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1.0 Executive Summary 

Fuel stability and performance problems are often due to the presence of trace levels of 
contaminants or other minor changes in composition. Detailed compositional analyses of suspect 
fuels are often critical to the determination of the cause(s) of the problem(s) at hand. Sensitive 
methods to compare fuel compositions via GC-MS methods are available, but the detailed 
compositional analyses of complex fuels are fundamentally limited by the chromatographic 
resolutions of these methods. Specifically, insufficient chromatographic resolution negatively 
impacts the quality of downstream compound identifications generated by the database searches 
utilized to identify chemical compounds via the Navy’s FCAST software. The chemometric 
techniques of EWFA and MCR, NIST database match quality metric comparisons, and other 
associated algorithms were thus incorporated into an automated GC-MS peak deconvolution 
strategy suitable for use in software such as the FCAST, allowing for the more accurate and precise 
determinations of fuel compositions. 

2.0 Objective 

The objective of the current study is to develop an unsupervised, chemometrics-based strategy, 
suitable for robust implementation in automated software applications, to enhance and improve 
fuel composition profiling by GC-MS by leveraging databased mass spectral information to 
seamlessly and autonomously deconvolve co-eluting fuel components. 

3.0 Approach 

The objective of this study was met through the following technical approach: 

 Develop data sets of synthetic GC-MS spectra, with known numbers and types of
co-eluting compounds, by mathematically combining well-characterized mass spectral
data from the NIST/EPA/NIH Mass Spectral Library database.

 Develop algorithms for EWFA-based peak component identifications and MCR-based
refinements.

 Test and optimize the combined EWFA-MCR algorithm with synthetic data, varying the
chromatographic resolution between adjacent peaks and the spectral similarity between
co-eluting compounds.

 Continue to test and optimize the overall analysis strategy with real GC-MS data collected
from varied fuel samples.

 Implement peak deconvolution algorithms into the FCAST software.
_______________
Manuscript approved January 23, 2018.
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4.0 Background 
 
GC remains a primary tool for the analysis and compositional characterization of mobility fuels, 
both inside and outside of the Navy and the DOD. As the requirements for the accurate and precise 
analytical data required for state-of-the-art applications increase, the performance boundaries of 
fuel chromatography become a significant limiting factor. This limitation becomes increasingly 
important in fuel failure investigations, where minor or trace compositional artifacts are often 
responsible for poor fuel stability or performance. 
 
Fuel chromatography is inherently limited by the high complexity of petroleum fuel compositions. 
In practice, almost none of the fuel constituents are fully resolved from other components. This is 
due to a combination of 1) insufficient peak capacity for the large number of individual 
components within time and chromatographic efficiency constraints and 2) insufficient resolving 
power of the stationary phase in the gas chromatography column relative to the many structurally 
similar isomers or homologs present in fuel. Multidimensional approaches, longer columns and 
slower heating rates can offer some benefits but will not necessarily fully resolve previously co-
eluting fuel compounds. 
 
As the mass analyzer samples the effluent from the GC column in GC-MS applications, the mass 
fragments detected in a particular time slice can be sent to the NIST/EPA/NIH Mass Spectral 
Library database to determine the identity of the chemical being carried by the parent peak. When 
two (or more) compounds co-elute, their peaks will overlap and the time-slices sent to the mass 
analyzer will correspondingly contain contributions from the co-eluting compounds. Depending 
on the degree of overlap, the NIST database search algorithms will produce one of two results. If 
the mass spectra are completely inseparable, incorrect assignments will simply be returned from 
the database search, resulting in errors in downstream information streams. Even in the case of 
incomplete overlap, however, the mass spectra from one or more compounds may very well be 
overwhelmed by competing mass spectra, resulting in information loss. This latter phenomenon 
can be exacerbated by the random elution of siloxanes and other stationary phase hydrocarbon 
fragments over the course of the GC analysis, often referred to as column bleed. The analyst will, 
of course, not see the latter obscured compounds in any database search results, but will see the 
former occurrences of misidentified compounds. Often, the mangled mass spectra resulting from 
co- elution will return compound identifications that are nonsensical and can be discarded either 
manually or by means of MF-based quality metrics, but there are also instances where high MF 
values are obtained from erroneous database matches. These types of co-elution artifacts are also 
responsible for the reporting of multiple, widely-distributed instances of the same compound 
throughout a single chromatographic analysis, which have the potential to confuse analysis results. 
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Any investigation, either ad hoc or routine, that depends upon the gas chromatographic analysis 
of fuel constituency would obviously benefit from improved compound peak resolution, especially 
if it can be made to occur in a reliable and automated fashion without requiring users to tailor its 
functionality to any given data peak. This includes fuel failure analysis, compositional database 
construction, the elucidation of contaminants and the detection of adulterants, and accurate 
compound-level or compositional-level class profiling. Further, while the present study focuses on 
GC-MS, the methods that have been developed remain applicable to GCxGC-MS data sets as well, 
should the enhanced compositional resolution available via this analytical technique be desired. 
Even GC techniques that do not utilize mass spectral detection can be augmented with those 
aspects of the present work not directly associated with MF-based quality metrics. 
 
The present study’s focus on algorithm development for automated GC-MS data deconvolution is 
the function of an explicit goal of FCAST implementation. The FCAST is a comprehensive 
software package that already extracts a wide variety of information from GC-MS data using 
mathematical, statistical, and chemometric modeling strategies, including detailed compositional 
assessments, estimates of critical fuel properties, and calculated distillation curves for individual 
fuel samples, as well as composition-based comparisons of fuel sample pairs.1,2 These features can 
individually be very useful when comprehensive fuel analyses are required but limited sample 
volumes are available, and collectively provide a self-contained methodology for rapid fuel 
identification and characterization. The software has been an invaluable resource in the context of 
previous NRL fuel-based research programs, and its effectiveness has been proven during 
applications running the gamut from routine analyses to critical investigations into discrete fuel 
failures. Implementing automated peak deconvolution into the FCAST software will only enhance 
the Navy’s overall fuel analysis capabilities. 
 
The presently reported study focuses on the end goal of the seamless implementation of EWFA- 
and MCR-based techniques into the FCAST software and/or a streamlined, standalone software 
application for use when the full FCAST software is either not available or unnecessary, in a 
manner that would result in optimal performance while remaining user-friendly. Broadly, the 
developed approach uses EWFA to estimate the number and location of individual chemical 
components within local regions containing convolved chromatographic peaks, followed by MCR 
to estimate the shapes of pure-component mass spectra which will be used to provide more 
effective database searches and thus more accurate compositional profiles. 
 
Because the peak deconvolution algorithm will be required to function effectively under varied 
circumstances with minimal input or interpretation required by the end user, a key focus of this 
work was in developing an automated method to define acceptance/rejection thresholds, as well as 
other parameters, that will, in turn, be used to define where along the retention time axis individual 
chemical components appear and disappear within a convoluted chromatographic peak. A data-
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driven approach to parameter selection was pursued, allowing the algorithm a measure of 
adaptability, and by extension greater robustness, without requiring user interaction. In other 
words, these thresholds and parameters were intelligently set using dynamic information derived 
from the data itself. 
 
Synthetic GC-MS data were generated for initial algorithm development purposes, and producing 
these data required a smaller, interconnected research effort to be briefly reported upon herein. 
This synthetic data allowed for a rigorous determination of the conditions under which automated 
EWFA-based peak component identifications and MCR decompositions become unreliable for 
fuel profiling, as well as predictions of critical threshold values. There are two key parameters that 
were varied for this synthetic data: chromatographic resolution between adjacent peaks and 
spectral similarity between co-eluting peaks. These parameters together serve to describe an 
arbitrary level of sample complexity within the context of this work. Effectiveness of peak 
deconvolution as a function of sample complexity was measured both by comparing the output of 
the deconvolution algorithm directly against the "ground truth" of the parameters of the simulation 
as well as by comparing the accuracy of control output results. Once this was demonstrated, real 
fuel data were employed. 
 
Because of the data-driven methodology used to develop the overall peak deconvolution strategy, 
the initial development of both synthetic data production methods and the fundamental operations 
of the combined EWFA-MCR algorithm will be described in the Experimental section, with 
further testing steps that may or may not have resulted in further algorithm optimizations being 
described later in the Results and Discussion section. 
 

5.0 Experimental 
 
5.1. Software 

Synthetic data production and data analysis algorithms were developed using MATLAB 
(MathWorks, Inc., Natick, MA), the PLS_Toolbox for MATLAB (Eigenvector Research, Inc.), 
and the MATLAB based Calibration and Standard Toolboxes (FABI/ChemoAC Consortium). 
When necessary and appropriate, both mass spectral data and derived mass spectral loadings were 
submitted to the NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral 
Library (NIST 11, version 2.0g) for identification purposes. All data subsets were mean-centered 
prior to each individual SVD operation, but were otherwise not preprocessed. 

5.2 GC-MS Data Collections 

GC-MS data sets collected from the real-world fuel samples presented herein were acquired on an 
Agilent 5890 GC with an Agilent 5971 mass selective detector. Injections (1.0 μL) of the neat fuels 
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were made with an autoinjector into a split/splitless inductor at a split ratio of 200:1. An AT-1 
cross-linked polysiloxane capillary column (50 m x 0.25 mm ID, 0.20 μm film thickness) was used 
with an oven temperature program that initiated data collection at a temperature of 40 ˚C and 
ramped the temperature at 10 ˚C/min to 290 ˚C, holding this temperature for the remainder of the 
data collection. Data were acquired at column retention times from 5.1 to 70.0 minutes, at a rate 
of about two mass spectra per second, from 35 to 400 m/z. 

5.3 Synthetic GC-MS Data 

Work was performed to produce useful (i.e. both realistic and challenging) synthetic data sets for 
the purposes of algorithm development. It had previously been known internally that phenols tend 
to convolute with one another during the GC-MS analysis of fuel samples, so work initially focused 
on convoluting, in various proportions, the spectra of four phenols possessing similar chemical 
structures: p-tert-butylphenol, 2-(1,1-dimethylethyl)phenol, 2-(1-methylethyl)phenol, and 
2-propylphenol. The initial, unblended mass spectra for these compounds were located in the NIST 
mass spectral database, normalized to unit area, and adjusted by the most appropriate mass spectral 
response factors determined during previous internal work on our own equipment. This last step 
was undertaken simply to ensure that arbitrated blend ratios would accurately translate to what one 
would see if an actual blend possessing these ratios were to be analyzed using GC MS in our 
laboratories. 
 
After the mass spectral data vectors are thus preprocessed, they can then be individually cross-
multiplied by vectors containing Gaussian curves to produce data matrices consisting of mass 
spectra and retention time axes. The use of Gaussian curves accurately represents the normally 
distributed manner in which mass spectral data can appear across multiple retention times.3 
Because chromatographic columns can vary a great deal in separation characteristics, the locations 
of the Gaussian curves in the chromatographic vector can be arbitrated by the end-user. This, in 
turn, very easily allows end-users to arbitrate that the two-dimensional data sets for individual 
compounds will possess identical or nearly-identical synthetic column retention times to result in 
co-elution. Once the appropriate two-dimensional data sets are constructed, they are multiplied by 
the desired blend ratios, then added to a separate noise matrix, itself being a convolution of random 
noise (which can be represented by a normalized distribution of random numbers3) and a Gaussian 
distribution that simulates the hump-like background seen in realistic fuel samples. This initial 
development work only requires the production of data sets possessing a single convoluted peak 
of interest, such as are represented by the example TICs seen in Figure 1 (which shows synthetic 
data consisting of a blend of the four phenols described previously, at a relative concentration of 
25% each), but multi-peak data sets can easily be produced by adjusting production parameters. 
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Figure 1.  Example synthetic data set TIC (black), consisting of a 25/25/25/25 blend of four 
constituents and noise. The TIC of the p-tert-butylphenol without noise is plotted in red, the TIC 
of the 2-(1,1-dimethylethyl)phenol without noise is plotted in green, the TIC of the 
2-(1-methylethyl)phenol without noise is plotted in blue, and the TIC of the 2-propylphenol 
without noise is plotted in magenta. The lack of noise results in a complete overlap of the individual 
component plots with the x-axis for the majority of retention times, hence the overwhelming 
magenta x-axis coloration in the non-inset portion of the figure. Some components are higher in 
magnitude than others due to the instrument response factors described in the text. All components 
have a Gaussian width of 7 variables, and the individual components were staggered by a single 
variable along the retention time axis. 
 
 
 
 
 
 
5.4 EWFA-MCR 
 
EWFA is a modified version of EFA4 that basically functions by performing EFA, in the form of 
repeated SVD operations, on subsets of the overall data set. These data subsets, in the case of 
GC-MS data, are subdivided along the retention time axis because the decomposed results 
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corresponding to the mass spectra can be used in NIST database searches to identify the chemical 
sources of underlying linear data factors. 
 
SVD mathematically breaks a given data matrix down into its underlying linear factors, which are 
typically designated as scores, loadings, and singular values. The singular values in particular can 
be used to indicate how many of the factors in the decomposed results can be considered 
prominent, which is important to know in most applications of EFA. Specifically, in EFA, SVD is 
performed on increasingly large portions of a data matrix, proceeding in both the forward and 
reverse directions. In the forward direction, SVD is performed on a data subset, initially defined 
starting from the first row/column, which increases in size by one row/column per SVD operation 
until the last row/column is included in the SVD. In the reverse direction, the same stepwise 
increase in data subset size proceeds in the opposite direction from the last row/column instead. 
 
The theory behind EFA is that the number of prominent singular values found through SVD will 
increase when the ever-increasing subsets of data being analyzed possess more underlying factors 
than previous subsets. By going in both a forward and reverse direction, one can thus pinpoint 
where factors within a data set appear, disappear, and overlap, all of which constitute important 
information when assessing convoluted GC-MS data. In addition, the loadings collected along with 
these singular values are also valuable information, as they will (at least ideally) closely correspond 
to the actual shapes of the underlying factors themselves, i.e. the mass spectra required to identify 
individual components by means of a NIST database search. The use of EWFA further refines 
EFA results by moving a window within which to perform EFA across a larger data set, allowing 
for a more nuanced understanding of these appearances, disappearances, and overlaps, especially 
in the context of discrete data peaks. 
 
It must be clarified here that the EWFA algorithm, based on repeated iterations of SVD, is capable 
of producing multiple mass spectrum-like loadings per iteration, each corresponding to a different 
LV and a different relative prominence in the parent data set. This, of course, allows for the 
deconvolution of multiple compounds from even closely overlapping data, which is part of 
EWFA’s core functionality. However, loading shapes might not be well-resolved from the parent 
data, at least in part due to their relative prominences in said data. To compensate, MCR5 can be 
included in the use of EWFA, functioning as a means by which to refine the shapes of the loadings 
produced using EWFA, typically by means of an iterative ALS algorithm. This allows the 
sub-optimal shapes of some loadings, distorted by factors such as their lower relative prominences 
as found via SVD operations, to more accurately reflect underlying chemical phenomena, thus 
allowing more fully obfuscated chemical components to be effectively identified via NIST 
database searches. 
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Although the aforementioned singular values would most likely find substantial use in applications 
not utilizing mass spectra, including those existing in-house, the combined EWFA-MCR algorithm 
being produced in the present work has been designed to utilize the information produced via NIST 
database searches in a novel, alternative manner. This was done because NIST database searches 
provide an internal metric that can be used to interrogate loadings in a manner more directly related 
to composition than that which would be provided by their corresponding singular values. 
Specifically, because NIST database searches provide MF values to quantify identification quality, 
the loadings can effectively be ranked by how accurately they represent the mass spectra contained 
within convoluted data, under the assumptions that 1) high-quality matches are unlikely to be 
primarily superfluous data artifacts, and 2) the mass spectra found in the NIST database and those 
collected in-house are similar enough that comparisons between the two populations will provide 
meaningful MF values. Although the manner in which underlying factors evolve within the data 
is thus not explicitly being modeled thanks to this disregard of singular values, the fact of their 
evolution remains critical to the analysis, justifying this novel technique’s continued designation 
as an EFA variation. 
 
5.5 Dynamic Window Sizing 
 
The phenol-based synthetic data already shown in Figure 1 are considered very convoluted data 
because the maximum values of the four individual component peaks all fall within at least some 
portion of each of the other three component peaks, all within the space of ten total retention time 
variables. Additionally, the four convoluted phenols to be evaluated all possess similar chemical 
structures, which should provide a non-trivial analysis challenge upon which to evaluate potential 
algorithms. A preliminary investigation was thus undertaken to deconvolve not only data with 
these parameters, but also similar data produced using peak widths of 3 and 5 (expected to be 
representative of more routine convoluted data). This portion of the investigation focused upon 
which EWFA window size would be most appropriate for the present work, which at least initially 
seemed like a straightforward early decision to make. The window sizes were chosen to all be odd 
numbers to ensure that a central variable is available for each window to allow the results collected 
within said window to be easily correlated to a distinct central retention time. 
 
Interestingly, however, as can be seen in Figure 2, assigning the peak width parameter is not as 
straightforward as it might initially seem because larger peaks require larger window sizes to be 
more effectively deconvolved. While this might mean that the safest and most thorough course of 
action would be to simply apply the maximum possible window size to the entire EWFA analysis 
area, no small amount of consideration should be given to calculation times, which, as can be seen 
in Figure 3, increase significantly when larger window sizes are employed. 
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Figure 2. Compound identification results after applying EWFA and MCR, using multiple 
analysis window sizes, to convoluted synthetic data sets. These results represent the number of 
phenols detected out of four possible. Black column additional information: The compound 
4-(1-methylethyl)phenol was detected in lieu of 2-(1-methylethyl)phenol, which is considered 
acceptable in the present circumstances given how similar the mass spectra of these two 
compounds would be to one another even in non-convoluted data. 
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Figure 3. Example run times of representative iterations of the deconvolution algorithm, as applied 
to the Gaussian Width 5 data shown in Figure 2, with the MCR option employed, versus arbitrated 
window size. The same computer was used for all run time measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

11 
 
 

Given the balance that must therefore be struck between thorough window sizes and increased 
calculation times, the decision was thus made to develop a strategy to dynamically resize analysis 
windows depending upon the most obvious data structures to be assessed: the peaks in the TICs 
of the GC-MS data. Fortunately, the FCAST software already quantifies peak lengths along the 
retention time axis. This pre-existing information can be leveraged to dynamically adjust window 
sizes to each peak, which will, in turn, provide for an adaptive strategy suitable for automation.  
 
Consider again the results shown in Figure 2, obtained from synthetic data consisting of blends of 
the four phenols described previously, at relative concentrations of 25%, utilizing peak widths of 
3, 5, and 7 variables, in addition to a peak separation of a single variable, along the retention time 
axis, resulting in three data sets. When applying MCR, a minimum window size of 11 is necessary 
to acceptably analyze the four-component peak with a total width of 8 variables (Gaussian Width 
5 data, 11-8=3), and a window size of 13 is necessary to acceptably analyze the four-component 
peak with a total width of 10 variables (Gaussian Width 7 data, 13-10=3). The Gaussian Width 3 
data analysis seems to be a bit more forgiving overall and is thus not being considered at present. 
Although adding 3 to the width of dynamically-selected window sizes would thus seem to be in 
order, peak lengths would necessarily be defined as odd numbers within the algorithm (rounding 
even numbers up to odd numbers if necessary) due to the use of central variables for indexing 
purposes. Because adding an odd number to such a length would eliminate these central variables, 
dynamically adjusting window sizes of both 2 and 4 plus the underlying TIC peak length should 
be evaluated here to compare their relative merits in the context of this automated analysis. 
 
The +2 and +4 versions of the dynamic-window EWFA-MCR algorithm were thus applied to 
synthetic data sets similar to those just described, aside from the fact that the individual chemical 
component peaks began at a distance of 5 variables from each other and were brought closer 
together in increments of 1 variable to determine if and when the algorithm would become 
ineffective at uncovering underlying chemical information. These updated compound 
identification results, found in Figure 4, do not evaluate EWFA without MCR because Figure 2 
indicates that applying MCR reliably improves upon EWFA results in the present work. 
Concurrently, EWFA alone will not be revisited in the remainder of this report, and the 
EWFA-MCR designation will be used to refer to the combined algorithm. 
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Figure 4. Compound identification results after applying EWFA and MCR, using a dynamically-
adjusting window analysis size, to data sets similar to those shown in Figure 1. These results 
represent the number of phenols detected out of four possible. The only difference between using 
a size addition of +2 and +4 is indicated by the partially blackened column, which indicates where 
the +2 size addition identifies 4 phenols and the +4 size addition identifies 3 phenols. 
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As one might expect, unacceptable degrees of data convolution do not truly appear until the 
individual component peaks are quite close to one another, though the results seen when using 
peak separations of 2 through 5 are still of some use insofar as they show that the deconvolution 
algorithm is not inadvertently causing compound identifications to decrease in quality through data 
over-processing. Interestingly, the use of either +2 or +4 window size additions produces almost 
identical results, though the use of the +2 version of the algorithm does uncover one additional 
compound identity and is thus considered superior in the context of dynamically-adjusting 
EWFA-MCR. The fact that smaller window sizes would also result in accelerated analyses is also 
considered a non-trivial side benefit. 
 
Although Figure 4 does show that the algorithm cannot reliably deconvolve peaks that are 
completely overlapping with one another (i.e. Peak Separation 0), the +2 EWFA-MCR dynamic-
window algorithm is capable of extracting three chemical identities that would have remained 
unavailable otherwise and will thus be further optimized in the remainder of this report. This 
optimization will take the form of additional data-driven trials that will be used to modify the 
EWFA-MCR algorithm thus far established. 
 

6.0 Results and Discussion 
 
6.1 Trace Component Evaluations  
 
The combined EWFA-MCR algorithm thus far developed, which dynamically defines analysis 
window sizes as the full span of any given underlying peak plus two variables, has been trained 
upon a single, albeit difficult, family of analysis challenges involving multiple convoluted phenols. 
In order to thoroughly test, evaluate, and optimize the algorithm, the first decision that was made 
was to apply it to a much wider range of convoluted data sets. In addition to simply varying the 
compounds to be convoluted with one another, this wide-ranging synthetic data-based evaluation 
work was also reconfigured to focus upon the algorithm’s abilities to ascertain the existence of 
trace components from larger parent peaks, an important capability for the deconvolution 
algorithm to possess. 
 
Synthetic data sets were thus produced each consisting of a four-component blend of various 
organic chemical compounds at a combined blend ratio of 30/10/30/30, with the 10% component 
being defined as the trace component to explicitly be detected. To further convolute the trace 
component, the two 30% component peaks immediately surrounding the trace component peak 
were given a width of 5 and the fourth component peak was given a width of 7, thereby allowing 
all three non-trace components to interfere with the width-3 trace peak. Figure 5 shows an example 
of what such a four component TIC peak would look like. 
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Figure 5.  Example noisy synthetic data set TIC (black), consisting of a 30/10/30/30 blend of four 
constituents, plotted with no noise. The lack of noise results in a complete overlap of the individual 
component plots with the x-axis for the majority of retention times, hence the overwhelming 
magenta x-axis coloration in the non-inset portion of the figure. The TIC of the trace component 
is plotted in green. 
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Although considerations were given to producing data sets with multiple peaks along the full 
lengths of their TICs for simultaneous analyses, it was quickly determined that peaks appearing at 
locations further from the middle of the major noise hump, such as that which is apparent in both 
Figure 5 and Figure 1, simply possessed lower amounts of noise, with no additional analysis 
challenges that required overcoming. Therefore, each data set shown in the present reporting was 
made to possess only a single, centrally-located TIC peak requiring deconvolution in order to 
ensure that interferences from noise were not mitigated. 
 
The specific chemical compounds upon which to base these convoluted data sets were determined, 
for each data set, by first randomly selecting an initial compound from the NIST spectral database 
itself. These randomly selected compounds were restricted to those composed only of any number 
of carbon atoms, any number of hydrogen atoms, one oxygen atom, one nitrogen atom, and/or one 
sulfur atom, as chemical compounds possessing other potential components, such as azo 
compounds and halogenated compounds, were deemed to be outside of the primary scope of the 
present fuel analysis-based work. The chemical formula for the initial compound thus selected was 
then used to randomly select three additional isomers of the initial compound from the same 
database. These four compounds were then used in subsequent convoluted data constructions, with 
the actual trace component to be detected being randomly selected from the four compounds. Once 
100 data sets were created under these conditions, the combined EWFA-MCR algorithm thus far 
produced in the present work was applied to them to determine its effectiveness at identifying the 
presence of the trace component. Furthermore, multiple match factor (MF) acceptance/rejection 
thresholds were applied to determine their effects on the overall analysis strategy, with the best 
(i.e. highest) MF value being selected if multiple identifications were made. In addition, as a 
further validation of the work detailed previously, a +4 version of the program was evaluated 
alongside to the primary +2 version during this operation. A full summary of the results of this 
operation can be found in Table 1, and Figure 6 presents selected control and +2 results in a 
graphical format. 
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Figure 6. Select control and +2 algorithm version results from Table 1 reproduced in a graphical 
format. Unselected results primarily excluded because graphically comparing their percent 
identification rates across multiple MF values would not be overly informative. 
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It should, of course, first be noted that the EWFA-MCR algorithm is not completely effective at 
uncovering the presence of all 100 trace components, as one might expect given the challenging 
nature of the parent data sets. Nonetheless, the algorithm allows for significant improvements in 
trace component detection. This is particularly striking in the case of non-heteroatomic compounds 
(i.e. those containing only carbon and hydrogen atoms), where an almost trivial ability to detect 
trace components (7% detection rate) is improved to the point of becoming decidedly non-trivial 
(61% detection rate). Also, as would be consistent with previous results, employing the +4 version 
of the algorithm results in no clear improvements in trace detection in the present evaluation. As 
the +4 version of the algorithm additionally increases calculation times by roughly 50% per data 
set over the +2 version of the algorithm, the decision arrived at previously to proceed with the +2 
version as the primary algorithm appears to be well-founded. 
 
Interestingly, the use of either 600 or 700 as an MF threshold value produces identical trace 
detection results when applying the +2 algorithm. It is only when the value of 800 is employed 
that a higher level of discrimination becomes apparent, though a threshold of 800 would already 
be a rather stringent threshold to employ when using software such as the FCAST. 
 
6.2 Real Fuel Data 
 
The combined EWFA-MCR deconvolution algorithm, thus far in the reporting, has only been 
trained and evaluated with synthetic data sets. Though these data sets have clearly presented the 
algorithm with non-trivial challenges, both during fundamental development and in the post-
development testing previously performed, it was decided that experimental GC-MS data collected 
from real-world fuel samples were required for further evaluations. To this end, GC-MS data sets 
were retrieved, from our internal fuel archives, for four real-world fuel samples: a petrochemical 
JP-5 jet fuel, a petrochemical F-76 diesel fuel, and two petrochemical MGO fuels, one obtained 
from a location associated with Miami, and one obtained from a location associated with 
Singapore. 
 
Determining whether or not the previous synthetic data sets were productively deconvolved was 
relatively straightforward, as the synthetic data were constructed using known quantities of known 
compounds. However, real-world fuels are typically never interrogated for similarly precise 
compositional information, simply because this information is rarely required during the course of 
routine fuel handling and use. Although preliminary internal work was also performed on simple 
surrogate fuels, the compositions of which were known because they were created in-house, it 
quickly became apparent that the GC-MS data collected from such surrogates were insufficiently 
complex for the purposes of proper algorithm testing. 
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Two indirect methodologies were thus developed to assess algorithm effectiveness with real-world 
fuel samples: 
 
1. It can be reasonably assumed that petrochemical jet fuels contain dodecane and 
petrochemical diesel and MGO fuels contain tetradecane. This assumption is consistent with both 
their known prevalence in these types of fuels and the fact that, at least in certain circumstances, 
dodecane can function as a surrogate jet fuel and tetradecane can function as a surrogate diesel 
fuel, and these compounds are commonly found in these types of fuels. It can thus be determined 
whether or not the deconvolution algorithm allows these compound identities to be assigned to a 
larger proportion of the overall TIC area in their respective data sets and/or causes these 
assignments to be more accurate. In the latter case, accuracy can be quantified by applying MF 
thresholds and subsequently rejecting results if they are accompanied by insufficiently high MF 
values. 
 
2. The NIST/EPA/NIH Mass Spectral Library contains several mass spectra correlated to 
bioactive molecules that are most likely not present in petrochemical fuels to any significant extent. 
However, during the course of previous in-house work, these bioactive molecules were identified 
as being present in fuel samples to a non-trivial degree. It is speculated that these dubious 
identifications were made because GC-MS data convolution results in mangled mass spectra that 
happen to look something like the Mass Spectral Library’s reference mass spectra for these 
bioactive molecules. Data deconvolution should thus reduce the number of such identifications. 
 
It will again be clarified that the combined EWFA-MCR algorithm, based on repeated iterations 
of SVD, is capable of producing multiple mass spectrum-like loadings per iteration, each 
corresponding to a different LV. This, of course, allows for the deconvolution of multiple 
compounds from even closely overlapping data, which is part of the algorithm’s core functionality. 
The results from multiple LVs will thus be added together for comprehensive reporting purposes. 
 
Figure 7 shows that the EWFA-MCR algorithm allows more of the parent GC-MS data to be 
identified as representing a compound that is likely to be present in the underlying fuel. This is 
promising, as is the fact that this improvement is based on deconvolved results yielding sufficiently 
high MF values that the overall trend remains consistent when utilizing the various MF threshold 
values. Although the use of EWFA-MCR is not required to find dodecane in the jet fuel and 
tetradecane in the MGO fuels, the increased number of identifications would seem to indicate that 
convoluted data, perhaps existing at the edges of convoluted dodecane-heavy and tetradecane-
heavy chromatographic peaks, are effectively deconvolved using the algorithm, allowing for a 
more accurate and thorough compositional assessment of these fuel samples. 
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Figure 7. Summary of the number of dodecane identifications obtained from the GC-MS data 
collected from a petrochemical jet fuel, and the number of tetradecane identifications obtained 
from the data collected from a petrochemical diesel fuel and two petrochemical MGO fuels, both 
without (red) and with (green) the application of the EWFA-MCR deconvolution algorithm. 
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Figure 8. First half of a summary of the number of various bioactive molecule identifications 
obtained from the GC-MS data collected from a petrochemical jet fuel, a petrochemical diesel fuel, 
and two petrochemical MGO fuels, both without (red) and with (green) the application of the 
EWFA-MCR deconvolution algorithm. TIC area results obtained with the EWFA-MCR algorithm 
(green) have been multiplied by 10 simply to make them visible. 
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Figure 9. Second half of a summary of the number of various bioactive molecule identifications 
obtained from the GC-MS data collected from a petrochemical jet fuel, a petrochemical diesel fuel, 
and two petrochemical MGO fuels, both without (red) and with (green) the application of the 
EWFA-MCR deconvolution algorithm. TIC area results obtained with the EWFA-MCR algorithm 
(green) have been multiplied by 10 simply to make them visible. 
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Figures 8 and 9, meanwhile, show similar results for the TIC areas that can be assigned to eight 
bioactive molecules (andrographolide, ascaridole, caryophyllene, and falcarinol in Figure 8; 
phytol, retinal, strophanthidin, and thujone in Figure 9). After the use of EWFA-MCR, it would 
be expected that these bioactive molecules would cease to be identified in fuels, and, to a large 
extent, this expectation is met, regardless of the choice of MF threshold. In fact, due to the scales 
imposed by the control TIC area results, the TIC area results obtained with EWFA-MCR usage 
are multiplied by 10 in these figures, simply to make them visible. 
 
6.3 Additional Output Constraints and Data Truncation Operations 
 
Given available evidence, the EWFA-MCR algorithm fundamentally seems to be effective at 
improving the accuracy of GC-MS fuel analysis. During initial FCAST algorithm implementation, 
however, it became apparent that this data deconvolution procedure still produced an unacceptably 
high number of superfluous, questionable compound identifications despite the implementation of 
a standard MF-based thresholding. This is problematic in the context of automated compositional 
profiling, especially in those cases in which the same compound might be identified at multiple 
retention times. While a certain amount of compound redundancy at adjacent retention times 
would be consistent with non-ideal chromatographic resolution and/or peak widths exceeding one 
variable along retention time axes, identical compound identifications found at more widely 
dispersed retention times are considered unacceptable in the context of automated software 
applications. Although a certain level of expertise in GC-MS data interpretation might allow some 
end-users to ignore spurious identifications without discarding compositionally significant 
information, such a level of expertise cannot realistically be relied upon in the context of widely 
distributed software applications. 
 
In order to more thoroughly correct for these superfluous compound identifications, and in 
particular to correct for multiple identifications of the same compound at different retention times, 
the MF threshold was first raised to 750, which is higher than the threshold range of about 600-
700 typically employed in-house when analyzing GC-MS data sets. This was done to account for 
the higher overall quality of the mass spectral data that becomes available after deconvolution. In 
addition to this relatively straightforward analysis change, three additional output constraints and 
two additional data truncation operations were built into the original algorithm. 
 
Output constraint 1: significance-based thresholding. EWFA relies upon multiple executions of 
SVD, the core decomposition of which can be represented by the following equation: 
 

R = USVT 
 
In this equation, R is the original data set (in this case, the portion of the GC-MS data being 
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analyzed), VT is the transposed matrix of loadings that the developed algorithm uses to estimate 
the shapes of deconvolved mass spectral data, and US is the product of the scores and singular 
values that, combined, indicate the significance of the corresponding loadings to the variance 
within the original data set. This US product can be subjected to a seemingly trivial threshold value 
of 1x10-15 to ensure that deconvolved mass spectral loadings have at least a minimal significance 
to the original data set before being collected during the course of the EWFA-MCR algorithm, 
thus reducing the number of superfluous compound identifications. 
 
Output constraint 2: loading number evaluation limit. The number of loadings that can be obtained 
from any given EWFA window is only limited by the size of the window itself. This means that 
large windows can produce large numbers of loadings, and all of these loadings were subjected to 
further evaluations in earlier versions of the EWFA-MCR deconvolution algorithm. However, not 
only was this time consuming, but it is not likely that loadings associated with lower significances, 
as described above, will yield useful chemical information. While earlier versions of the 
deconvolution algorithm simply allowed less significant loadings to be deselected by means of MF 
values, practical implementation work made it apparent that this approach was insufficient. Thus, 
an output constraint was implemented in which only chemical compound identifications obtained 
from the three most significant loadings obtained from any given window would be further 
considered for the purposes of overall chemical profiling. This substantially reduces the total 
number of SVD operations (and, incidentally, overall algorithm calculation times) while still 
allowing for substantial data deconvolution capabilities. 
 
Output constraint 3: area-based thresholding. The FCAST software prevents compound 
identifications that do not represent a certain percentage of the data’s total ion chromatograph 
(TIC) area. This threshold is typically set at 0.001%, but deconvoluted results were initially 
allowed to possess areas less than this in order to more thoroughly assess trace components. 
However, it became apparent that allowing for any percent area concurrently allowed for 
nonsensical compound identifications, particularly in the form of incongruous heteroatomic 
compounds, to slip into the final analysis results, so the 0.001% threshold was re-applied to near-
final compositional profile results as well. It should be noted, of course, that these percentages 
must be recalculated after this thresholding itself is applied to allow for the percentages to equal 
to 100% once again. 
 
Data truncation 1: adjacent redundancies. Identical compound identifications that remain after 
these output constraints are applied are then initially added together when they appear at retention 
times that possess no intervening compound identifications. This addition occurs by first selecting 
the individual compound identification that contributed the most to the overall TIC area of the GC-
MS data, which is then considered the primary identification at a primary retention time. All 
relevant TIC area contributions at this primary retention time and nearby retention times are then 
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summed into a single value and associated with the primary identification, with non-primary 
compound identifications deleted afterwards. This maintains the quantitative results obtained from 
multiple compound identifications while consolidating them in a single identification. This 
operation is iterated ten times across the list of identified compounds to safeguard against new 
adjacencies that might arise due to previous iterations of the operation. 
 
Data truncation 2: non-adjacent redundancies. Identical compound identifications remaining after 
the first data truncation operation are then simply truncated by selecting a primary compound 
identification, in the same manner as described previously, and deleting all other non-primary 
identifications. This differs from the first operation because non-primary area contributions are not 
maintained as contributions to overall compound identifications. Adding area contributions 
together is defensible in the case of the adjacent compound identifications described previously, 
but it is much more likely that widely disparate compound identifications along a given retention 
time axis are due to lingering compound misidentifications and should thus be eliminated 
accordingly. While this second operation is particularly heavy-handed in its approach to obtaining 
the desired results, its positioning after the first data truncation operation helps to ensure that a 
minimal amount of meaningful chemical information is subject to loss. 
 
Once these new constraints and data truncation operations were put into place, FCAST-type 
compositional profiles were obtained from the same GC-MS data acquired from the JP-5 jet fuel, 
F-76 diesel fuel, and two MGOs, associated with Miami and Singapore, utilized previously. 
Compositional profiles were used as the means of algorithm evaluation because it is within these 
profiles that the presence of redundant compound identifications first became apparent during 
FCAST implementation work. To simplify results, both the control profiles and post-
deconvolution profiles were not allowed to have individual compounds appear in more than one 
hydrocarbon category within a profile, an option that can already be adjusted in the FCAST 
software. For the purposes of comparison, control (i.e. non-deconvolved) results and results 
obtained by using an earlier version of the EWFA-MCR algorithm that does not possess the new 
constraints and truncation operations were also collected. Tables 2 through 5 present the most 
immediately relevant results that can be derived from each fuel’s compositional profiles: the 
numbers of unique compounds identified overall for saturates, olefins, aromatics, and 
heteroatomics, as well as each of twenty-five compound sub-categories, and the percentages of the 
total TIC areas that can be ascribed to these compound categories. 
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Table 2. Profiles obtained before and after applying the previous and updated EWFA-MCR 
algorithms to the FCAST-type compositional profiling of the JP-5 jet fuel. 
 
 

 Control Old EWFA-MCR Updated EWFA-MCR 

 number area% number area% number area% 
Total Saturates 73 69.78% 868 56.64% 144 64.00% 
Total Olefins 5 3.33% 39 1.18% 18 2.50% 

Total Aromatics 29 18.05% 519 34.08% 95 27.53% 
Total Heteroatomics 25 8.84% 853 8.11% 71 5.97% 

Normal Alkanes 15 44.12% 336 35.22% 13 32.70% 
Iso Alkanes 26 18.26% 325 16.50% 69 22.46% 

Monocyclo Alkanes 2 1.16% 8 0.05% 2 0.22% 
Alkyl Monocyclo Alkanes 29 5.85% 185 4.36% 54 8.02% 

Dicyclo Alkanes 1 0.38% 10 0.29% 4 0.23% 
Alkyl Dicyclo Alkanes 0 0.00% 4 0.21% 2 0.37% 

Tricyclo Alkanes 0 0.00% 0 0.00% 0 0.00% 
Alkyl Tricyclo Alkanes 0 0.00% 0 0.00% 0 0.00% 

Acyclic Alkenes 5 3.33% 27 1.00% 12 2.36% 
Cyclo Alkenes 0 0.00% 12 0.18% 6 0.14% 
Alkyl Benzenes 20 12.39% 311 13.48% 58 13.39% 

Indans and Tetralins 0 0.00% 51 7.69% 21 9.15% 
Indenes 0 0.00% 0 0.00% 0 0.00% 

Naphthalene 0 0.00% 2 0.86% 1 1.17% 
Branched Naphthalenes 9 5.66% 132 10.56% 15 3.83% 

Acenaphthenes 0 0.00% 0 0.00% 0 0.00% 
Acenaphthylenes 0 0.00% 0 0.00% 0 0.00% 
Tricycloaromatics 0 0.00% 23 1.48% 0 0.00% 

Methyl Esters 0 0.00% 10 0.02% 1 0.02% 
Sulfur-Bound 0 0.00% 76 1.23% 3 0.12% 

Nitrogen-Bound 0 0.00% 357 2.89% 15 0.12% 
Oxygen-Bound 18 6.61% 336 3.41% 38 4.70% 
Chlorine-Bound 2 0.03% 12 0.01% 4 0.03% 

Other Halogen-Bound 0 0.00% 15 0.03% 3 0.13% 
Other 5 2.21% 47 0.51% 7 0.85% 

Total # Compounds 132  2279  328  
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Table 3. Profiles obtained before and after applying the previous and updated EWFA-MCR 
algorithms to the FCAST-type compositional profiling of the F-76 diesel fuel. 
 
 

 Control Old EWFA-MCR Updated EWFA-MCR 

 number area% number area% number area% 
Total Saturates 90 74.31% 859 57.09% 138 59.99% 
Total Olefins 7 3.68% 19 0.19% 11 1.73% 

Total Aromatics 33 19.16% 491 36.78% 119 34.50% 
Total Heteroatomics 20 2.85% 910 5.93% 63 3.77% 

Normal Alkanes 21 58.70% 273 39.11% 20 36.83% 
Iso Alkanes 39 12.93% 379 14.99% 68 17.97% 

Monocyclo Alkanes 2 0.35% 16 0.00% 3 0.20% 
Alkyl Monocyclo Alkanes 27 2.22% 182 2.93% 44 4.95% 

Dicyclo Alkanes 1 0.10% 6 0.06% 2 0.03% 
Alkyl Dicyclo Alkanes 0 0.00% 3 0.01% 1 0.02% 

Tricyclo Alkanes 0 0.00% 0 0.00% 0 0.00% 
Alkyl Tricyclo Alkanes 0 0.00% 0 0.00% 0 0.00% 

Acyclic Alkenes 6 1.91% 17 0.04% 8 0.32% 
Cyclo Alkenes 1 1.77% 2 0.16% 3 1.41% 
Alkyl Benzenes 26 9.32% 318 10.95% 66 10.67% 

Indans and Tetralins 2 1.59% 61 6.81% 22 7.37% 
Indenes 0 0.00% 0 0.00% 0 0.00% 

Naphthalene 0 0.00% 2 0.04% 1 0.17% 
Branched Naphthalenes 5 8.25% 86 16.12% 18 13.18% 

Acenaphthenes 0 0.00% 1 0.00% 1 0.01% 
Acenaphthylenes 0 0.00% 0 0.00% 0 0.00% 
Tricycloaromatics 0 0.00% 23 2.86% 11 3.11% 

Methyl Esters 0 0.00% 2 0.00% 0 0.00% 
Sulfur-Bound 0 0.00% 87 2.04% 11 2.33% 

Nitrogen-Bound 0 0.00% 434 2.67% 12 0.10% 
Oxygen-Bound 14 2.40% 302 1.00% 31 0.98% 
Chlorine-Bound 3 0.05% 9 0.01% 2 0.03% 

Other Halogen-Bound 0 0.00% 20 0.15% 2 0.20% 
Other 3 0.40% 56 0.06% 5 0.13% 

Total # Compounds 150  2279  331  
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Table 4. Profiles obtained before and after applying the previous and updated EWFA-MCR 
algorithms to the FCAST-type compositional profiling of the Miami MGO fuel. 
 
 

 Control Old EWFA-MCR Updated EWFA-MCR 

 number area% number area% number area% 
Total Saturates 91 58.73% 1178 53.35% 165 51.88% 
Total Olefins 8 3.52% 33 0.20% 11 0.99% 

Total Aromatics 38 31.23% 548 42.52% 121 44.41% 
Total Heteroatomics 21 6.52% 773 3.93% 52 2.72% 

Normal Alkanes 19 43.89% 536 35.91% 21 27.51% 
Iso Alkanes 31 11.63% 348 13.96% 74 17.26% 

Monocyclo Alkanes 2 0.15% 13 0.00% 3 0.04% 
Alkyl Monocyclo Alkanes 38 2.61% 245 2.22% 57 3.97% 

Dicyclo Alkanes 1 0.46% 15 0.11% 3 0.30% 
Alkyl Dicyclo Alkanes 0 0.00% 21 1.15% 7 2.80% 

Tricyclo Alkanes 0 0.00% 0 0.00% 0 0.00% 
Alkyl Tricyclo Alkanes 0 0.00% 0 0.00% 0 0.00% 

Acyclic Alkenes 8 3.52% 24 0.04% 8 0.51% 
Cyclo Alkenes 0 0.00% 9 0.16% 3 0.48% 
Alkyl Benzenes 26 10.94% 360 14.27% 70 15.86% 

Indans and Tetralins 12 20.29% 119 18.69% 33 19.68% 
Indenes 0 0.00% 0 0.00% 0 0.00% 

Naphthalene 0 0.00% 1 0.23% 1 0.51% 
Branched Naphthalenes 0 0.00% 44 6.28% 12 5.51% 

Acenaphthenes 0 0.00% 0 0.00% 0 0.00% 
Acenaphthylenes 0 0.00% 0 0.00% 0 0.00% 
Tricycloaromatics 0 0.00% 24 3.05% 5 2.86% 

Methyl Esters 0 0.00% 1 0.00% 0 0.00% 
Sulfur-Bound 0 0.00% 63 1.04% 1 0.01% 

Nitrogen-Bound 0 0.00% 315 1.15% 7 0.17% 
Oxygen-Bound 11 3.32% 272 1.09% 32 1.33% 
Chlorine-Bound 2 0.03% 24 0.01% 3 0.03% 

Other Halogen-Bound 0 0.00% 24 0.13% 2 0.46% 
Other 8 3.17% 74 0.51% 7 0.71% 

Total # Compounds 158  2532  349  
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Table 5. Profiles obtained before and after applying the previous and updated EWFA-MCR 
algorithms to the FCAST-type compositional profiling of the Singapore MGO fuel. 
 
 

 Control Old EWFA-MCR Updated EWFA-MCR 

 number area% number area% number area% 
Total Saturates 109 82.07% 1305 68.26% 213 67.39% 
Total Olefins 7 2.20% 32 0.30% 13 1.45% 

Total Aromatics 33 12.51% 533 23.44% 122 24.55% 
Total Heteroatomics 24 3.23% 662 8.00% 69 6.61% 

Normal Alkanes 30 67.53% 561 45.75% 21 38.37% 
Iso Alkanes 37 11.37% 447 20.06% 114 24.62% 

Monocyclo Alkanes 3 0.25% 12 0.02% 5 0.11% 
Alkyl Monocyclo Alkanes 38 2.82% 271 2.25% 66 4.08% 

Dicyclo Alkanes 1 0.09% 11 0.11% 5 0.07% 
Alkyl Dicyclo Alkanes 0 0.00% 3 0.06% 2 0.14% 

Tricyclo Alkanes 0 0.00% 0 0.00% 0 0.00% 
Alkyl Tricyclo Alkanes 0 0.00% 0 0.00% 0 0.00% 

Acyclic Alkenes 7 2.20% 26 0.07% 7 0.31% 
Cyclo Alkenes 0 0.00% 6 0.23% 6 1.14% 
Alkyl Benzenes 27 6.85% 368 9.13% 74 10.87% 

Indans and Tetralins 1 0.68% 75 4.91% 24 5.10% 
Indenes 0 0.00% 1 0.00% 0 0.00% 

Naphthalene 0 0.00% 2 0.17% 1 0.24% 
Branched Naphthalenes 5 4.97% 72 8.25% 14 6.92% 

Acenaphthenes 0 0.00% 1 0.03% 0 0.00% 
Acenaphthylenes 0 0.00% 0 0.00% 0 0.00% 
Tricycloaromatics 0 0.00% 14 0.93% 9 1.42% 

Methyl Esters 0 0.00% 3 0.00% 0 0.00% 
Sulfur-Bound 0 0.00% 54 3.81% 14 4.21% 

Nitrogen-Bound 0 0.00% 229 2.07% 3 0.01% 
Oxygen-Bound 15 2.47% 268 1.54% 35 1.48% 
Chlorine-Bound 3 0.04% 15 0.01% 6 0.04% 

Other Halogen-Bound 0 0.00% 11 0.32% 4 0.47% 
Other 6 0.72% 82 0.26% 7 0.41% 

Total # Compounds 173  2532  417  
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Table 2 shows the results obtained from the JP-5 jet fuel. The older data deconvolution algorithm 
did indeed allow for many more compound identifications across almost all compound categories 
and sub-categories, but note that the number of heteroatomics identified increased far more in 
proportion to the saturate, olefin, and aromatic increases. Given the sheer volume of these 
heteroatomic identifications, it is likely that a non-trivial number of these are analysis artifacts, as 
opposed to true representations of the jet fuel’s composition. The updated algorithm corrects for 
this over-identification trend, and assigns less of the overall TIC area to the presence of 
heteroatomics as well, both developments that are consistent with the composition of a standard 
petrochemical fuel. Though the total TIC areas that are ascribed to the presence of saturates and 
aromatics still seem improperly balanced after applying the updated EWFA-MCR algorithm, 
especially for a petrochemical jet fuel, clear compound identification advantages are still apparent 
when using the updated EWFA-MCR algorithm. 
 
Table 3 shows the results obtained from the F-76 fuel. Again, a seemingly overaggressive 
identification of heteroatomic compounds, in the case of the older deconvolution algorithm, 
becomes a more reasonable overall improvement after the algorithmic updates are applied. Also 
note here, and is the case with the other three tested fuels, that the total TIC areas identified with 
olefin content decrease relative to the control (non-deconvolved) analysis results. This remains 
consistent with what would be expected from petrochemical fuel compositions. 
 
Tables 4 and 5 show the results obtained from the MGO fuels, in which similar heteroatomic 
identification improvements to those shown previously can again be seen. These MGO results also 
most clearly indicate the reductions in the numbers of saturates that are identified after the updates 
are applied to the deconvolution algorithm. Note in particular the normal alkane results, which are 
far more consistent with the numbers of normal alkanes that would be expected from a 
petrochemical fuel after the updates are applied than beforehand, most likely due to the data 
truncation operations described previously. 
 
Overall, Tables 2 through 5 show that the deconvolution algorithm, after the employed updates, 
still allows for the identification of substantially more unique compounds than without its use, 
while also more accurately representing expected compositional profiles. 
 
6.4 Comprehensive Evaluation of Updated Algorithm Constraints 
 
In the profiles shown in the previous section, the total TIC areas assigned to saturates and aromatics 
remained, at least seemingly, out of balance (i.e. too many aromatics and too few saturates). This 
is particularly apparent in the case of the jet fuel sample, for which ASTM D1319 saturates data 
(78.6%) and ASTM D6379 aromatics data (20%) are actually available, though an 80% 
saturates/20% aromatics ratio would not be out of the ordinary for diesel fuels as well. It was thus 
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decided that the specific parameters of the three new output constraints employed in the updated 
EWFA-MCR algorithm should be more thoroughly evaluated to determine if further 
improvements in compositional results can be obtained. As before, the MF threshold was kept at 
a constant value of 750 throughout the present evaluations. 
 
Early in these evaluations, it was decided that manipulating the area-based thresholding would 
most likely not be of much use in the present work. Initial results for all four previously evaluated 
fuels, which show the consequences of lowering this threshold from 0.001% (consistent with the 
FCAST’s default settings) to 0.0001% (i.e. one-tenth the previous value) are shown in Table 6. 
While lowering this threshold does, as would be expected, result in the identification of more 
compounds, there is very little in the way of corresponding peak area changes. This would seem 
to indicate that the new compound identities, deconvolved from the same parent chromatographic 
peaks as the older compound identities, still tend to represent the same broad categorical chemical 
information. Significant changes to something like a saturates/aromatics ratio, then, would likely 
be more productively pursued by varying the two other output constraints. 
 
The significance-based thresholding was considered very straightforward with respect to how to 
augment it. In the previous section, the thresholding value was set to an almost trivial value of 
1x10-15, simply to avoid the further propagation of the most insignificant results produced via 
SVD. It was thus hypothesized that increasing the magnitude of this number might very well result 
in an increased discriminatory capability, though a smaller value (1x10-17) was evaluated as well 
for the sake of completeness. 
 
The numbers of loadings to further evaluate after each individual SVD operation was restricted, in 
the previous section, to the three most significant loadings. While this appeared to produce a good 
balance of analysis speed and accuracy during preliminary internal work, the present work will 
focus on comparing this threshold value of three to values of two and four as well, to determine if 
the consideration of more or fewer loadings will significantly impact profiled compositional 
results. 
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Table 6. EWFA-MCR-augmented, FCAST-type compositional profiling results obtained from the 
four fuels described previously, before and after changing the area-based thresholding constraint. 
 
 

 0.001% 0.0001% 
  compound # area % compound # area % 

JP-5 jet       
Total Saturates 144 64.00% 163 64.00% 
Total Olefins 18 2.50% 20 2.50% 

Total Aromatics 95 27.53% 96 27.52% 
Total Heteroatomics 71 5.97% 88 5.98% 

F-76 diesel         
Total Saturates 138 59.99% 157 59.99% 
Total Olefins 11 1.73% 12 1.73% 

Total Aromatics 119 34.50% 121 34.49% 
Total Heteroatomics 63 3.77% 90 3.78% 

MGO (Miami)         
Total Saturates 165 51.88% 189 51.87% 
Total Olefins 11 0.99% 15 0.99% 

Total Aromatics 121 44.41% 123 44.41% 
Total Heteroatomics 52 2.72% 76 2.73% 
MGO (Singapore)         

Total Saturates 213 67.39% 240 67.38% 
Total Olefins 13 1.45% 19 1.45% 

Total Aromatics 122 24.55% 126 24.54% 
Total Heteroatomics 69 6.61% 85 6.62% 
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Table 7. EWFA-MCR-augmented, FCAST-type compositional profiling results obtained from the 
JP-5 jet fuel, before and after changing the significance-based and loading-based thresholding 
constraints. 
 
 

Fuel: C419 (JP-5 jet) Max. Eval. Loadings=2 Max. Eval. Loadings=3 Max. Eval. Loadings=4 
sig. threshold: 1x10-17 number area number area number area 

Total Saturates 138 64.53% 148 65.05% 155 64.32% 
Total Olefins 17 2.19% 19 2.06% 19 2.02% 

Total Aromatics 91 27.46% 95 26.98% 96 27.65% 
Total Heteroatomics 56 5.82% 72 5.91% 81 6.01% 

sig. threshold: 1x10-15 number area number area number area 
Total Saturates 138 64.53% 148 65.05% 155 64.32% 
Total Olefins 17 2.19% 19 2.06% 19 2.02% 

Total Aromatics 91 27.46% 95 26.98% 96 27.65% 
Total Heteroatomics 56 5.82% 72 5.91% 81 6.01% 

sig. threshold: 1x10-11 number area number area number area 
Total Saturates 138 64.53% 148 65.05% 155 64.32% 
Total Olefins 17 2.19% 19 2.06% 19 2.02% 

Total Aromatics 91 27.46% 95 26.98% 96 27.65% 
Total Heteroatomics 56 5.82% 72 5.91% 81 6.01% 

sig. threshold: 1x10-7 number area number area number area 
Total Saturates 138 64.53% 148 65.05% 155 64.32% 
Total Olefins 17 2.19% 19 2.06% 19 2.02% 

Total Aromatics 91 27.46% 95 26.98% 96 27.65% 
Total Heteroatomics 56 5.82% 71 5.91% 81 6.01% 
sig. threshold: 1x103 number area number area number area 

Total Saturates 138 64.53% 148 65.05% 155 64.32% 
Total Olefins 17 2.19% 19 2.06% 19 2.02% 

Total Aromatics 91 27.46% 95 26.98% 96 27.66% 
Total Heteroatomics 56 5.82% 71 5.91% 81 6.01% 
sig. threshold: 1x104 number area number area number area 

Total Saturates 138 64.54% 148 65.08% 155 64.36% 
Total Olefins 17 2.19% 19 2.06% 19 2.02% 

Total Aromatics 91 27.47% 95 26.99% 96 27.67% 
Total Heteroatomics 55 5.80% 69 5.86% 77 5.95% 
sig. threshold: 1x105 number area number area number area 

Total Saturates 141 64.60% 151 65.17% 157 64.46% 
Total Olefins 17 2.20% 19 2.06% 19 2.02% 

Total Aromatics 91 27.49% 95 27.02% 96 27.70% 
Total Heteroatomics 40 5.72% 52 5.74% 56 5.82% 
sig. threshold: 1x106 number area number area number area 

Total Saturates 135 64.52% 140 65.19% 144 64.46% 
Total Olefins 16 2.36% 16 2.32% 16 2.30% 

Total Aromatics 87 27.40% 91 26.81% 93 27.45% 
Total Heteroatomics 34 5.73% 40 5.68% 42 5.79% 
sig. threshold: 1x107 number area number area number area 

Total Saturates 80 68.59% 80 68.24% 80 67.96% 
Total Olefins 7 1.88% 7 1.95% 7 2.00% 

Total Aromatics 52 21.71% 52 21.94% 52 22.11% 
Total Heteroatomics 20 7.81% 21 7.87% 21 7.94% 
sig. threshold: 1x108 number area number area number area 

Total Saturates 31 73.25% 31 73.25% 31 73.25% 
Total Olefins 2 1.47% 2 1.47% 2 1.47% 

Total Aromatics 19 18.69% 19 18.69% 19 18.69% 
Total Heteroatomics 9 6.59% 9 6.59% 9 6.59% 
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Table 7 shows the consequences of varying both the significance-based thresholding and the 
numbers of evaluated loadings on the composition summaries obtained from the JP-5 jet fuel. This 
JP-5 jet fuel was solely focused upon in this table because, as indicated previously, a specific 
saturates/aromatics ratio can be targeted due to the existence of relevant specification data for the 
sample. It should first be noted that the results found in Table 7 do not present any clear evidence 
that either increasing or decreasing the maximum number of loadings to be evaluated per SVD 
operation from three would provide a meaningful analytical benefit. Otherwise, most immediately 
apparent in this table is the lack of anything of impact to report when considering significance-
based thresholds from 1x10-17 to 1x103. While the previous selection of the value of 1x10-15 was 
somewhat arbitrary, this value apparently has several orders’ of magnitude worth of leeway before 
it performs a function more wide-ranging than the basic gatekeeping ability for which it was 
initially designed. Conversely, however, even superficial improvements to the calculated 
saturates/aromatics ratio do not make themselves apparent through significance-based 
thresholding until the rather large significance thresholds of 1x107 are 1x108 are employed. When 
these thresholds are used, however, the actual numbers of deconvolved compounds identified 
become substantially diminished, thus defeating the purpose of employing peak deconvolution in 
the first place. 
 
Interestingly, however, it would also at least initially appear that increasing the significance 
threshold to a more modest value of 1x105 might provide an analytical benefit by decreasing the 
total number of heteroatomic compounds reported to the end-user. As indicated previously, 
petrochemical fuels typically to not possess large amounts of heteroatomic compounds, which 
implies that larger detected amounts of these compounds may be the result of spurious 
identifications. Follow-up work was thus performed to determine the reliability of this potential 
benefit across multiple fuel types. Table 8 shows the results of adjusting the significance threshold 
from 1x10-15 to 1x105 when deconvolving the GC-MS data from all four petrochemical fuels 
described previously. For the purposes of obtaining a thorough evaluation, results were collected 
using not only the current default of a maximum number of three loadings to evaluate per SVD 
operation, but also under alternative maximum values of two and four loadings per SVD operation. 
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Table 8. EWFA-MCR-augmented, FCAST-type compositional profiling results obtained from 
four fuels, before and after changing the significance-based and loading-based thresholding 
constraints. 
 
 

  JP-5 jet F-76 diesel 
sing. val. threshold: 1x10-15 1x105 1x10-15 1x105 

Max. Eval. Loadings=2 number area number area number area number area 
Total Saturates 138 64.53% 141 64.60% 143 61.11% 144 61.21% 
Total Olefins 17 2.19% 17 2.20% 10 1.86% 9 1.85% 

Total Aromatics 91 27.46% 91 27.49% 118 33.14% 118 33.19% 
Total Heteroatomics 56 5.82% 40 5.72% 58 3.90% 44 3.75% 

Max. Eval. Loadings=3 number area number area number area number area 
Total Saturates 148 65.05% 151 65.17% 144 60.35% 143 60.52% 
Total Olefins 19 2.06% 19 2.06% 12 1.84% 10 1.83% 

Total Aromatics 95 26.98% 95 27.02% 122 33.84% 122 33.84% 
Total Heteroatomics 72 5.91% 52 5.74% 68 3.96% 54 3.81% 

Max. Eval. Loadings=4 number area number area number area number area 
Total Saturates 155 64.32% 157 64.46% 143 60.03% 145 60.21% 
Total Olefins 19 2.02% 19 2.02% 13 1.85% 11 1.84% 

Total Aromatics 96 27.65% 96 27.70% 125 33.89% 125 33.89% 
Total Heteroatomics 81 6.01% 56 5.82% 75 4.23% 59 4.07% 

                  
  MGO (Miami) MGO (Singapore) 

sing. val. threshold: 1x10-15 1x105 1x10-15 1x105 
Max. Eval. Loadings=2 number area number area number area number area 

Total Saturates 172 51.81% 171 51.86% 213 68.84% 211 68.89% 
Total Olefins 9 0.82% 9 0.82% 10 1.28% 10 1.28% 

Total Aromatics 117 44.84% 117 44.80% 118 22.94% 118 22.90% 
Total Heteroatomics 43 2.53% 40 2.53% 63 6.94% 60 6.93% 

Max. Eval. Loadings=3 number area number area number area number area 
Total Saturates 179 52.22% 175 52.25% 218 67.37% 217 67.40% 
Total Olefins 11 1.01% 11 1.01% 11 1.25% 12 1.26% 

Total Aromatics 123 44.27% 122 44.24% 126 24.08% 126 24.07% 
Total Heteroatomics 51 2.51% 49 2.51% 72 7.29% 68 7.27% 

Max. Eval. Loadings=4 number area number area number area number area 
Total Saturates 180 51.88% 177 51.89% 220 67.27% 219 67.29% 
Total Olefins 11 1.02% 11 1.02% 12 1.35% 13 1.36% 

Total Aromatics 129 44.68% 128 44.67% 128 24.02% 128 24.01% 
Total Heteroatomics 57 2.41% 54 2.42% 81 7.36% 77 7.34% 
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As was indicated previously, the JP-5 fuel shows a marked decrease in the number of 
heteroatomics detected when raising the significance threshold (72 to 52 when considering a 
maximum loading threshold of 3), and a somewhat less substantial but still significant decrease in 
this same value could also be found when considering the F-76 diesel fuel as well (68 to 54 when 
considering a maximum loading threshold of 3). However, the MGO samples display much less 
in the way of heteroatomic detection decreases when the significance threshold is increased. While 
this could possibly indicate that the parameter change leading to an analysis improvement for the 
former two fuels is not useful but still benign for the latter two fuels, changing a universally-
applied parameter in light of non-universal analysis improvements remains imprudent without the 
collection of additional evidence. 
 
Given the lack of a clearly identifiable trend in Table 8, the heteroatomics data were investigated 
in more detail, as can be seen in Table 9. Notably, in the JP-5 and F-76 fuels, about half of the 
overall significance-based decreases in detected heteroatomics can be attributed to decreases in 
the numbers of nitrogen-containing compounds that were detected. This loss of nitrogen-
containing compound identification capabilities might become problematic in realistic fuel 
investigations, as at least some nitrogen-containing compounds are known to be responsible for 
fuel quality and performance issues, even at the trace levels indicated by the area results found in 
Table 9. Ultimately, no clear evidence exists that increasing the singular value threshold results in 
analysis improvements suitable for automated applications. It is thus not presently considered 
necessary to permanently raise the singular value threshold beyond the marginal value of 1x10-15 
deemed appropriate during previous development work. 
 
It must, of course, also be noted that the results shown in Tables 8 and 9 do not clearly indicate a 
need to change the default maximum number of evaluated loadings from a value of 3. This value 
still appears to provide a significantly more thorough investigative capability than a value of 2, 
and raising the value to 4, while providing an added compound identification capability, is not 
deemed necessary in the context of commensurately increased calculation times. This is roughly 
consistent with observation made previously. 
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Table 9. EWFA-MCR-augmented, FCAST-type heteroatomic profiling results obtained from four 
fuels, before and after changing the significance-based and loading-based thresholding constraints. 
 
 

  JP-5 jet F-76 diesel 
sing. val. threshold: 1x10-15 1x105 1x10-15 1x105 

Max. Eval. Loadings=2 number area number area number area number area 
Methyl Esters 1 0.00% 0 0.00% 0 0.00% 0 0.00% 
Sulfur-Bound 2 0.02% 1 0.01% 7 2.29% 6 2.29% 

Nitrogen-Bound 10 0.05% 2 0.01% 10 0.03% 2 0.00% 
Oxygen-Bound 28 4.42% 25 4.37% 31 1.16% 28 1.05% 
Chlorine-Bound 4 0.03% 2 0.02% 4 0.03% 3 0.02% 

Other Halogen-Bound 3 0.08% 3 0.08% 2 0.26% 2 0.26% 
Other 8 1.22% 7 1.22% 4 0.12% 3 0.12% 

Max. Eval. Loadings=3 number area number area number area number area 
Methyl Esters 1 0.02% 0 0.00% 0 0.00% 0 0.00% 
Sulfur-Bound 3 0.04% 2 0.04% 10 2.35% 9 2.34% 

Nitrogen-Bound 11 0.08% 3 0.02% 11 0.05% 2 0.00% 
Oxygen-Bound 42 4.45% 35 4.36% 36 1.15% 33 1.06% 
Chlorine-Bound 4 0.03% 2 0.02% 4 0.03% 3 0.02% 

Other Halogen-Bound 3 0.10% 3 0.10% 2 0.26% 3 0.27% 
Other 8 1.20% 7 1.20% 5 0.12% 4 0.12% 

Max. Eval. Loadings=4 number area number area number area number area 
Methyl Esters 1 0.02% 0 0.00% 0 0.00% 0 0.00% 
Sulfur-Bound 3 0.05% 2 0.05% 10 2.37% 9 2.37% 

Nitrogen-Bound 15 0.08% 3 0.02% 12 0.08% 4 0.03% 
Oxygen-Bound 47 4.53% 39 4.43% 42 1.37% 36 1.27% 
Chlorine-Bound 5 0.03% 2 0.02% 4 0.03% 3 0.02% 

Other Halogen-Bound 2 0.10% 3 0.10% 2 0.26% 2 0.27% 
Other 8 1.20% 7 1.20% 5 0.12% 5 0.12% 

                  
  MGO (Miami) MGO (Singapore) 

sing. val. threshold: 1x10-15 1x105 1x10-15 1x105 
Max. Eval. Loadings=2 number area number area number area number area 

Methyl Esters 0 0.00% 0 0.00% 0 0.00% 0 0.00% 
Sulfur-Bound 0 0.00% 0 0.00% 13 4.27% 13 4.27% 

Nitrogen-Bound 4 0.06% 4 0.06% 4 0.01% 2 0.01% 
Oxygen-Bound 27 1.42% 26 1.42% 30 1.65% 31 1.65% 
Chlorine-Bound 4 0.03% 3 0.03% 5 0.04% 3 0.03% 

Other Halogen-Bound 1 0.22% 1 0.22% 3 0.59% 3 0.59% 
Other 7 0.79% 6 0.79% 8 0.39% 8 0.39% 

Max. Eval. Loadings=3 number area number area number area number area 
Methyl Esters 0 0.00% 0 0.00% 0 0.00% 0 0.00% 
Sulfur-Bound 0 0.00% 0 0.00% 14 4.49% 13 4.48% 

Nitrogen-Bound 5 0.07% 4 0.07% 4 0.01% 2 0.01% 
Oxygen-Bound 32 1.42% 33 1.42% 37 1.71% 38 1.71% 
Chlorine-Bound 4 0.03% 3 0.03% 5 0.04% 3 0.02% 

Other Halogen-Bound 2 0.21% 2 0.21% 4 0.65% 4 0.65% 
Other 8 0.78% 7 0.78% 8 0.40% 8 0.40% 

Max. Eval. Loadings=4 number area number area number area number area 
Methyl Esters 0 0.00% 0 0.00% 0 0.00% 0 0.00% 
Sulfur-Bound 1 0.00% 0 0.00% 14 4.48% 13 4.47% 

Nitrogen-Bound 6 0.08% 5 0.08% 3 0.01% 2 0.01% 
Oxygen-Bound 36 1.38% 37 1.39% 46 1.77% 46 1.76% 
Chlorine-Bound 4 0.03% 3 0.03% 5 0.04% 3 0.02% 

Other Halogen-Bound 2 0.21% 2 0.21% 4 0.65% 4 0.65% 
Other 8 0.72% 7 0.71% 9 0.42% 9 0.42% 
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6.5 Additional Algorithm Validations 
 
Algorithm validation via oxygenate discovery. Previous work in our laboratory has indicated that 
stressing diesel fuels, including F-76 and ULSD fuel grades, in an oxygenated LPR for 16 hours 
as prescribed in ASTM D5304 results in an elevated presence of oxygenated products in the 
stressed samples. However, GC-MS analysis of ten stressed and unstressed fuel sample pairs, 
collected recently in our laboratory for each of four diesel fuels, were not initially found to possess 
significantly increased amounts of oxygenated compounds in the stressed samples. In order to 
elucidate the potential presence of these oxygenated compounds, and to determine whether or not 
their amounts are elevated after the application of the described stressing, the EWFA-MCR 
deconvolution algorithm was applied to the GC-MS data collected from ten stressed samples and 
ten unstressed samples of these four different diesel fuels. To focus subsequent results, this GC-
MS data were initially truncated to only those portions of the data whose TIC traces were found, 
via the data analysis technique of ANOVA, to possess an f-statistic value greater than or equal to 
70% of the maximum f-statistic value found for the total TIC. The results of this focused 
EWFA-MCR analysis can be found in Table 10, wherein it is shown that a greater number of 
oxygenates were found in the stressed fuels, across all ten replicates, for all four diesel fuels (both 
absolutely and proportionally). In addition, a greater total TIC peak area was assigned to 
oxygenates after stress, across all ten replicates, for three out of four of the diesel fuels (both 
absolutely and proportionally). These results illustrate the potential of the deconvolution algorithm 
to uncover obscured fuel components. It is noteworthy that the analysis suggests that the ULSD 
contained fewer oxygenates than the high sulfur F-76 fuel, both before and after D53204 testing. 
This is consistent with the fact that this particular ULSD fuel was found to be stable during D5304 
testing and didn’t develop significant levels of hydroperoxides. 
 
Visual representations of peak deconvolution. The current iteration of the EWFA-MCR algorithm 
does not, as a matter of course, produce estimated visualizations of distinct, deconvolved 
component peaks from convoluted TIC peaks. This is at least in part because the number of 
individual co-eluting isomers that can be found within any given convoluted chromatographic TIC 
peak obtained from a fuel sample has the potential to be quite large. Nonetheless, these estimated 
visualizations can be produced by measuring the contributions of each deconvolved compound to 
the shape of a parent TIC peak, and then normalizing these contributions to the area of said parent 
peak. The contributions can be plotted versus retention time to give some idea as to what these 
deconvolved peaks would look like, as can be seen in Figures 10 and 11 for selected retention time 
ranges within the data collected from a JP-5 and Jet A fuel, respectively. This operation was 
performed to prove the concept behind a post-deconvolution visualization capacity suitable for 
reporting purposes, should as much be required. 
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Table 10: Total numbers of compounds and associated peak areas found across ten replicates, 
collected for each of four parent diesel fuels, before and after stressing as prescribed in ASTM 
D5304. 
 
 

ULSD #1 

# 
oxygenates 
identified 

total # 
compounds 
identified 

% 
identifications 

are 
oxygenates 

peak areas 
of 

oxygenates 
identified 

total peak 
areas of 

compounds 
identified 

% identified 
peak areas 

are 
oxygenates 

unstressed 66 260 25.38% 98349287 1259259706 7.81% 

stressed 75 234 32.05% 67703729 968031444 6.99% 

ULSD #1 after 
copper doping 

# 
oxygenates 
identified 

total # 
compounds 
identified 

% 
identifications 

are 
oxygenates 

peak areas 
of 

oxygenates 
identified 

total peak 
areas of 

compounds 
identified 

% identified 
peak areas 

are 
oxygenates 

unstressed 51 405 12.59% 2213266 368706061 0.60% 

stressed 126 530 23.77% 4495141 308438915 1.46% 

F-76 #1 

# 
oxygenates 
identified 

total # 
compounds 
identified 

% 
identifications 

are 
oxygenates 

peak areas 
of 

oxygenates 
identified 

total peak 
areas of 

compounds 
identified 

% identified 
peak areas 

are 
oxygenates 

unstressed 15 94 15.96% 410494 13014826 3.15% 

stressed 50 150 33.33% 1055612 8119033 13.00% 

F-76 #1 / F-76 #2 
blend 

# 
oxygenates 
identified 

total # 
compounds 
identified 

% 
identifications 

are 
oxygenates 

peak areas 
of 

oxygenates 
identified 

total peak 
areas of 

compounds 
identified 

% identified 
peak areas 

are 
oxygenates 

unstressed 186 774 24.03% 290660138 1782688865 16.30% 

stressed 242 785 30.83% 287270246 1641791030 17.50% 
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Figure 10. Visualization of estimated individual compound contributions, found via peak 
deconvolution, to a selected retention time range in a JP-5 GC-MS data set, and the TIC peaks 
therein. 
 
 
 

 
 
Figure 11. Visualization of estimated individual compound contributions, found via peak 
deconvolution, to a selected retention time range in a Jet A GC-MS data set, and the TIC peak 
therein. 
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7.0 Summary 
 
A wide range of automated GC-MS data deconvolution parameters were addressed during the 
course of developing the combined EWFA-MCR algorithm presented herein. The broad scope of 
this research effort was necessary due to the broad scope of the analytical challenge at hand. 
Developing practical methodologies by which to reliably interrogate fuel composition by means 
of GC-MS in an automated fashion requires an accommodation of realistic fuel complexity during 
algorithm design work and similarly varied testing and evaluation challenges. Fuel analysis 
requirements that are more limited in scope might very well be ably addressed using more 
straightforward analysis methodologies, whether or not they would also be well-served by 
incorporating autonomous data deconvolution. Care should always be taken to consider the scope 
of any given analysis challenge, not only to develop the necessary solutions more efficiently, but 
also to minimize the unintended consequences that could potentially arise from the interactions of 
multiple individual solutions. 
 

8.0 Conclusions 
 
It has been shown that EWFA, MCR, and MF values resulting from NIST database searches can 
be intelligently leveraged into an automated GC-MS peak deconvolution strategy suitable for 
implementation into the FCAST software, and there is no reason to suspect that other software 
packages requiring similarly autonomous GC-MS data deconvolution capabilities would not 
benefit from the present work as well. Because fuel stability and performance problems are often 
due to the presence of trace levels of contaminants or other minor changes in composition, detailed 
compositional analyses of suspect fuels are critical for effective investigations, and said analyses 
would be enhanced through the implementation of the combined EWFA-MCR data deconvolution 
algorithm developed herein, as it allows for the more accurate and precise determinations of fuel 
compositions. 
 

9.0 Recommendations 
 
The updated data deconvolution algorithms presented herein have already been implemented into 
a standalone software architecture, with further implementation into the FCAST itself being an 
immediate in-house goal. Some of the challenges associated with this practical implementation 
work were addressed earlier in this report during discussions of algorithm optimization. 
 
One challenge that remains, however, is that, at present, performing the EWFA-MCR data 
deconvolution across the whole of an average fuel’s GC-MS data set results in calculation times 
that are best measured in hours or perhaps even days, as opposed to minutes or seconds. Therefore, 
an additional speed enhancing modification to the overall data deconvolution strategy is being 
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considered, one which would focus deconvolution operations only upon those TIC peaks that, 
based upon existing FCAST-derived information, are already suspected to consist of more than 
one co-eluted chemical compound. Work is currently being pursued in order to test, evaluate, and 
optimize such an enhancement. More testing with standard mixtures will also be conducted to 
more thoroughly assess the accuracy of the EFWA-MCR deconvolution algorithms, especially in 
the context of algorithm speed enhancements. 
 
Otherwise, although the robustness of the developed data modeling strategy has been established 
through the use of multiple data sets and types of fuel samples, minor optimizations to the 
strategy’s operational parameters, similar to the minor optimizations already described in this 
report, will be investigated and implemented as necessary. 
 
This peak deconvolution strategy also has the potential to provide significant improvements in 
GCxGC chromatographic resolution for comprehensive fuel characterizations, and it is thus 
anticipated that future in-house GCxGC fuel modeling work will, in whole or in part, make use of 
the strategy. 
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