives

<—3§’, —RA> LA —R,) = (f. —Ry).

au
< 8tk RA>+A(U,\,RA)+)»(¢]/I< R) = (f.Ry).
Adding up the above inequality and equality, we have
0 _
<(ugtu),Rk>+A(uku,R,\)+)L(¢”",RA) > 0. (31)

From their definitions, it is easy to see
VM, — '] = [ — u ] [uy —u]- =0. (32)
Thus, using the above relationship and (30), we have

(0V5 . Ry) = (¢  u—u + [u, —u']-) = ("% u—u*) <0,

DISTRIBUTION A. Approved for public release: distribution unlimited.



182 W. Chen, S. Wang/Applied Mathematics and Computation 305 (2017) 174-187
since ¢ > 0 and u — u* < 0 by (12a). Therefore, (31) reduces to

<—a(”a_t”*),Rk> +A@U-u,Ry) <O.
Using (29), it is easy to see that the above inequality can be rewritten as

< . RA> FAR, Ry < < i Rx> FAG.R)

From (30) we see that R, (x,T) = 0. Thus, integrating both sides of the above estimate from t to T and using the same
argument as for (24), Cauchy-Schwarz inequality and (18), we have

1 T
3RO R(0) + [ AR(D). Ry (r))de

T
< [ < il RA(T)>dT+/ A (0). Ry (2))d

OR,.(7)

< (¢(t),Rx(t))+/ <¢(f) >df+/ A(¢(7). Ry (7))dt

= ||¢”L°°(0 T;[2(Q2)) ”RK ”L”(O,T;LHQ)) + C||¢||L2(0,T;Hg/2(9)) ”R)L ”LZ(O,T;HK/Z(Q))

/ <¢>(r) BRA(T)>dr, (33)

for all t € (0, T). Using (32), (30), and (21), we estimate the last term in (33) as follows:

/ <¢< 0. aRx(”>dr— / <¢< . au(r)>d7<C||¢||Ln(szx(or)) ou

at
where p=1+1/k and g = 1 + k. Substituting the above upper bound into (33) and using (16), (15) and (22), we obtain

C

= %
L9(2x(0,T)) A

2
(||R)\||Lw(o.T;L2(Q)) + ”RAHLZ(O.T:HV/Z(Q)))
(iR 2 R, ||?
< §|| e 0.2 T IR 20187 200)

—k
= C[”¢”L°°<0.T=L2(sz>> IR M1 0. 7:1229) + N2 012082 00y IR 2.1 2 ) + A ]

—
= C[(||¢||L°°(O re@) T 11@llzor HV/Z(Q))) : (||R)\ i~ 0.7:12¢2)) + IIRx ”LZ(O.T:HV/Z(Q))) +A <]
/
< C[ </2(||R/\||L2(o @) T IRl T, HV/Z(Q))) +A7 ]

This is of the form p? < C(pA=%2 + A=%). It is easy to prove that p < CA~%/2 for a generic positive constant C, independent
of A and k. Therefore, we have

—k
IR 0722 + IR 2072112 ) < CAT2. (34)
Finally, using the triangular inequality, (29), (22) and (34), we can have
lu =t ll = 0.r200)) + U = Unllzo 117 200) < (||RA||Lx(0 riz) T IRz, HV/Z(Q)))

(||¢||L°°(O,T;L2(Q)) + ||¢||L2(0‘T:HV/2(Q))) <CAM2,
This is (28). O

4. Discretization

Since the penalized fPDE cannot be solved analytically, it needs to be discretized in order to solve it numerically. Various
discretization methods are available in the open literature. In this section, we apply the discretization technique developed
recently in [7] to the fractional derivatives in (19a). We also use Crank-Nicolson time stepping method to construct the
discretization scheme for the penalized equation of (2).

Let the intervals (Xpin, Xmax ) and (¥min. Ymax ) be divided into My and My, sub-intervals respectively with mesh nodes

XiZXmin—l-ihx, i=0,1,...,Mx; yj:ymm+jhy, j:O,l,...,My,

where hy = (Xmax — Xmin)/Mx and hy = (Ymax — Ymin)/My. The a-th partial derivative defined in (9) can be approximated as
follows [7]:

h - i+1

xan DR U (X3, ¥, 1) = ﬁ %gﬁ‘UpkHJ (35)
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forany ie{1,2,...,My—1} and je{1,2,...,M, — 1}, where U_y 1 j = U(X;_r11,¥j, t). The coefficients g}’s are given by

1 23-a _ 4 330 _4 %2316
$-G-06-w Y G-06-0 & @G-
g‘,f = m[(k—k ‘1)3"1 — 43 ¢ 6(k — 1)3’“ —4(k - 2)370‘ + (k- 3)3"1],

for k=3,4,...,i+ 1. This finite difference scheme has second order accuracy as proved in [7].

For a positive integer N, let (0, T) be divided into N sub-intervals with the mesh points t, =T —nAt, n=0,1,...,N,
where At =T/N. Thus T =ty > t; > --- > ty = 0. Using (35) we define the following finite difference operators for the frac-
tional derivatives in (1a):

1 i+1 j+1

aaun = ngx i—k+1,j° 51‘5 lr,'] = hﬂF(Z ﬂ) ng i,j—k+1° (363)

where Up ; denotes an approximation to U(xp, yq, ta) for all feasible (p, q, n). We also define the following central difference
approximations to Uy and Uy respectively:

1
&U = ( fa Ul U= Thy(uil.qjﬂ =Ujj 1) (36b)

Using Crank-Nicolson time stepping method and the finite differences defined in (36a) and (36b), we construct the
following discretization scheme for (19a):

urt —un. 4
s 1,
e S (@8 = BiSEUTT - ao8, U~ bo8 U Ul d;;ﬂ)
1
5 (@8 — b1SUL, + a8, Uy, — badUT, + U7, + ) = 0 (37a)

fori=1,2,..., My—-1,j=1,2,..., My—-1landn=1,2,..., N satisfying
Upj =810, ta), Uy =g (i ta), U,-(,)j =U"(%,y). (37Db)

where d{fj = d(Ul.'j].) = )\[Ui’fj - U,.fj L/k is the penalty term.

Eq. (37a) can be rewritten as the following linear system:

1 n+1 1 n+1Y) _ 1 n 1 n En
<l+ EM)v +5D(V) = (17 jM)v — 5DV +F

with
T
V' = (U{l.l’Ug.l"“’Ulclx—l,l’"‘7UI\I}IX—1.M},—1) ,
T
D(V") = (d(U},),dU3 ), ....dWs 1 1), AU i, 1))
for n=0,1,...,N—1, where I is an (My — 1)(M, — 1)-dimensional identity, F7 is an (My —1) x (My — 1) column vector

representing the average of the contributions of the boundary conditions at time levels n and n+1, and M is a block
matrix containing (My — 1) x (My — 1) blocks . The size of each block is (Mx — 1) x (Mx —1).

A+B, By 0 0 ]
B2 A+ B] BO 0
B3 Bz A+ Bl B0
M= . . . .
BMy73 . B, A+ B, By 0
By, > B; B, A+B, B
_BMy71 B3 Bz A+B1 A (My—1)x(My—1)
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Table 1
System and market parameters for the two-
asset American option.

o, B 1.5 r 0.05
o 0.25 K 30
ay, ay 0.384 by, by 0.884
Xmin» Ymin In0.1 Xmax » Ymax In 100

Table 2
Convergence behavior in A.
A=10x2" n=1 n=2 n=3 n=4
k=1 Error 13229  0.6857 03493  0.1763
log,Ratio 0.9480  0.9731 0.9863
k=2 Error 1.6211 04752  0.1246 0.0315
log,Ratio 17704 19307 1.9825
k=3 Error 1.8691  0.3343  0.0447  0.006
log, Ratio 2.4833  2.9036  3.0010

In the above expression, A is the discretization matrix on x direction in (35)
HUxgy +1x, J=i4+1

.. (Mygg +n)ly,  j=0
uxgy + SAL, =i

(g + LADL, j=1

Aij: /»Lxgg_nx, j=i-1 Bj: ( gﬁ , -
J12% j=i—-1+1,1=3,...,i Hy& — )y, J=
0, otherwise, (gL, j=3.....My,
where p, = —b 1F(2§7z§)h§“ M= 0155 Wy = szmfw, and 7y = azzAT;. Note that the boundary conditions g}; and g,
Yy

(37b) have to be defined by the numerical solutions of two 1D systems.
The nonlinear system (37) can be solved by the following damped Newton'’s iterative method:
1 1 -1 -1 __ 1 n 1 n En 1 1—1 1 -1
(14 M+ (W) )ow ! = (1= SM)V" = ZDAW") + B — (14 M) w ! - JD(w ),
wh= w4 edwi!

for =1,2,... until a convergence criterion is satisfied with the initial guess w® = V". Jp(w) denotes the Jacobian ma-
trix of the column vectors D(w) and « < (0, 1] denotes a damping parameter. Then we choose V**! =lim; , . w! for all
n=0,1,2,...,N-1.

5. Numerical experiments

In this section, we present some numerical experimental results to verify the theoretical rate of convergence obtained in
Section 3 and the rate of convergence of the discretization scheme in Section 4 to demonstrate the accuracy and usefulness
of our numerical method. To achieve this, we use two examples and the first test example is chosen to be the following
American basket option pricing problem.

Example 5.1 (American basket put option pricing). The fractional differential LCP (2) with system and market parameters
given in Table 1 and the weights w; = w, = 0.5.

To investigate the convergence rates of the method in both A and k, we choose a fixed uniform mesh for the solution
domain (In(0.05), In(100))2 x (0, 1) in (x, y, t) with My = My =50 and N = 50. Since the exact solution to this problem is
unknown, we use the numerical solution with A = 10% and k = 1 as the reference solution denoted as V. We solve (19a) on
the aforementioned uniform mesh for a sequence of values of A and a fixed value of k, and compute approximations of the
following continuous norm on the mesh using the reference and numerical solutions V¢ and V;:

”VR =V ||Lw(0‘T;L2(Q)) + ”VR -V ||L2(0,T;Hy/2(gz))-

We also calculate the base-2 logarithm of the ratio of the errors from two consecutive values of A for a fixed k and the
results are listed in Table 2. From Theorem 3.4 we see that the ratio of the errors in V, and V,, for a given k behaves
like 2%/2. However, from Table 2 we see that the computed ratios behave like 2*, indicating that the rate of convergence
is of order A%, In fact, it has been proved in [15,26,28], using the fact that all the norms in finite dimensions are equiv-
alent, that the power penalty method for a nonlinear complementarity problems in finite dimensions satisfying a strong
monotone condition has the convergence rate O(A~%). However, the convergence rate in finite dimensions is not uniform in
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Table 3
Convergence behavior in k.

k=1 k=2 k=3

A =40 Error 0.6857 04752  0.3343
log;Ratio 1.4430 14216
A =80 Error 03493 01246  0.0447
log,Ratio 2.8025  2.7904
A =160  Error 0.1763 0.0315  0.0060
log,Ratio 55900  5.6529

30

25

20

y S

Fig. 1. Computed prices of an American Basket option when o = 1.5.

the dimensionality. Since norms on an infinite-dimensional space are usually not equivalent, we are unable to achieve the
O(A~%)-rate of convergence as in finite dimensions.

We now investigate numerically the rate of convergence of the method in k for a fixed A > 1. From (28) we see the ratio
of the errors in the solutions using k and k + 1 equals O(AKk+1D/2/3k/2y = ©(A1/2)  i.e., the ratio is a constant for any k. The
computed results for different values of k and A are listed in Table 3, from which we see that the ratios of the errors for
any two consecutive values of k are almost constants.

The solution when o = 8 = 1.5 is illustrated in Fig. 1. We have also repeated the above numerical experiments for
o =B =1.3,1.7 and found that the computed convergence rates are the same as the corresponding ones for « = 8 = 1.5,
which suggests that the convergence rates of the penalty method do not depend on the fractional order « or 8.

To see the influence of @ and B on the option price, we solve the test problem for « = 8 =1.3,1.5,1.7, and plot the
cross-sections at Sy =Sy, 0 < Sy < 100, and t =0 in Fig. 2 of the differences between the numerical solutions, Vggs, of the
test problem and the numerical solutions of the standard American option Vjs (i.e., « = 8 = 2). From Fig. 2, we see that the
American put option from the fractional model is more valuable than that from the standard model. Also, the value of the
option increases as o and S decreases. This phenomenon is reasonable as when « and § are smaller, the price movement
is faster and thus the option premium is higher, similar to the case that the larger the volatility, the higher the option
premium.

Example 5.2 (Fractional advection-diffusion equation). To test the rate of convergence of the discretization scheme we
choose the following linear fPDE to which the exact solution is known:

U + Uy — oDSu — oDJu = f(x,.1)

with boundary and terminal conditions
u(x,0,t) =u(x,1,t) =0, ye(0,1), te(0,1],
u(0,y,t) =u(1,y,t) =0, xe(0,1), te(0,1],
uxy, 1) =2y (xy) e (0,1) x (0,1],

where f(x,y,t) = x3y* + (3x2y* — 7F€Affé)x3‘“y4 +4x3y3 — 71.{5(33))(3)/4‘5 —x3yHe.
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oBf=13

- - - of=15
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0 10 20 30 40 50 60 70 80 90 100
Sx, Sy
Fig. 2. Basket Option comparison for different «.
Table 4
Computed rates of convergence for Example 5.2.
h=At= b EG log, % Em log, o
m=0 1.9403e—-02 1.7505e-03
m=1 1.4090e—02 0.4616  5.4035e—04 1.6958
m=2 8.2916e—-03 0.7650  1.4873e-04 1.8612
m=3 4.4631e—03 0.8936  3.8689e—05 1.9427
m=4 2.3158e-03 0.9466  9.8882e-06 1.9681
m=>5 1.1801e-03 0.9726  2.5081e—06 1.9791

We choose o = 8 =1.5 and the exact solution to the above problem is u(x,t) = x3y*t. This problem is solved using
a sequence of uniform meshes with mesh sizes hy =hy =h= At = % x2™™ for m=0,1,...,5. For each m, the following
discrete maximum norm is computed:

Em=, max = max  max |u(xi.y;.ta) — UP.
where (U,TJ‘.) denotes the numerical solution by the discretization scheme. These computed errors, along with computed rates
of convergence log, (E;;,1/Em), for k=0,1,...,4, are listed in Table 4 from which we see that the rates of convergence of
our method are of order O(At? + h? +h§), while a lengthy mathematical proof of this upper error bound can be found
in [9]. For comparison, we have also solved this 2D problem using the combination of the Crank-Nicolson time-stepping
scheme and Griinwald-Letnikov method in [23] which is a popular method for fPDEs. The computed errors ES's and the
rates of convergence for the GL method are also listed in Table 4, from which it is clear that GL method is only 1st-order
accurate, and our method has a 2nd-order convergence rate.

Finally, we comment that the coefficient matrix M of the discretized system in Section 4 is dense and thus the computa-
tional costs for solving the discretized system is usually high, particularly in 2 spatial dimensions. Theoretically, it is known
that the computational cost for solving the system using the LU decomposition is of the order O((Mx x My)3). The develop-
ment of efficient algorithms for (37) such as conjugate gradient based and ADI algorithms is a future topic and challenge for
us, though it is beyond our current discussion. Also, a comparison of numerical performances of a penalty method similar
to the current one with the augmented Lagrangian method for solving conventional American option pricing problems has
been given in [32]. Thus we refer readers to this comparison study.

6. Conclusion

In this paper, we proposed and analyzed a power penalty method a 2-dimensional fractional differential linear comple-
mentarity problem for pricing American options on two independent assets. We proved that the solution from the penalty
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method converges to that of the linear complementarity problem at the rate of ©(A=¥/2). A 2nd-order accurate discretization
scheme has also been developed for solving the nonlinear fractional partial differential equation arising from the penalty
approach. Numerical experiments were performed to verify the theoretical rates of convergence and demonstrate that nu-
merical method produces financially meaningful results.
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1. Introduction

Valuation of options is one of the most important problems in financial engineering. For over four decades, practitioners
and academic researchers in finance, economics and mathematics have engaged in the study of option pricing. Various
option pricing approaches have been developed (see, for example, [1-9]). One of the methods is the utility based option
pricing approach which has been widely used for valuing European and American options when the trading of the underlying
stocks incurs proportional transaction costs [3,6,10-18]. Recently, Caflisch et al. [ 19] and Cosso [20] applied this approach to
pricing European options and American options respectively under proportional transaction costs and stochastic volatility.
More specifically, in [19] the authors assumed that the underlying stock price follows a geometric Brownian motion and
the associated volatility evolves according to a stochastic process of the Ornstein-Uhlenbeck type. By following the utility
maximization procedure proposed in [3], they derived a set of non-linear HJB equations governing European option prices.
They also obtained an asymptotic expression for the European option price in the limit of small transaction costs and fast
mean reversion volatility under the assumption of an exponential utility function. In [20], the authors considered American
option pricing with proportional transaction costs and stochastic volatility. They assumed that the stochastic volatility
follows the Cox-Ingersoll-Ross (CIR) process. They also showed that computing the price of an American option involves
solving a singular stochastic optimal control problem and proved the existence and uniqueness of the viscosity solution
to the associated H]JB equation. Moreover, they solved the H]B equations using the Markov chain approximation when the
utility function is exponential.
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In this paper, we will develop a new, efficient and accurate numerical method for computing European option prices
based on the pricing model in [19,20]. In both [19,20], the utility function is assumed to be an exponential function. It is
well known that using the exponential utility function can reduce the number of state variables in the H]B equation by one
under a proper transformation. Thus, the use of this special function can simplify the problem considerably. Although the
transformation substantially reduces the computational cost, it may not be applicable to other types of utility functions. The
aim of this paper is to develop a numerical method which can efficiently and accurately solve the HJB equation without any
dimension reduction technique. Therefore, the numerical method developed in this work can be used for computing option
prices with any types of utility function.

This paper is organized as follows. In Section 2, we give a brief account of the formulation of the European option valuation
problem as a set of H]B equations using the utility maximization theory. In Section 3, we first use a known penalty approach
to approximate the HJB equations by a nonlinear PDE with penalty terms to penalize the parts which violate the constraints.
We then propose a finite volume scheme for the penalty equation. In Section 4, an iterative algorithm and its convergence
will be provided and in Section 5, we present the numerical results to demonstrate the usefulness of the numerical method.

2. The European option pricing model

In this section, we will present a brief account of the European option pricing model when the volatility is stochastic and
trading the underling stocks is subject to proportional transaction costs. A detailed mathematical deduction of the model
can be found in [16,20].

2.1. Stochastic volatility model with transaction costs

Consider a market consisting of a risky stock and a risk-less bond. Assume that the price of the stock at time u € [0, T],
denoted as S,;, evolves according to the following stochastic volatility model:

ds

S—“ = pdu + /v (dw], (1)
u

where u is constant drift rate and /v (u) is the volatility function which satisfies the following Cox-Ingersoll-Ross (CIR)

process:

dv(u) = &(n — v(u)du + ¥/ v(u)dW?, (2)

where £ is the speed of adjustment, 7 is the mean and @ is the volatility to volatility. In (2) &, » and ¥ are assumed to be
constant satisfying 2§ > 92, and W! and W2 are Wiener processes on a filtered probability space (2, &, (Fi)o<u<r, P)
with correlation p.

We also assume that the price of the bond, B(u1), evolves according to the following ordinary differential equation

dB(u) = rB(u)du,

where r > 0 is a constant interest rate.

Suppose that the investors must pay transaction costs when buying or selling the stock and the transaction costs are
proportional to the amount transferred from the stock to the bond. Let 8, denote the amount the investors hold in the bond
and o, the number of shares of the stock held by the investors at time u € [0, T], then the evolution equations for 8, and
oy are

dfy = rBudu — (1 + 0)SydL, + (1 — 8)S,dMy, (3)
day = dL, — dM,, (4)
where 0 € [0, 1) represents the proportional transaction cost rate when buying and selling the stock, and L, and M, denote

respectively the cumulative number of shares purchased and sold up to time u. Let c(«y, S,) denote the liquidated cash value
of the stock and W, the investor’s wealth at time u. We have

c(ay, Sy) = Su(ay — Olayl)
Wulay, Bu, Su) = Bu + Suloy — Olay)).

2.2. European option pricing via utility maximization

We now describe the utility based option pricing approach. The idea of the utility based option pricing approach is to
consider an optimal portfolio selection problem of an investor whose objective is to find an admissible trading strategy to
maximize his/her expect utility of terminal wealth. Under this approach, the reservation purchase (respectively write) price
of an option is the price at which the investor has the same maximum expected utility whether he/she buys (respectively
writes) the option or not. To use this approach to value reservation purchase and write prices of European call options, we
first need to define the following three different utility maximization problems.
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Problem 2.1 (Utility Maximization for an Investor Without an Option). Consider an investor who trades only in the underlying
stock and the bond. At time t € [0, T], the investor holds 8 dollars in the bond and « shares of the stock of price S with
volatility v. The objective of the investor is to maximize the expected utility of terminal wealth over all admissible strategies,
ie.,

Vot ,a,B,S,v) = sup  E[UWr)] (0<t<T), (5)
AO(t,a,,S,v)

where VO(t, o, B, S, v) denotes the investor’s time t maximum expected utility of terminal wealth (also known as value
function), E; denotes the expectation operator conditional on the time t information («, 8, S, v) and U(.) is a utility function.
A%, «a, B, S, v) is the set of admissible strategies available to the investor which is defined as the set of right-continuous,
measurable, F-adapted, increasing processes, L, and M, (t < u < T), such that the following conditions are satisfied:

1. The associated processes (c’'v-Me, glu-Mu s "y ) satisfy (1)-(4) in [t, T] with the initial state (t, o, 8, S, v).
2. BluMu g gluMu 5 gloteMe| > 0, Vu € [t, T

The choice of the utility function U is non-unique and a popular one is the following exponential function:
UW) =1—exp(—yW), (6)

where y > 0is a constant risk aversion parameter.

Problem 2.2 (Utility Maximization for an Investor Buying an Option). Assume that the investor trades in the market for the
underlying stock and the bond, and in addition, purchases a cash-settled European call option written on the stock with
strike price K and expiry date T. Then the investor’s objective is to choose an admissible trading strategy to maximize the
expected utility of terminal wealth, i.e.,

Vit @, 8,S,v) =  sup  E[UWr+(Sr—K)"M] (0<t<T), (7)
Ab(t,,8,5,v)

where A’(t, «, B,S,v) = A%(t, @, B, S, v) and x* = max{x, 0}.

Problem 2.3 (Utility Maximization for an Investor Writing an Option). Assume that the investor trades in the market for the
underlying stock and the bond, and, in addition, sells a cash-settled European call option written on the stock with strike
price K and expiry date T. Then, the investor’s objective is to maximize the expected utility of terminal wealth over the set
of feasible strategies, i.e.,

VY (t,a, B,S,v) = sup  E[UWr —(Sr—K)M] (0<t<T), (8)
AY (t,a,B.5,v)
where AY(t,«, 8,5, v) denotes the writer's admissible strategies which are defined as the set of right-continuous,
measurable, F-adapted, increasing processes, L, and M, (t < u < T), such that the following conditions are satisfied.

1. The associated processes (af-Mu | gluMu sy, ) satisfy (1)-(4) in [t, T] with the initial state (¢, «, 8, S, v).
2. BuMu 5, (abeMi —1/(1—0)) — S0 |obeMi — 1/(1—0)| > 0, Yu € [t, T].

We comment that Item 2 in each of Problems 2.1-2.3 represents the no-bankruptcy restriction. These conditions ensure
that the investor’s wealth is positive at all trading times.
Using the above problems, we now define the reservation purchase and write prices of a European call options as follows.

Definition 2.4 (Reservation Purchase Price of a European Call Option). Consider an investor who starts trading at time t = 0
with holding 8 dollars in the bond and « shares of the stock of price S with volatility v. Assume that the investor only can
buy the option at the initial time t = 0. Then the investor’s reservation purchase price of a European call option is defined
as the amount, Py, such that V?(0, a, 8 — P, S, v) = V°(0, o, B, S, v).

Definition 2.5 (Reservation Write Price of a European Call Option). Consider an investor who starts trading at time t = 0 with
holding 8 dollars in the bond and « shares of the stock whose price is S with initial volatility v. Assume that the investor can
only sell the option at the initial time t = 0. Then the investor’s reservation write price of a European call option is defined
as the amount, P,,, such that V¥ (0, o, 8 + P,,, S, v) = V°(0, «, 8, S, v).

From the above definitions it is clear that computing reservation purchase or write price of a European option involves
two of the three value functions defined in (5)-(8). By the dynamic programming principle, we can derive an HJB equation
with a set of appropriate terminal conditions governing the value functions V°, V? and V¥.

Let Ly, k = 1, 2, 3, be the linear differential operators defined respectively by

L 8+;3 + 58+g( )3 +152 32+102 82+ 0 > (9)
=-— rB— — —v)— V— + = v— v ,
! apg T H 7 2> Vas2 T2V Vo TP 50y
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£y = =0+ (1405 (10)

£3=%—(1—9)S%. (11)
Then, the value functions V°, V?, V¥ are defined by the following HJB equation

min {L£1V, £V, L3V} =0, (12)
for (t,a, B,S,v) € [0,T) x 2! x (0, +00) satisfying, respectively, the following terminal conditions:

V(T,a, B,S,v) =Vi(T,a,B,S,v), (a,B,S,v) € N x (0, +00) (13)
fori = 0, b and w respectively, where

VAT, , B,S,v) = U(B + S(a — Oaxl)), (14)

V(T a, B,S,v) = U(B +S(a — Blae]) + (S — K)™), (15)

VYT, o, B,5,v) =UB+S(—0la)) — (S—K)7T), (16)
and

2= ={(@,B,5) eRXxR xR" : B+ Sa — SO|a| > 0}, (17)

RV ={(.B,S) eRxRxR": B+S(a—1/(1—6)) —SO | —1/(1—6)| > 0}. (18)

In the above (v)* = max{v, 0}. Note that (12) is nonlinear and it does not have in general classical solutions. It has been
proved in Cosso et al. [20] that the value functions defined by (5)-(8) are unique viscosity solutions of their respective HJB
equations (12)-(16). This is given in the following theorem.

Theorem 2.6. Let i € {0, b, w} and assume that the value function Viis continuous on [0, T] x 2! x (0, +00), then the value
function V' is the unique constrained viscosity solution of (12) with the terminal condition

V(T,a,B,S,v) =V(T,a, B,S,v), for(a,B,S,v)e 2 x(0,+00),
where VI(T, o, B, S, v) and 2" are defined in (14)-(16) and (17)-(18) respectively for i = 0, b, w.

3. The numerical techniques

Note that (12) can be regarded as a constrained optimization problem in infinite dimensions. Thus, the numerical solution
of (12) involves numerical optimization techniques and discretization schemes. In this section, we will propose a nonlinear
PDE containing penalty terms, called penalty equation, to approximate (12). The penalty terms in the penalty equation
penalize the part of its solution which violate .£;V > 0 fori = 2, 3, while £,V > 0 is automatically satisfied by the
formulation. We will then develop a finite volume method along with the full implicit 2-step time stepping method for the
resulting penalty equation and show that the system matrix is an M-matrix.

3.1. The penalty approach

Penalty methods have been developed for solving both finite- and infinite-dimensional HJB equations [21-25]. In
particular, we propose a penalty method in [16-18] for the European and American option pricing problems under
proportional transaction costs with a constant volatility. Motivated by our previous work, we propose the following penalty
formulation for (12):

L1V + A[L2Va]™ + A[L3Vi] =0 (19)
for (t,a, B,S,v) € [0,T) x 2 x (0, +00) with the terminal condition

Vi(T,a, B,S,v) =V(T,a, B,S,v), for(a,B,S,v) € 2" x (0, 4+00), (20)
where £, are the differential operators defined in (9)-(11), VI(T, «, B, S, v) is the boundary condition given in (14)-(16)
for each i, A > 1is a penalty parameter,i € {0, b, w} and (v)~ = min{v, 0} for any function v.

For the solution of (19) we have the following convergence result.

Theorem 3.1. For any i € {0, b, w}, let Vi be the unique constrained viscosity solution of (12)-(13). For each & > 1,
(19)-(20) has a unique viscosity solution v, and v, — V'as 1 — oo.

The proof of this theorem is essentially a repetition of the proofs of Theorems 4.2 and 4.3 in [ 16] in which £ is a special
case of that defined in (9). However, all the required properties used in the proofs in [ 16] are satisfied by £ in (9). Thus, we
omit this proof.
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3.2. The finite volume method

Finite volume methods have been used for solving one and two-dimensional Black-Scholes equations [26-28]. In this
section, we will propose a finite volume method with an upwind technique for (19). This method has the merit that the
coefficient matrix of the resulting system matrix from the method is always an M-matrix even when p # 0 in (9). In fact,
this property cannot be achieved by any finite difference discretization scheme. For brevity, we only consider the case that
i = bin(19)and (20). The methods for the other two cases are essentially the same as that for i = b and thus are omitted.
Before proceeding, we first rewrite the second and last terms of (19) as the following equivalent form:

)\[£2V)L]_ = 7min ﬁ’loCsz, )\.[DC3VA]_ = 7min ﬁ£3V)L.
me[0,1] nef0,1]

Then, (19) can be rewritten as the divergence form as:

1%
— — —V.(AVV)+b-VV + min mL2V; + min aL3V, =0, (21)
at me[0,A] fi€[0,1]
where
0 0 0 0
0 0 O 0 0 0 0 0
0 0 O 0 1 1
A= = -s? - , 22
0 0 as; as 0 0 25 v 2,01951) (22)
0 0 a3 au 1 1.,
0 0 —pdSv —=v“v
2 2
0
b] _rIB
b, 1
b= b | = Sv + 5,oﬁs —us . (23)
b4

Lo+ 292 £( )
—pdv 4+ —0° — —v
2'0 2 g
Let 2 = (—o00, +00)? x (0, +00)%. We consider the problem in the following finite region:
2y = (=L, Ly) X (—Lg. Lg) x (0,Ls) x (0,L,) C (24)

where L, Lﬁ, Ly, IB' Ls and L, are positive constants. To discretize £2;, we choose four positive integers E, M, P and Z and
use these integers to define a uniform mesh for £2; with mesh nodes

aj=—-L,+ixh, i=0,1,2,...,E,

Bi=—-Lg+jxhy j=0,12,....M,

Sx=kxhs, k=0,1,2,...,P,

v=Ixhy, 1=0,1,2,...,Z,

where

7a+L1 zﬂ+Lﬂ ZS L,
, hy = ——, 3=—, 4

E M P -7

hy =

Let h = max{hy, hy, h3, h4}. In what follows, we will characterize this spatial mesh using the grid index set: G, = 3G, U Gy,
where G, and 0Gy, denote the index sets of the interior and boundary mesh nodes defined respectively by

G, ={G,j,k,):i=1,2,...,.E—1,j=1,2,.... M—1,k=1,2,...,P—-1,1=1,2,...,Z — 1}
and

0G, = {(0,j,k, D), (E,j, k, D, 1,0,k D, (,M, k1D, (ij0,D,jP,D,
G,7,k0), Gj kD :i=12...Ej=1,2,....Mk=1,2,...,P,1=1,2,...,Z}.

Clearly, each grid point (i, j, k, I) € G corresponds to a state («;, B;, Sk, V1).
Dual to the above mesh (called primary mesh), we define a secondary mesh with the mesh nodes

i1t _ Bi-1t+ B _ Sk=1+ Sk vty
=— - Pau=—— =, Y1=—

S ,
k 2 2 2

NN
NN
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fori=0,...,E+1,j=0,...,.M+1,k=0,...,P+1andl=0,...,Z + 1 with the convention

= O, Qp, 1 = U, B_1 = Bo, a1 = Bu,
E+s 3 M+

=S, S

|
Nl

o
S_ Pyl = Sp, V_1 =V, Vz+% = vy.

N—=
N—=

For each mesh node (i, j, k, I) € G;,, we define a so-called box or control region centered at the point by

Ria = (g g ) % (Bog Bieg) X (SigSerg) * (g viny)-

Integrating (21) over each control region R, and applying integration by parts to the 2nd term, we have

A%
— / —dadBdSdv — f (AVV) - ndo + f b - (VV)dadBdSdv
Rijki IRijki

ot Rijkt

+ min md<L,V,dadBdSdv + _rr[lgri] nL3VydadBdSdv = 0 (25)

Rijil me[0,A] Ryl ne

for (i,j, k, ) € Gy, where 0R;jy denotes the boundary of Rjj, n the unit vector out-normal to dR;jy and do denotes the 3d
infinitesimal along dR;j. Using the 1-point quadrature rule and (23), we have

1% aV;
/ —dadpdS dv ~ ”"’ IRijal (26)
Rykl
oV av av
/ b - (VV)dadBdSdv ~ <b2— +b3— + b4—) IRijual, (27)
Rijki ap ds v (eti, B, Sk v1)
1% v
min mL,V,dadBdSdv ~ min m| —— + (1+60)S— |Rijua s (28)
Ry MEL0A] mE(0,1] da OB/ @by
L3V, dadBdSd (8V 1 0)53‘/) |Riita| (29)
mmn3ka v~ min n| — —(1— — ijki | »
Rij nel[0,A] ne[0,A] 0 8,3 (@i, B} Sk, v1) .

where | - | denotes the ‘measure’ (absolute value, area or volume depending on the context) of a quantity and Vjj; denote an
approximation of V at the mesh node.

We now consider the approximation of the second termin (25). Since Ry is a hyper-rectangle or box in 4D, dR;j; contains
8 3D rectangular prisms or facets. Each of these facets is perpendicular to one of the axes so that its normal direction n is in
or opposite the direction of the axis. In fact, the possible normal directions are (+1,0,0,0)", (0,%+1,0,0)", (0,0, +1,0)"
and (0, 0,0, 41)T. From the definition A in (22) and these choices of n we see that AVV - n has only 4 non-zero terms
corresponding to the facets intersecting S, 1 and v, 1. Therefore, we have

av ov v av
— AVV . ﬂdo’ = — a33— + d3g— d()ldﬂd\) + a33— + a3y — dO{d,BdU
Ry Rl aS av 9R3 aS v
ijkl ijkl ijk

av Vv aVv av
— 43— + Qgqa— ClO(d,BdS + (43— + Qg4 — da dﬂdS
oR2 aS v oRL, as v

ijkl

where 8Ruk,, m =1, 2, 3, 4, denote the 4 facets of dR;jy on which AVV - n # 0. Applying the 1-point quadrature rule to the

above equation and noting that these facets are numbered in such a way that |ng1| = |Ry,d| and |Ruk,| = |Ruk,| we have
aVv av
- AVV -ndo ~ — | azss— 35 + a3 — ™ X |Ruk1|
3Rukl (oz, ﬁj l<+ w)
n ( av n 8V) R, |
33— T 034 X iy
as v ( v
o, Bj, Sk v,)
( Vv n 8V> R |
— |\ Q4347 T Qaa— X R
as v ( ) ) v
o, 5] Sk 1+%
av av
+ |3 S + Q4 — 7 x |Rykl| (30)

(ai,ﬂj,sk,vlf%)
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where
3
Rijy = (“F%v“:ﬁr

4
Rijkl = (Oti71 , o

cay)
2 "t2

Replacing the terms in (21) by their respective approximations in (26)-(30), we have

aVykl 1Y%
av

i+

+a Al
P

|Rukl|

|Rii| — | @ ov +a
ijikl 335 ¢ 35S 345 39S

av
|szkl| + | 3.2

) (af.ﬂj.sl(+% ,vl) ) (ai,ﬂj,sk_%,u,>

- <a438V + 0448‘/) IRl + (0438‘/ + 044al> IRl
3s v (% f’f’sk’m%) i 35 v (a,.,,«;j,s,(,ulfl) ’
<bzf + b3 — iad b4f) Ryjia| + min m <—8f +@0+ 9)581) IRiji|
p dS v (o Bj:Sk-v1) mel0.A] d B (@i, B, Sk-vi)

[Riji| = 0.
(e, B, Sk v1)

. _ [V
+ min n <— —(1-6)S— (31)
nel0,A]

9 Bﬁ)

Given a positive integer N, we divide the time interval [0, T] into N sub-intervals with time points t, = n x At for
n=0,1,...,N,where At =T/N.Welet G = {0, 1, 2, ..., N} denote the index set of the time mesh points.

We now approximate the 1st spatial derivatives in (31) by finite-differences. For any admissible (n, i, j, k, ), we denote

by V/ ikl the approximation (to be determined) the solution to (31) and (20) at the node (t,, «;, B;, Sk, v1). Using the following
finite difference operators

n+1 n
D.v" Vijkl Vukl
tVijkl = T ’
n n n n
D+ _ V(i-H)jkl - Vijkl DV — Vukl V(i—l)jkl
o ukl - hl ’ o Vijkl — h] )
n n n n
S+ Vi(i+1)k1 - Vijkl n Vijkl - Vi(j—])kl
D,s Vijkl = 5 D,s Vg = ——F——"—,
h2 v h2
n n n n
DIy — Vij(k+l)l - Vijkl DoV — Vljkl Vij(k—l)l
s Vijkl = 7%13 ’ s Vijkl = 7,14
n n n n
4 Vijk(l+1 ) Vijkl n Vijkl - Vijk(l—l)
Dy Vi = T s DYV = T
n n n n
vn _ Vij(k+l)l - Vijkl DV _ Vukl Vij(k—])l
(k) h ’ STi(k=1) h ’
2 3 y 3
n n n n
n Vijk(l+l) B Vijkl n Vijkl - Vijk(l—l)
D\)V,. 1 = > DVV 1 = >
uk(l+7) ha ylc(l—i) hs

we propose a finite difference scheme for (31) as follows:

1
Dt uk1|Rukl| 2 k+

(,0195 1 vl)

1VIDS ( ) |Rukl|

1
<P755k+ 1 “l) klIRukl|

s2 3
kl|R1]kl| + ( ke 1Vl> DsV ( ),'Rijkl|

+ 3 ('Ol?sk ”’l) s Vi Roul + 2 (Pﬁsk_f‘)l) Vil Rl
- (,oz?Ska ) D+V1;]kl|Rukl 5 (pz?Ska%) zJI<l|Ruk1|
1, .1
— 3%V ) DY, 4,((,+%) IR + 5 (Pl?sk"zf%) s VijialRijul
L 0SS D*V” R 1192 D, V" R
MRS ialRipal + { 3%v1-y ) Do ijk(lf%)| iﬂd'
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. 1 i
— 1(B) D5 ViRl — 1(B) ™Dy Vi Rijal + (Sle + 50195k - M5k> D§ Viju IRijal

1 1 1 +
+ <5kvl + 5,0195k - M5k> DV, it | Rk | + (51019\)1 + 515‘2 +&m— VI)) Dy Vi IRijal

1 1 . _
+ (2,0191)1 + -0+ E(m— Vl)) Dyf Vil Riua| +my(n, i, j, k, l)( Df Vi + (1+0)S,Dy V,';'lk1>|Rijkl|

2
+ mn, i,k D (D Vi — (1= O)SiDF Vi ) Rital = 0, (32)
where ()™ = max{-, 0} and (-)~ = min{-, 0} are as defined before and
v, .. —yn |74
mq(n,i,j, k,I) = arg min m( _G Dk Tk + (14 6)S, 7%[ ’07Wd>, (33)
mel0,A] h, h,
vh o —yn . vn
ni(n,i,j, k)= arg min n(M —(1-0)S M) (34)
i€[0,1] hy hy

Note that in the original problem, only final/pay-off conditions are fined defined in (14)-(16). However, in computation,
we need to define some artificial boundary conditions. For a detailed discussion on artificial boundary conditions, we refer
to [29]. Using (20), (17) and (18), we define the boundary and terminal conditions for (32)-(34) as follows.

VN — U(B; + Sk(ai — Olasl) + Sk —K)T),  (i,, k. 1) € Gn, Xijk € -(:va (35)
iid 0, (i,j, k) € Gy, xijx & 2°,

v — UBj + Sk(ei — Olai]) + (Sk — K)T),  (i,5, k. ) € 3G, Xijk € f:zb, (36)
ik 0, (i,j, k1) € 3Gh, xijx & 2°,

forn=0,1,...,Nwherex;, = (o, Bj, Sx) and U(W) is the utility function.
Let A = (At, h). For the discretization scheme defined in (32) we have the following theorem.

Theorem 3.2. For any A > (0, 0) and given my(n, i,j, k, 1) € [0, A] and ny(n, i,j, k, 1) € [0, A], the system matrix of (32) is
an M-matrix and the solution of (32) is bounded uniformly on Gy X Gag.

Proof. We first rewrite (32) in the following equivalent form:

Vln+1 _yn 1 74
ijkl ijkl 2 ij(k+1)1 ljkl
— ———————hthyhzhy — =S vihhh
AL 1hahshe = 55 v s 4
1 + v —-|vr —-vn
2 (osiy ) Wh hyhe 4 - ‘(ﬂﬂ% ) ‘uklhukawh]hzm
4 4
1 Vi — Vi 1 + Vi = Vi
+ Esli%vl ijkl - ij(k 1)1h1h2h4 n 5 (pﬁsk_%\)[) ijkl - ijk(l 1)h1h2h4
3 4

+ Vv
i+ Uklh h2h3

hs

1 = Viika1y — Vi 1
5 ’(pﬁskév,) ’ U((Jrli74U X hihyhy — 3 (pl?Skai)

1 —|\vr —vn 1 vn
+ - (Pﬁskal) Mh hyhs — gk H,Mh hyhs
2 h3 hy

+va v 1 —|yn
¥ - (pﬂskvli%) w X hyhhy = 2 ‘(pﬁskv,;) ‘ Wh hahs
3 3

N[ =

1 v —vio 748
+ *l%fvl,lwhlhth — T(ﬂj)+wh hyhshy
2 h4 hz
v 1 +yn _yn
+r(B)” |wh1hzh3h4 + (skvl + P05 - usk) wmhzham
2 3

hs

1 —-|yn
(skw + 5 POk~ m) ‘ Mh hahshy

1 1 tyro—ve o
+ (p0v1+792 —E(n—w)) D by hshy
2 2 hy
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4

1 1 -l yn —yn
(5,017‘11 + 5192 —&(n— v,)) ‘ 7%1“}; Uklhlhzham

Vn ikl — Vﬂkl ki V'n' 1
T+ myn, ik, l)(—w F+ e)sk”hi“’*”‘)hlhzmm
2

hy
it — Vi1 i(j+1)k! ijki
T mn, ik, 1)(7 —(1-6)S 7)h hyhshy = 0. (37)
hy hy
Multiplying (37) by ﬁ and rearranging the resulting equation, we have the following system:
wl o , At 1 At 1, At At
Vi ™ = Vi | 1+ 25k+%vl i + = ’(,0195 1vl>‘ m—l— =S hz + = ’(,oz?Sk 1vl>‘ o
1 9 At 19 At 1 95 At 1192 At
t3 ‘(p "”%)‘ hohs T 203z T ‘(p "”’—*)‘ hohs T 201
At At 1 1,
+r|(ﬂj)|7 + [ | Skvi + *,0195k — WSk T ﬂol?vl + 519 —EMm—v)|—
3
+mi(n,i,j, k, l) +m1(n i,j, k,D(1 +0)Sk
+ni(n, i, j, k, ,)7 +mi(n, i,j,k, D(1— «9)5kf
h] h2
_ CL At " oAt
= Vg | ma(n, i, j, k, l)h—] = Vi [ m(n, 1,4, k, l)h—]
n [ + At
— Vig+nk [r(B)™ +nmin,i,j, k D1 _Q)Sk]
= Vi | 1B ™1 +ma(n, i, j, k, D(1 + 0)Sk] ]
n 1 , At 1 + At 1 -| At
~ Vi1 _55k+%”’g + 5 (PZ’Skmg) hsha 5 (pﬁsk"zf%) vy
+ S +] S S | At
v+ — _ =
kVI 2/7 k — Mok hs
n 1, At 1 -| At 1 + At
— Vijk—11 25,( V= h2 (Pﬁska ) Th4+ (pﬁskvl,l) haha
1 T At
+ | Sevi + - p0Sk — uS ) —
2 hs
+ At 1 -| At 1., At
= Vika+1) (/“95 ”’1) hsha T3 (,oz?Sk_lv,) haha + 5l9k Vi1 3
+1(2p0m + L2 £( ) | At
— 0P 4+ -2 — —v =
ZP I 2 n I I
" 1 -l a1 + At 1, At
= Vika-1) 5 (ﬂ95k+%vz) Mo +3 (Pﬁskf%w) Haha + Eﬁk vl*%hi
w (Lpomt 2or—em—w) 2 (38)
—pdy + =0° — —v — .
2/0 I 2 n I s

Noting that the right-hand side of (38) contains no more than nine non-zero terms, the coefficient matrix of the system is
septa-diagonal. Introduce an index transformationq = q(i, j, k, ) fori=1, ... ,E—1,j=1,...,M—1,k=1,...,P—1and
I =1, ..Z —1such that all the interior nodes of the mesh, i.e., those having indices in Gy, are re-ordered consecutively in such
awaythatq(1,1,1,1) =1,¢92,1,1,1)=2,...,qE—-1,M—-1,P-1,Z—1) = (E—-1D)xM-1)xP-1)x(Z—-1)=Q
Let

. oAt o o AL
wy(q(, j, k, ) =my(n,i,j, k, l)h—, w3(q(@, j, k, D) = ni(n,i,j, k, l)h—
1 1
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ny e N . At
wy(q(,j, k, D) = [r(BY™ +n1(n,i,j, k, D1 — G)Sk]h—,
2

A
ws(q(, j, k. D) = [r|(B) ™| + mi(n, i,j, k, (1 +9)5k]h72t7

neali k| §2 At 1 95 + At 1 55 -1 At
we (i b ))_2 ez T 5 (P9500,) hohy 2 (p9Sivy) hshy
+ [ Skvi + = p0S S | at
v, — — -
kVI 2;0 k — MOk s
1, At 1 -l At 1 + At
wr@@J kD) = 35, vy 22 (p’as"”H) Tohs | 2 (’”95"“1 1) hshy
+ (S +1 A S T At
v 5 - 77
kVI 2/0 k — MOk s
2(q(i,j. k. 1) (15‘5 )+ A 1(zs~5 ) AL Ly, A
,],K = - % 77\) — V,1—
wg(q(i, j o 1V h3h4 PV, I ahs 2 K Vi ] hﬁ
(2ot Lot —em—w) | A
Zody 4 —92 — v 2
2,0 I 2 n I h

o 1 1 + At 1., At
wi (@G kD) = 5 ‘(pl‘/‘S lv, ‘ T2 (pz?S(_lv,) PR
1 ) At
+ <5,019v1+519 —S(U_Vl)> T
It is clear that
wi(q(,j, kD) >0 1=2,3,...,9, (39)
9
wi(qG,j, kD) =1+ wj(q(i.j k. D) > 1. (40)

1=2
Using the above notation, we can write (38) as the following form:
Vl;’,jl = Vjwi(q(@, j, k, D) — V('{H)jk,wg(q(i,j, kD) = Vi_ w3 (qG, j, k, D)
= Vit nawa @G, J, kD) = Vig_ 1y w5 @G J, k, D) = Vi yws (G, J, k, D)
= Vi 1wy @, i kD) = Vi ws (G, s k, D) — Vigq_ywg (@G J, k. 1) (41)

for (i,j, k, 1) € Gp.
Casting the terms associated with Dirichlet boundary points to the LHS and swapping the LHS and RHS of the resulting
system, we see that (41) can be rewritten in the following matrix form:

AW = b 4 " (42)
forn=N—-1,N—2,...,0, where A" = (a;q)l?’q:l is a septa-diagonal matrix with the non-zero entries given by

A = wi@, = —wi@,  de = —wi@, (43)

g g+ E-yxm—-1) = ~W5(Q), Qg gt E—xM—1xp—1) = ~W5 (@), (44)

agqq71 = _wg(Q)’ aZ’q,(E,D = _wg(Q)7 (45)

ag,q—(E—l)x(M—Z) = —wj;(q), az,q—(E—1)><(M—1)><(P—l) = —wg(q). (46)
forq =1,2,...,Q,b" and c"*! are Q x 1 column vectors representing, respectively, the contribution from the Dirichlet

boundary conditions at the nth time step and the left-hand side of (41) involving the approximate solution at the (n + 1)th
time step, and V" denotes the unknown vector. This isa Q x Q linear system in V". From (39) and (40), (43)-(46) it is easy
to see that A" is diagonally dominant, irreducible and has positive diagonal and non-positive off-diagonal elements. Thus,
A" is an M-matrix (cf., for example, [30]) and is non-singular. Therefore, we conclude that there exists a unique solution to
(42)/(32) with given my(n, i,j, k, I) € [0, A] and ny(n, i,j, k, ) € [0, A].
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We next show that for any A > (0, 0), the solution is uniformly bounded. Our strategy is to prove that if the terminal
conditions satisfy

max |Vij",’d| <C<+o0
(i.j. k.1 €Gy

for some positive constant C, then

max |Vl <C, n=12.N-1 (47)
(i,j,k,)eGy

By (35)-(36) and (6), we have

max [Vl < 1.
(ij.kDeG

Let maxjk nec, |Vi;.‘k,| < 1hold for ann < N, we will show that max ; x nec, |Vl-;’kj 1| < 1 by contradiction.
Suppose that max; j k. ieg, |V§kjl| > 1. Then, there exists an index triple (ig, jo, ko, lo) € Gp, such that

Viniokoto! = 1 and Vi '| < Vit V(id. k. D) € G

ipjokolo igjokolo

Combining this with (41), we have

9
ViZJ?Jiolo (1 + Z wg_l(q‘)))

| izjokolol = a |V(r;(:+l1)jokolowgil(q0)| o |V(’;0:11)]0kolowgil(q0)| o |Vl’zaol+1)kolowzi1(q0)|
p=2
VG e R @] = IV W (@0 — IV e e wh T (G0)]
oVo 0‘0 0lko 0 0\ko 0
Viiokoto+n WS @) = IViesokogo—n s (do)|
= |‘/fgj:)’1<olo| + |w;7](q0)|(|vizjio}<olo| - |V(rl!07-:1)jo/<olo|) + |wgi](q0)|(|vigj?)}<0’0| - |V(r;(:—]1)jokolo|)
+ 1wy @AYk = Windas ko) T 108 @1 UVikois | = Vinge— 1kl )
+ [wg ™ @0 (Vigigkto | = Vinig o+ 16D 107~ @1Vt — Vit o 1o )
+ 1wl @IV L ) = VL oD+ wl T @) (VI = Vi D)
== |Vfgj:J}<olo|
> 1,
where qo = q(io, jo, ko, lp). Clearly, this contradicts our assumption that max;neg, |Vi;'k,| < 1. Thus, we have

maxj k,heG |Vi;.‘k71| < 1. By the mathematical induction principle, (47) holds and the theorem is proved. O

To conclude this section, we comment since the system matrix of (32) is an M-matrix by Theorem 3.2 the discretization
is monotone which guarantees that the solution to (32) is non-negative since the boundary conditions (35)-(36) are non-
negative.

4. Decoupling algorithm and its convergence

In this section we present a decoupling algorithm for solving the nonlinear system (42)/(32)-(34). We first rewrite (37),
which is equivalent to (42) and (32), as the following form:
L3V + min MLy Vi + min ALy Vi =0 (48)

forn=N—-1,N—-2,...,0and (i, j, k, ) € Gy, where A = (At, h) as defined previously and

yi _yn 1 v —vn
ayn . 20— il _ 1o Vit = Vi
061 ijkl = h1h2h3h4 25k+%vl h3 h]h2h4

1 RV V. 1 —jyno—yn

_ 5(Pﬁsk+%vl> %’ﬂd Xh1h2h4+2‘('0ﬂ5k+;‘)l) "J’dh”"(ll)hmzh4

4 4

1 yn _—yn _ 1 + vy —yn -

+ 55:1%“’w Xh1h2h4+5(pz95k_%v1) whﬂlzfu

3 4

1 =| Vikas1y — Vi 1 + Vigr v — Viju

— 5 ’(pﬁsk;w) ‘ Th]hzl'hl — 5 (,()195[<U1+%) T’hhzh},
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1 = | Vija = Vi 1 yrooyn
2 |(p9Sin, g ) [P gy — D
2 2 hs ™

hihyhs

1 + v —=vh 1 - v
+ 3 (m?Skv,,%) whlhzm -3 ’(ﬂﬁskvll> ‘ Mh hyhs

3 h3
1 v —vi o v
+ *ﬁﬁvl,lwhlhzm — T(ﬂj)+wh hyhshy
h4 hz
v 1 +tyno_yn
+ (B~ |wh1hzh3h4 + (Sk‘)l + 5,0175k - M5k> whlhzhﬂh
2 3

1 -\ yr
(skvz + 59k~ usk) %”"h hahshy
3

* Vi]nkl - Vi;k(lfl)
( PV + 19 —&(m— V)) ———————hyhyh3hy

hy
-\ vt kl
(m‘/‘vl+ ~9? — S(n—w)) “"”“,;7“/1 hyhshy (49)
4

v - v vn

L5V = (- —E oS, W)hlhzmm (50)
2

| V4 VAL

£V = (P — - o)s W)h hahshs. (51)
1 2

We propose the following algorithm for (42).

Algorithm D. 1. Initialize Vé\{d forall (i, j, k, I) € G, using the terminal and boundary conditions (35)-(36)and letn = N—1.
2. Let V;,;f = Vu”,:,r for all (i, j, k, I) € G, and evaluate

md(n, i,j, k, l)_arg< min mQCZVJI:{l),

nd(n,i,j, k, 1) = arg ( Irllén nL3 V,]r’,f)
ne
forany (i, j, k, I) € G.
. For a given tolerance ¢ > 0, setp = 0.
. Solve, V(i, j, k, ) € G, the following system along with the boundary conditions (36) for {V;,;f +1 HjkheGy:

LAVEET 4 mP(n, ik, DLYVERT + 1P (n, i, g, k, DLSVEPT =0, (52)
where, when applied to Vl"k,p *1, the finite difference operator is
yntl _ et
p+1 Uikl ijkl
DAARES Y (53)
. Evaluate, for all (i, j, k, ) € G,
mi (n, i, k, 1) = arg( mm m£2 ;kf“), (54)
it (n, i, k, 1) = arg( mm n£3 Vlg',;“]) ) (55)

- Ifmaxgj ke, IV" P j, k, 1) — V™P(i,j, k, I)| > &, set p = p + 1and goto Step 4. Otherwise, goto Step 7.
. Set Vi, = U",de for (i,j, k,1) € Gy and my(n,i,j, k, ) = p+1(n i,ji kD, ni(n,ij k) = ?H(n, i,j, k, ) for
@i,j, k, 1) € G,.1If n = 0, stop. Otherwise, let n = n — 1 and goto Step 2.

Clearly, in Algorithm D, the nonlinear system (32)-(34) is decoupled so that in each iteration we only solve the linear

system (52).

Using the notation used in the proof of Theorem 3.2, we let V*P*1 denote the solution to (52). Then, the convergence of

the iterative algorithm in Algorithm D is given in the following theorem.
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Theorem 4.1. The iterative scheme (52)-(55) generates a sequence {V"*P};‘;O that converges to the solution of (48) with the
terminal and boundary conditions (35)-(36).

Proof. We will use the notation in Algorithm D. To prove this theorem, we first show that the sequence {V”’p};‘;o generated
by the iterative method is monotonically increasing, i.e., VP < V*P*1 forp > 1.

From (52) we have

LAVED +mb T (G k, DLVED + T (L k DLSVEP =0, (L k1) € Gy

uk
forp =1, 2, ....This can be rewritten as

LLVEE +min, i g, k, DLy V;,f—i-n (n,i,j, k, DL V!

= [m](n, i,j, k1) — m] (n i,j, k, l)]¢£2 ukl
+ [ (i kD —nf (i k DILS VD <0, V(.4 kD) € Gy, (56)
since, by (54) and (55),

mh(n,i,j, k, 1) = arg( mm m£2 ukl> nh(n,i,j,k, 1) = arg ( rr[nn L3V, ykl>

Note that both (52) and (56) have the same boundary conditions, i.e., V! = l"k,pH forany (i, j, k, I) € 3Gy Thus, using the

notation in the proof of Theorem 3.2, we may write (52) and (56) as the followmg respective matrix forms similar to (42):
An,pvn,p+l — bn + Cn+1 and An,pvn,p < bn + Cn+l,

where A™P, b" and c"*! are as defined in (42) with A™P an M-matrix. Therefore, we have
An,p(vn,erl _ Vn,p) > 0.

Since A™? is an M-matrix, we have
vyl _ynP >,

Therefore, the monotonicity of iteration process is proved.
From Theorem 3.2 we have that V™? is bounded for any p = 0, 1, 2, . ... Combining the monotonicity and boundedness
of VP we see that VP is convergent. Finally, from the construction of (52) and (55) it is obvious that Vuk, , mﬁ’(n, i,j, k1)

and n‘l’ (n,1i,j, k, I) solve (48) when p — oo0. Thus, we have proved the theorem. O

5. Numerical results

In this section, we use the scheme (32)-(36) to calculate the value functions Vi(i = 0, b, w) and present the computed
reservation purchase and write prices of a European call option by using the utility function in (6). Note that using this utility
function can eliminate the bond account variable, 8, in (12) by a transformation. However, in this paper, we will implement
our schemes without eliminating 8 to demonstrate our algorithm can also be used for other types of utility functions.

We now illustrate the performance and usefulness of the scheme using the following test example:

Test Example: Reservation purchase and write prices of a European call option with expiry date T = 0.6, the initial price of
the underlying stock Sy = 1.6, the initial value of volatility vy = 1.6, the risk aversion parameter y = 1 with various values
of g, PBo and strike price K. Other parameters are: r = 0.05, u = 0.1,6 = 0.005,&£ =5, =0.16,p =0.1and ¥ = 0.9

To solve the problem, we choose L, = Ly = 1,L, = 3, L = 5and Ls = L, = 3in(24). The mesh and penalty parameters
are chosentobe E = 20,M = 30,P = Z = 15, N = 15 and A = 1000. Other parameters are At = 0.04, h = 0.2. Using the
numerical solution on this mesh, we examine the changes of reservation purchase and write prices with respect to different
variables.

We first examine the influence of 8, on reservation prices. For ¢ = 2 and K = 1.6, we compute the reservation purchase
and write prices with various values of 8y and the computed results are plotted in Fig. 1. It is clear from Fig. 1 that the initial
holding in the bond does not affect both the reservation purchase and write prices. This coincides with the results in [19].
As mentioned before, using an exponential utility function can eliminate the bond account variable 8 by a transformation.
Thus, the resulting option prices are independent of ;.

To examine the influence of oy on the reservation prices, we compute the purchase and write prices for g = 1.6, 2, 2.4
using our numerical method. Since the results are independent of Sy, we only plot the computed purchase and write prices
Py and P, against o in Fig. 2. From Fig. 2 we have the following observations:

1. The write prices first decrease as g increase and then tend to be stable, and
2. the reservation write price is always higher than the purchase price.
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Fig. 1. Computed reservation prices forog = 2, K = 1.6 and p = 0.1.
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Fig. 2. Computed reservation prices for &g = 1.6, 2 and 2.4.

These observations are financially correct because of the following reasons. It is known that the utility based option pricing
approach values an option from both buyers’ and sellers’ perspectives, which leads to two prices, i.e., reservation write
and purchase prices. The reservation write and purchase prices are respectively the prices at which the investor is willing
to sell and the investor is willing to purchase the option. Clearly, the write price is greater than the purchase price as the
price that the seller wants to receive is always higher than that the buyer wants to pay. Also, according to the theory of
supply and demand, the more stock a writer (respectively purchaser) holds, the more (respectively less) he/she wants to
sell (respectively purchase) the stock and therefore he/she will reduce the option price. However, when the price reaches a
certain level, it will not be reduced further.

Finally, we consider the influence of the strike price K on the reservation prices. To achieve this, we assume that g = 2
and compute the purchase and write prices for K = 1, 1.6 and 2.4. Again, since the computed prices are independent of S,
we plot them against K in Fig. 3 from which it is easily seen that both the purchase and write prices decrease as K increases.
The explanation for this phenomenon is as follows. If St > K, the option holder (buyer) will exercise the option at the expiry
date T. Thus, the buyer will earn St — K and the writer will lost the same amount. Since the gain/loss St — K is a decreasing
functions of K, when K increases, both buyer and writer will reduce the option price.

We remark that the original problem is defined on an infinite domain and does not have any Dirichlet boundary
conditions. In the paper, we define an artificial (homogeneous) Dirichlet boundary condition on each of the boundary
segments as the exact one is unknown. The computational errors caused by the above artificial boundary condition are
essentially located in the boundary layer, as shown in [29]. Thus, in the numerical results presented above, we only plot the
computed values at the mesh points which are some distance away from the boundary segments.
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Fig. 3. Computed reservation prices for K = 1, 1.6 and 2.4.

6. Conclusion

In this paper we propose a penalty method combined with a finite volume scheme to solve the H]B equation in 4 spatial
dimensions governing the reservation purchase and write prices of a European call option with proportional transaction
costs and stochastic volatility. This scheme has the merits that it is easy to implement and the resulting system matrix is
an M-matrix. The latter guarantees that numerical solutions from discretization method are always non-negative when the
boundary and payoff conditions are non-negative. The numerical results showed that the method is able to solve problems
of practical significance.
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ANALYZING HUMAN PERIODIC WALKING AT DIFFERENT
SPEEDS USING PARAMETERIZATION ENHANCING
TRANSFORM IN DYNAMIC OPTIMIZATION

MEryl TAN, LESLIE S. JENNINGS AND SONG WANG*

Abstract: In this paper, we extend the human walking model proposed in [18] to improve periodic motion
and to explore different walking speeds. We first propose the inclusion of additional constraints to better
model the periodic motion of a human. We then introduce the use of Control Parameterization Enhancing
Transform (CPET) technique within the model, along with the inclusion of velocity in the objective function,
to allow different walking speeds to be used in the model. Numerical experiments, performed to show the
superiority of this new model, show that periodic motion can be improved with the addition of periodicity
constraints and that human walking motions can be replicated at faster or slower velocitics, which is desirable
in practice. The numerical results also show that the time interval in the single support and double support
phascs can be optimized using CPET for different walking speeds.

Key words: optimal control of robot motion, dynamic optimization, biped locomotion, robot modelling and
optimization.

Mathematics Subject Classification: /9M30, 90C90, 93B40.

Introduction

Walking, though classified as being the most basic human motion, is deemed to involve great
complexities and thus should be given significant attention. It is considered one of the most
complicated motions involving a series of complex continuous and discontinuous phases [22].
Modelling and optimization of human walking are key to robot design and application in
industries such as manufacturing and health care. Human locomotion has attracted much
attention from researchers and practitioners since 1970s and many of these results have
been fundamental for advancement in the development of support for multiple movement
disabilitics [4]. The greater understanding of the mechanics behind walking can contribute
to the ability to improve aids for people with locomotor disabilities, and the development of
walking robots etc.

There has been a significant increase in research on human walking in the past decade.
With the advancement of computing power, simulation of human walking governed by com-
plex equations has now become possible. As demonstrated by existing studies, research
based on modelling and simulation contributes more significantly to the study of human
locomotion than empirical studies, since it is able to investigate in more detail the muscle

*S. Wang’s work was partially supported by the AOARD Project #15I0A095 from the US Air Force.
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activities involved in the movement patterns, and can also lead to the accurate prediction of
motion ([14, 15]). Amongst many research activities done on human walking, only a handful
of them was on modelling and simulating the dynamics of human walking ([14, 16]).

The purpose of this study is to extend the model in [18] to one that improves periodic
motion and allows different walking speeds in optimization. These are achieved by re-
design of the constraints, introduction of velocity in the objective function and the use of
the Control Parameterization Enhancing Transform (CPET) technique [21] in the optimal
control model. In the current model, walking speeds are adjustable and can be computed so
that an evaluation of the dynamics involved can be explored. The study provides insights to
factors which are important in walking and can aid in future development of more realistic
walking robots or aids for the locomotory handicapped.

Various algorithms are available to solve such problems and have been reviewed in opti-
mization software guides [13]. However, many of these algorithms were not developed into
general purpose software packages to solve optimal control problems that includes complex
constraints. Software packages such as MATLAB or GAMS (which runs on MATLAB’s
platform) [3] may be capable of solving such problems, but are computationally slow. For
these reasons, the MISER3 [8] optimal control software was chosen. The central idea behind
the software MISERS is the concept of control parametrisation [20], which is used to ap-
proximate the optimal control problem by a constrained non-linear programming problem.
This software is backed by several theoretical advancements over earlier versions, such as
superior technique for handling continuous state inequality constraints [19] and its ability
to solve Koh’s study ([9], [10], [11]) on optimising performance for the Yurchenko layout
vault, a complex optimal control problem. In addition, it includes software hooks to four
optimization algorithms namely, FSQP, NLPQL, NPSOL and NLPQLP. All four algorithms
use a scquential quadratic programming algorithm which is recognised as the most cfficient
algorithin for small and medium size noun-linearly constrained optimization problem [8].
MATLAB based systems for example, [5], which became available after the start of this
project were considered too slow even though the literature suggests good performance.

The rest of this paper is organised as follows. In the next section, we introduce the
geometry used for the paper. In Section 3, we propouse new constraints, different from what
was cxplored in Tan ct al. [18], introduce the CPET technique and velocity decision variable
within the objective function. The introduction of the mention will be used to sought better
periodicity and different walking speeds. Numerical experimental results will be presented
to demonstrate that this modified model, as compared to the model seen in Tan et al. [18],
improves periodic motion and allow analysis of different walking speeds, and hence provide
a more realistic tool for human walking modelling.

The Model

Geometry

A link segment model was used to represent the human body as depicted in Figure 2.1 in
which there are n = 7 segments. For each ¢ = 1,...,n, the i* segment has length ¢;. mass
m; and moment of inertia I; about its center of mass (CoM)(within the segment), which is
a distance 7; from proximal (2%, y¥) and distance [; — r; from the distal (z, y¢') end (Figure
2.2). The link segment model is that used in Tan ct al.’s [18].

Each segment’s CoM position is defined by (z;, y;), and angle 6;, where §; is determined
by angle that segment makes with the positive z-axis. The CoM of the whole body, (X, Y),

DISTRIBUTION A. Approved for public release: distribution unlimited.



ANALYZING HUMAN PERIODIC WALKING
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Nej

is given by

X L[> ma, "
[ v ] = i [ Z?:l o ] where ]L[zZnLi.

=1

Wak Dircction -

Figurc 2.1: Seven-segment model Figure 2.2: An i** segment diagram
The positional equations for a chain of segments (see Figure 2.1) are

x =zle+ LD e, y=vyle+ LD.e
where £ = (z1,...,7,)5 vy = (y1,-.-,yn)t, e=(1,1....,1)%,

D, = diag(cosby,...,co86,,), Dy =diag(sinby,...,sinb,)

and

[»» 0 0 O 0 0 0]

lh = 0 0 0 0 O

ll lg T3 0 0 0 0

L—= l1 lQ lg Ta 0 0 0

l] l2 lg l4 Ts5 0 0

l1 lz lg l4 l5 T6 0
i ll 12 13 0 0 0 Uty i

The CoM of the whole system is written in matrix-vector form as MX = m'x and
MY = m'y, where m' = (my,...,m,). Hence the relations, using m‘e = M,

MX =m'z =Mz} + m'LD.e and MY =m'y= My} +m'LD,e.

The distal end of Segment 6 of the chain of segments, has co-ordinates

6 6
wf =20 +) licosb; and yi =yl +> lsing;.

=1 i=1
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The Topology

The proximal incidence matrix is a j X n matrix A” where

AP —1, if segment 4 has proximal end at joint k,
ke 0, otherwise.

The distal incidence matrix A? is similarly defined.

Al — 1, if segment 7 has distal end at joint &,
ki — .
0, otherwise.

The joint-external contact incidence matrix B (j x e) is defined as
B — 1. if joint k contacts the ground at external contact 7,
ke 0, otherwise,

where e is the number of external contacts.
Forces which supply the rotational and translational motions to segment 7 and are given

by 1
cx p "(a:
si=|B] s =[] o=

The translational equations can be written as
—min + JYw + Sf* = —J"w?,
—miy — J*w + SfY = gm — JVw?,

where proximal, distal and external forces are ordered such that

fre £
fa; — 7]:6.'1; , fy _ 7‘fey
f-rifr. f(l'.y

We have defined: @ = (61,...,60,), w=0,w =20, w* = (W3,...,w2)". 8§ =I,,0,1,]

The moment equation can similarly be expressed in matrix form, with vector T being a
vector of the proximal torques appropriately ordered, as
Jo+ M*f*+ MYfY =TT,
where J = diag([1, Is, ..., I,),
]\/I”:Ds[ -D, | 0 | D —D, },
MY=D.,[ D, | 0 | —(D,—-D,)],
D, =diag(ry,ra,...,1m), D =diag(ly,la, ..., 1,).

The matrix T' with a torque acting between Scgment 6 and the external world is given
by

T T2 T3 T4 T5 Te T7
segl [ -1 0 0 0O 0 0 0 |
seg2 [ 1 -1 0 O O O O ]

o seed [0 1. 0 0 0 -1 0 ]
T segd [ 0 0O 10 0 o0 1 |°
se¢g5 [ 0 0O 1 -1 0 0 0 ]
seg6 [ 0 0O 0 1 -1 0 0 ]
se¢7 [ 0 0O 0 0 0 1 -1 ]
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The complete equations for non-heel contact are:
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e
‘fdaz
f[l.l/
b

In above equation we used double square brackets to differentiate these rows from the others.
Depending on the cases determined by the phase the walking motion is in, some of these
rows are not needed. For more details on the cases we refer to [18]. The two row vectors I’
and I in the above equation are defined as

1lt — [lla 121 l37 l47 l-51 lﬁv O]~
|l =11'Dy,
! =11'D,,

'

where for proximal Segment 1
d P t
g 954 1l.e
+
[ v ] [ v ] [ 1e

2lt - [O’ l27 137 [4: l57 1(57 0}7

ol =,l'Dy,
Wlf =5U'D,,
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and renaming the velocities as u and v, scripted appropriately,

ug _ ’U,If + —1liw + —1l2w2
od | | of 1L —ltw? |-
Similarly for distal Seginent 6 mcasured from proximal Segment 2.

Numerical Techniques

The simulation model (Experiment Main), that was explored in Tan et al.’s [18] paper,
was extended to conduct three other experiments. These experiments were based on opti-
mized toques obtained from Experiment Main. The initial study presents 18 states (x =
[T1,29,...,218] "), 15 system paramcters (z = [z1,29,...,215] ), and 7 controls (7 =
[T1,72,...,77] ") namely joint torques, were set up in MISER3.3 [8]. The 18 states con-
sists of the angular displacements from Segment 1 to Segment 7 (x; = 0;,i = 1,...,7),
angular velocity (x; = 6;,i =8,...,14), coordinate and velocity of proximal end of segment
one, ((w15,716, 217, 718) = (2}, 9V, 27, 9))). The system parameter consists of the initial
segment angular orientation (0,(0) = z;,7 = 1,...,7), initial angular velocity at start of
single support phase (w;(0) = z7+;) and z15 is the step length which is twice the distance of
initial distance of #7(0) and x¢(0) and hence dependent on (z1,...,zg). Variables 0y, 05, 03,
04, 05,6 describe the angular displacements of the legs and 67 describes the angular dis-
placement of the trunk segment. wq,...,ws are the segments’ corresponding velocities; and
(2%, y7) are the coordinates of the proximal end of segment one (toe of stance foot) which
remains stationary on the ground during one step of the walk cycle.

Normal walking has been assumed to be symmetric and cyclic and hence only one step
of the gait cycle needs to be modelled and simulated. Periodicity conditions are required
such that the end of the walk cycle is identical to the start so that successive steps repeat
the motion of the previous step by swapping the roles of legs.

Experiment 1 is an extension from the main experiment, aimed at achicving a periodic
motion. The objective function remained the same as the main experiment,

Ty
Go(r,2) = / (CoMypos — COMyinit)* dt
J0

with the following state equations:

&(t) = { fu(ty @ w,2), ¢ €[0,Th),2(0) = =°(2),
folt,x,u, z), tell,Ty),x(Th) = hi(x(T7), 2),

where T (= 0.386s) is the duration of the single support phase, Ty (= 0.486s) is the duration
of a step (single support and double support phase) and hy(x (1] ), z) defines the new states
governing the start of double support phase. CoM,,,s is the center of mass of y-coordinate,
a function of @(t. z,t), and CoM,;,; is the initial center of mass of y-coordinate, a function
of z, as calculated by MISERS3.3.

The objective function is subject to constraints in the canonical form:

Gk(u,z):¢k(:c(tk,z))+/okgk(t,:c(t),u(t),z)dt ; }O,li:—l,...,ngc,

where n,. is the total number of canonical constraints, and 5 € (0,t¢] is a known constant
and is referred to as the ’characteristic time’ associated with the constraint Gy. All-time
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constraints h(t,z,u,z) > 0 and constraints involving system parameters gx(z) as well,
are converted by MISER3.3 to canonical constraints. The gradient of the objective and
constraint functions are automatically calculated by MISER3.3 using a numerical procedure.
See [8] for more details.

Experiments 1 follow the same constraints as Experiment Main (See [18] for more details)
with the exception of the terminal constraint on the trunk angular displacement at (T =
0.4865)

gs = 0, ¢4(0(Tf), z) = Z7 — 97(Tf) =0.

which is now replaced with,

¢ a terminal constraint at the end of the step cycle (T = 0.4865) on the final 8(TY}),
such that the final motion resembles the first, is given by,

3
91=0,  64(0(Ty),2) = > (2 — 07 o(Ty) + 3.14)° +
i=1
5
D (2i — 07_i(Ty) — 3.14)% + (27 — 07(T¥))* = 0.
1=4

Remark: Ouce again, a suin of squares of 7 constraints is taken to reduce complexity.

Experiments 2 and 3 aimed at investigating at maximising and minimising velocity of
normal walking and observing the motion and joint torques involved respectively. This was
done using the Control Parametrisation Enhancing Transform (CPET) technique for con-
strained optimal control problems in MISER3 [21] that allowed the time of a step cycle to
be optimized and adjusting the time interval of single support and double support accord-
ingly. CPET is a technique which can be used to optimise the real tiine taken for a set
of states to move from one configuration to another by introducing a new control function
ug(t) = %, modelled as a piecewise constant control function on user chosen knots, in this
case (£,&1,&3) = (0,T1,T%). In addition, an extra state function z19 is added to the state
variables with different equation,

ds(t)
dt

= Ug(t), .Tlg(O) = 216-
The optimal control problem is redefined with 19 states (z = [x(x19),Z19]), 16 system

parameters (2 = [z, z16]), and 7 controls (@ = [u(219),us]). For experiment 2 and 3, the
revised objective function is,

1
Go(f’, Z) = / US(t)(C()]\[ypUS = Coﬂfymb‘t)g dt
J0

with refined dynamics

, ’(I‘B(t)fl(fftlj((tt)),i?,’&7Z) )  te0.4), (0) = ( 2°(2) ) ’

— = <16 a
dt < US(t)fZ(ZI;((tg)amausz) > , tc [tkv l):]}A(tk) — < hl;TSE;];jZ) ) ,
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Figure 4.3: Comparison of segment angular displacements between Expl and Exp Main

Figure 4.5 presents the external forces acting on the ankle during double support phase.
A negative external vertical force is observed when swing heel comes into contact with the
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ground, which is consistent as weight of the body is being distributed from the stance toe
at start and through to double support phase. During this period, a positive horizontal
external force keeps the heel in position, preventing it from sliding backwards. When the
present model is compared, it can be observed that there is none or only slight difference in
the horizontal external force on the ankle. However, in contrast, the present model presents
a larger negative vertical force as compared to Experiment Main.
proximal and distal y-forces during double support phase suggest that greater force in the
y-direction is present in this model (Figures 4.6 and 4.7), and is especially evident in the

forces acting on the swing leg.

Figure 4
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Exp 1 versus Exzp Main - External forces (z, y) from ankle to ground during
double support phase
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Figure 4.6: Exp 1 versus Exp Main - Proxzimal y forces (N) during double support phase

DISTRIBUTION A. Approved for public release: distribution unlimited.



ANALYZING HUMAN PERIODIC WALKING 569

500
e
S— 3
g 0 = ] —
o —
77777 |
_500 1 1 1 1 1 J
0.38 0.4 0.42 0.44 0.46 0.48 0.5
500
S
) 0
_____ |
~500 1 1 1 1 1 J
0.38 0.4 0.42 0.44 0.46 0.48 0.5
500
e e
C; 0 o J:;;—_:f - T = =
o :‘———J —Exp 1
- — — — Exp Main
_500 | | | | | J
0.38 0.4 0.42 0.44 0.46 0.48 0.5

400 /—J——\

‘\\‘ ST W*L - - -
0 hl 1 1 1 1 J
0.38 0.4 0.42 0.44 0.46 0.48 0.5
600

fdy5
N
o
o

\—\

200 o /J’f *******
>, — ~JR - tw:i;ﬁk{ﬁi;iﬁ - =1
0 1 1 1 1 1 J
0.38 0.4 0.42 0.44 0.46 0.48 0.5
time(s)

Figure 4.7: Exp 1 versus Exp Main - -Distal y forces (N) during double support phase
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Periodicity constraint is a terminal time constraint which is only active at the end of the
time interval (¢ = 0.486s) in Experiment 1. It was observed that the addition of periodicity
constraint does improve periodic motion in the model, with adjustments in segment angular
displacements occurring mainly during the double support phase. In addition, it improved
the objective, keeping the y-CoM closer to initial. Very small changes or even sometimes none
were found in the torques and horizontal forces between Experiment Main and Experiment
1. The main components which influenced periodicity were observed to be the y-component
forces acting on the swing leg during double support phase, although no changes or only
slight changes were observed during the single support phase. This is not surprising since
this constraint is only active at final time, and adjustments are only required closer to
Tr = 0.486s. A larger vertical force observed is possibly due to keeping the body upright,
and y-Coll throughout closer to its initial position.

6,
—~ # -
T A i ’\
3 | N A .
\g 2+ \\\ ///’/ L N
T>J \\\\ - // | T *
-l N o,
= 37 —Ee— ~_ // -
2 _4 S~ K - 4 —experiment 1
< S . . .
¢ - m - experiment main
-6 1 1 1 1 1 ]
1 2 3 4 5 6 7
Segments

Figure 4.8: Exp 1 versus Exp Main - Comparison of velocity periodicity differences

A periodic motion was achieved by improving angular periodicity with the implemen-
tation of its constraints, however it comes with its flaws. Illustrated in Figure 4.8, larger
velocity periodicity difference values was observed for Experiment 1 despite having angular
periodic constraints in place. Having periodicity constraints to improve periodic motion
may not be ideal afterall.

Experiment 2

Experiment 2 investigated it a maximum velocity can be achieved by extending Experiment
Main. This was done by minimising time and maximising distance in the objective function
using CPET (Scction 2). The minimum time of a full walk cycle was calculated to be
t = 0.386s, which is 0.1s shorter than the original time taken from the data. Figure 4.9
depicts the horizontal velocity of the CoM, where a faster velocity can be observed from
Experiment 2 as compared to Experiment Main. Velocity increases towards the end of
single support phase and a sudden drop in velocity occurs as swing leg hits the ground
during the very short double support phase.

The result of Experiment 2 suggests that at faster walking speed, the ratio of single
support phase in a full walk cycle is nearly one, which indicates that double support phase
becomes almost negligible or can be considered instantancous. Figure 4.10 illustrated a full
walk cycle of Experiment 2. It was observed that the whole swing foot comes into contact
with the ground at the same time instead of following a heel strike then toe strike motion.

The optimized joint torque trajectories for Experiment 2 are presented on Figure 4.11. As
these trajectories were originally derived from the initial joint moment estimates computed
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Figure 4.10: One step walk motion - Experiment 2

by the method of inverse dynamics, they are specific to the movement pattern. As compared
to Experiment Main, in the single support phase, the torques behaved similarly. However,
as the double support phase interval is much smaller, so are the knots interval for torques
occurring during this period, hence torque changes rapidly so as to follow through the
movement pattern at a quicker time. This set of torque trajectories is able to produce the
same movement characteristics as in Experiment Main, depicted by the segment trajectories
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in Figure 4.12 but in a faster time frame. In addition, the horizontal distance of CoM in
Experiment 2 travelled a slightly further distance than Experiment Main in a shorter time
(Figure 4.13).
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Figure 4.11: Exp 2 versus Exp Main - optimized torques

DISTRIBUTION A. Approved for public release: distribution unlimited.



ANALYZING HUMAN PERIODIC WALKING 573

Il 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Stance foot
N
T
|
!
!

Stance shank

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

'E: 2 . —Exp2
£ I — — — Exp main
8 15F \\;i _ _ P
c ———— . - =
IS ==
a 1 1 1 1 1 1 1 1 1 1 J
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
5°r
= == T
(&)} 5 [ o 4;—;’;’;:;'71 o
S L _ ==
S =
(5} 4 | | 1 1 1 1 | 1 1 I

Swing shank
w A
\

1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

—
o
1

Swing foot
o a
i
|
|
L \

15 T T T T === - s

HAT

1 | 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (s)

Figure 4.12: Ezp 2 versus Exp Main - Segmentl angular displacement trajectories

DISTRIBUTION A. Approved for public release: distribution unlimited.



574 M. TAN, L.S. JENNINGS AND S. WANG

CoM X
0.4f
= Exp 2 N
E 0.37 P . -7
= — — Exp main P
g 0.2f S
< 04f S
5 0 -
© .,." s
€ -01¢ o
(o) o '
5 -0.2| =
50 /
-03F
0.4 : : : : '
0 0.1 0.2 0.3 0.4 0.5
Time(s)

Figurc 4.13: Exp 2 versus Exp Main - Horizontal displacement of CoM

Ounly trunk periodicity, following Experiment Main, was considered in Experiment 2.
However, Experiment 2 achieved better angular periodicity than Experiment Main (Figure
4.14). Table 4.2 presents the periodicity difference values of Experiment Main, 1 and 2,
where Experiment 1 considered periodicity constraints. The values indicated that periodicity
constraints need not necessary be considered and periodic motion can be achieved in a fast
walk. Figure 4.15 displays the start and end of the walk cycle, where a periodic motion can
be observed.
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Figure 4.14: Exp 2 versus Exp Main - Angular periodicity differences
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(o1
|
o

Periodicity Experiment 2 | Experiment Main | Experiment 1
zg —Oi(ty) —m -0.0178 -0.2513 0.0418
zs —Oa(ty) —m -0.0199 -0.0043 -0.0533
Za —O5(ty) —m -0.0224 0.0048 0.0256
z3 —O4(ty) +m -0.0613 -0.2388 -0.1196
zo — O5(ty) + 0.0155 0.0920 0.0914
21— O(ty) +m -0.0080 0.0017 0.0369
z7 — O7(ty) 0.0234 0.0006 -0.0859

Table 4.2: Angular periodicity differences
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Figure 4.15: Start and end of walk cycle with center of mass position - Experiment 2

Table 4.2 provides a comparison of the optimized system paramcters of Experiment 2
and Experiment Main initial angles and angular velocity. Differences of the initial angular
displacements can be observed between Experiment 2 and Main. As maximising step length
was part of the objective, system parameter 215, defined to be half step length, had to be
maximised. Adjusting z15; to maximise step length, would change the initial distance between
the stance toe and swing toe. As compared to Experiment Main, where z15 = 0.7351m, in
order to satisfy objective, the maximum boundary of z15(0.8m) was reached in Experiment
2. Initial angular displacements had to be adjusted accordingly as z15 changes in Experiment
2, in order for certain constraints to be satisfied such as, stance toc and swing toe had to
be of distance z15 while keeping the body upright.

The adjustments in initial angles could also be the explanation which resulted in peri-
odicity being achieved as illustrated in Figure 4.15.

Vertical displacement of CoM for Experiment 2 was observed to be smaller than Experi-
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Parameters | Experiment 2 | Experiment Main
z1 2.7055 2.7055
Zo 1.6499 1.6269
Z3 1.8751 1.8656
Z4 4.4185 4.5093
Zs5 3.8573 3.8011
25 4.6592 4.7978
27 1.6927 1.6411
28 -1.1615 -1.2979
Z9 -3.1145 -2.4389
210 -1.6123 -1.3727
Z12 1.2754 1.1253
Z13 -4.0441 -4.0952
214 0.0571 0.3605

Table 4.3: System parameters

ment Main (Figure 4.16). The difference between the vertical displacement of CoM through
the full walk cycle and the initial position of y-CoM is lesser especially at final time since a
periodic motion was achieved.

CoMY
1.18}
E 117}
£
S 1.16] o exp 2
€ .,.5@"‘_.\,:“"“'«-._‘. - .
8 115! o o e, exp main
8 - ...“. N
a | & N o,
E 1.13} N ) |
S 1.12f S~
7/ N\
111} N \
\
1.1 ; ; : : ‘
0 0.1 0.2 0.3 0.4 05

Time(s)
Figure 4.16: FExp 2 versus Exp Main - Vertical displacement of CoM

The results of Experiment 2 suggested that at faster walk speed, single support phase
contributes to the majority of the walk cycle and double support phase may be deemed
instantaneous. Forces and torques behaved similar to Experiment Main except during double
support phase. During double support phase, forces and torques increase and decrease in the
same direction, but duc to the short time interval present in this phase, forces and torques
increase and decrease rapidly. This rapid change allows the model to reach final position in
a shorter time interval. The final result of Experiment 2 also suggested that periodic motion
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can be achieved at faster walking speed without the need of periodic constraints.

Experiment 3

Experiment 3 investigated if a minimum velocity can be achicved by extending Experiment
Main. This was carried out by minimising distance and maximising time but with a lower
bound on distance and upper bound on time. These limits were reached. The maximum
time for a full walk cycle was restricted to be t = 0.486s and step length to be 1.22m,
which is 0.25m shorter than the original step length. Figure 4.17 presents the horizontal
velocity of CoM of Experiment 3. A slower velocity can be observed in comparison with
Experiment Main for single support phase, but similar velocity is noted for double support
phase. However, the jump in velocity was observed to occur earlier than ¢ = 0.386s, which
implics that the duration for single support phase is slightly shorter in Experiment 3 than
Experiment Main and longer for double support phase. CPET (Section 2) is used to optimise
the change over time. Time interval for single support phase in Experiment 3 ends earlier
at t = 0.3762, which is 0.0098s shorter than Experiment Main. which lengthened double
support phase.
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Figure 4.17: FExp 3 versus Exp Main - Horizontal velocity of CoM

The result suggest when minimising velocity, even though time to complete a full cycle
remains the same ¢t = 0.486s, the duration of each phases changed slightly with shorter
step length distance. Since step length is smaller, swing heel strike occurred in a shorter
time span, but duration of double support phase was lengthened in order to maximise time
to complete the walk cycle. Figure 4.18 illustrates the horizontal displacement of CoM of
Experiment 3 which was observed to be shorter as ¢ increases when compared to Experiment
Main. Figure 4.19 depicts the walk motion of Experiment 3, where the walk is observed to
be tighter and the distance between the swing foot and stance foot is smaller.

The optimized joint torque trajectories for Experiment 3 were observed to have similar
pattern since it was derived from initial joint moment estimates computed by inverse dy-
namics. However, due to the change in time interval, shifts in joint torques towards the left
was observed in single support phase, and towards the right in double support phase (Figure
4.20 and 4.21). During the single support phase, as time interval was smaller, knot intervals
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Figure 4.19: One step walk motion - Ezxperiment 3

of each control were observed to be smaller in Experiment 3, while in the double support
phase, as time interval was larger, knot intervals of each control were then observed to be
bigger. This was to accommodate the shorter time span in single support phase and longer
time span in double support phase.
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Figure 4.20: Ezp 3 versus Exp Main - optimized joint torque trajectories during single support
phase
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Figure 4.21: Exp 3 versus Exp Main - optimized joint torque trajectories during double

support phase
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Even forces in Experiment 3, similar to joint torques, were observed to have shifted
according to the changes of time interval yet maintaining a identical pattern as Experiment
Main. Despite having same motion pattern, it was noticed that external vertical forces on
the stance toe were smaller in Experiment 3, but greater on the swing ankle at joint 6, when
comparing with Experiment Main (Figure 4.22). With larger time interval in double support
phase, more time was allowed for the weight of the body to be distributed from stance foot
to swing foot, as swing foot is on the ground for a longer duration. More force is acting on
the swing foot as it remains longer on the ground, while stance foot prepares to lift-off.
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Table 4.4 provides a comparison of the optimized system parameters of Experiment 3 and
Main. As the objective was to minimise step length, the lower boundary of z15 (= 0.61mn)
was reached in Experiment 3 to satisfy the objective. Initial angular displacements were
optimized to satisfy both objective and constraints of the present experiment, and hence are

M. TAN, L.S. JENNINGS AND S. WANG

different from previous models.

Paramcters | Experiment 3 | Experiment Main
21 2.7055 2.7055
29 1.6370 1.6269
z3 1.8695 1.8656
Z4 4.7526 4.5093
z5 3.7850 3.8011
26 4.9598 4.7978
27 1.6630 1.6411
28 -1.3694 -1.2979
29 -2.3578 -2.4389
210 -1.1421 -1.3727
Z11 1.3291 1.6809
Z12 0.9549 1.1253
213 -4.1197 -4.0952
214 0.2092 0.3605

Figurc 4.23 depicts the first and last scgment of the walk cycle in Experiment 3. A
periodic motion could not really be noticed in the present experiment although the only
periodic constraint considercd was on the trunk. A further look at angular periodicity of
each segment was presented in Figure 4.24 and Table 4.5. No improvements in periodicity
could be seen between Experiment 3 and Main, but Experiment 1 certainly faired better in

Table 4.4: System parameters

periodicity since periodicity constraints were considered.

Periodicity Experiment 3 | Experimment Main | Experiment 1
ze —O1(ty) —m 0.0383 -0.2513 0.0418
25 —Oz(ty) — 7 0.0093 -0.0043 -0.0533
zg — O3(ty) — 7 0.0676 0.0048 0.0256
z3 —Ou(ty) + 7 -0.1712 -0.2388 -0.1196
zo —Os(ty) +m 0.2519 0.0920 0.0914
zZ1 —Os(ty) + 0.0007 0.0017 0.0369
27 — 0:(ty) 0.0004 0.0006 -0.0859

Table 4.5: Angular periodicity differences
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83

Results of Experiment 3 suggested that at a slower walk speed, duration of single support
phase was shortened and double support phase was lengthened. Forces and torques behaved
identically to Experiment Main but the knot intervals were shifted according to the changes
in time interval of each phase. Unlike Experiment 2, periodic motion was no different to
Experiment Main, which suggested periodicity could only be achieve at higher walking speed

DISTRIBUTION A. Approved for public release: distribution unlimited.



584 M. TAN, L.S. JENNINGS AND S. WANG

or when periodicity constraints were considered.

Concluding Remarks

In this paper, we have extended the mathematical method proposed in [18] to analyse human
walking behaviour with the addition of periodicity constraints and at various speeds. The
mathematical method proposed is able to simulate normal walking motion of a full walk
cycle at different speeds, with improvement in periodicity seen with either the addition of
periodicity constraints or at a faster walking speed. Periodic motion simulation was improved
by our method with the addition of periodicity constraints as identified in Experiment 1 or
at faster walking speed as in Experiment 2. Experiments 2 and 3 also show that our method
allows velocity adjustment in modelling walk motions at different speeds. A main advantage
of the mathematical method developed is its ability to model a walk motion in different,
more realistic scenarios as a single process, instead of as multiple processes.

Though the method proposed here can model human periodical walking accurately and
cffectively, the optimal solutions arc usually sensitive to external disturbances as the model
proposed by us is based on an open-loop optimal control approach. To model more re-
alistic human walking behaviours, techniques for constructing optimal feedback or robust
controllers such as those in [6, 7, 17, 1, 2, 12] have to be used to yield optimal solutions that
are stable and robust in the presence of internal and external disturbances. We will discuss
this in future papers.
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