AWARD NUMBER: W81XWH-14-2-0126

TITLE: Characterization of Human Torso Vascular Morphometry in Normotensive and Hypotensive Trauma Patients

PRINCIPAL INVESTIGATOR: Stewart C. Wang, M.D., Ph.D.

CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, MI 48109

REPORT DATE: September 2017

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188		
Public reporting burden for this data needed, and completing a burden to Department of Defen	collection of information is estind reviewing this collection of se, Washington Headquarters	mated to average 1 hour per response nformation. Send comments regard Services, Directorate for Informatio	nse, including the time for review ling this burden estimate or any n Operations and Reports (0704	other aspect of this co -0188), 1215 Jeffersor	thing existing data sources, gathering and maintaining the lection of information, including suggestions for reducing this n Davis Highway, Suite 1204, Arlington, VA 22202- 4302. action of information if it does not display a currently	
1. REPORT DATE	ASE DO NOT RETURN YOU	2. REPORT TYPE	55.		ATES COVERED	
September 201	7	Final		-	06/30/2014-06/29/2017	
4. TITLE AND SUBTI	ſLE			5a.	CONTRACT NUMBER	
Characterizat	ion of Human	Torso Vascular	Morphometry i	n		
Normotensive	and Hypotens	ive Trauma Pati	ents		GRANT NUMBER	
					/81XWH-14-2-0126	
				5c.	PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				54	PROJECT NUMBER	
				50.	FROJECT NUMBER	
Stewart C. Wa	ang			5e.	TASK NUMBER	
E-Mail: stewart	w@umich.edu			5f. V	WORK UNIT NUMBER	
7. PERFORMING ORG	ANIZATION NAME(S)			8	PERFORMING ORGANIZATION REPORT	
	. ,	AND ADDRESS(ES)		-	NUMBER	
University of	-					
3003 S. State						
Ann Arbor, MI	48109-1274					
9. SPONSORING / MO	NITORING AGENCY I	NAME(S) AND ADDRESS	(ES)	10.	SPONSOR/MONITOR'S ACRONYM(S)	
-		rch and Materi	lel Command			
Fort Detrick,	Maryranu 21	702-3012		11	. SPONSOR/MONITOR'S REPORT NUMBER(S)	
	AVAILABILITY STATE	MENT ase; Distributio	on Unlimited			
13. SUPPLEMENTARY	V NOTES					
anatomy ever landmarks th software alg Using the mo population, zones needed characteriza	done and lin roughout the orithms that orphomic and we we were able for effective tion of vasce	hked this vascul torso. This da substantially vascular anatomy to objectively ve placement of	lar anatomy da atabase was cr increased the y data obtaine determine the REBOA in the d dimensions w	ta in 3D eated wit precision d from a location field. T ill guide	the future development	
15. SUBJECT TERMS						
Trauma, Endov	ascular, Tho	racic, Abdomina	l, Aorta, Morp	hometry,	Morphomic	
16. SECURITY CLASS	IFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON USAMRMC	
a. REPORT	b. ABSTRACT	c. THIS PAGE	UU	155	19b. TELEPHONE NUMBER (include area	
					code)	
UNCLASSIFIED		d Unclassified	1		Standard Form 298 (Rev. 8-98)	

andard F	orm 298	(Rev.	8-98)	
----------	---------	-------	-------	--

Prescribed by ANSI Std. Z39.18

Table of Contents

1.	INTRODUCTION:	4
2.	KEYWORDS:	4
3.	ACCOMPLISHMENTS:	4
4.	IMPACT:	.11
5.	CHANGES/PROBLEMS:	. 12
6.	PRODUCTS:	. 13
7.	PARTICIPANTS & OTHER COLLABORATING ORGANZATIONS:	.13
8.	SPECIAL REPORTING REQUIREMENTS:	. 15
9.	APPENDICES:	. 15
A	Appendix A: Civilian Patient List	16
	Appendix B: Vascular Processing	
	Appendix C: Machine Learning	
	Appendix D: Phase Overlay & Gated Radius Graph	
	Appendix E: Morphomics Overview	
	Appendix F: Data Analysis and Results	
	Appendix G: CRADA	
	Appendix H: Quad Chart	
	Appendix I: MILITARY PRESENTATION	
	Appendix J: References	

1. INTRODUCTION:

Our research group has developed advanced technical capabilities to quantitatively measure anatomic characteristics in traumatically injured patients. In a previous DOD study, we noted clear differences between men (n=400) and women (n=170). We also noted significant racial differences in the correlation between body habitus and aortic dimensions as well as differences with age and body habitus. We hypothesized that aortic and venous dimensions differ with the hemodynamic status of the injured person as well as their gender, race, body habitus and age. Better characterization of *these differences* is necessary to guide optimal field inflation of occlusive balloon catheters or other hemorrhage control devices for the treatment of battlefield casualties; and better characterization of *the corresponding dimensions* will support the development of occlusion devices that optimally limit hemorrhage while minimizing complications. Specifically, we aim to develop accurate measurements for aortic and vena caval dimensions based on hemodynamic status, body habitus, gender and age in the civilian population; and subsequently we will translate these findings to the military population and create accurate nomograms for catheter design, catheter insertion and balloon inflation based on hemodynamic status, body habitus, gender and age.

2. KEYWORDS:

- Trauma
- Endovascular
- Thoracic
- Abdominal
- Aorta
- Morphometry
- Vena Cava
- Machine Learning
- Hemorrhage
- Catheter
- Hypotension
- Balloon Occlusion

3. ACCOMPLISHMENTS:

1.1.1: Identify 2000 Civilian CTs (06/30/14-01/02/2015)

• Current Objectives:

The goal for this task was to identify CT scans from 2000 civilians between the ages of 18 and 50 from which we will extract aorta and vena cava measurements of length and dimension, as well as muscle, fat, bone, and organ morphomic measures and hemodynamic status (blood pressure and heart rate).

- Results, Progress and Accomplishments (with Discussion): This task is complete. This study evaluated 2,247 patients who underwent CT imaging following traumatic injury between 2000-06-11 and 2015- 03-30. There were 478 exclusions (21.2%) due to incomplete chest, abdomen, pelvis, and femoral imaging. The final cohort was composed of 1769 patients with a mean (SD) age of 32.7 (10.2) and a median (IQR) torso extent of 557.4 mm (537-579 mm). There were 1270 (71.8%) male patients and 75 (4.2%) patients identified as hypotensive. For the purposes of the study, hypotensive was defined as blood pressure less than 100 and pulse over 100 at the time of emergency department trauma admission.
- Key Methodology:

Using the PGAdmin query tool, we married the data from the University of Michigan trauma registry with the University of Michigan radiology database to identify patients who were transported to the Emergency Department for a traumatic injury or admitted the University of Michigan Hospital System (UMHS) and who received a CT scan for clinical purposes.

- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report
- Data: Appendix A: Civilian Patient List

1.3 Develop Aorta Algorithm (06/30/14-10/30/14)

• Current Objectives:

Segment the full aorta from the arch to the bifurcation points, and then post-process with MATLAB® to identify the multiple critical vessel branch-points for diameter and length measurements.

- Results, Progress and Accomplishments (with Discussion): The algorithms for the automatic segmentation of the aorta have been developed and meet our target accuracy measures (currently we are achieving an average 90% accuracy rate with our fully-automated machine learning approach). This method has greatly improved the throughput and provided a level of consistency that overcomes any inter- and intra-user variability.
- Key Methodology:

Using a novel approach for identifying and capturing morphomic data from CT scans, we have developed a machine learning technique for extracting the aortic structures in a more automated fashion. This entails creating algorithms that search for circular structures in a region of interest and then reference the slices above and below to validate the selection. Once the main aortic structure is identified, we lay in a centerline and use a post-processing, user-guided algorithm developed in MATLAB® to mark femoral head cut point (left and right), iliac (left and right), bifurcation point, renal arteries (left and right), superior mesenteric, celiac (inferior and superior), and left subclavian artery. Following this identification step, measurements of diameter and lengths (total and between the branch points) are stored in the database.

- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report

• Data: Appendix B: Vascular Processing Appendix C: Machine Learning

1.1.2: Identify 50 EKG-gated CTs (11/03/14-12/12/14)

• Current Objectives:

To determine the normal change in aortic/vena caval geometry and dimensions at different locations during the cardiac cycle, we also analyzed a cohort (n=50) of subjects who had undergone EKG-gated CT scans to determine the change in aortic geometry and dimensions at different aortic locations during the cardiac cycle. Hemodynamic data was available for these patients from the time of CT scanning. This information will be essential for optimal design of catheter balloons that have the appropriate mechanical properties to occlude flow without causing aortic rupture or dissection at different stages of the cardiac cycle.

- Results, Progress and Accomplishments (with Discussion): We have successfully identified this subset of patients. This task is complete.
- Key Methodology:

To identify these patients we used the PGAdmin query tool find patients in the trauma population who underwent an ECG-gated CT scan. Once selected, downloaded, and de-identified, these scans are then separated into the multiple cardiac phases to enable our algorithms to process each stage individually. Once this is complete, we run each phase through our automated and post-processing steps.

- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report
- Data: Appendix A: Civilian Patient List Appendix D: Phase Overlay & Gated Radius Graph

1.1.3: Identify 75 Internal Injury & Hypotensive CTs (11/03/14-01/02/15)

• Current Objectives:

To determine the effect of internal hemorrhage and hypovolemia on aortic/vena caval dimensions and geometry, we analyzed an additional cohort of civilian trauma patients with significant internal hemorrhage and with hemodynamic instability (n=75). Comparing patients with arterial versus venous bleeding (as determined by active contrast extravasation) as well as differing locations of hemorrhage (chest, abdomen, pelvis). In the past, it was extremely rare to scan a hypotensive trauma patient as they were rushed to the OR. However, with the recent widespread adoption of ultrasound to rule out pericardial, pleural, and abdominal fluid in combination with continued use of chest and pelvis radiographs to rule out significant thoracic and pelvic hemorrhage, more and more hypotensive blunt trauma patients (primarily from high energy motor vehicle crashes) are undergoing CT scanning with continued resuscitation to define their internal injuries rather than proceeding to the OR for blind surgical exploration. It is this population that provided the 75 scans needed for this task.

- Results, Progress and Accomplishments (with Discussion): We successfully identified this subset of patients. This task is complete.
- Key Methodology:

To identify these patients we used the PGAdmin query tool find patients in the trauma population with internal hemorrhage and hypovolemia. Once selected, downloaded, and de-identified, we will determine whether the patient had arterial versus venous bleeding (as determined by active contrast extravasation) as well as the differing locations of hemorrhage (chest, abdomen, pelvis).

- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report
- Data: Appendix A: Civilian Patient List

1.4: Develop Vena Cava Algorithm (09/01/14-02/13/15)

- Current Objectives: Better characterization of the differences in vena caval dimensions and lengths is necessary to guide optimal field inflation of occlusive balloon catheters or other hemorrhage control devices for the treatment of battlefield casualties. Better characterization of these dimensions will support the development of occlusion devices that optimally limit hemorrhage while minimizing complications.
- Results, Progress and Accomplishments (with Discussion): We have developed a user-guided algorithm to process the vena cava. This task is complete.
- Key Methodology:

We manually segmentation of Vena Cava of civilian patients. This process involves placing points on the interior of the vena cava and then using a "growing" algorithm to find the edges. We attempted development of a more automated process but the variation of the vena cava dimension and shape resulted an algorithm that was not accurate enough to make the process useful. We then developed a tool to measure the maximum and minimum diameter of a crosssection of the vena cava, from which we will derive are and volume variability across the population.

- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report
- Data: Appendix B: Vascular Processing

1.2: Capture Civilian Demographics (11/03/14-03/06/15)

• Current Objectives:

To identify the variability in aortic and vena caval dimensions without the need for 3-D imaging in the field. Our objective is to develop nomograms that take into account age, sex, race, weight, and height, as well as external measurements that we can extrapolate for our base morphomics measurements.

• Results, Progress and Accomplishments (with Discussion):

We identified all demographics of our civilian population that are possible. This task is complete.

• Key Methodology:

We leveraged the University of Michigan trauma registry and the electronic medical records system at University of Michigan Health System (UMHS) to extract the demographics data on our selected civilian patient population. Using the PGAdmin query tool, we extracted age, sex, race (when available), blood pressure, and heart rate for each patient from our identified group (transported to the Emergency Department for a traumatic injury or admitted the UMHS and who received a CT scan for clinical purposes.

- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report
- Data: Appendix A: Civilian Patient List

1.5: Process Base Morphomics for Civilian Population (09/01/14-03/27/15)

• Current Objectives:

We used our base morphomic measurements in body circumference, fat, muscle, bone, organs, etc. to record measurement of body habitus for the civilian trauma population. These data were then connected with demographics and vasculature measures to feed our development of nomograms for vasculature.

- Results, Progress and Accomplishments (with Discussion): All base morphomics have been processed for the civilian scans we have identified. This task is complete.
- Key Methodology:

Morphomics is based on highly automated, high-throughput image processing to quantify anatomically indexed measures from a single patient's scan, offering remarkable opportunities for personalized treatment. Each patient's individual morphometric qualities are then assessed against population-based standards to identify patient-specific risk factors. Morphomic assessment of trunk musculature (density and mass), spine, psoas (area and quality), fascia, skin, fat, body circumference and eccentricity, dorsal muscle group, bone mineral density, and solid organ morphomic measures have demonstrated that these patient-specific variables dominate risk prediction models using proven techniques for the University of Michigan Morphomic Analysis Group.

- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report
- Data: Appendix E: Morphomics Overview

1.6: Process Aorta for Civilian Population (09/22/14-10/02/15)

• Current Objectives: To determine a baseline for our nomogram development, we leveraged our custom algorithm to extract length and diameter measurements as well as branch point locations for the civilian CT cohort.

- Results, Progress and Accomplishments (with Discussion): We processed 1716 aortas from normotensive civilian CTs. We have developed and tested a reliable machine-learning based automatic processing method. This task is complete.
- Key Methodology:

Using a novel approach for identifying and capturing morphomic data from CT scans, we developed a machine learning technique for extracting the aortic structures in a more automated fashion. This entails creating algorithms that search for circular structures in a region of interest and then reference the slices above and below to validate the selection. Once the main aortic structure is identified, we lay in a centerline and measure the radius. Then, using a post-processing, user-guided algorithm developed in MATLAB®, we mark the femoral head cut point (left and right), iliac (left and right), bifurcation point, renal arteries (left and right), superior mesenteric, celiac (inferior and superior), and left subclavian artery. Following this identification step, measurements of diameter and lengths (total and between the branch points) are stored in the database.

- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report
- Data:

AORTA	Centerline	Radii	Landmarks	Full Volumes
Normotensive	1716	1716	1716	563
Hypotensive	78	78	78	14

1.7: Process Vena Cava for Civilian Population (01/05/15-01/15/16)

- Current Objectives: To determine a baseline for our nomogram development, we leveraged our custom algorithm to extract length as well as minor and major diameter measurements, branch point locations, and volume for a 5 cm section of the vena cava.
- Results, Progress and Accomplishments (with Discussion): This task is complete.
- Key Methodology:

Points within the vena cava are placed manually, and then a line is derived. Landmarks (right and left iliac, inferior and superior bifurcation, left and right renal, supra hepatic, and IVC heart junction) are identified on the scans and recorded in the database. A custom algorithm is then run to determine the major and minor axis of the vena cava, providing insight into its eccentricity and level of collapse. Finally a 5cm segment is identified on a representative sample, and volume is derived to provide further data on the condition of the vena cava.

• Opportunities for Training and Professional Development: Nothing to Report

- Dissemination of Results to Communities of Interest: Nothing to Report
- Data:

VENA CAVA	Landmarks
Normotensive	1707
Hypotensive	78

1.8: Civilian Analysis (12/07/15-05/29/17)

• Current Objectives:

Hemodynamic data, in conjunction with age, gender, height, weight, and Body Mass Index (BMI) data as well as analytic morphomic data (distances between bony landmarks, body composition, and cross sectional area and circumference, etc.) were analyzed with the aortic/vena caval data to determine nomograms for optimal balloon insertion and inflation targets.

• Results, Progress and Accomplishments (with Discussion):

For the civilian population, we computed descriptive statistics of means, standard deviations, and percentiles for (1) arterial distances (lengths) and (2) arterial diameters by gender and age. We fit linear regression models employing gender, age, and torso extent as covariates to predict the distance to arterial zones of interest. Aortic Zone I extended from the origin of the left subclavian artery to the celiac trunk, and Aortic Zone III is composed of the infrarenal aorta (lowest renal to the aortic bifurcation). Analysis of arterial tortuosity and descriptive statistics of venous dimensions were completed.

- Key Methodology: We used the tool, Tableau, to analyze the data acquired.
- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report
- Data: Appendix F: Data Analysis and Results

2.1: Arrange Access to Military CTs in San Antonio (01/02/15-06/19/15)

- Current Objectives: Arrange for access to 500 warfighter CTs for the third aim of this grant.
- Results, Progress and Accomplishments (with Discussion): We successfully completed a CRADA to enable access to warfighter scans. However, the technical staff at AISR struggled to access the scans. To assist military personnel at the Army Institute for Surgical Research (AISR), we developed a system to load, select, and de-identify scans and visited AISR at Fort Sam Houston to advance this effort. Yet, the technical team at AISR continued to encounter issues when applying these approaches to the production environment. In April 2016, we again sent one of our staff to liaise with the technical staff at AISR at Fort Sam Houston to help resolve some of these new technical problems, and we identified an AISR medical staff member, Dr. Sahar Leazer, to help with

identification of appropriate scans at AISR and to ensure IRB compliance. Nevertheless, AISR staff was unable to overcome this obstacle. This result was shared with Wilbur Malloy, our Health Science Program Manager at CDMRP.

- Opportunities for Training and Professional Development: Nothing to Report
- Dissemination of Results to Communities of Interest: Nothing to Report
- Key Methodology: Following DOD protocol.
- Data: Appendix G: CRADA

2.2: Identify 500 CTs from Military Population (06/19/15-10/23/15)

• This task was not completed due to the issues outlined in SOW 2.1 (above).

2.3: Capture Demographics for Military Population (11/01/16-02/15/17)

• This task was not completed due to the issues outlined in SOW 2.1 (above).

2.4: Process Base Morphomics for Military Population (12/01/16-03/15/17)

• This task was not completed due to the issues outlined in SOW 2.1 (above).

2.5: Process Aorta for Military Population (01/16/17-03/15/17)

• This task was not completed due to the issues outlined in SOW 2.1 (above).

2.6: Process Vena Cava for Military Population (03/16/17-05/15/17)

• This task was not completed due to the issues outlined in SOW 2.1 (above).

4. IMPACT:

Non-compressible torso hemorrhage remains the leading cause of preventable death on the battlefield and a leading cause of death in civilian centers. Investigators are researching the use of various aortic occlusion catheters that can control noncompressible torso injuries in the field. Basic morphometric understanding is prerequisite for such procedures to be done safely and effectively. Better characterization of vascular dimensions and lengths are also need to support the development of occlusion devices that optimally limit hemorrhage while minimizing complications.

With this project, we have created the largest and most detailed database of vascular anatomy ever done and linked this vascular anatomy data in 3D space to anatomic landmarks throughout the torso. This database was created with the substantial use of software algorithms that substantially increased the precision of the measures taken. Using the morphomic and vascular anatomy data obtained from a young adult civilian population, we were able to objectively determine the location and size of the aortic zones needed for effective placement of REBOA in the field. The precise characterization of vascular lengths and dimensions will guide the future development of vascular intervention devices including next generation REBOA catheters.

We used the collected data to define the best algorithms for accurate placement of first generation REBOA catheters in the field. Analysis of our data showed that accurate placement into the long Zone 1 is easily achieved using a simple nomogram based on

torso extent alone. Indeed, no other body dimensional data added significant value for estimating optimal insertion distance.

However, analysis of our database shows that accurate placement of a first generation REBOA catheter into Zone III is challenging, with an error rate of approximately 40%. This is clearly the result of the long (4cm) balloon on the current REBOA catheters and a short (8.7 cm) Zone III. Recently, new clinical indications for placement of REBOA into Zone III have been identified, making the development of next generation REBOA catheters with shorter balloons a major priority identified by this project.

Our findings have impact on several major disciplines. For device development teams, they now have granular dimensional and geometric measures to target. For clinicians, REBOA insertion protocols should emphasize the reliability of torso extent measures for accurate placement into Zone I while also emphasizing the unreliability of proper placement into Zone III. For clinical researchers, epidemiologists, and anatomists, we have defined the age and gender-related population corridors for torso vascular anatomy in a large adult population. This data will serve as a foundation to characterize the vascular changes that occur with disease burden over time.

Our database will be foundational for commercial technology development related to vascular-based medical interventions. The population norms for location, length, curvature, tortuosity, dimensions, etc. of arterial as well as vena caval segments are now available for use to guide the development, use and evaluation of new medical devices.

The data collected by this project adds substantially to a better understanding of the human body, its change over time and its variability between individuals in a population. The body is the biological medical record of an individual over their lifetime, integrating the cumulative effect of that individual's genes, behaviors, diseases, nutrition, activity and environment. Vascular diseases are a major source of morbidity and mortality; the data collected and analyzed in this project will serve as a strong foundation for future studies into human health and disease.

5. CHANGES/PROBLEMS:

Access to the military CT scans remains a roadblock. We provided the IT team in San Antonio with a custom software solution that should have allowed this task to be completed, but a new technical difficulty once again left us behind on processing. Without the military scans to begin processing, we have finished the processing of the civilian scans and demographics as well as the analysis design. The analysis of the civilian data is complete.

This continuing difficulty with access to military scans has had a negative impact on the timeline. Thus, we filed for a no cost extension to be able to fulfill the terms of the grant.

As we have reported in the past, obtaining racial/ethnic demographic information is a difficult task. Reports of these data in patient records are self-reported and therefore unreliable and sometimes omitted. In response, we performed a manual search of medical records and reduced the null values in the race field to 28 of 1796 CTs

reviewed. This small number will not impact the study statistically.

6. PRODUCTS:

Publications, conference papers, and presentations "Nothing to report."

Journal publications: multiple journal publications in preparation.

Books or other non-periodical, one-time publications "Nothing to report."

Other publications, conference papers, and presentations: May 2, 2017 "Characterization of Human Torso Vascular Morphometry in Normotensive and Hypotensive Trauma Patients Update" Ft. Detrick, Maryland. See Appendix I: Interim Progress Review Presentation.

Website(s) or other Internet site(s) "Nothing to report."

Technologies or techniques "Nothing to report."

Inventions, patent applications, and/or licenses "Nothing to report."

Other Products "Nothing to report."

7. PARTICIPANTS & OTHER COLLABORATING ORGANZATIONS:

Name:	Stewart C. Wang, MD PhD
Project Role:	PI
Nearest person month worked:	9 (3 per year)
Contribution to Project:	Dr. Wang was the Principal Investigator on this grant, with expertise in morphomics.
Funding Support:	

Name:	Jonathan Eliason, MD
Project Role:	Co-Investigator
Nearest person month worked:	3 (1 per year)
Contribution to Project:	Dr. Eliason was the Co-Investigator on this grant with expertise in vascular surgery.
Funding Support:	

Name:	Nicholas Wang
Project Role:	Research Associate
Nearest person month worked:	27 (9 per year)
Contribution to Project:	Nick Wang developed algorithms for image extraction and processing.
Funding Support:	

Name:	Binu Enchakalody
Project Role:	Research Associate

Nearest person month worked:	27 (9 per year)
Contribution to Project:	Binu Enchakalody developed algorithms for image extraction and processing.
Funding Support:	

Name:	June Sullivan
Project Role:	Project Manager
Nearest person month worked:	9 (3 per year)
Contribution to Project:	June Sullivan was responsible for defining the tasks and verifying quality and completion.
Funding Support:	

Name:	Peng Zhang, PhD
Project Role:	Biostatistician
Nearest person month worked:	6 (2 per year)
Contribution to Project:	Peng Zhang was responsible for development of the statistical models for this grant.
Funding Support:	

Name:	Brian Derstine
Project Role:	Data Analyst
Nearest person month worked:	24 (12 per year for two years)
Contribution to Project:	Brian Derstine ensured validity of all imaging and medical data and will manage the execution of analyses as well as preparation and dissemination of reports.
Funding Support:	

Name:	Pat Rabban
Project Role:	Research Associate
Nearest person month worked:	20 (10 per year for two years)
Contribution to Project:	Pat Rabban was responsible for processing the morphomics using existing algorithms.
Funding Support:	

Name:	Honglak Lee, PhD
Project Role:	Engineering Faculty Lead
Nearest person month worked:	2 (1 per year for two years)

Contribution to Project:	Dr. Lee was responsible for overseeing machine learning development on this grant.
Funding Support:	

Name:	Xinchen Yan
Project Role:	EECS Graduate Student Research Assistant
Nearest person month worked:	12 (12 for 1 year)
Contribution to Project:	Xinchen Yan was responsible for implementation of machine learning on this grant.
Funding Support:	

• Change in Active Support of PIs: "Nothing to Report."

Other Partner Organizations

Organization Name:	Army Institute of Surgical Research (AISR)
Location of Organization	Ft. Sam Houston, San Antonio, TX
Partner's Contribution to Project:	Collaboration: Sahar Leazer, MD at AISR assisted with the AISR IRB. She also attempted to identify and provide the required military CTs, but the IT infrastructure prohibited the completion of this task.

8. SPECIAL REPORTING REQUIREMENTS:

Quad Chart is included in Appendix H.

9. APPENDICES:

Appendix A: Civilian Patient List Appendix B: Vascular Processing Appendix C: Machine Learning Appendix D: Phase Overlay & Gated Radius Graph Appendix E: Morphomics Overview Appendix F: Data Analysis and Results Appendix G: CRADA Appendix H: Quad Chart Appendix I: Interim Progress Review Presentation Appendix J: References

Appendix A: Civilian Patient List

studyid	studydescription	studydttm	age	race	gender	ed_bp	ed_pulse t	tag_contents
	554 CT THORAX W IV CONTRAS	8/9/08 12:59		21 White	М	129	78	DOD ECG
3	125 CT ANGIO CHEST WO AND W CONT	R 6/5/09 7:31		47 White	М	16	97	DOD ECG
3	195 CT THORAX W IV CONTRAST	3/3/10 19:30		45 Black	М	103	95 I	DOD ECG
3	286 CHEST ABDOMEN PELVIS	2/1/09 18:03		21 White	F	147	105	DOD ECG
3	322 CHEST ABDOMEN PELVIS	12/7/08 8:55		29 White	М	147	86 I	DOD ECG
3	512 CT THORAX W IV CONTRAS	10/11/08 19:40		48 White	М	140	76	DOD ECG
3	514 CHEST ABDOMEN PELVIS	10/9/08 10:36		47 White	М	149	62	DOD ECG
E	997 CT THORAX W IV CONTRAS	8/9/08 12:01		38 White	М	145	68 I	DOD ECG
7	822 CHEST ABDOMEN PELVIS	6/16/08 5:23		28 White	F	132	74	DOD ECG
7	828 CT THORAX W IV CONTRAS	6/10/08 7:28		38 White	М	156	87	DOD ECG
7	838 CT THORAX W IV CONTRAS	6/9/08 5:03		21 White	М	105	67	DOD ECG
7	885 CHEST ABDOMEN PELVIS	4/28/08 4:44		23 White	F	110	87	DOD ECG
7	909 CHEST ABDOMEN PELVIS	4/3/08 14:37		30 White	М	118	74	DOD ECG
7	933 CHEST ABDOMEN PELVIS	2/26/08 10:51		43 White	М	156	87	DOD ECG
7	974 CHEST ABDOMEN PELVIS	1/6/08 13:39		35 White	F	120	109	DOD ECG
7	990 CHEST ABDOMEN PELVIS	12/20/07 2:19		44 White	М	166	100	DOD ECG
ç	200 CHEST ABDOMEN PELVIS	7/12/07 13:33		19 White	М	159	74	DOD ECG
ç	246 CHEST ABDOMEN PELVIS	6/19/07 1:53		26 White	М	121	115	DOD ECG
ç	264 CHEST ABDOMEN PELVIS	6/3/07 17:14		37 White	F	114	122	DOD ECG
10	551 CT THORAX W IV CONTRAST	8/23/09 8:10		44 White	М	118	81	DOD ECG
10	815 CT THORAX W IV CONTRAST	9/9/09 10:36		35 White	М	123	88 I	DOD ECG
10	924 CT THORAX W IV CONTRAST	7/16/09 15:25		33 White	М	152	111	DOD ECG
11	631 CT ABDOMEN W IV CONTRAST	8/9/09 3:23		21 White	М	71	103	DOD ECG
13	399 CT THORAX W IV CONTRAST	8/19/09 7:04		21 White	М	151	113	DOD ECG
16	034 CT ABDOMEN W IV CONTRAST	6/2/10 16:39		19 White	М	160		DOD ECG
16	069 CT ABDOMEN W IV CONTRAST	2/20/10 13:02		20 Hispanic	М	134	78	DOD ECG
21	970 CT THORAX W IV CONTRAST	8/20/10 1:15		41 White	М	163	109	DOD ECG
23	575 CT THORAX W IV CONTRAST	6/22/09 20:00		42 White	F	142		DOD ECG
23	705 CT THORAX W IV CONTRAST	9/1/11 14:29		22 White	F	130	129	DOD ECG

23726 CT THORAX W IV CONTRAST	8/1/11 17:07	20 White	Μ	139	122 DOD ECG
23881 CT THORAX W IV CONTRAST	7/2/11 6:21	49 White	Μ	123	95 DOD ECG
23883 CT THORAX W IV CONTRAST	7/2/11 7:29	47 White	Μ	141	96 DOD ECG
23924 CT ABDOMEN PELVIS W IV CONTRAS	6/7/11 14:37	18 White	F	141	66 DOD ECG
23925 CT ABDOMEN PELVIS W IV CONTRAS	6/5/11 23:27	47 White	Μ	180	81 DOD ECG
23930 CT ABDOMEN PELVIS W IV CONTRAS	5/26/11 13:56	22 White	М	160	90 DOD ECG
24439 CT THORAX W IV CONTRAST	6/19/05 6:12	20 White	М	140	98 DOD ECG
49464 CT THORAX W IV CONTRAST	8/27/10 0:29	35 White	М	140	82 DOD ECG
52937 CT THORAX W IV CONTRAST	10/23/11 15:29	48 White	Μ	177	91 DOD ECG
52945 CT THORAX W IV CONTRAST	12/2/11 20:34	50 White	F	195	76 DOD ECG
52949 CT THORAX W IV CONTRAST	3/5/12 15:51	49 White	М	165	100 DOD ECG
52974 CT THORAX W IV CONTRAST	1/22/12 5:18	31 White	F	90	69 DOD ECG
53834 CT THORAX W IV CONTRAST	10/11/11 6:16	34 Black	Μ	152	75 DOD ECG
53966 CT ABDOMEN PELVIS W IV CONTRAS	2/4/12 5:45	25 Black	F	129	94 DOD ECG
54436 CT THORAX W IV CONTRAST	12/1/12 14:58	42 White	М	118	81 DOD ECG
68795 CT THORAX W IV CONTRAST	9/9/09 2:54	35 White	М	181	66 DOD ECG
68796 CT THORAX W IV CONTRAST	3/20/08 15:26	31 White	Μ	133	84 DOD ECG
68797 CT THORAX W IV CONTRAST	9/22/08 9:26	36 White	Μ	149	100 DOD ECG
68798 CT THORAX W IV CONTRAST	11/8/08 8:23	33 White	М	98	80 DOD ECG
68799 CT THORAX W IV CONTRAST	12/31/07 14:32	36 White	М	186	68 DOD ECG
68800 CT THORAX W IV CONTRAST	6/6/10 22:24	45 White	F	145	80 DOD ECG
68801 CT THORAX W IV CONTRAST	11/5/09 10:26	25 White	F	140	115 DOD ECG
68802 CT THORAX W IV CONTRAST	12/14/10 11:21	41 White	М	159	95 DOD ECG
68803 CT THORAX W IV CONTRAST	11/1/10 2:06	19 White	Μ	143	96 DOD ECG
68804 CT THORAX W IV CONTRAST	10/2/10 14:11	19 White	Μ	144	84 DOD ECG
68805 CT THORAX W IV CONTRAST	11/25/11 6:04	31 Black	F	125	115 DOD ECG
68806 CT THORAX W IV CONTRAST	4/15/12 18:16	18 White	Μ	159	86 DOD ECG
68807 CT THORAX W IV CONTRAST	2/4/12 5:45	25 Black	F	129	94 DOD ECG
68808 CT THORAX W IV CONTRAST	12/5/11 3:06	37 White	М	135	98 DOD ECG
68809 CT THORAX W IV CONTRAST	1/28/12 18:43	19 White	Μ	146	142 DOD ECG

68810 CT THORAX W IV CONTRAST	1/13/12 14:16	20 White	F	116	79 DOD ECG
68811 CT THORAX W IV CONTRAST	2/18/12 15:36	26 White	М	199	103 DOD ECG
68812 CT ANGIO CHEST WO AND W CONTR.	8/1/12 8:03	23 White	F	134	76 DOD ECG
68813 CT THORAX W IV CONTRAST	4/29/12 4:11	24 White	F	135	120 DOD ECG
68815 CT THORAX W IV CONTRAST	10/13/12 9:35	37 White	F	129	102 DOD ECG
68816 CT THORAX W IV CONTRAST	11/16/12 14:29	33 White	F	132	84 DOD ECG
68817 CT THORAX W IV CONTRAST	1/17/13 9:48	39 White	М	203	82 DOD ECG
68818 CT THORAX W IV CONTRAST	2/20/13 14:26	20 White	F	149	122 DOD ECG
68819 CT THORAX W IV CONTRAST	3/13/13 11:52	22 White	F	110	78 DOD ECG
68820 CT ANGIO CHEST WO AND W CONTR.	11/11/07 2:37	19 White	Μ	132	105 DOD ECG
160 CHEST ABDOMEN PELVIS	3/24/04 2:27	21 White	М	87	130 DOD hypotensive
559 CT THORAX W IV CONTRAS	2/20/06 8:57	25 White	Μ	82	145 DOD hypotensive
646 CHEST ABDOMEN PELVIS	7/8/04 23:36	39 White	М	78	102 DOD hypotensive
673 CHEST ABDOMEN PELVIS	8/24/02 8:30	35 White	Μ	82	105 DOD hypotensive
1788 CHEST ABDOMEN PELVIS	11/24/04 6:56	19 White	М	77	156 DOD hypotensive
2163 CT THORAX W IV CONTRAS	6/18/09 4:51	31 White	F	79	117 DOD hypotensive
3089 CHEST ABDOMEN PELVIS	6/27/09 4:17	35 White	Μ	66	118 DOD hypotensive
3090 CHEST ABDOMEN PELVIS	6/27/09 21:45	18 White	М	67	106 DOD hypotensive
3225 CHEST ABDOMEN PELVIS	4/16/09 17:38	49 White	М	75	121 DOD hypotensive
3463 CHEST ABDOMEN PELVIS	10/14/08 4:09	34 Black	Μ	75	102 DOD hypotensive
4348 CHEST ABDOMEN PELVIS	9/26/08 17:50	42 White	М	87	120 DOD hypotensive
4374 CT THORAX W IV CONTRAST	8/30/08 10:19	19 White	Μ	95	122 DOD hypotensive
7812 CHEST ABDOMEN PELVIS	6/23/08 2:13	22 White	М	73	122 DOD hypotensive
7849 CHEST ABDOMEN PELVIS	5/24/08 16:04	45 White	F	69	113 DOD hypotensive
7871 CHEST ABDOMEN PELVIS	5/5/08 10:56	23 White	F	52	105 DOD hypotensive
7876 CHEST ABDOMEN PELVIS	5/4/08 18:50	48 White	М	67	157 DOD hypotensive
7915 CT ABDOMEN W IV CONTRA	3/21/08 2:34	18 White	М	78	122 DOD hypotensive
7963 CHEST ABDOMEN PELVIS	3/13/08 18:30	45 White	М	68	140 DOD hypotensive
7981 CHEST ABDOMEN PELVIS	1/1/08 14:07	19 White	М	86	132 DOD hypotensive
8920 CT THORAX W IV CONTRAS	10/7/07 1:44	28 White	М	67	119 DOD hypotensive

9314 CT ABDOMEN W IV CONTRA	4/23/07 4:06	20 White	Μ	75	104 DOD hypotensive
9338 CHEST ABDOMEN PELVIS	3/26/07 12:20	38 White	Μ	75	140 DOD hypotensive
9496 CHEST ABDOMEN PELVIS	12/5/06 14:41	24 White	Μ	90	118 DOD hypotensive
10585 ABDOMEN	8/16/01 14:30	50 White	F	88	106 DOD hypotensive
10938 CT ABDOMEN W IV CONTRAST	2/5/10 0:44	39 White	F	66	114 DOD hypotensive
11392 CT THORAX W IV CONTRAST	4/23/10 4:40	24 White	F	96	130 DOD hypotensive
11616 CT ABDOMEN W IV CONTRAST	11/13/09 20:44	30 Other	F	80	102 DOD hypotensive
11631 CT ABDOMEN W IV CONTRAST	8/9/09 3:23	21 White	Μ	71	103 DOD hypotensive
12417 CHEST ABDOMEN PELVIS	2/11/06 8:25	32 White	F	96	113 DOD hypotensive
13043 CHEST ABDOMEN PELVIS	1/24/06 12:44	24 White	Μ	92	133 DOD hypotensive
14340 CT THORAX W IV CONTRAST	12/6/10 20:45	21 White	Μ	78	157 DOD hypotensive
16057 CT ABDOMEN W IV CONTRAST	5/24/10 16:38	27 White	Μ	83	109 DOD hypotensive
16867 CT THORAX W IV CONTRAST	7/3/07 8:47	32 White	F	93	113 DOD hypotensive
19466 CT THORAX W IV CONTRAST	11/17/07 2:32	19 White	F	72	102 DOD hypotensive
21890 CT ABDOMEN W IV CONTRAST	8/24/09 23:28	24 White	Μ	88	118 DOD hypotensive
21946 CT THORAX W IV CONTRAST	9/25/11 22:07	20 White	Μ	78	115 DOD hypotensive
21953 CT ABDOMEN PELVIS W IV CONTRAS	9/25/11 2:46	20 White	Μ	78	115 DOD hypotensive
22752 CT THORAX W IV CONTRAST	6/7/04 1:39	19 White	F	98	110 DOD hypotensive
23561 CT THORAX W IV CONTRAST	12/12/09 15:33	36 White	F	85	111 DOD hypotensive
24379 CT THORAX W IV CONTRAST	10/23/04 18:47	19 White	F	55	138 DOD hypotensive
24436 CT THORAX W IV CONTRAST	6/17/05 13:04	41 White	F	44	116 DOD hypotensive
24482 CT ABDOMEN W IV CONTRAST	7/19/05 12:22	41 White	Μ	93	135 DOD hypotensive
24656 CT THORAX W IV CONTRAST	2/24/07 3:52	47 White	Μ	79	122 DOD hypotensive
35635 CT ABDOMEN W IV CONTRAST	1/19/10 22:59	48 White	Μ	75	128 DOD hypotensive
49484 CT THORAX W IV CONTRAST	8/6/05 23:10	45 White	Μ	68	118 DOD hypotensive
53899 CT THORAX W IV CONTRAST	11/10/11 17:22	42 White	F	80	116 DOD hypotensive
54158 CT OUTSIDE FILM CONSULT ABDOME	8/2/12 1:24	40 Black	Μ	69	126 DOD hypotensive
54319 CT THORAX W IV CONTRAST	9/9/12 18:03	45 White	F	78	111 DOD hypotensive
54340 CT THORAX W IV CONTRAST	8/31/12 22:08	44 White	F	87	130 DOD hypotensive
54342 CT ABDOMEN PELVIS W IV CONTRAS	8/12/12 19:36	50 White	F	90	128 DOD hypotensive

54372 CT POST PROCESSED L SPINE	9/21/12 7:32	24 White	F	78	120 DOD hypotensive
55782 CT THORAX W IV CONTRAST	8/6/05 15:01	42 White	F	97	105 DOD hypotensive
59391 CT ABDOMEN PELVIS W IV CONTRAS	2/21/13 18:45	44 White	F	98	126 DOD hypotensive
60918 CT ABDOMEN W IV CONTRAST	6/9/03 23:49	18 White	Μ	63	155 DOD hypotensive
66225 CT THORAX W IV CONTRAST	7/4/07 16:21	32 White	Μ	84	131 DOD hypotensive
66278 CT THORAX W IV CONTRAST	4/29/02 15:53	47	Μ	60	145 DOD hypotensive
66279 CT THORAX W IV CONTRAST	8/7/04 16:30	49 Other	F	74	106 DOD hypotensive
66280 CT ABDOMEN W IV CONTRAST	7/25/03 10:04	30	Μ	86	133 DOD hypotensive
66281 CT THORAX W IV CONTRAST	6/10/05 8:34	40 White	Μ	41	188 DOD hypotensive
66282 CT THORAX W IV CONTRAST	8/11/07 11:02	34 White	Μ	53	130 DOD hypotensive
66283 CT ABDOMEN W IV CONTRAST	12/20/03 18:57	50 White	Μ	85	120 DOD hypotensive
66284 CT THORAX W IV CONTRAST	11/5/06 16:05	32 White	Μ	83	142 DOD hypotensive
66285 CT THORAX W IV CONTRAST	10/15/04 6:10	21 White	F	80	121 DOD hypotensive
66286 CT OUTSIDE FILM CONSULT CHEST	11/14/09 16:31	49 White	F	83	117 DOD hypotensive
66288 CT THORAX W IV CONTRAST	9/10/05 13:26	47 White	F	86	114 DOD hypotensive
66297 CT THORAX W IV CONTRAST	5/5/08 18:15	39 White	Μ	86	119 DOD hypotensive
66298 CT THORAX W IV CONTRAST	4/29/09 0:00	37 Black	Μ	83	135 DOD hypotensive
66299 CT OUTSIDE FILM CONSULT ABDOME	8/28/10 10:18	44 White	F	76	130 DOD hypotensive
66300 CT OUTSIDE FILM CONSULT CHEST	9/23/12 18:14	44 White	Μ	45	130 DOD hypotensive
66302 CT ABDOMEN W IV CONTRAST	6/11/00 7:12	42 White	Μ	77	106 DOD hypotensive
67032 CT THORAX W IV CONTRAST	1/30/02 11:37	46 White	Μ	94	105 DOD hypotensive
67033 CT THORAX W IV CONTRAST	4/8/03 19:28	36 White	Μ	92	131 DOD hypotensive
67035 CT ABDOMEN W IV CONTRAST	6/28/09 22:44	39 White	F	99	112 DOD hypotensive
67036 CT THORAX W IV CONTRAST	1/23/09 21:57	21 White	Μ	98	112 DOD hypotensive
67037 CT THORAX W IV CONTRAST	8/3/08 20:15	20 White	Μ	94	105 DOD hypotensive
67039 CT ABDOMEN W IV CONTRAST	12/5/06 14:41	24 White	Μ	90	118 DOD hypotensive
67042 CT THORAX W IV CONTRAST	2/11/06 8:25	32 White	F	96	113 DOD hypotensive
67045 CT ABDOMEN PELVIS W IV CONTRAS	3/23/11 23:29	28 White	F	91	101 DOD hypotensive
67050 CT ANGIO CHEST WO AND W CONTR.	8/21/11 6:23	24 White	Μ	91	118 DOD hypotensive
67053 CT ABDOMEN W IV CONTRAST	7/29/06 5:10	24 White	М	98	151 DOD hypotensive

0 CHEST ABDOMEN PELVIS	10/20/01 20:03	47 White	М	151	79 DOD normotensive
6 CHEST ABDOMEN PELVIS	4/24/04 7:07	31 White	M	131	100 DOD normotensive
10 CHEST ABDOMEN PELVIS	10/31/01 18:11	21 White	M	136	97 DOD normotensive
29 CHEST ABDOMEN PELVIS	1/5/04 9:50	36 White	М	134	69 DOD normotensive
47 CHEST ABDOMEN PELVIS	1/21/02 8:36	27 White	Μ	120	66 DOD normotensive
56 CT THORAX W IV CONTRAS	6/6/05 2:29	48	F	135	82 DOD normotensive
83 CHEST ABDOMEN PELVIS	7/17/02 2:43	31 White	Μ	162	99 DOD normotensive
88 CHEST ABDOMEN PELVIS	1/23/04 10:02	50 White	Μ	145	93 DOD normotensive
89 CHEST ABD PELVIS	2/4/04 18:28	46 White	Μ	143	90 DOD normotensive
114 CHEST ABDOMEN PELVIS	5/28/08 9:33	37 White	Μ	127	90 DOD normotensive
118 CT ABDOMEN W IV CONTRA	9/24/05 21:46	31 White	F	133	81 DOD normotensive
121 CHEST ABDOMEN PELVIS	6/13/05 12:40	43 White	F	155	86 DOD normotensive
131 CHEST ABDOMEN PELVIS	7/26/06 9:24	23 White	Μ	142	82 DOD normotensive
133 CT THORAX W IV CONTRAS	4/1/06 2:19	24 White	Μ	139	77 DOD normotensive
146 CT THORAX W IV CONTRAS	11/18/06 22:55	46 White	Μ	138	95 DOD normotensive
147 CHEST ABDOMEN PELVIS	10/29/06 5:14	19 White	F	144	92 DOD normotensive
151 CHEST ABDOMEN PELVIS	10/5/04 15:32	48 White	Μ	140	76 DOD normotensive
158 CHEST ABDOMEN PELVIS	9/28/04 17:48	29 White	F	130	72 DOD normotensive
176 CHEST ABDOMEN PELVIS	7/22/03 15:58	32 White	Μ	134	92 DOD normotensive
177 ABDOMEN	4/2/03 18:14	44 White	F	138	90 DOD normotensive
194 ABDOMEN	1/28/03 22:28	49 White	F	125	85 DOD normotensive
196 ABDOMEN	2/9/03 3:33	46 White	F	128	77 DOD normotensive
207 CHEST ABDOMEN PELVIS	10/23/06 4:00	29 White	F	151	96 DOD normotensive
218 CHEST ABDOMEN PELVIS	6/14/02 1:44	38 White	F	144	100 DOD normotensive
223 CHEST ABDOMEN PELVIS	8/29/02 22:08	48 White	F	151	47 DOD normotensive
225 ABDOMEN	11/11/02 17:00	20 Black	Μ	150	68 DOD normotensive
228 CHEST ABDOMEN PELVIS	8/20/02 15:22	23 White	F	129	89 DOD normotensive
232 ABDOMEN	7/7/02 17:52	31 White	F	125	97 DOD normotensive
236 ABDOMEN PELVIS	3/9/02 3:49	24 White	М	139	78 DOD normotensive
237 ABDOMEN	3/13/02 8:17	35 White	F	121	96 DOD normotensive
	-,,		-		

	7/45/00 47 04				72 000
242 ABDOMEN	7/15/02 17:24	45 White	М	144	72 DOD normotensive
243 ABDOMEN	8/3/02 22:25	39 White	F	126	74 DOD normotensive
244 ABDOMEN	10/16/02 21:17	48 Black	М	157	89 DOD normotensive
253 CHEST ABDOMEN PELVIS	4/24/07 3:13	33 White	Μ	133	81 DOD normotensive
258 CT ABDOMEN W IV CONTRA	4/26/07 12:29	24 White	F	121	96 DOD normotensive
262 CHEST ABDOMEN PELVIS	8/19/07 5:09	29 White	Μ	154	90 DOD normotensive
425 CHEST ABDOMEN PELVIS	8/9/02 17:18	19 White	Μ	125	98 DOD normotensive
427 CHEST ABDOMEN PELVIS	8/4/02 15:37	42 White	F	157	96 DOD normotensive
432 ABDOMEN	9/15/02 20:37	36 White	Μ	176	92 DOD normotensive
438 CHEST ABDOMEN PELVIS	3/17/03 20:31	40 White	М	142	85 DOD normotensive
440 ABDOMEN	4/27/03 20:08	26 White	М	140	71 DOD normotensive
441 CHEST ABDOMEN PELVIS	5/18/03 18:01	26 White	М	152	63 DOD normotensive
444 ABDOMEN	5/17/03 14:08	42 White	F	133	80 DOD normotensive
445 CHEST ABDOMEN PELVIS	6/24/03 12:56	24 White	М	144	61 DOD normotensive
481 ABDOMEN	6/26/03 16:09	20 White	М	143	80 DOD normotensive
485 ABDOMEN	11/27/04 18:52	40 White	М	126	74 DOD normotensive
492 ABDOMEN	12/8/02 1:08	45 White	М	133	72 DOD normotensive
493 ABDOMEN PELVIS	12/10/02 12:03	45 White	М	159	78 DOD normotensive
495 ABDOMEN	5/7/04 6:23	43 White	Μ	165	86 DOD normotensive
508 ABDOMEN	11/24/04 17:51	40 White	М	140	88 DOD normotensive
511 ABDOMEN	11/28/04 18:56	22 White	М	158	96 DOD normotensive
513 ABDOMEN PELVIS	12/2/04 12:33	34 White	М	137	79 DOD normotensive
514 ABDOMEN PELVIS	12/3/04 14:08	35 White	F	129	93 DOD normotensive
515 ABDOMEN	12/2/04 3:01	42 White	М	146	93 DOD normotensive
516 ABDOMEN	12/4/04 5:02	44 White	М	174	97 DOD normotensive
530 CT ABDOMEN W CONTRAST=AB	6/28/08 7:18	49 White	F	138	88 DOD normotensive
533 ABDOMEN	9/23/04 13:37	42 White	F	194	95 DOD normotensive
534 ABDOMEN	10/10/04 15:52	40 Black	М	134	80 DOD normotensive
535 CHEST ABDOMEN PELVIS	10/14/04 6:21	20 Black	F	114	93 DOD normotensive
538 ABDOMEN	10/8/04 22:29	49 White	F	147	85 DOD normotensive

539 CHEST ABDOMEN PELVIS	10/13/04 12:23	32 Other	М	147	84 DOD normotensive
540 ABDOMEN PELVIS	10/12/04 14:11	44 Black	М	146	76 DOD normotensive
554 CT THORAX W IV CONTRAS	8/9/08 12:59	21 White	М	129	78 DOD normotensive
573 CHEST ABDOMEN PELVIS	9/13/04 2:11	25 White	F	100	122 DOD normotensive
574 ABDOMEN	9/15/04 8:27	21 White	F	131	58 DOD normotensive
577 CHEST ABDOMEN PELVIS	9/22/04 10:20	48	F	139	73 DOD normotensive
584 CHEST ABDOMEN PELVIS	8/9/04 8:52	40 White	М	162	85 DOD normotensive
593 CHEST ABDOMEN PELVIS	7/24/04 17:38	39 White	М	146	75 DOD normotensive
599 CHEST ABDOMEN PELVIS	6/20/04 1:32	45 White	М	144	94 DOD normotensive
601 CHEST ABDOMEN PELVIS	6/29/04 23:47	19 White	М	142	69 DOD normotensive
602 CHEST ABDOMEN PELVIS	7/4/04 14:52	40 Black	М	165	81 DOD normotensive
606 CHEST ABDOMEN PELVIS	7/19/04 18:58	38 White	М	160	78 DOD normotensive
607 CHEST ABDOMEN PELVIS	7/21/04 3:07	19 White	М	156	95 DOD normotensive
610 CHEST ABDOMEN PELVIS	6/24/04 9:44	34 White	F	127	96 DOD normotensive
614 CHEST ABDOMEN PELVIS	6/15/03 23:30	40 White	М	151	77 DOD normotensive
618 CHEST ABDOMEN PELVIS	7/2/03 20:22	40 White	М	147	98 DOD normotensive
626 CHEST ABDOMEN PELVIS	9/14/03 15:31	40 White	М	126	85 DOD normotensive
636 CHEST ABDOMEN PELVIS	5/13/04 5:44	45 White	М	140	80 DOD normotensive
639 CHEST ABDOMEN PELVIS	5/31/04 17:29	33 Black	М	171	93 DOD normotensive
640 CHEST ABDOMEN PELVIS	5/29/04 19:34	39 White	М	133	64 DOD normotensive
641 ABDOMEN	8/31/04 22:46	31 White	М	155	87 DOD normotensive
650 CHEST ABDOMEN PELVIS	8/8/04 21:12	49 White	М	131	86 DOD normotensive
653 ABDOMEN	8/6/04 23:30	47	М	138	80 DOD normotensive
654 ABDOMEN	8/21/04 18:03	24 White	М	155	82 DOD normotensive
655 ABDOMEN	9/3/04 2:18	40 Black	М	161	91 DOD normotensive
656 ABDOMEN	9/2/04 16:42	44 White	М	152	72 DOD normotensive
657 ABDOMEN	8/27/04 23:26	42 White	М	138	98 DOD normotensive
658 ABDOMEN	8/29/04 9:16	26 White	М	134	77 DOD normotensive
660 ABDOMEN	8/28/04 19:00	30 White	F	140	93 DOD normotensive
661 CHEST ABDOMEN PELVIS	8/19/04 22:25	28 White	М	169	76 DOD normotensive

662 ABDOMEN	9/6/04 12:44	24 White	Μ	137	79 DOD normotensive
664 ABDOMEN	9/25/04 17:52	43 White	Μ	154	66 DOD normotensive
668 CHEST ABDOMEN PELVIS	10/30/04 16:44	31 Hispanic	Μ	129	91 DOD normotensive
678 CHEST ABDOMEN PELVIS	12/8/02 22:15	47 White	Μ	143	90 DOD normotensive
698 CHEST ABDOMEN PELVIS	8/19/04 20:55	37 White	Μ	130	72 DOD normotensive
708 CHEST ABDOMEN PELVIS	2/8/02 10:02	43 White	Μ	135	96 DOD normotensive
710 ABDOMEN PELVIS	3/25/02 15:08	33 White	F	128	68 DOD normotensive
712 ABDOMEN PELVIS	2/21/02 22:14	40 White	F	126	100 DOD normotensive
723 CHEST ABDOMEN PELVIS	7/5/02 3:20	42 White	Μ	124	71 DOD normotensive
730 ABDOMEN	5/25/02 4:50	20 White	Μ	135	90 DOD normotensive
741 CHEST ABDOMEN PELVIS	6/21/02 17:08	44 White	F	136	74 DOD normotensive
742 CHEST ABDOMEN PELVIS	6/22/02 0:42	47 White	Μ	136	64 DOD normotensive
743 CHEST ABDOMEN PELVIS	6/27/02 1:28	50 White	F	148	81 DOD normotensive
747 ABDOMEN	7/6/02 21:56	36 White	F	142	92 DOD normotensive
759 CHEST ABDOMEN PELVIS	10/17/02 17:30	36 White	F	121	80 DOD normotensive
760 ABDOMEN PELVIS	10/23/02 14:58	45 White	F	162	83 DOD normotensive
771 ABDOMEN PELVIS	12/17/02 4:21	19 Asian	Μ	128	90 DOD normotensive
775 ABDOMEN PELVIS	2/5/03 0:44	33 White	F	125	96 DOD normotensive
776 ABDOMEN PELVIS	1/31/03 12:05	44 White	Μ	120	82 DOD normotensive
777 ABDOMEN PELVIS	2/10/03 22:06	26 Black	Μ	120	62 DOD normotensive
782 ABDOMEN PELVIS	2/27/03 19:53	33 White	F	151	75 DOD normotensive
794 ABDOMEN PELVIS	3/21/03 5:20	21 White	F	134	88 DOD normotensive
798 CHEST ABDOMEN PELVIS	3/27/03 10:35	31 White	F	135	92 DOD normotensive
799 CHEST ABDOMEN PELVIS	4/5/03 1:11	45 White	F	140	76 DOD normotensive
800 CHEST ABDOMEN PELVIS	4/12/03 22:25	40 White	Μ	146	93 DOD normotensive
801 CHEST ABDOMEN PELVIS	4/16/03 4:02	48 Black	Μ	157	88 DOD normotensive
805 CHEST ABDOMEN PELVIS	4/29/03 2:01	21 White	F	137	82 DOD normotensive
813 CHEST ABDOMEN PELVIS	6/17/03 21:16	36 White	F	168	70 DOD normotensive
816 ABDOMEN PELVIS	7/23/03 19:35	24 White	Μ	151	88 DOD normotensive
819 CHEST ABDOMEN PELVIS	7/14/03 21:58	21 White	F	175	80 DOD normotensive

820	CHEST ABDOMEN PELVIS	7/10/03 23:19	24 White	М	163	76 DOD normotensive	
823	3 ABDOMEN PELVIS	7/29/03 12:48	31 White	М	150	68 DOD normotensive	
82	6 ABDOMEN	8/17/03 3:19	20 White	М	131	97 DOD normotensive	
828	8 ABDOMEN	8/17/03 18:24	27 White	М	142	78 DOD normotensive	
833	3 CHEST ABDOMEN PELVIS	9/9/03 13:54	31 White	F	142	74 DOD normotensive	
83	7 CHEST ABDOMEN PELVIS	9/2/03 20:57	25 White	М	150	79 DOD normotensive	
838	8 CHEST ABDOMEN PELVIS	12/7/03 2:02	35 White	М	123	92 DOD normotensive	
84	7 CHEST ABDOMEN PELVIS	11/17/03 16:14	43 White	М	140	90 DOD normotensive	
863	1 CHEST ABDOMEN PELVIS	10/27/02 17:08	30 Asian	М	133	63 DOD normotensive	
864	4 CHEST ABDOMEN PELVIS	11/18/08 11:15	45 White	F	212	89 DOD normotensive	
86	5 CHEST ABDOMEN PELVIS	11/8/08 14:52	50 White	М	151	80 DOD normotensive	
86	7 CHEST ABDOMEN PELVIS	5/9/03 20:07	25 White	М	142	100 DOD normotensive	
878	8 ABDOMEN PELVIS	6/30/04 22:25	23 White	F	137	99 DOD normotensive	
883	3 CHEST ABDOMEN PELVIS	9/11/04 18:29	42 White	М	146	81 DOD normotensive	
88	6 CHEST ABDOMEN PELVIS	4/5/04 8:17	42 White	F	137	84 DOD normotensive	
88	7 CHEST ABDOMEN PELVIS	4/26/04 10:47	27 White	М	141	95 DOD normotensive	
898	8 ABDOMEN	5/21/04 2:43	22 Black	F	123	48 DOD normotensive	
903	3 ABDOMEN	5/21/04 17:59	34 White	М	132	83 DOD normotensive	
918	8 CHEST ABDOMEN PELVIS	3/14/04 2:30	30 White	Μ	138	74 DOD normotensive	
979	9 CHEST ABDOMEN PELVIS	1/4/09 11:35	40 White	F	134	90 DOD normotensive	
98	7 ABDOMEN	5/3/03 23:23	45 White	М	165	79 DOD normotensive	
990	O ABDOMEN PELVIS	7/16/02 10:32	19 White	F	137	73 DOD normotensive	
993	1 CHEST ABDOMEN PELVIS	7/27/02 2:54	40 White	М	154	86 DOD normotensive	
993	3 ABDOMEN PELVIS	7/29/02 21:05	24 White	F	120	94 DOD normotensive	
994	4 CHEST ABDOMEN PELVIS	8/20/02 17:57	38 White	М	163	95 DOD normotensive	
990	6 ABDOMEN PELVIS	9/6/02 10:03	23 White	М	151	97 DOD normotensive	
998	8 CHEST ABDOMEN PELVIS	8/25/02 17:57	37 White	М	135	87 DOD normotensive	
100	6 ABDOMEN	8/16/03 5:19	23 White	F	125	88 DOD normotensive	
100	7 ABDOMEN	8/15/03 4:57	39 Black	F	161	91 DOD normotensive	
100	8 ABDOMEN	9/12/03 20:06	45 White	F	172	100 DOD normotensive	

1059 CHEST ABDOMEN PELVIS	1/6/09 22:21	19 Black	Μ	149	90 DOD normotensive
1509 CHEST ABDOMEN PELVIS	5/2/07 14:18	47 White	F	125	100 DOD normotensive
1606 CHEST ABDOMEN PELVIS	3/5/09 2:52	27 White	F	131	90 DOD normotensive
1608 CHEST ABDOMEN PELVIS	5/11/09 8:33	50 White	Μ	177	60 DOD normotensive
1612 CHEST ABDOMEN PELVIS	6/1/09 19:26	23 White	F	129	91 DOD normotensive
1635 CHEST ABDOMEN PELVIS	4/5/09 4:49	24 White	Μ	138	63 DOD normotensive
1736 CHEST ABDOMEN PELVIS	12/30/04 3:48	29 White	F	77	88 DOD normotensive
1739 CHEST ABDOMEN PELVIS	6/10/07 2:00	20 White	F	135	101 DOD normotensive
1744 CHEST ABDOMEN PELVIS	4/30/07 10:37	41 White	F	123	78 DOD normotensive
1778 CHEST ABDOMEN PELVIS	7/30/03 10:59	45 White	Μ	167	84 DOD normotensive
1787 CHEST ABDOMEN PELVIS	2/6/03 10:44	26 White	F	129	86 DOD normotensive
2420 CHEST ABDOMEN PELVIS	9/9/09 2:54	35 White	Μ	181	66 DOD normotensive
3044 CHEST/ABD/PELVIS	7/3/00 14:20	38 White	Μ	126	78 DOD normotensive
3055 ABDOMEN PELVIS	12/7/01 0:27	34 White	Μ	121	77 DOD normotensive
3058 CHEST ABDOMEN PELVIS	5/22/01 15:29	37 White	F	133	94 DOD normotensive
3064 ABDOMEN	5/23/01 11:39	39 White	Μ	153	71 DOD normotensive
3065 ABDOMEN	8/25/01 7:14	21 White	Μ	134	72 DOD normotensive
3069 CT THORAX W IV CONTRAS	10/21/09 2:03	28 White	Μ	159	100 DOD normotensive
3083 CHEST ABDOMEN PELVIS	6/28/09 4:13	31 White	Μ	147	100 DOD normotensive
3087 CHEST ABDOMEN PELVIS	6/28/09 22:44	39 White	F	99	112 DOD normotensive
3091 CHEST ABDOMEN PELVIS	6/27/09 22:35	19 White	Μ	140	90 DOD normotensive
3092 CHEST ABDOMEN PELVIS	6/27/09 23:28	19 White	F	105	112 DOD normotensive
3094 CHEST ABDOMEN PELVIS	6/26/09 17:39	41 White	Μ	138	100 DOD normotensive
3098 CHEST ABDOMEN PLEVIS	6/21/09 1:57	26 Black	Μ	130	96 DOD normotensive
3100 CHEST ABDOMEN PELVIS	6/20/09 9:15	24 Black	Μ	154	84 DOD normotensive
3115 CHEST ABDOMEN PELVIS	6/7/09 19:14	19 White	F	118	76 DOD normotensive
3120 CT THORAX W IV CONTRAST	6/6/09 22:08	22 White	Μ	154	90 DOD normotensive
3138 CT THORAX W IV CONTRAST	5/24/09 22:02	42 White	Μ	123	79 DOD normotensive
3143 CT THORAX W IV CONTRAST	5/21/09 22:33	31 White	Μ	139	97 DOD normotensive
3146 CT THORAX W IV CONTRAST	5/17/09 21:28	47 White	Μ	167	77 DOD normotensive

3152 CHEST ABDOMEN PELVIS	1/3/10 16:49	40 White	Μ	149	80 DOD normotensive
3157 CHEST ABDOMEN PELVIS	4/11/02 10:37	49 White	Μ	194	88 DOD normotensive
3166 CHEST ABDOMEN PELVIS	8/26/06 2:24	23 White	Μ	123	94 DOD normotensive
3186 CT THORAX W IV CONTRAST	11/11/09 16:40	43 White	Μ	149	51 DOD normotensive
3192 CHEST ABDOMEN PELVIS	1/19/10 9:11	48 White	Μ	123	71 DOD normotensive
3196 CT THORAX W IV CONTRAST	3/18/10 23:13	38 White	Μ	136	92 DOD normotensive
3203 CHEST ABDOMEN PELVIS	5/8/09 4:04	19 White	F	125	79 DOD normotensive
3211 CHEST ABDOMEN PELVIS	4/24/09 13:33	18 White	F	110	96 DOD normotensive
3226 CT ABDOMEN W IV CONTRA	4/16/09 1:13	21 White	F	126	78 DOD normotensive
3227 CHEST ABDOMEN PELVIS	4/14/09 2:10	21 White	Μ	140	90 DOD normotensive
3237 CHEST ABDOMEN PELVIS	4/4/09 20:36	50 Black	F	204	68 DOD normotensive
3238 CHEST ABDOMEN PELVIS	4/2/09 13:10	37 White	F	120	87 DOD normotensive
3240 CT ABDOMEN W IV CONTRA	3/27/09 12:57	46 White	Μ	144	80 DOD normotensive
3244 CHEST ABDOMEN PELVIS	3/22/09 12:09	35 White	F	135	100 DOD normotensive
3247 CHEST ABDOMEN PELVIS	3/23/09 1:13	36 White	F	110	124 DOD normotensive
3258 CT THORAX W IV CONTRAS	3/10/09 12:44	50 Black	Μ	229	83 DOD normotensive
3261 chest abdomen pelvis	3/8/09 3:13	21 Black	Μ	137	84 DOD normotensive
3264 CHEST ABDOMEN PELVIS	3/5/09 22:33	19 White	Μ	135	87 DOD normotensive
3265 CT ABDOMEN W IV CONTRA	3/5/09 15:41	40 Black	Μ	162	70 DOD normotensive
3270 CT ABDOMEN W IV CONTRA	2/26/09 11:32	45 White	F	124	84 DOD normotensive
3271 CHEST ABDOMEN PELVIS	2/24/09 17:29	28 White	F	132	94 DOD normotensive
3282 CHEST ABDOMEN PELVIS	2/7/09 12:35	20 White	Μ	145	67 DOD normotensive
3284 CHEST ABDOMEN PELVIS	2/7/09 0:25	39 Black	Μ	149	100 DOD normotensive
3285 CHEST ABDOMEN PELVIS	2/6/09 12:15	35 White	F	152	67 DOD normotensive
3286 CHEST ABDOMEN PELVIS	2/1/09 18:03	21 White	F	147	105 DOD normotensive
3287 CT THORAX W IV CONTRAS	1/29/09 18:35	27 White	Μ	139	77 DOD normotensive
3297 CHEST ABDOMEN PELVIS	1/19/09 9:26	37 Black	Μ	145	62 DOD normotensive
3303 CHEST ABDOMEN PELVIS	1/11/09 14:41	31 Asian	Μ	148	70 DOD normotensive
3304 CHEST ABDOMEN PELVIS	1/8/09 17:31	49 White	Μ	128	75 DOD normotensive
3307 CT ABDOMEN W IV CONTRA	1/7/09 0:58	18 Black	Μ	195	97 DOD normotensive

3313 CHEST ABDOMEN PELVIS	12/15/08 11:36	48 White	М	123	74 DOD normotensive
3316 CHEST ABDOMEN PELVIS	12/14/08 18:16	40 White	М	169	69 DOD normotensive
3322 CHEST ABDOMEN PELVIS	12/7/08 8:55	29 White	М	147	86 DOD normotensive
3372 CHEST ABDOMEN PELVIS	1/23/04 10:02	50 White	М	145	93 DOD normotensive
3379 CT THORAX W IV CONTRAST	12/6/08 2:47	36 White	F	128	65 DOD normotensive
3392 CHEST ABDOMEN PELVIS	12/4/08 21:17	23 White	М	149	99 DOD normotensive
3394 CHEST ABDOMEN PELVIS	12/1/08 21:47	19 White	F	126	83 DOD normotensive
3405 CHEST ABDOMEN PELVIS	11/24/08 23:05	29 White	Μ	149	89 DOD normotensive
3424 CHEST ABDOMEN PELVIS	11/22/08 3:42	44 Black	М	137	83 DOD normotensive
3425 CHEST ABDOMEN PELVIS	11/22/08 5:57	43 White	F	141	64 DOD normotensive
3426 CT THORAX W IV CONTRAST	11/22/08 6:33	40 Black	Μ	131	93 DOD normotensive
3427 CHEST ABDOMEN PELVIS	11/22/08 21:01	47 White	М	125	90 DOD normotensive
3428 CHEST ABDOMEN PELVIS	11/18/08 22:18	28 White	F	140	72 DOD normotensive
3431 CHEST ABDOMEN PELVIS	11/17/08 9:11	32 White	Μ	139	79 DOD normotensive
3433 CT THORAX W IV CONTRAST	11/16/08 2:56	23 Black	М	152	64 DOD normotensive
3434 CT THORAX W IV CONTRAST	11/16/08 4:52	22 Black	М	156	90 DOD normotensive
3439 CHEST ABDOMEN PELVIS	11/10/08 9:32	49 White	F	127	53 DOD normotensive
3446 CHEST ABDOMEN PELVIS	11/6/08 18:41	44 White	М	159	89 DOD normotensive
3455 CHEST ABDOMEN PELVIS	10/26/08 1:46	38 White	М	130	36 DOD normotensive
3505 CHEST ABDOMEN PELVIS	10/12/08 9:30	21 White	М	134	66 DOD normotensive
3508 CHEST ABDOMEN PELVIS	10/12/08 1:10	32 White	М	129	94 DOD normotensive
3512 CT THORAX W IV CONTRAS	10/11/08 19:40	48 White	М	140	76 DOD normotensive
3513 CT THORAX W IV CONTRAS	10/9/08 13:42	47 White	М	153	82 DOD normotensive
3514 CHEST ABDOMEN PELVIS	10/9/08 10:36	47 White	М	149	62 DOD normotensive
3983 CHEST ABDOMEN PELVIS	10/9/08 18:42	29 White	F	118	90 DOD normotensive
3985 CHEST ABDOMEN PELVIS	10/5/08 2:19	31 White	М	135	88 DOD normotensive
3987 CHEST ABDOMEN PELVIS	10/3/08 17:36	40 White	М	132	77 DOD normotensive
4346 CHEST ABDOMEN PELVIS	9/29/08 3:03	25 White	М	150	90 DOD normotensive
4355 CHEST ABDOMEN PELVIS	9/27/08 3:09	48 White	М	148	86 DOD normotensive
4371 CHEST ABDOMEN PELVIS	9/2/08 17:25	33 White	М	135	78 DOD normotensive

4375 CT THORAX W IV CONTRAS	8/30/08 1:19	49 White	F	140	90 DOD normotensive
4376 CHEST ABDOMEN PELVIS	8/28/08 19:57	46 White	Μ	168	86 DOD normotensive
4380 CHEST ABDOMEN PELVIS	8/29/08 12:13	24 White	Μ	136	90 DOD normotensive
4383 CHEST ABDOMEN PELVIS	8/23/08 12:29	48 White	F	148	63 DOD normotensive
4385 CHEST ABDOMEN PELVIS	8/21/08 19:59	47 White	Μ	150	92 DOD normotensive
6957 CHEST ABDOMEN PELVIS	8/16/08 4:48	24 White	Μ	136	93 DOD normotensive
6959 CHEST ABDOMEN PELVIS	8/15/08 17:44	46 White	Μ	164	95 DOD normotensive
6966 CHEST ABDOMEN PELVIS	8/10/08 11:03	25 White	Μ	146	78 DOD normotensive
6997 CT THORAX W IV CONTRAS	8/9/08 12:01	38 White	Μ	145	68 DOD normotensive
6998 CT ABDOMEN W IV CONTRAST	8/9/08 5:22	25 Hispanic	Μ	175	98 DOD normotensive
7000 CHEST ABDOMEN PELVIS	8/8/08 3:33	37 Black	Μ	138	93 DOD normotensive
7002 CHEST ABDOMEN PELVIS	8/4/08 16:31	38 White	Μ	152	91 DOD normotensive
7009 CT THORAX W IV CONTRAS	7/30/08 16:42	22 White	Μ	135	81 DOD normotensive
7010 CHEST ABDOMEN PELVIS	7/30/08 4:42	47 Black	Μ	157	98 DOD normotensive
7013 CHEST ABDOMEN PELVIS	7/27/08 3:31	32 White	F	113	74 DOD normotensive
7016 CT THORAX W IV CONTRAS	7/26/08 11:37	21 White	Μ	133	91 DOD normotensive
7020 CHEST ABDOMEN PELVIS	7/30/08 23:42	45 White	F	128	86 DOD normotensive
7034 CHEST ABDOMEN PELVIS	7/4/08 21:56	46 White	Μ	128	57 DOD normotensive
7036 CHEST ABDOMEN PELVIS	7/1/08 18:37	19 White	Μ	113	83 DOD normotensive
7037 CHEST ABDOMEN PELVIS	7/1/08 14:02	50 White	Μ	129	61 DOD normotensive
7048 CHEST ABDOMEN PELVIS	6/25/08 23:47	43 White	Μ	127	89 DOD normotensive
7050 CHEST ABDOMEN PELVIS	6/22/08 20:22	29 White	F	142	90 DOD normotensive
7809 CHEST ABDOMEN PELVIS	6/22/08 22:17	45 White	Μ	138	73 DOD normotensive
7810 CHEST ABDOMEN PELVIS	6/21/08 1:05	24 White	Μ	137	93 DOD normotensive
7818 CHEST ABDOMEN PELVIS	6/19/08 15:03	20 White	Μ	133	66 DOD normotensive
7822 CHEST ABDOMEN PELVIS	6/16/08 5:23	28 White	F	132	74 DOD normotensive
7826 CHEST ABDOMEN PELVIS	6/11/08 12:41	25 White	Μ	177	79 DOD normotensive
7828 CT THORAX W IV CONTRAS	6/10/08 7:28	38 White	Μ	156	87 DOD normotensive
7830 CHEST ABDOMEN PELVIS	4/6/08 23:18	22 Black	М	151	73 DOD normotensive
7832 CHEST ABDOMEN PELVIS	6/1/08 13:06	28 White	Μ	156	85 DOD normotensive

7837 CHEST ABDOMEN PELVIS	6/9/08 18:21	37 White	М	140	71 DOD normotensive
7840 CT THORAX W IV CONTRAS	6/8/08 10:35	50 Black	Μ	142	76 DOD normotensive
7845 CHEST ABDOMEN PELVIS	5/25/08 21:17	49 Black	F	148	115 DOD normotensive
7846 CHEST ABDOMEN PELVIS	5/25/08 5:21	24 White	Μ	132	87 DOD normotensive
7850 CHEST ABDOMEN PELVIS	5/23/08 2:05	32 White	F	129	110 DOD normotensive
7865 CHEST ABDOMEN PELVIS	5/10/08 7:49	36 White	Μ	138	98 DOD normotensive
7867 CHEST ABDOMEN PELVIS	5/10/08 22:53	23 White	Μ	139	90 DOD normotensive
7872 CHEST ABDOMEN PELVIS	5/5/08 22:49	19 White	Μ	135	77 DOD normotensive
7875 CT THORAX W IV CONTRAS	5/4/08 4:03	27 White	Μ	127	91 DOD normotensive
7884 CHEST ABDOMEN PELVIS	4/30/08 17:58	49 White	Μ	162	78 DOD normotensive
7887 CHEST ABDOMEN PELVIS	4/25/08 3:52	43 White	Μ	125	83 DOD normotensive
7888 CT THORAX W IV CONTRAS	4/25/08 0:33	50 White	Μ	157	83 DOD normotensive
7889 CHEST ABDOMEN PELVIS	4/27/08 20:49	21 White	Μ	158	73 DOD normotensive
7890 CHEST ABDOMEN PELVIS	4/28/08 15:14	19 White	Μ	134	83 DOD normotensive
7891 CHEST ABDOMEN PELVIS	4/22/08 9:58	46 White	Μ	198	92 DOD normotensive
7892 CT THORAX W IV CONTRAS	4/22/08 22:07	25 White	Μ	139	91 DOD normotensive
7894 CHEST ABDOMEN PELVIS	4/21/08 9:19	20 White	Μ	177	99 DOD normotensive
7897 CHEST ABDOMEN PELVIS	4/19/08 12:29	26 White	F	146	93 DOD normotensive
7902 CHEST ABDOMEN PELVIS	4/12/08 14:57	21 White	Μ	161	75 DOD normotensive
7905 CHEST ABDOMEN PELVIS	4/6/08 2:21	38 Hispanic	Μ	150	71 DOD normotensive
7914 CHEST ABDOMEN PELVIS	3/23/08 0:30	47 White	Μ	136	98 DOD normotensive
7917 CHEST ABDOMEN PELVIS	3/20/08 16:31	31 White	Μ	136	85 DOD normotensive
7919 CHEST ABDOMEN PELVIS	3/19/08 3:16	43 White	Μ	138	96 DOD normotensive
7920 CHEST ABDOMEN PELVIS	3/15/08 12:42	20 White	Μ	149	100 DOD normotensive
7922 CHEST ABDOMEN PELVIS	3/14/08 10:45	38 Hispanic	Μ	127	97 DOD normotensive
7923 CHEST ABDOMEN PELVIS	3/5/08 1:26	31 White	Μ	134	98 DOD normotensive
7925 CHEST ABDOMEN PELVIS	3/10/08 15:04	31 White	Μ	140	88 DOD normotensive
7927 CHEST ABDOMEN PELVIS	3/16/08 18:52	19 Hispanic	Μ	144	98 DOD normotensive
7929 CHEST ABDOMEN PELVIS	2/29/08 20:13	41 White	М	132	83 DOD normotensive
7930 CT THORAX W IV CONTRAS	2/26/08 22:00	34 White	F	151	84 DOD normotensive

7931 CHEST ABDOMEN PELVIS	2/25/08 13:40	43 Hispanic	Μ	154	78 DOD normotensive
7933 CHEST ABDOMEN PELVIS	2/26/08 10:51	43 White	Μ	156	87 DOD normotensive
7940 CHEST ABDOMEN PELVIS	2/19/08 23:30	30 White	Μ	158	119 DOD normotensive
7942 CHEST ABDOMEN PELVIS	2/10/08 2:24	25 White	Μ	150	93 DOD normotensive
7949 CT THORAX W IV CONTRAS	2/5/08 23:40	22 Black	Μ	145	85 DOD normotensive
7952 CHEST ABDOMEN PELVIS	2/2/08 9:16	39 White	F	117	117 DOD normotensive
7954 CHEST ABDOMEN PELVIS	2/1/08 23:26	45 White	Μ	152	87 DOD normotensive
7955 CHEST ABDOMEN PELVIS	2/1/08 12:32	21 Black	Μ	134	86 DOD normotensive
7960 CT THORAX W IV CONTRAS	3/12/08 20:06	19 White	Μ	154	80 DOD normotensive
7965 CHEST ABDOMEN PELVIS	1/20/08 8:27	21 White	Μ	115	82 DOD normotensive
7969 CHEST ABDOMEN PELVIS	1/18/08 0:17	36 White	Μ	132	96 DOD normotensive
7980 CHEST ABDOMEN PELVIS	1/1/08 17:48	41 Black	F	221	72 DOD normotensive
7990 CHEST ABDOMEN PELVIS	12/20/07 2:19	44 White	Μ	166	100 DOD normotensive
7992 CHEST ABDOMEN PELVIS	12/20/07 12:46	40 Black	F	131	67 DOD normotensive
7995 CHEST ABDOMEN PELVIS	12/17/07 1:34	38 White	F	143	85 DOD normotensive
7996 CHEST ABDOMEN PELVIS	12/15/07 3:11	25 White	Μ	121	68 DOD normotensive
8009 CHEST ABDOMEN PELVIS	5/11/08 10:04	24 White	Μ	149	76 DOD normotensive
8863 CHEST ABDOMEN PELVIS	12/13/07 5:43	21 White	Μ	140	96 DOD normotensive
8864 CHEST ABDOMEN PELVIS	12/13/07 6:30	44 White	Μ	145	88 DOD normotensive
8866 CHEST ABDOMEN PELVIS	12/12/07 4:38	36 Hispanic	Μ	140	97 DOD normotensive
8868 CHEST ABDOMEN PELVIS	12/11/07 3:42	38 Black	Μ	183	80 DOD normotensive
8873 CHEST ABDOMEN PELVIS	12/7/07 18:31	23 White	F	118	86 DOD normotensive
8875 CHEST ABDOMEN PELVIS	12/6/07 14:08	25 Black	Μ	150	88 DOD normotensive
8877 CHEST ABDOMEN PELVIS	12/4/07 18:15	21 White	Μ	122	94 DOD normotensive
8879 CHEST ABDOMEN PELVIS	12/3/07 10:30	19 White	F	125	84 DOD normotensive
8881 CHEST ABDOMEN PELVIS	12/1/07 17:23	45 Hispanic	Μ	139	51 DOD normotensive
8894 CHEST ABDOMEN PELVIS	11/11/07 18:04	18 White	Μ	159	78 DOD normotensive
8895 CHEST ABDOMEN PELVIS	11/11/07 2:46	19 White	Μ	157	84 DOD normotensive
8898 CHEST ABDOMEN PELVIS	11/1/07 14:22	44 White	F	127	85 DOD normotensive
8908 CHEST ABDOMEN PELVIS	10/22/07 3:09	48 White	Μ	100	51 DOD normotensive

8915 CHEST ABDOMEN PELVIS	10/7/07 18:23	33 White	М	142	70 DOD normotensive
8918 CHEST ABDOMEN PELVIS	10/10/07 4:28	36 Black	М	142	84 DOD normotensive
8923 CHEST ABDOMEN PELVIS	9/30/07 19:15	39 Other	М	120	71 DOD normotensive
8925 CHEST ABDOMEN PELVIS	9/29/07 11:29	25 White	F	130	100 DOD normotensive
8926 CT THORAX W IV CONTRAS	9/29/07 6:07	33 White	М	119	68 DOD normotensive
8934 CT THORAX W IV CONTRAS	9/22/07 19:53	36 White	М	154	85 DOD normotensive
8937 CHEST ABDOMEN PELVIS	9/21/07 9:33	36	F	149	78 DOD normotensive
8944 CHEST ABDOMEN PELVIS	9/19/07 19:26	45 White	М	145	76 DOD normotensive
8946 CHEST ABDOMEN PELVIS	9/17/07 19:00	25 White	М	155	80 DOD normotensive
8951 CHEST ABDOMEN PELVIS	9/16/07 2:14	20 White	М	136	84 DOD normotensive
8953 CHEST ABDOMEN PELVIS	9/12/07 9:19	20 White	F	149	85 DOD normotensive
9111 CHEST ABDOMEN PELVIS	9/9/07 19:30	24 White	М	140	87 DOD normotensive
9116 CHEST ABDOMEN PELVIS	9/5/07 22:08	28 Black	F	156	94 DOD normotensive
9118 CHEST ABDOMEN PELVIS	9/6/07 0:25	32 White	М	135	89 DOD normotensive
9120 CT THORAX W IV CONTRAS	9/3/07 5:31	30 White	М	96	43 DOD normotensive
9124 CHEST ABDOMEN PELVIS	9/1/07 23:48	49 White	F	144	78 DOD normotensive
9125 CHEST ABDOMEN PELVIS	9/1/07 18:31	29 Asian	М	120	92 DOD normotensive
9127 CHEST ABDOMEN PELVIS	8/31/07 19:42	23 Asian	F	125	66 DOD normotensive
9129 CHEST ABDOMEN PELVIS	8/27/07 19:04	24 Asian	М	134	86 DOD normotensive
9136 CHEST ABDOMEN PELVIS	8/23/07 22:41	19 White	М	188	99 DOD normotensive
9143 CHEST ABDOMEN PELVIS	8/19/07 1:07	36 White	М	140	92 DOD normotensive
9145 CHEST ABDOMEN PELVIS	8/16/07 16:19	22 White	М	181	76 DOD normotensive
9147 CHEST ABDOMEN PELVIS	8/15/07 16:41	20 White	М	157	65 DOD normotensive
9149 CHEST ABDOME PELVIS	8/13/07 14:19	25 White	М	121	59 DOD normotensive
9153 CHEST ABDOMEN PELVIS	8/12/07 8:15	19 White	М	122	103 DOD normotensive
9156 CHEST ABDOMEN PELVIS	8/11/07 16:10	45 White	М	175	71 DOD normotensive
9165 CT THORAX W IV CONTRAS	8/3/07 1:30	30 Other	М	159	71 DOD normotensive
9170 CHEST ABDOMEN PELVIS	7/30/07 2:48	18 White	М	118	66 DOD normotensive
9173 CHEST ABDOMEN PELVIS	7/28/07 19:51	33 White	М	173	90 DOD normotensive
9179 CHEST ABDOMEN PELVIS	7/27/07 0:34	49 White	М	162	70 DOD normotensive

9181 CHEST ABDOMEN PELVIS	7/24/07 4:08	48 White	М	170	82 DOD normotensive
9184 CHEST ABDOMEN PELVIS	7/21/07 20:04	18 White	М	149	82 DOD normotensive
9186 CHEST ABDOMEN PELVIS	7/22/07 17:19	38 White	М	138	85 DOD normotensive
9187 CHEST ABDOMEN PELVIS	7/15/07 19:25	45 White	М	169	76 DOD normotensive
9189 CT THORAX W IV CONTRAS	7/16/07 19:09	45 White	М	140	98 DOD normotensive
9191 CHEST ABDOMEN PELVIS	7/20/07 14:19	26 White	М	131	82 DOD normotensive
9194 CHEST ABDOMEN PELVIS	7/15/07 2:21	35 Asian	М	141	88 DOD normotensive
9195 CHEST ABDOMEN PELVIS	7/18/07 15:02	44 White	F	122	81 DOD normotensive
9200 CHEST ABDOMEN PELVIS	7/12/07 13:33	19 White	М	159	74 DOD normotensive
9203 CHEST ABDOMEN PELVIS	7/1/07 12:58	49 White	М	139	83 DOD normotensive
9214 CHEST ABDOMEN PELVIS	6/26/07 15:35	19 White	М	149	60 DOD normotensive
9216 CHEST ABDOMEN PELVIS	7/4/07 21:01	32 White	М	132	75 DOD normotensive
9217 CHEST ABDOMEN PELVIS	6/20/07 18:37	36 White	М	138	89 DOD normotensive
9218 CHEST ABDOMEN PELVIS	7/4/07 17:57	32 Other	F	156	75 DOD normotensive
9223 CT THORAX W IV CONTRAS	6/29/07 0:22	25 Black	М	154	78 DOD normotensive
9230 CT THORAX W IV CONTRAS	6/23/07 21:17	18	М	157	99 DOD normotensive
9232 CHEST ABDOMEN PELVIS	6/22/07 17:56	19 White	М	144	95 DOD normotensive
9234 CHEST ABDOMEN PELVIS	6/22/07 8:27	37 White	М	155	61 DOD normotensive
9235 CHEST ABDOMEN PELVIS	6/21/07 23:49	20 White	М	132	81 DOD normotensive
9237 CHEST ABDOMEN PELVIS	6/21/07 18:16	36	М	146	89 DOD normotensive
9244 CHEST ABDOMEN PELVIS	6/19/07 3:36	44 White	М	153	94 DOD normotensive
9250 CHEST ABDOMEN PELVIS	6/16/07 17:51	48 White	М	142	76 DOD normotensive
9251 CHEST ABDOMEN PELVIS	6/16/07 20:45	43 White	М	140	81 DOD normotensive
9258 CHEST ABDOMEN PELVIS	6/11/07 4:22	48 White	М	170	75 DOD normotensive
9260 CT THORAX W IV CONTRAS	6/7/07 10:44	21 Other	F	127	83 DOD normotensive
9261 CHEST ABDOMEN PELVIS	6/6/07 19:37	49 White	М	156	99 DOD normotensive
9267 CHEST ABDOMEN PELVIS	6/2/07 22:08	50 White	М	156	76 DOD normotensive
9268 CT THORAX W IV CONTRAS	5/31/07 14:53	30 White	М	137	92 DOD normotensive
9269 CHEST ABDOMEN PELVIS	5/31/07 21:13	43 White	М	138	75 DOD normotensive
9273 CT THORAX W IV CONTRAS	5/27/07 17:51	50 White	F	137	77 DOD normotensive

9275 CHEST ABDOMEN PELVIS	5/27/07 23:44	35 White	М	130	96 DOD normotensive
9279 CT THORAX W IV CONTRAS	5/21/07 23:14	23 White	Μ	151	91 DOD normotensive
9280 CHEST ABDOMEN PELVIS	5/20/07 10:42	21 White	F	128	75 DOD normotensive
9281 CHEST ABDOMEN PELVIS	5/20/07 17:38	19 White	Μ	135	100 DOD normotensive
9282 CHEST ABDOMEN PELVIS	5/20/07 3:52	44 White	Μ	131	90 DOD normotensive
9290 CHEST ABDOMEN PELVIS	5/14/07 17:28	19 White	Μ	148	88 DOD normotensive
9292 CT THORAX W IV CONTRAS	5/15/07 1:17	40 White	F	127	88 DOD normotensive
9293 CHEST ABDOMEN PELVIS	5/13/07 5:13	22 White	Μ	144	95 DOD normotensive
9297 CHEST ABDOMEN PELVIS	5/6/07 3:58	31 White	Μ	146	90 DOD normotensive
9301 CHEST ABDOMEN PELVIS	5/3/07 3:30	26 White	Μ	163	120 DOD normotensive
9307 CHEST ABDOMEN PELVIS	5/1/07 9:16	45 White	F	158	100 DOD normotensive
9324 CHEST ABDOMEN PELVIS	4/12/07 18:29	18 White	Μ	146	83 DOD normotensive
9335 CHEST ABDOMEN PELVIS	3/30/07 20:56	46 White	Μ	135	78 DOD normotensive
9337 CHEST ABDOMEN PELVIS	3/27/07 14:44	29 White	Μ	150	87 DOD normotensive
9357 CHEST ABDOMEN PELVIS	3/3/07 2:40	47 White	Μ	155	80 DOD normotensive
9362 CHEST ABDOMEN PELVIS	2/27/07 17:34	19 White	Μ	134	70 DOD normotensive
9429 CHEST ABDOMEN PELVIS	2/17/07 5:00	48 White	Μ	158	84 DOD normotensive
9434 CT THORAX W IV CONTRAS	2/10/07 17:02	39 White	Μ	142	64 DOD normotensive
9442 CT THORAX W IV CONTRAS	1/30/07 7:08	20 White	Μ	136	76 DOD normotensive
9445 CHEST ABDOMEN PELVIS	1/27/07 5:14	23 White	Μ	122	76 DOD normotensive
9452 CHEST ABDOMEN PELVIS	1/23/07 0:30	21 White	Μ	150	97 DOD normotensive
9458 CHEST ABDOMEN PELVIS	1/18/07 3:00	33 White	Μ	174	100 DOD normotensive
9463 CHEST ABDOMEN PELVIS	1/12/07 20:15	21 White	Μ	133	80 DOD normotensive
9485 CT ABDOMEN W IV CONTRA	12/14/06 12:34	43 Black	Μ	137	88 DOD normotensive
9487 CHEST ABDOMEN PELVIS	12/13/06 18:52	23 White	Μ	141	91 DOD normotensive
9497 CHEST ABDOMEN PELVIS	12/5/06 21:41	26 White	Μ	133	85 DOD normotensive
9498 CHEST ABDOMEN PELVIS	12/2/06 3:32	19 White	Μ	137	91 DOD normotensive
9499 CHEST ABDOMEN PELVIS	12/1/06 2:04	19 White	Μ	172	80 DOD normotensive
9514 CHEST ABDOMEN PELVIS	5/28/06 5:06	21 White	Μ	156	99 DOD normotensive
9515 CHEST ABDOMEN PELVIS	5/28/06 14:14	45 White	Μ	136	80 DOD normotensive

9521 CHEST ABDOMEN PELVIS	5/24/06 12:35	35 White	Μ	152	84 DOD normotensive
9524 CHEST ABDOMEN PELVIS	5/24/06 7:25	18 White	F	160	95 DOD normotensive
9525 CHEST ABDOMEN PELVIS	5/24/06 0:56	31 White	Μ	120	83 DOD normotensive
9528 CT ABDOMEN W IV CONTRA	5/16/06 2:20	34 Hispanic	Μ	130	100 DOD normotensive
9533 CHEST ABDOMEN PELVIS	5/9/06 20:21	36 White	Μ	139	87 DOD normotensive
9534 chest abdomen pelvis	5/9/06 8:01	27 White	Μ	132	74 DOD normotensive
9540 CHEST ABDOMEN PELVIS	5/7/06 21:29	49 White	F	143	89 DOD normotensive
9541 CHEST ABDOMEN PELVIS	5/7/06 17:11	47 Hispanic	Μ	126	78 DOD normotensive
9542 CHEST ABDOMEN PELVIS	5/7/06 23:01	47 White	Μ	149	98 DOD normotensive
9556 CHEST ABDOMEN PELVIS	4/7/06 18:52	30 White	Μ	120	59 DOD normotensive
10543 CT THORAX W IV CONTRAST	7/2/09 23:06	48 White	Μ	160	88 DOD normotensive
10546 CT THORAX W IV CONTRAST	8/12/09 19:12	47 White	F	141	84 DOD normotensive
10552 CT THORAX W IV CONTRAST	8/19/09 0:32	25 White	Μ	144	60 DOD normotensive
10815 CT THORAX W IV CONTRAST	9/9/09 10:36	35 White	Μ	123	88 DOD normotensive
10820 CT ABDOMEN W IV CONTRAST	9/29/09 17:10	35 White	Μ	153	93 DOD normotensive
10824 CT ABDOMEN W IV CONTRAST	10/18/09 17:53	39 White	Μ	159	84 DOD normotensive
10825 CT THORAX W IV CONTRAST	10/19/09 20:15	36 White	Μ	154	97 DOD normotensive
10883 CT THORAX W IV CONTRAST	7/21/09 0:57	40 White	Μ	144	74 DOD normotensive
10886 CT THORAX W IV CONTRAST	7/19/09 22:09	22 Hispanic	Μ	145	85 DOD normotensive
10889 CT THORAX W IV CONTRAST	7/24/09 18:18	46 Black	Μ	165	78 DOD normotensive
10891 CT THORAX W IV CONTRAST	7/25/09 6:30	24 Black	Μ	140	84 DOD normotensive
10894 CT THORAX W IV CONTRAST	12/10/09 2:45	31 Other	Μ	147	80 DOD normotensive
10928 CT THORAX W IV CONTRAST	7/28/09 12:06	31 White	Μ	197	83 DOD normotensive
10932 CT THORAX W IV CONTRAST	7/31/09 12:43	30 Black	Μ	135	79 DOD normotensive
10934 CT THORAX W IV CONTRAST	1/5/10 23:30	41 Hispanic	Μ	167	65 DOD normotensive
10937 CT ABDOMEN W IV CONTRAST	2/1/10 16:29	45 White	Μ	138	94 DOD normotensive
10940 CT ABDOMEN W IV CONTRAST	2/13/10 16:20	50 White	Μ	125	58 DOD normotensive
11126 CT THORAX W IV CONTRAST	3/28/10 9:11	44 White	Μ	127	78 DOD normotensive
11312 CT THORAX WO IV CONTRAST	1/5/10 0:00	48 White	F	120	95 DOD normotensive
11317 CT THORAX W IV CONTRAST	11/26/09 15:42	46 White	Μ	147	59 DOD normotensive
11318 CT THORAX W IV CONTRAST	11/26/09 14:33	24 White	М	135	72 DOD normotensive
---------------------------------	----------------	----------	---	-----	----------------------
11319 CT ABDOMEN W IV CONTRAST	11/27/09 18:19	21 White	М	146	72 DOD normotensive
11320 CT THORAX W IV CONTRAST	10/1/09 10:45	20 White	F	129	87 DOD normotensive
11323 CT THORAX W IV CONTRAST	2/26/10 9:59	32 White	М	147	89 DOD normotensive
11324 CT THORAX WO IV CONTRAST	7/4/10 17:27	49 White	М	124	86 DOD normotensive
11326 CT THORAX W IV CONTRAST	11/24/09 18:53	24 Black	М	142	98 DOD normotensive
11368 CT THORAX W IV CONTRAST	6/1/08 13:06	28 White	М	156	85 DOD normotensive
11371 CT THORAX W IV CONTRAST	12/11/07 3:42	38 Black	М	183	80 DOD normotensive
11375 CT THORAX W IV CONTRAST	9/5/07 22:08	28 Black	F	156	94 DOD normotensive
11387 CT ABDOMEN W IV CONTRAST	4/17/10 17:58	22 White	М	164	92 DOD normotensive
11388 CT ABDOMEN W IV CONTRAST	4/18/10 11:24	35 Asian	F	149	72 DOD normotensive
11402 CT ABDOMEN W IV CONTRAST	4/23/10 20:42	50 White	М	160	79 DOD normotensive
11440 CT THORAX W IV CONTRAST	5/1/10 8:26	46 White	М	186	81 DOD normotensive
11524 CT ABDOMEN W IV CONTRAST	9/4/10 16:58	21 White	М	156	65 DOD normotensive
11569 CT THORAX W IV CONTRAST	5/27/10 11:49	38 White	F	137	80 DOD normotensive
11576 CT ABDOMEN W IV CONTRAST	6/1/10 16:13	23 White	М	146	88 DOD normotensive
11577 CT ABDOMEN W IV CONTRAST	6/6/10 22:24	45 White	F	145	80 DOD normotensive
11580 CT ABDOMEN W IV CONTRAST	6/12/10 23:15	22 White	М	143	80 DOD normotensive
11602 ABDOMEN	11/28/04 18:56	22 White	М	158	96 DOD normotensive
11624 CT ABDOMEN WO IV CONTRAST	10/26/09 18:36	29 White	М	165	83 DOD normotensive
11627 CT ABDOMEN W IV CONTRAST	9/13/09 0:35	37 White	М	145	68 DOD normotensive
11634 CT THORAX W IV CONTRAST	8/21/09 13:49	18 White	М	128	75 DOD normotensive
11635 CT THORAX W IV CONTRAST	8/21/09 14:23	19 White	М	149	77 DOD normotensive
11649 CHEST ABDOMEN PELVIS	9/24/03 18:21	18 White	М	176	87 DOD normotensive
11652 ABDOMEN	10/12/02 1:39	20 White	М	138	89 DOD normotensive
12061 CHEST ABDOMEN PELVIS	3/21/06 20:36	24 White	М	177	89 DOD normotensive
12064 CT THORAX W IV CONTRAS	3/14/06 13:07	49 White	F	154	72 DOD normotensive
12070 CHEST ABDOMEN PELVIS	3/7/06 5:24	41 White	М	175	100 DOD normotensive
12073 CHEST ABDOMEN PELVIS	3/5/06 8:29	44 White	М	132	93 DOD normotensive
12079 CHEST ABDOMEN PELVIS	2/26/06 3:34	23 White	М	149	90 DOD normotensive

	2/20/06 20.28	11 \\/b:+a	N /	150	
12415 CT THORAX W IV CONTRAS	3/30/06 20:28	44 White	M	152	89 DOD normotensive
12418 CT ABDOMEN W IV CONTRAST	2/5/06 21:30	46 White	Μ	186	98 DOD normotensive
12434 CHEST ABDOMEN PELVIS	1/1/06 14:49	23 White	Μ	149	100 DOD normotensive
12602 CHEST ABDOMEN PELVIS	1/18/06 18:40	18 White	М	138	100 DOD normotensive
12776 CHEST ABDOMEN PELVIS	1/8/06 13:59	32 White	Μ	137	74 DOD normotensive
12799 CHEST ABDOMEN PELVIS	11/26/05 1:44	39 White	Μ	143	97 DOD normotensive
13041 CHEST ABDOMEN PELVIS	1/25/06 19:58	29	Μ	126	97 DOD normotensive
13045 CHEST ABDOMEN PELVIS	1/22/06 8:53	22 White	Μ	128	97 DOD normotensive
14515 CT THORAX W IV CONTRAST	6/12/07 1:37	47 Black	Μ	197	82 DOD normotensive
15426 CT ABDOMEN W IV CONTRAST	4/9/09 15:11	42 White	Μ	134	65 DOD normotensive
15432 CT THORAX W IV CONTRAST	10/5/08 2:19	31 White	Μ	135	88 DOD normotensive
15498 CT THORAX W IV CONTRAST	5/23/06 10:58	35 White	М	189	78 DOD normotensive
15642 CT ABDOMEN WO IV CONTRAST	11/7/10 1:12	49 Other	Μ	129	87 DOD normotensive
15740 CHEST ABDOMEN PELVIS	6/24/03 12:56	24 White	Μ	144	61 DOD normotensive
15755 CHEST	10/10/04 20:16	46 White	Μ	141	93 DOD normotensive
15758 CHEST ABDOMEN PELVIS	6/16/04 12:47	43 White	Μ	157	90 DOD normotensive
16017 CT THORAX W IV CONTRAST	6/30/09 0:38	27 White	Μ	147	67 DOD normotensive
16022 CT THORAX W IV CONTRAST	8/8/09 10:34	40 White	М	141	81 DOD normotensive
16024 CT ABDOMEN W IV CONTRAST	8/9/09 20:26	46 White	Μ	153	75 DOD normotensive
16025 CT ABDOMEN W IV CONTRAST	8/15/09 15:52	28 White	F	124	95 DOD normotensive
16026 CT ABDOMEN W IV CONTRAST	8/16/09 10:43	30 White	F	128	89 DOD normotensive
16027 CT ABDOMEN W IV CONTRAST	8/18/09 3:37	24 White	М	155	68 DOD normotensive
16029 CT ABDOMEN W IV CONTRAST	6/20/10 15:48	49 White	F	138	73 DOD normotensive
16034 CT ABDOMEN W IV CONTRAST	6/2/10 16:39	19 White	М	160	55 DOD normotensive
16035 CT ABDOMEN W IV CONTRAST	5/8/10 13:05	27 White	F	165	79 DOD normotensive
16038 CT ABDOMEN W IV CONTRAST	4/29/10 18:02	19 White	F	141	84 DOD normotensive
16044 CT ABDOMEN W IV CONTRAST	4/19/10 11:18	25 White	М	122	88 DOD normotensive
16046 CT ABDOMEN W IV CONTRAST	4/15/10 20:38	29 Black	М	150	79 DOD normotensive
16047 CT ABDOMEN W IV CONTRAST	4/15/10 13:04	27 White	М	158	62 DOD normotensive
16048 CT ABDOMEN W IV CONTRAST	4/15/10 13:42	29 White	М	144	94 DOD normotensive

	4/12/10 10.52	12 Dlask	-	140	
16049 CT ABDOMEN W IV CONTRAST	4/12/10 10:52	43 Black	F	148	97 DOD normotensive
16058 CT ABDOMEN W IV CONTRAST	5/24/10 12:30	24 White	M	135	75 DOD normotensive
16060 CT ABDOMEN W IV CONTRAST	5/15/10 15:03	32 White	F	137	88 DOD normotensive
16061 CT ABDOMEN W IV CONTRAST	5/14/10 20:23	24 White	Μ	129	40 DOD normotensive
16067 CT ABDOMEN W IV CONTRAST	3/6/10 6:57	26 White	Μ	135	85 DOD normotensive
16068 CT ABDOMEN W IV CONTRAST	2/28/10 5:39	40 White	F	131	78 DOD normotensive
16069 CT ABDOMEN W IV CONTRAST	2/20/10 13:02	20 Hispanic	Μ	134	78 DOD normotensive
16070 CT ABDOMEN W IV CONTRAST	8/15/09 12:34	29 White	Μ	144	89 DOD normotensive
16071 CT ABDOMEN W IV CONTRAST	2/24/10 21:58	50 White	Μ	180	94 DOD normotensive
16129 CT ABDOMEN W IV CONTRAST	2/19/10 18:20	48 Black	Μ	168	68 DOD normotensive
16131 CT ABDOMEN W IV CONTRAST	2/11/10 0:10	18 White	Μ	125	85 DOD normotensive
16134 CT ABDOMEN W IV CONTRAST	1/31/10 15:27	38 White	М	162	88 DOD normotensive
16139 CT ABDOMEN W IV CONTRAST	1/20/10 15:17	49 White	F	146	84 DOD normotensive
16140 CT ABDOMEN W IV CONTRAST	1/10/10 20:42	46 White	М	125	79 DOD normotensive
16141 CT ABDOMEN W IV CONTRAST	1/10/10 1:01	29 White	М	178	89 DOD normotensive
16153 CT ABDOMEN W IV CONTRAST	12/31/09 21:27	23 White	М	163	93 DOD normotensive
16162 CT ABDOMEN W IV CONTRAST	12/26/09 7:43	18 White	F	134	97 DOD normotensive
16173 CT ABDOMEN W IV CONTRAST	11/21/09 0:30	19 Black	F	145	88 DOD normotensive
16174 CT ABDOMEN W IV CONTRAST	11/18/09 10:23	19 White	М	142	85 DOD normotensive
16341 CHEST ABDOMEN PELVIS	10/17/02 17:30	36 White	F	121	80 DOD normotensive
16878 CT THORAX W IV CONTRAST	8/26/06 8:26	23 White	М	148	81 DOD normotensive
16879 CT THORAX W IV CONTRAST	10/29/06 1:05	44 Black	М	130	98 DOD normotensive
16921 CT ABDOMEN W IV CONTRAST	6/12/06 10:58	38 White	М	143	82 DOD normotensive
16927 CT THORAX W IV CONTRAST	4/9/11 18:15	31 White	F	126	89 DOD normotensive
16928 CT ABDOMEN PELVIS W IV CONTRAS	4/2/11 20:02	46 White	М	199	86 DOD normotensive
16930 CT THORAX W IV CONTRAST	2/5/11 14:08	31 White	М	127	84 DOD normotensive
16931 CT ABDOMEN PELVIS W IV CONTRAS	1/30/11 0:52	48 White	М	149	68 DOD normotensive
16933 CT THORAX W IV CONTRAST	1/1/11 21:40	29 White	F	132	56 DOD normotensive
16944 CT ABDOMEN W IV CONTRAST	10/23/10 1:34	42 White	М	152	93 DOD normotensive
16946 CT ABDOMEN W IV CONTRAST	9/27/10 1:22	24 White	М	169	83 DOD normotensive

16947 CT THORAX W IV CONTRAST	9/7/10 23:35	46 White M	129	88 DOD normotensive
17034 CT THORAX W IV CONTRAST	3/24/07 6:54	22 White M	150	89 DOD normotensive
17036 CT ABDOMEN W IV CONTRAST	1/4/10 23:46	46 White M	123	83 DOD normotensive
17067 CT ABDOMEN W IV CONTRAST	7/14/10 13:10	46 Hispanic F	132	85 DOD normotensive
17077 CT ABDOMEN W IV CONTRAST	2/28/10 7:52	48 White M	130	80 DOD normotensive
17438 CT THORAX W IV CONTRAST	7/21/10 10:15	26 White M	131	91 DOD normotensive
17445 CT THORAX W IV CONTRAST	8/31/10 13:44	40 Hispanic M	136	76 DOD normotensive
17462 CT THORAX W IV CONTRAST	10/29/06 20:36	47 White M	131	77 DOD normotensive
17515 CT ABDOMEN W IV CONTRAST	11/8/05 20:20	48 White M	141	86 DOD normotensive
17556 CT ABDOMEN W IV CONTRAST	10/22/05 8:40	20 M	136	91 DOD normotensive
17576 CT ABDOMEN W IV CONTRAST	3/6/05 8:46	40 White F	127	93 DOD normotensive
17638 CT ABDOMEN W IV CONTRAST	8/17/05 22:23	49 White F	140	100 DOD normotensive
17644 CT ABDOMEN W IV CONTRAST	9/15/05 1:34	32 White M	149	80 DOD normotensive
19974 CT ABDOMEN PELVIS W IV CONTRAS	8/9/11 18:13	33 White M	125	76 DOD normotensive
20454 CT THORAX W IV CONTRAST	5/1/11 19:10	49 American I F	120	73 DOD normotensive
20455 CT THORAX W IV CONTRAST	5/22/11 5:59	33 White M	122	98 DOD normotensive
21328 CT THORAX W IV CONTRAST	7/30/10 21:58	31 White M	134	77 DOD normotensive
21329 CT THORAX W IV CONTRAST	7/28/10 10:33	48 White F	142	68 DOD normotensive
21331 CT THORAX W IV CONTRAST	7/25/10 22:34	34 White M	126	81 DOD normotensive
21332 CT THORAX W IV CONTRAST	7/23/10 20:37	19 White F	132	96 DOD normotensive
21333 CT THORAX W IV CONTRAST	7/22/10 10:45	40 White F	125	83 DOD normotensive
21334 CT THORAX W IV CONTRAST	7/22/10 22:18	41 White M	139	60 DOD normotensive
21336 CT THORAX W IV CONTRAST	7/22/10 5:59	43 White M	123	86 DOD normotensive
21340 CT THORAX W IV CONTRAST	7/4/10 23:08	43 White F	141	91 DOD normotensive
21341 CT THORAX W IV CONTRAST	7/4/10 18:50	37 White F	137	80 DOD normotensive
21344 CT THORAX W IV CONTRAST	7/2/10 17:49	23 White M	140	75 DOD normotensive
21502 CT THORAX W IV CONTRAST	4/5/04 8:17	42 White F	137	84 DOD normotensive
21510 CT ABDOMEN W IV CONTRAST	6/6/10 22:24	45 White F	145	80 DOD normotensive
21534 CT THORAX W IV CONTRAST	4/4/09 20:36	50 Black F	204	68 DOD normotensive
21536 CT THORAX W IV CONTRAST	8/21/08 19:59	47 White M	150	92 DOD normotensive

21774 CT THORAX W IV CONTRAST	8/14/10 1:39	26 White	Μ	176	85 DOD normotensive
21842 CT THORAX W IV CONTRAST	4/10/04 3:22	18 White	F	140	80 DOD normotensive
21885 CT ABDOMEN W IV CONTRAST	6/30/10 9:27	20 White	F	127	80 DOD normotensive
21887 CT ABDOMEN W IV CONTRAST	6/29/10 23:26	26 White	М	135	77 DOD normotensive
21896 CT ABDOMEN W IV CONTRAST	9/19/09 4:13	22 White	М	144	75 DOD normotensive
21903 CT ABDOMEN W IV CONTRAST	10/14/09 10:58	45 White	F	133	82 DOD normotensive
21905 CT ABDOMEN W IV CONTRAST	10/23/09 7:09	32 Black	Μ	162	98 DOD normotensive
21906 CT ABDOMEN W IV CONTRAST	10/25/09 3:12	30 White	F	129	88 DOD normotensive
21908 CT ABDOMEN W IV CONTRAST	10/27/09 14:43	41 White	М	133	76 DOD normotensive
21911 CT ABDOMEN W IV CONTRAST	11/9/09 4:03	33 White	М	138	98 DOD normotensive
21943 CT ABDOMEN PELVIS W IV CONTRAS	9/11/11 21:15	49 White	F	155	75 DOD normotensive
22712 CT THORAX W IV CONTRAST	7/24/10 17:29	19 White	М	138	90 DOD normotensive
22735 CT THORAX W IV CONTRAST	8/6/10 20:32	35 White	F	127	81 DOD normotensive
22756 CT THORAX W IV CONTRAST	8/17/10 19:57	40 White	М	129	72 DOD normotensive
23081 CT THORAX W IV CONTRAST	9/26/11 20:49	20 White	F	137	96 DOD normotensive
23085 CT THORAX W IV CONTRAST	7/28/05 22:25	30 White	М	127	98 DOD normotensive
23566 CT THORAX WO IV CONTRAST	7/14/09 18:02	21 White	М	171	97 DOD normotensive
23567 CT ABDOMEN W IV CONTRAST	4/10/10 23:41	19 White	F	121	88 DOD normotensive
23575 CT THORAX W IV CONTRAST	6/22/09 20:00	42 White	F	142	68 DOD normotensive
23590 CT THORAX W IV CONTRAST	3/3/10 19:11	34 White	М	131	98 DOD normotensive
23591 CT ABDOMEN W IV CONTRAST	12/20/09 2:18	22 White	F	122	84 DOD normotensive
23598 CT THORAX W IV CONTRAST	6/26/10 21:26	22 White	М	152	83 DOD normotensive
23602 CT ABDOMEN PELVIS W IV CONTRAS	4/23/11 2:21	21 White	М	134	98 DOD normotensive
23603 CT ABDOMEN PELVIS W IV CONTRAS	4/23/11 22:20	43 White	F	145	93 DOD normotensive
23607 CT ABDOMEN PELVIS W IV CONTRAS	4/12/11 17:13	28 Black	М	150	63 DOD normotensive
23608 CT ABDOMEN PELVIS W IV CONTRAS	4/9/11 2:56	37 White	М	132	89 DOD normotensive
23667 CT ABDOMEN PELVIS W IV CONTRAS	9/25/11 1:51	40 White	М	144	85 DOD normotensive
23668 CT ABDOMEN PELVIS W IV CONTRAS	9/24/11 15:04	23 White	F	120	61 DOD normotensive
23684 CT THORAX W IV CONTRAST	9/24/11 18:03	42 White	F	127	83 DOD normotensive
23692 CT THORAX W IV CONTRAST	9/13/11 1:46	21 White	М	149	84 DOD normotensive

23693 CT THORAX W IV CONTRAST	9/11/11 21:46	46 White	М	182	84 DOD normotensive
23696 CT THORAX W IV CONTRAST	9/8/11 17:45	26 White	Μ	153	58 DOD normotensive
23700 CT THORAX W IV CONTRAST	9/4/11 23:26	29 White	Μ	144	68 DOD normotensive
23702 CT THORAX W IV CONTRAST	9/4/11 21:21	27 White	Μ	144	56 DOD normotensive
23703 CT THORAX W IV CONTRAST	9/3/11 20:37	37 White	Μ	139	84 DOD normotensive
23711 CT THORAX W IV CONTRAST	8/23/11 15:28	22 White	Μ	148	91 DOD normotensive
23713 CT THORAX W IV CONTRAST	8/21/11 12:15	40 White	Μ	159	94 DOD normotensive
23717 CT THORAX W IV CONTRAST	8/17/11 11:21	41 White	Μ	120	58 DOD normotensive
23718 CT THORAX W IV CONTRAST	8/16/11 8:38	39 White	Μ	139	72 DOD normotensive
23724 CT THORAX W IV CONTRAST	8/3/11 11:40	19 Black	Μ	203	88 DOD normotensive
23729 CT THORAX W IV CONTRAST	7/27/11 18:09	35 White	Μ	140	76 DOD normotensive
23736 CT THORAX W IV CONTRAST	7/20/11 21:20	34 White	Μ	125	92 DOD normotensive
23738 CT THORAX W IV CONTRAST	7/18/11 16:40	21 White	F	131	98 DOD normotensive
23739 CT THORAX W IV CONTRAST	7/17/11 4:10	22 White	Μ	184	58 DOD normotensive
23781 CT ABDOMEN W IV CONTRAST	9/29/09 0:19	27 White	Μ	144	86 DOD normotensive
23787 CT ABDOMEN W IV CONTRAST	11/10/09 8:53	39 White	Μ	142	83 DOD normotensive
23788 CT ABDOMEN W IV CONTRAST	9/29/09 16:20	41 White	Μ	132	86 DOD normotensive
23801 CT ABDOMEN W IV CONTRAST	6/6/10 6:18	23 White	Μ	141	87 DOD normotensive
23840 CT ABDOMEN W IV CONTRAST	8/15/09 15:02	38 White	F	120	84 DOD normotensive
23861 CT THORAX W IV CONTRAST	6/19/11 5:36	23 White	Μ	141	88 DOD normotensive
23865 CT THORAX W IV CONTRAST	7/16/11 20:51	30 White	Μ	135	57 DOD normotensive
23868 CT THORAX W IV CONTRAST	7/16/11 15:04	42 White	Μ	130	64 DOD normotensive
23876 CT THORAX W IV CONTRAST	5/8/11 23:47	48 White	Μ	122	100 DOD normotensive
23880 CT THORAX W IV CONTRAST	7/3/11 21:51	48 White	F	158	80 DOD normotensive
23881 CT THORAX W IV CONTRAST	7/2/11 6:21	49 White	Μ	123	95 DOD normotensive
23882 CT THORAX W IV CONTRAST	7/2/11 4:48	19 Black	Μ	166	85 DOD normotensive
23883 CT THORAX W IV CONTRAST	7/2/11 7:29	47 White	Μ	141	96 DOD normotensive
23884 CT THORAX W IV CONTRAST	6/30/11 14:02	30 White	М	141	58 DOD normotensive
23885 CT THORAX W IV CONTRAST	6/28/11 8:55	22 White	М	146	97 DOD normotensive
23898 CT ABDOMEN PELVIS W IV CONTRAS	6/27/11 1:28	21 Other	М	129	88 DOD normotensive

23900 CT THORAX W IV CONTRAST	6/19/11 12:05	20 White	М	152	94 DOD normotensive
23901 CT ABDOMEN PELVIS W IV CONTRAS	6/16/11 22:17	38 White	Μ	145	61 DOD normotensive
23920 CT ABDOMEN PELVIS W IV CONTRAS	6/9/11 10:46	42 White	Μ	146	73 DOD normotensive
23924 CT ABDOMEN PELVIS W IV CONTRAS	6/7/11 14:37	18 White	F	141	66 DOD normotensive
23925 CT ABDOMEN PELVIS W IV CONTRAS	6/5/11 23:27	47 White	Μ	180	81 DOD normotensive
23928 CT ABDOMEN PELVIS W IV CONTRAS	6/2/11 23:20	18 White	Μ	140	87 DOD normotensive
23930 CT ABDOMEN PELVIS W IV CONTRAS	5/26/11 13:56	22 White	Μ	160	90 DOD normotensive
23933 CT ABDOMEN PELVIS W IV CONTRAS	5/13/11 9:56	43 White	Μ	150	76 DOD normotensive
23934 CT ABDOMEN PELVIS W IV CONTRAS	5/8/11 20:26	22 White	М	134	78 DOD normotensive
24274 CT ABDOMEN W IV CONTRAST	8/1/04 20:31	39 White	F	127	98 DOD normotensive
24279 CT ABDOMEN W IV CONTRAST	9/12/04 1:55	44 White	F	151	89 DOD normotensive
24293 CT THORAX W IV CONTRAST	10/16/04 9:14	40 Black	М	162	87 DOD normotensive
24294 CT ABDOMEN W IV CONTRAST	9/15/04 18:32	49 White	М	133	93 DOD normotensive
24298 CT THORAX W IV CONTRAST	8/7/04 15:17	26 White	Μ	137	92 DOD normotensive
24300 CT THORAX W IV CONTRAST	8/20/04 14:42	46 White	Μ	146	76 DOD normotensive
24302 CT ABDOMEN W IV CONTRAST	9/4/04 2:13	21 White	Μ	136	79 DOD normotensive
24306 CT ABDOMEN W IV CONTRAST	9/18/04 22:40	29 White	Μ	150	80 DOD normotensive
24310 CT ABDOMEN W IV CONTRAST	8/8/04 22:50	45 White	Μ	143	74 DOD normotensive
24311 CT ABDOMEN W IV CONTRAST	8/7/04 20:44	42 White	Μ	138	89 DOD normotensive
24314 CT THORAX W IV CONTRAST	9/7/04 23:02	42 White	Μ	136	98 DOD normotensive
24315 CT ABDOMEN W IV CONTRAST	10/11/04 11:07	47	Μ	122	46 DOD normotensive
24316 CT THORAX W IV CONTRAST	10/9/04 3:47	24 Black	Μ	152	89 DOD normotensive
24321 CT ABDOMEN W IV CONTRAST	2/13/05 7:44	30 Black	Μ	148	86 DOD normotensive
24325 CT THORAX W IV CONTRAST	3/16/05 22:50	35 White	Μ	146	85 DOD normotensive
24327 CT THORAX W IV CONTRAST	4/17/05 13:51	46 White	Μ	131	60 DOD normotensive
24329 CT THORAX W IV CONTRAST	2/19/05 1:19	24 Other	Μ	178	65 DOD normotensive
24330 CT ABDOMEN W IV CONTRAST	8/14/04 13:34	19 White	F	126	87 DOD normotensive
24333 CT ABDOMEN W IV CONTRAST	8/14/04 2:29	21 White	Μ	159	89 DOD normotensive
24339 CT THORAX W IV CONTRAST	1/11/05 10:20	37	F	132	88 DOD normotensive
24341 CT THORAX W IV CONTRAST	1/29/05 22:21	30 Black	М	146	90 DOD normotensive

24342 CT ABDOMEN W IV CONTRAST	3/4/05 5:20	29 White	М	123	77 DOD normotensive
24343 CT ABDOMEN W IV CONTRAST	4/19/05 19:20	36 White	Μ	145	96 DOD normotensive
24346 CT THORAX W IV CONTRAST	11/6/04 14:44	37 White	Μ	132	80 DOD normotensive
24366 CT THORAX W IV CONTRAST	4/11/05 5:27	19 White	Μ	144	96 DOD normotensive
24370 CT THORAX W IV CONTRAST	10/17/04 14:04	43 White	F	122	76 DOD normotensive
24372 CT THORAX W IV CONTRAST	1/23/05 15:20	40 White	Μ	150	55 DOD normotensive
24378 CT THORAX W IV CONTRAST	2/18/05 20:42	47 White	Μ	144	68 DOD normotensive
24381 CT ABDOMEN WO IV CONTRAST	3/25/05 17:14	43 White	F	123	98 DOD normotensive
24395 CT THORAX W IV CONTRAST	10/22/04 23:24	33 White	Μ	130	82 DOD normotensive
24400 CT THORAX W IV CONTRAST	12/24/04 19:12	32 White	Μ	149	97 DOD normotensive
24428 CT ABDOMEN W IV CONTRAST	6/3/05 4:48	42 White	Μ	145	81 DOD normotensive
24432 CT THORAX W IV CONTRAST	7/26/05 17:22	27 White	Μ	182	91 DOD normotensive
24439 CT THORAX W IV CONTRAST	6/19/05 6:12	20 White	Μ	140	98 DOD normotensive
24445 CT ABDOMEN W IV CONTRAST	5/10/05 11:00	19 White	Μ	136	89 DOD normotensive
24448 CT ABDOMEN W IV CONTRAST	7/23/05 3:57	28 White	F	128	73 DOD normotensive
24450 CT ABDOMEN W IV CONTRAST	6/26/05 11:00	20 Black	Μ	150	73 DOD normotensive
24459 CT ABDOMEN W IV CONTRAST	7/24/05 15:31	32 White	Μ	133	87 DOD normotensive
24460 CT THORAX W IV CONTRAST	7/29/05 0:17	19 White	Μ	123	84 DOD normotensive
24462 CT ABDOMEN W IV CONTRAST	6/9/05 22:14	43 White	F	187	82 DOD normotensive
24464 CT THORAX W IV CONTRAST	5/17/05 0:40	37 White	Μ	173	83 DOD normotensive
24465 CT ABDOMEN W IV CONTRAST	6/13/05 19:32	19 White	Μ	144	84 DOD normotensive
24466 CT ABDOMEN W IV CONTRAST	6/26/05 21:21	23	Μ	147	92 DOD normotensive
24472 CT ABDOMEN W IV CONTRAST	7/6/05 22:43	31 White	Μ	142	62 DOD normotensive
24473 CT ABDOMEN W IV CONTRAST	7/18/05 0:01	45 White	Μ	133	87 DOD normotensive
24476 CT THORAX W IV CONTRAST	7/27/05 15:27	25 White	Μ	129	97 DOD normotensive
24483 CT ABDOMEN W IV CONTRAST	7/27/05 14:11	46 White	F	164	85 DOD normotensive
24484 CT ABDOMEN W IV CONTRAST	7/29/05 10:20	49 White	F	131	69 DOD normotensive
24485 CT ABDOMEN W IV CONTRAST	4/30/05 22:53	19 White	F	144	97 DOD normotensive
24488 CT THORAX W IV CONTRAST	5/13/05 21:04	33 Black	Μ	154	89 DOD normotensive
24490 CT THORAX W IV CONTRAST	6/10/05 4:05	20 Black	Μ	155	86 DOD normotensive

24491 CT THORAX W IV CONTRAST	6/22/05 9:24	22 White	Μ	154	83 DOD normotensive	
24496 CT THORAX W IV CONTRAST	8/2/06 8:46	21 Black	Μ	121	77 DOD normotensive	
24519 CT THORAX W IV CONTRAST	11/17/06 20:58	44 White	Μ	141	78 DOD normotensive	
24522 CT THORAX W IV CONTRAST	10/3/06 11:59	38 White	F	143	94 DOD normotensive	
24534 CT THORAX W IV CONTRAST	4/27/08 21:26	20 White	Μ	159	97 DOD normotensive	
24538 CT THORAX W IV CONTRAST	8/16/06 8:42	20 White	Μ	146	97 DOD normotensive	
24540 CT THORAX W IV CONTRAST	9/27/06 17:44	18 White	Μ	131	99 DOD normotensive	
24543 CT ABDOMEN W IV CONTRAST	10/13/06 22:39	28 White	М	135	74 DOD normotensive	
24545 CT THORAX W IV CONTRAST	10/3/06 19:26	46 White	Μ	152	81 DOD normotensive	
24546 CT ABDOMEN W IV CONTRAST	9/4/06 10:46	40 White	Μ	145	96 DOD normotensive	
24547 CT THORAX W IV CONTRAST	10/7/06 20:53	43 White	Μ	174	97 DOD normotensive	
24548 CT ABDOMEN W IV CONTRAST	9/2/06 3:46	50 White	Μ	154	82 DOD normotensive	
24562 CT ABDOMEN W IV CONTRAST	10/15/06 7:29	27 White	Μ	147	92 DOD normotensive	
24564 CT THORAX W IV CONTRAST	8/3/06 19:30	40 White	Μ	155	90 DOD normotensive	
24569 CT THORAX W IV CONTRAST	11/3/06 13:27	23	Μ	146	72 DOD normotensive	
24576 CT THORAX W IV CONTRAST	8/3/06 18:04	21 White	Μ	140	82 DOD normotensive	
24579 CT THORAX W IV CONTRAST	8/13/06 16:59	21 Black	М	169	61 DOD normotensive	
24602 CT THORAX W IV CONTRAST	9/9/06 19:58	41 White	М	175	82 DOD normotensive	
24608 CT ABDOMEN W IV CONTRAST	10/5/06 21:36	22 White	Μ	133	78 DOD normotensive	
24616 CT THORAX W IV CONTRAST	11/7/06 10:24	43 White	Μ	183	99 DOD normotensive	
24620 CT ABDOMEN W IV CONTRAST	1/6/07 0:27	21 White	Μ	120	96 DOD normotensive	
24622 CT THORAX W IV CONTRAST	3/22/07 22:49	49 White	Μ	135	88 DOD normotensive	
24632 CT THORAX W IV CONTRAST	9/8/06 15:16	29 Black	Μ	141	90 DOD normotensive	
24633 CT THORAX W IV CONTRAST	8/21/06 23:48	47 White	Μ	151	99 DOD normotensive	
24635 CT THORAX W IV CONTRAST	8/29/06 19:13	22 White	Μ	154	76 DOD normotensive	
24655 CT THORAX W IV CONTRAST	12/17/06 4:03	43 White	Μ	138	84 DOD normotensive	
24657 CT THORAX W IV CONTRAST	10/6/07 12:52	46 Black	F	135	100 DOD normotensive	
24861 CT ABDOMEN PELVIS W IV CONTRAS	1/22/12 4:15	23 White	Μ	149	85 DOD normotensive	
29408 CT ABDOMEN PELVIS W IV CONTRAS	4/4/12 9:41	46 White	F	121	61 DOD normotensive	
35582 CT THORAX W IV CONTRAST	10/22/11 17:45	32 White	F	138	66 DOD normotensive	

35636 CT ABDOMEN W IV CONTRAST	10/8/06 6:35	32 White	F	132	98 DOD normotensive
35639 CT THORAX W IV CONTRAST	6/10/06 0:57	24 White	Μ	134	92 DOD normotensive
35648 CT ABDOMEN W IV CONTRAST	5/17/05 23:25	48 White	Μ	122	86 DOD normotensive
35652 CT THORAX W IV CONTRAST	2/28/04 18:55	41 White	Μ	138	83 DOD normotensive
40205 CHEST ABDOMEN PELVIS	10/2/06 9:44	33 White	Μ	123	94 DOD normotensive
41191 CT ABDOMEN PELVIS W IV CONTRAS	5/21/12 18:05	18 White	F	144	85 DOD normotensive
41592 CT ABDOMEN PELVIS W IV CONTRAS	4/5/12 13:18	44 White	Μ	152	67 DOD normotensive
42190 CT ABDOMEN PELVIS W IV CONTRAS	12/5/11 3:07	37 White	Μ	135	98 DOD normotensive
48034 CT ABDOMEN PELVIS W IV CONTRAS	7/9/12 2:17	43 White	М	128	87 DOD normotensive
48078 CT ABDOMEN PELVIS W IV CONTRAS	10/13/11 12:26	46 White	М	122	92 DOD normotensive
48812 CT THORAX W IV CONTRAST	1/6/12 22:15	30 White	М	147	85 DOD normotensive
49395 CT THORAX W IV CONTRAST	10/15/10 16:33	31 White	М	125	91 DOD normotensive
49424 CT THORAX W IV CONTRAST	9/7/10 18:50	48 White	М	170	93 DOD normotensive
49462 CT THORAX W IV CONTRAST	8/26/10 23:21	36 White	М	159	96 DOD normotensive
49464 CT THORAX W IV CONTRAST	8/27/10 0:29	35 White	М	140	82 DOD normotensive
49473 CT THORAX W IV CONTRAST	8/9/05 2:24	21 White	F	145	98 DOD normotensive
49482 CT ABDOMEN W IV CONTRAST	8/2/05 13:45	30 White	F	159	55 DOD normotensive
49488 CT THORAX W IV CONTRAST	8/13/05 6:47	22 White	Μ	133	90 DOD normotensive
49494 CT THORAX W IV CONTRAST	8/16/05 18:24	49 White	F	135	90 DOD normotensive
49496 CT THORAX W IV CONTRAST	9/10/05 12:23	43 Asian	F	133	89 DOD normotensive
49504 CT ABDOMEN W IV CONTRAST	8/11/05 14:49	48 White	Μ	135	70 DOD normotensive
49508 CT ABDOMEN W IV CONTRAST	8/6/05 12:10	18 White	М	150	60 DOD normotensive
49510 CT ABDOMEN W IV CONTRAST	9/1/05 21:02	49 White	Μ	184	78 DOD normotensive
49564 CT ABDOMEN W IV CONTRAST	11/8/08 19:47	21 White	Μ	120	84 DOD normotensive
49621 CT THORAX W IV CONTRAST	9/8/11 8:43	30 White	М	123	72 DOD normotensive
49636 CT THORAX W IV CONTRAST	10/22/05 20:22	33 White	Μ	153	98 DOD normotensive
49648 CT THORAX W IV CONTRAST	4/10/11 4:45	20 Black	Μ	152	94 DOD normotensive
49656 CT THORAX W IV CONTRAST	2/3/11 21:57	41 Hispanic	М	139	97 DOD normotensive
49658 CT ABDOMEN W IV CONTRAST	10/30/10 3:12	30 Black	М	145	87 DOD normotensive
49848 CT ABDOMEN PELVIS W IV CONTRAS	6/21/11 7:05	23 Other	F	149	87 DOD normotensive

50376 CT ABDOMEN W IV CONTRAST	10/1/05 10:03	34 White	F :	128 8	3 DOD normotensive
50378 CT ABDOMEN W IV CONTRAST	9/29/05 2:30	38 White	M	158 8	5 DOD normotensive
50382 CT THORAX W IV CONTRAST	7/31/05 4:36	49 White	M	136 9	7 DOD normotensive
50397 CT THORAX W IV CONTRAST	9/25/05 19:10	33 White	M 2	206 8	1 DOD normotensive
50406 CT THORAX W IV CONTRAST	7/25/05 22:50	30 White	M	142 7	8 DOD normotensive
50409 CT ABDOMEN W IV CONTRAST	11/8/08 19:47	21 White	M	120 8	4 DOD normotensive
50417 CT THORAX W IV CONTRAST	2/18/06 13:51	38 White	M	127 8	7 DOD normotensive
50419 CT ABDOMEN W IV CONTRAST	7/9/05 15:02	29 White	F :	155 6	5 DOD normotensive
50422 CT THORAX W IV CONTRAST	2/1/09 16:39	26 White	F :	124 10	0 DOD normotensive
50504 CT ABDOMEN PELVIS W IV CONTRAS	7/18/12 6:26	36 White	M	144 6	0 DOD normotensive
50790 CT THORAX W IV CONTRAST	7/9/05 22:40	39 White	F :	127 8	6 DOD normotensive
50809 CT THORAX W IV CONTRAST	5/27/06 13:35	24 White	M	121 10	0 DOD normotensive
50811 CT ABDOMEN W IV CONTRAST	12/17/05 5:39	28 White	M	136 9	7 DOD normotensive
50814 CT ABDOMEN W IV CONTRAST	10/8/07 12:01	47 White	M	128 8	0 DOD normotensive
50815 CT ABDOMEN W IV CONTRAST	10/1/05 10:03	34 White	F :	128 8	3 DOD normotensive
50816 CT ABDOMEN W IV CONTRAST	8/25/05 11:39	48 White	M	136 6	6 DOD normotensive
50817 CT ABDOMEN W IV CONTRAST	5/3/05 10:27	25 Hispanic	M	133 9	6 DOD normotensive
50826 CT ABDOMEN W IV CONTRAST	6/20/05 3:13	26 White	M	132 7	3 DOD normotensive
50827 CT ABDOMEN W IV CONTRAST	6/30/05 2:35	29 White	M	137 8	0 DOD normotensive
50834 CT THORAX W IV CONTRAST	6/21/07 22:15	44 White	F :	140 6	9 DOD normotensive
50909 CT THORAX WO IV CONTRAST	11/7/10 1:12	49 Other	M	129 8	7 DOD normotensive
50921 CT THORAX W IV CONTRAST	11/30/10 19:43	19 Hispanic	F	127 9	6 DOD normotensive
50923 CT THORAX W IV CONTRAST	11/30/10 19:43	19 Hispanic	F :	127 9	6 DOD normotensive
51583 CT ABDOMEN PELVIS W IV CONTRAS	7/27/12 4:27	41 White	F	127 7	1 DOD normotensive
51588 CT ABDOMEN W IV CONTRAST	12/23/05 20:21	30 White	M	150 8	2 DOD normotensive
51701 CT THORAX W IV CONTRAST	6/15/08 15:47	29 White	F	122 9	0 DOD normotensive
51743 CT ABDOMEN W IV CONTRAST	11/11/05 16:08	33 Hispanic	M	134 6	6 DOD normotensive
51768 CT ABDOMEN PELVIS W IV CONTRAS	6/4/11 4:31	26 White	M :	155 8	4 DOD normotensive
51793 CT ABDOMEN W IV CONTRAST	2/8/03 22:52	18 Black	M	140 9	6 DOD normotensive
52495 CT OUTSIDE FILM CONSULT ABDOME	6/28/12 17:01	49 White	M	143 8	8 DOD normotensive

52510 CT OUTSIDE FILM CONSULT ABDOME	6/18/12 21:15	36 White	Μ	121	80 DOD normotensive
52660 CT ABDOMEN PELVIS W IV CONTRAS	1/14/13 8:35	41 White	Μ	137	80 DOD normotensive
52666 CT THORAX W IV CONTRAST	10/15/12 8:40	20 Black	Μ	126	85 DOD normotensive
52667 CT THORAX W IV CONTRAST	11/3/12 9:15	19 White	Μ	155	85 DOD normotensive
52684 CT THORAX W IV CONTRAST	7/23/12 21:57	39 Black	F	143	92 DOD normotensive
52686 CT THORAX W IV CONTRAST	5/15/12 23:38	29 White	Μ	154	65 DOD normotensive
52936 CT ABDOMEN PELVIS W IV CONTRAS	11/23/11 9:52	47 White	Μ	140	85 DOD normotensive
52937 CT THORAX W IV CONTRAST	10/23/11 15:29	48 White	Μ	177	91 DOD normotensive
52945 CT THORAX W IV CONTRAST	12/2/11 20:34	50 White	F	195	76 DOD normotensive
52949 CT THORAX W IV CONTRAST	3/5/12 15:51	49 White	Μ	165	100 DOD normotensive
52952 CT THORAX W IV CONTRAST	12/17/11 2:40	33 White	Μ	141	90 DOD normotensive
52957 CT OUTSIDE FILM CONSULT CHEST	12/21/11 4:23	22 White	Μ	157	94 DOD normotensive
52963 CT ABDOMEN PELVIS W IV CONTRAS	2/22/12 7:30	48 White	F	140	78 DOD normotensive
53737 CT ABDOMEN WO IV CONTRAST	3/8/06 19:17	42 White	Μ	209	88 DOD normotensive
53742 CT ABDOMEN W IV CONTRAST	2/6/06 21:29	48 Black	Μ	162	90 DOD normotensive
53743 CT THORAX W IV CONTRAST	2/21/06 20:18	23 White	Μ	131	96 DOD normotensive
53748 CT ABDOMEN W IV CONTRAST	2/11/06 20:41	41 White	Μ	152	68 DOD normotensive
53834 CT THORAX W IV CONTRAST	10/11/11 6:16	34 Black	Μ	152	75 DOD normotensive
53837 CT THORAX W IV CONTRAST	10/23/11 15:29	48 White	Μ	177	91 DOD normotensive
53845 CT THORAX W IV CONTRAST	10/18/11 10:09	29 White	Μ	127	65 DOD normotensive
53846 CT THORAX W IV CONTRAST	10/22/11 18:27	31 White	Μ	128	71 DOD normotensive
53847 CT ABDOMEN PELVIS W IV CONTRAS	10/2/11 2:52	22 White	Μ	159	64 DOD normotensive
53849 CT THORAX W IV CONTRAST	10/6/11 17:56	31 White	F	125	78 DOD normotensive
53851 CT THORAX W IV CONTRAST	10/8/11 12:08	26 Black	Μ	145	68 DOD normotensive
53854 CT THORAX W IV CONTRAST	10/2/11 5:01	27 White	Μ	135	99 DOD normotensive
53858 CT ABDOMEN PELVIS W IV CONTRAS	10/23/11 14:43	37 White	Μ	130	96 DOD normotensive
53875 CT OUTSIDE FILM CONSULT CHEST	10/23/11 2:21	21 White	Μ	167	76 DOD normotensive
53879 CT THORAX W IV CONTRAST	10/24/11 23:07	28 Hispanic	F	155	94 DOD normotensive
53898 CT ABDOMEN PELVIS W IV CONTRAS	11/10/11 23:08	20 White	F	127	78 DOD normotensive
53910 CT ABDOMEN PELVIS W IV CONTRAS	12/13/11 7:35	33 White	Μ	139	96 DOD normotensive

53914 CT ABDOMEN PELVIS W IV CONTRAS	12/10/11 10:06	45 White	F	143	77 DOD normotensive	
53939 CT THORAX W IV CONTRAST	12/18/11 6:43	41 White	Μ	193	78 DOD normotensive	
53956 CT ABDOMEN PELVIS W IV CONTRAS	1/13/12 16:51	34 White	Μ	158	75 DOD normotensive	
53957 CT ABDOMEN PELVIS W IV CONTRAS	1/13/12 2:36	20 White	Μ	137	98 DOD normotensive	
53966 CT ABDOMEN PELVIS W IV CONTRAS	2/4/12 5:45	25 Black	F	129	94 DOD normotensive	
53969 CT ABDOMEN PELVIS W IV CONTRAS	1/28/12 12:40	19 White	Μ	139	66 DOD normotensive	
53974 CT THORAX W IV CONTRAST	2/10/12 22:20	46 White	Μ	171	100 DOD normotensive	
53979 CT THORAX W IV CONTRAST	3/5/12 18:16	35 White	F	185	88 DOD normotensive	
53990 CT ABDOMEN PELVIS W IV CONTRAS	3/3/12 0:58	29 White	Μ	137	77 DOD normotensive	
54023 CT ABDOMEN PELVIS W IV CONTRAS	3/30/12 16:23	48 White	Μ	199	98 DOD normotensive	
54025 CT THORAX W IV CONTRAST	4/18/12 19:18	25 White	Μ	142	85 DOD normotensive	
54028 CT THORAX W IV CONTRAST	4/17/12 20:55	24 White	F	151	88 DOD normotensive	
54049 CT THORAX W IV CONTRAST	5/6/12 20:40	28 White	Μ	152	65 DOD normotensive	
54055 CT ABDOMEN PELVIS W IV CONTRAS	7/15/12 5:24	27 White	F	148	93 DOD normotensive	
54066 CT ABDOMEN PELVIS W IV CONTRAS	7/25/12 2:05	48 White	Μ	124	84 DOD normotensive	
54073 CT THORAX W IV CONTRAST	6/30/12 1:12	29 White	F	143	80 DOD normotensive	
54080 CT ABDOMEN PELVIS W IV CONTRAS	8/1/12 8:03	23 White	F	134	76 DOD normotensive	
54106 CT THORAX W IV CONTRAST	8/22/12 0:46	44 White	Μ	147	80 DOD normotensive	
54111 CT OUTSIDE FILM CONSULT CHEST	8/20/12 23:38	23 Black	Μ	137	88 DOD normotensive	
54165 CT THORAX W IV CONTRAST	5/26/12 19:25	43 White	Μ	127	86 DOD normotensive	
54166 CT ABDOMEN PELVIS W IV CONTRAS	5/24/12 21:08	50 White	F	122	90 DOD normotensive	
54170 CT THORAX W IV CONTRAST	5/12/12 17:45	19 White	Μ	141	86 DOD normotensive	
54174 CT ABDOMEN PELVIS W IV CONTRAS	5/23/12 14:45	33 White	Μ	133	72 DOD normotensive	
54177 CT OUTSIDE FILM CONSULT ABDOME	6/13/12 0:00	24 Black	Μ	151	100 DOD normotensive	
54186 CT ABDOMEN PELVIS W IV CONTRAS	4/29/12 21:52	22 White	F	159	86 DOD normotensive	
54189 CT ABDOMEN W IV CONTRAST	8/21/12 14:45	27 White	F	126	86 DOD normotensive	
54216 CT OUTSIDE FILM CONSULT ABDOME	6/4/12 21:56	41 White	Μ	133	68 DOD normotensive	
54217 CT ABDOMEN PELVIS W IV CONTRAS	5/28/12 8:56	35 White	F	140	86 DOD normotensive	
54218 CT ABDOMEN PELVIS W IV CONTRAS	6/1/12 17:02	32 Other	Μ	163	74 DOD normotensive	
54308 CT THORAX W IV CONTRAST	9/4/12 1:32	45 White	Μ	133	98 DOD normotensive	

54311 CT OUTSIDE FILM CONSULT ABDOME	9/4/12 0:00	30 White	Μ	141	68 DOD normotensive
54312 CT THORAX W IV CONTRAST	9/5/12 19:58	31 White	Μ	121	82 DOD normotensive
54320 CT THORAX W IV CONTRAST	6/30/12 22:09	44 White	Μ	156	95 DOD normotensive
54322 CT THORAX W IV CONTRAST	6/22/12 20:53	26 White	Μ	121	85 DOD normotensive
54323 CT ABDOMEN PELVIS W IV CONTRAS	6/16/12 5:34	25 White	Μ	154	87 DOD normotensive
54328 CT THORAX W IV CONTRAST	6/30/12 0:17	21 White	Μ	128	77 DOD normotensive
54331 CT ABDOMEN PELVIS WO IV CONTRA	6/24/12 15:31	36 White	Μ	147	59 DOD normotensive
54356 CT ABDOMEN PELVIS W IV CONTRAS	9/12/12 3:35	43 White	F	123	88 DOD normotensive
54365 CT ABDOMEN PELVIS W IV CONTRAS	9/10/12 19:35	33 White	F	140	75 DOD normotensive
54376 CT THORAX W IV CONTRAST	9/25/12 23:27	25 White	Μ	137	93 DOD normotensive
54378 CT ABDOMEN PELVIS W IV CONTRAS	9/22/12 4:30	28 Black	Μ	148	99 DOD normotensive
54380 CT THORAX W IV CONTRAST	10/1/12 19:37	49 White	Μ	153	97 DOD normotensive
54381 CT THORAX W IV CONTRAST	9/30/12 20:31	23 White	Μ	141	62 DOD normotensive
54393 CT THORAX W IV CONTRAST	10/28/12 19:53	36 White	Μ	178	56 DOD normotensive
54398 CT ABDOMEN PELVIS W IV CONTRAS	10/14/12 18:12	37 White	Μ	157	66 DOD normotensive
54418 CT THORAX W IV CONTRAST	10/22/12 23:37	32 Black	Μ	122	83 DOD normotensive
54420 CT THORAX W IV CONTRAST	10/18/12 19:14	42 White	F	142	87 DOD normotensive
54426 CT ABDOMEN PELVIS W IV CONTRAS	10/20/12 21:26	26 Other	F	125	82 DOD normotensive
54429 CT ABDOMEN PELVIS W IV CONTRAS	11/4/12 3:21	28 White	Μ	133	90 DOD normotensive
54431 CT THORAX W IV CONTRAST	11/10/12 14:23	49 Asian	Μ	141	73 DOD normotensive
54435 CT ABDOMEN PELVIS W IV CONTRAS	12/22/12 16:27	50 Black	Μ	121	94 DOD normotensive
54437 CT OUTSIDE FILM CONSULT CHEST	12/23/12 20:34	43 White	Μ	133	64 DOD normotensive
54438 CT ABDOMEN PELVIS W IV CONTRAS	11/27/12 14:26	19 White	F	147	64 DOD normotensive
54444 CT OUTSIDE FILM CONSULT ABDOME	12/21/12 6:23	47 White	Μ	157	77 DOD normotensive
54514 CT ABDOMEN PELVIS W IV CONTRAS	11/24/12 0:28	24 Unk	Μ	135	80 DOD normotensive
54519 CT THORAX W IV CONTRAST	11/24/12 4:39	26 Black	Μ	153	100 DOD normotensive
54540 CT ABDOMEN PELVIS W IV CONTRAS	12/18/12 23:34	25 White	F	160	98 DOD normotensive
55254 CT POST PROCESSED T SPINE	2/20/13 18:34	32 Black	F	125	82 DOD normotensive
55946 CT ABDOMEN W IV CONTRAST	3/21/05 13:51	38 White	Μ	134	75 DOD normotensive
55985 CT THORAX W IV CONTRAST	6/1/09 19:34	23 White	F	129	91 DOD normotensive

56354 CT THORAX W IV CONTRAST	0/2/02 20.57	25 White	М	150	79 DOD normotensive
56365 CT ABDOMEN W IV CONTRAST	9/2/03 20:57 12/20/03 2:07	22 Asian	F	130	71 DOD normotensive
57226 CT ABDOMEN W IV CONTRAST	7/8/04 4:46	18 Black	М	145	97 DOD normotensive
57875 CT ABDOMEN PELVIS W IV CONTRAS	7/12/11 3:15	22 White	М	137	74 DOD normotensive
57878 CT THORAX W IV CONTRAST	7/12/05 20:56	27 White	Μ	136	68 DOD normotensive
57879 CT ABDOMEN W IV CONTRAST	9/2/05 13:42	49 White	F	163	77 DOD normotensive
57891 CT ABDOMEN W IV CONTRAST	9/11/05 0:02	29 White	Μ	143	95 DOD normotensive
57894 CT ABDOMEN PELVIS W IV CONTRAS	7/2/11 21:00	47 White	М	131	59 DOD normotensive
57898 CT THORAX W IV CONTRAST	6/26/05 18:52	37 White	М	133	90 DOD normotensive
57899 CT ABDOMEN W IV CONTRAST	8/28/05 6:33	50 Black	Μ	149	86 DOD normotensive
57903 CT ABDOMEN PELVIS W IV CONTRAS	8/15/11 13:21	19 White	М	134	93 DOD normotensive
57905 CT ABDOMEN W IV CONTRAST	5/31/05 18:49	19 White	F	131	81 DOD normotensive
57906 CT ABDOMEN W IV CONTRAST	9/4/05 18:03	29 Black	М	147	78 DOD normotensive
57909 CT ABDOMEN W IV CONTRAST	8/30/05 21:15	24 White	М	141	92 DOD normotensive
57917 CT ABDOMEN PELVIS W IV CONTRAS	4/10/11 3:00	20 White	М	124	64 DOD normotensive
57950 CT ABDOMEN W IV CONTRAST	7/11/10 23:32	44 White	М	155	70 DOD normotensive
57951 CT ABDOMEN W IV CONTRAST	9/25/05 16:03	30 White	F	134	84 DOD normotensive
57954 CT ABDOMEN PELVIS W IV CONTRAS	1/23/11 16:19	42 White	М	145	85 DOD normotensive
57955 CT ABDOMEN W IV CONTRAST	8/21/10 23:29	42 White	М	128	76 DOD normotensive
57981 CT ABDOMEN W IV CONTRAST	1/1/05 17:04	33 White	F	147	94 DOD normotensive
57985 CT THORAX W IV CONTRAST	12/26/04 14:30	42 Black	F	149	74 DOD normotensive
57986 CT ABDOMEN W IV CONTRAST	6/5/04 13:49	27 White	М	131	97 DOD normotensive
57987 CT ABDOMEN W IV CONTRAST	5/21/04 0:46	45 White	М	125	90 DOD normotensive
57992 CT ABDOMEN W IV CONTRAST	1/27/05 4:43	21 White	М	146	74 DOD normotensive
57995 CT ABDOMEN W IV CONTRAST	7/25/04 21:20	21 White	М	141	92 DOD normotensive
57996 CT THORAX W IV CONTRAST	3/24/05 22:54	48 White	М	139	96 DOD normotensive
58006 CT ABDOMEN W IV CONTRAST	9/4/03 21:44	25 White	М	132	99 DOD normotensive
58007 CT ABDOMEN W IV CONTRAST	2/19/04 18:17	20 White	М	122	93 DOD normotensive
58011 CT ABDOMEN W IV CONTRAST	11/21/03 23:25	49 White	М	137	69 DOD normotensive
58015 CT ABDOMEN W IV CONTRAST	9/25/03 21:52	20 White	F	137	84 DOD normotensive
	<i>c, 10, 00</i> 11.01	20	•	207	

58024 CT ABDOMEN W IV CONTRAST	11/18/03 18:22	45 White	Μ	158	75 DOD normotensive
58027 CT ABDOMEN WO IV CONTRAST	4/5/04 21:42	24 White	Μ	155	96 DOD normotensive
58030 CT ABDOMEN W IV CONTRAST	1/11/04 3:39	19 White	Μ	136	97 DOD normotensive
58032 CT THORAX W IV CONTRAST	2/26/04 16:31	45	Μ	158	85 DOD normotensive
58034 CT ABDOMEN W IV CONTRAST	10/3/05 0:12	19 White	Μ	140	61 DOD normotensive
58036 CT THORAX W IV CONTRAST	9/29/05 15:45	49 White	F	122	95 DOD normotensive
58042 CT ABDOMEN W IV CONTRAST	10/17/05 15:31	46 White	F	159	86 DOD normotensive
58043 CT ABDOMEN W IV CONTRAST	10/24/05 12:22	20 White	Μ	138	90 DOD normotensive
58045 CT ABDOMEN W IV CONTRAST	10/22/05 21:37	46 Black	F	169	100 DOD normotensive
58055 CT ABDOMEN W IV CONTRAST	7/7/03 17:47	28 White	F	137	79 DOD normotensive
58057 CT ABDOMEN W IV CONTRAST	5/27/03 19:40	46 White	Μ	157	68 DOD normotensive
58075 CT ABDOMEN PELVIS W IV CONTRAS	3/20/11 20:34	43 Hispanic	М	123	96 DOD normotensive
58101 CT ABDOMEN W IV CONTRAST	4/8/07 14:52	18 White	F	138	70 DOD normotensive
58104 CT OUTSIDE FILM CONSULT CHEST	12/29/06 0:32	32 Black	F	124	79 DOD normotensive
58111 CT THORAX W IV CONTRAST	11/5/05 18:12	40 White	М	145	64 DOD normotensive
58135 CT OUTSIDE FILM CONSULT ABDOME	3/30/08 14:03	36 White	М	136	67 DOD normotensive
58288 CT THORAX W IV CONTRAST	6/14/08 12:23	38 White	F	120	94 DOD normotensive
58294 CT THORAX W IV CONTRAST	10/5/07 8:08	43 White	М	151	77 DOD normotensive
59296 CT ABDOMEN PELVIS W IV CONTRAS	4/7/13 3:42	42 White	М	140	95 DOD normotensive
59297 CT ABDOMEN PELVIS W IV CONTRAS	4/7/13 3:06	28 White	М	128	97 DOD normotensive
59298 CT ABDOMEN PELVIS WO IV CONTRA	4/7/13 21:06	42 White	F	122	96 DOD normotensive
59318 CT ABDOMEN PELVIS W IV CONTRAS	4/12/13 22:29	44 White	Μ	160	89 DOD normotensive
59325 CT ABDOMEN PELVIS W IV CONTRAS	11/15/12 20:25	26 White	М	166	84 DOD normotensive
59330 CT ABDOMEN PELVIS W IV CONTRAS	12/2/12 2:10	34 White	М	134	79 DOD normotensive
59331 CT ABDOMEN PELVIS W IV CONTRAS	11/16/12 14:29	33 White	F	132	84 DOD normotensive
59340 CT ABDOMEN PELVIS W IV CONTRAS	1/17/13 9:48	39 White	М	203	82 DOD normotensive
59343 CT ABDOMEN PELVIS W IV CONTRAS	1/22/13 7:14	24 White	М	132	88 DOD normotensive
59356 CT ABDOMEN PELVIS W IV CONTRAS	1/29/13 17:40	34 Asian	М	129	86 DOD normotensive
59363 CT OUTSIDE FILM CONSULT ABDOME		23 White	F	126	69 DOD normotensive
59370 CT OUTSIDE FILM CONSULT ABDOME		37 White	F	162	98 DOD normotensive

59371 CT ABDOMEN PELVIS W IV CONTRAS	2/23/13 22:15	18 White	М	154	82 DOD normotensive
59375 CT ABDOMEN PELVIS W IV CONTRAS	2/23/13 1:22	45 White	Μ	153	82 DOD normotensive
59377 CT ABDOMEN PELVIS W IV CONTRAS	2/16/13 18:07	33 White	М	147	100 DOD normotensive
59386 CT ABDOMEN PELVIS W IV CONTRAS	3/6/13 6:30	27 White	М	168	68 DOD normotensive
59387 CT ABDOMEN PELVIS W IV CONTRAS	3/18/13 19:05	41 White	М	191	95 DOD normotensive
59390 CT ABDOMEN PELVIS W IV CONTRAS	2/18/13 11:28	40 White	Μ	125	62 DOD normotensive
59396 CT OUTSIDE FILM CONSULT CHEST	1/1/13 1:40	43 White	Μ	127	67 DOD normotensive
59484 CT ABDOMEN PELVIS W IV CONTRAS	3/26/13 20:37	31 White	М	122	99 DOD normotensive
59488 CT ABDOMEN PELVIS W IV CONTRAS	3/30/13 0:39	19 White	Μ	125	83 DOD normotensive
59489 CT ABDOMEN PELVIS W IV CONTRAS	3/23/13 12:34	24 White	F	141	87 DOD normotensive
59743 CT ABDOMEN W IV CONTRAST	12/13/02 19:11	18 Hispanic	Μ	123	67 DOD normotensive
60663 CT ABDOMEN W IV CONTRAST	8/25/10 18:44	34 Black	Μ	158	100 DOD normotensive
60682 CT ABDOMEN W IV CONTRAST	9/22/10 7:15	45 Black	Μ	142	92 DOD normotensive
60688 CT ABDOMEN W IV CONTRAST	9/18/10 14:57	24 White	F	129	98 DOD normotensive
60914 CT ABDOMEN W IV CONTRAST	1/14/04 14:25	19 White	М	147	78 DOD normotensive
60915 CT ABDOMEN W IV CONTRAST	9/10/03 5:14	19 Black	Μ	149	99 DOD normotensive
60917 CT ABDOMEN W IV CONTRAST	10/12/03 11:37	20 White	Μ	159	89 DOD normotensive
60924 CT THORAX W IV CONTRAST	1/26/04 10:37	19 Hispanic	М	144	85 DOD normotensive
60927 CT THORAX W IV CONTRAST	2/5/05 20:18	19 White	Μ	158	61 DOD normotensive
60928 CT ABDOMEN W IV CONTRAST	1/20/03 11:58	20 White	Μ	143	75 DOD normotensive
60929 CT ABDOMEN W IV CONTRAST	2/11/03 11:35	19 White	М	178	63 DOD normotensive
60931 CT ABDOMEN W IV CONTRAST	7/4/03 21:33	19 Black	Μ	144	72 DOD normotensive
60935 CT THORAX W IV CONTRAST	3/21/04 5:06	19 White	М	140	100 DOD normotensive
60936 CT ABDOMEN W IV CONTRAST	10/26/03 3:21	18 White	Μ	145	95 DOD normotensive
60938 CT ABDOMEN W IV CONTRAST	4/29/04 5:04	18 White	М	140	83 DOD normotensive
60939 CT ABDOMEN W IV CONTRAST	8/4/05 23:14	20 Hispanic	F	141	96 DOD normotensive
60940 CT ABDOMEN WO IV CONTRAST	5/11/04 17:37	19 White	Μ	125	54 DOD normotensive
60944 CT ABDOMEN W IV CONTRAST	3/15/05 21:28	20 White	Μ	145	84 DOD normotensive
60946 CT ABDOMEN W IV CONTRAST	7/10/05 21:47	19 White	Μ	144	57 DOD normotensive
60947 CT THORAX W IV CONTRAST	7/22/05 18:55	20 White	Μ	150	94 DOD normotensive

60948 CT ABDOMEN W IV CONTRAST	9/11/05 2:09	20 White	М	125	81 DOD normotensive	
60950 CT THORAX W IV CONTRAST	11/3/05 8:03	20 White	М	158	77 DOD normotensive	
61097 CT OUTSIDE FILM CONSULT ABDO	ME 2/19/11 4:03	19 White	М	126	94 DOD normotensive	
66249 CT ABDOMEN W IV CONTRAST	8/14/10 1:39	26 White	М	176	85 DOD normotensive	
66703 CT ABDOMEN W IV CONTRAST	4/12/10 10:52	43 Black	F	148	97 DOD normotensive	
68795 CT THORAX W IV CONTRAST	9/9/09 2:54	35 White	М	181	66 DOD normotensive	
68796 CT THORAX W IV CONTRAST	3/20/08 15:26	31 White	М	133	84 DOD normotensive	
68797 CT THORAX W IV CONTRAST	9/22/08 9:26	36 White	М	149	100 DOD normotensive	
68799 CT THORAX W IV CONTRAST	12/31/07 14:32	36 White	М	186	68 DOD normotensive	
68800 CT THORAX W IV CONTRAST	6/6/10 22:24	45 White	F	145	80 DOD normotensive	
68802 CT THORAX W IV CONTRAST	12/14/10 11:21	41 White	М	159	95 DOD normotensive	
68803 CT THORAX W IV CONTRAST	11/1/10 2:06	19 White	М	143	96 DOD normotensive	
68804 CT THORAX W IV CONTRAST	10/2/10 14:11	19 White	М	144	84 DOD normotensive	
68806 CT THORAX W IV CONTRAST	4/15/12 18:16	18 White	М	159	86 DOD normotensive	
68807 CT THORAX W IV CONTRAST	2/4/12 5:45	25 Black	F	129	94 DOD normotensive	
68808 CT THORAX W IV CONTRAST	12/5/11 3:06	37 White	М	135	98 DOD normotensive	
68812 CT ANGIO CHEST WO AND W CON	TR. 8/1/12 8:03	23 White	F	134	76 DOD normotensive	
68816 CT THORAX W IV CONTRAST	11/16/12 14:29	33 White	F	132	84 DOD normotensive	
68817 CT THORAX W IV CONTRAST	1/17/13 9:48	39 White	М	203	82 DOD normotensive	
71347 CT THORAX W IV CONTRAST	3/13/13 19:31	42 White	М	173	56 DOD normotensive	
71930 CT ABDOMEN W IV CONTRAST	6/14/06 15:45	25 White	М	131	60 DOD normotensive	
71931 CT ABDOMEN W IV CONTRAST	7/29/06 3:49	19 White	М	159	90 DOD normotensive	
71932 CT THORAX W IV CONTRAST	7/25/06 20:40	28 White	М	145	88 DOD normotensive	
71933 CT THORAX W IV CONTRAST	8/12/06 18:03	21 White	F	131	65 DOD normotensive	
71934 CT THORAX W IV CONTRAST	6/10/06 15:44	19 White	М	146	50 DOD normotensive	
71935 CT ABDOMEN W IV CONTRAST	7/17/06 19:16	19 White	М	164	86 DOD normotensive	
71936 CT ABDOMEN WO IV CONTRAST	10/10/06 3:09	39 White	М	157	96 DOD normotensive	
71937 CT THORAX W IV CONTRAST	7/1/06 0:27	50 White	М	133	72 DOD normotensive	
71938 CT ANGIO CHEST WO AND W CON	TR. 10/22/10 21:40	50 White	F	147	74 DOD normotensive	
71939 CT THORAX W IV CONTRAST	8/6/06 21:58	32 White	М	125	70 DOD normotensive	

	0/00/05 6 04	22.14/1.1		407	
71940 CT THORAX W IV CONTRAST	9/22/05 6:24	22 White	Μ	197	95 DOD normotensive
71941 CT ABDOMEN W IV CONTRAST	7/20/06 12:09	37 White	Μ	144	72 DOD normotensive
71942 CT ABDOMEN W IV CONTRAST	9/19/05 22:10	23 Hispanic	Μ	125	64 DOD normotensive
71943 CT THORAX W IV CONTRAST	6/18/06 17:07	49 White	Μ	154	74 DOD normotensive
71945 CT THORAX W IV CONTRAST	7/17/05 3:04	42 White	F	123	92 DOD normotensive
71946 CT THORAX W IV CONTRAST	10/1/05 13:25	46 White	Μ	165	74 DOD normotensive
71947 CT THORAX WO IV CONTRAST	9/23/05 6:27	30 Black	F	164	93 DOD normotensive
71948 CT THORAX W IV CONTRAST	10/29/05 4:48	26 Black	Μ	193	86 DOD normotensive
71949 CT ABDOMEN W IV CONTRAST	9/14/05 14:25	29 White	Μ	154	90 DOD normotensive
71950 CT OUTSIDE FILM CONSULT CHEST	8/24/07 22:05	18 Other	М	147	54 DOD normotensive
71951 CT OUTSIDE FILM CONSULT ABDOME	11/27/10 23:02	21 White	F	143	89 DOD normotensive
71952 CT THORAX W IV CONTRAST	8/3/06 18:41	30 White	М	152	67 DOD normotensive
71953 CT OUTSIDE FILM CONSULT CHEST	12/17/09 20:39	50 White	М	151	87 DOD normotensive
71954 CT THORAX W IV CONTRAST	10/29/11 0:54	21 Black	М	129	85 DOD normotensive
71955 CT ABDOMEN W IV CONTRAST	10/3/05 1:07	47 Black	F	180	86 DOD normotensive
71956 CT THORAX W IV CONTRAST	7/20/06 13:07	33 White	F	131	80 DOD normotensive
71957 CT THORAX W IV CONTRAST	7/11/05 6:34	22 White	М	152	68 DOD normotensive
71958 CT THORAX W IV CONTRAST	5/10/07 8:26	47 Other	М	152	87 DOD normotensive
71959 CT OUTSIDE FILM CONSULT ABDOME	6/26/08 2:11	19 White	М	151	98 DOD normotensive
71960 CT ABDOMEN W IV CONTRAST	10/10/05 7:58	42 White	М	159	99 DOD normotensive
71961 CT ABDOMEN W IV CONTRAST	12/17/05 12:01	47 White	F	161	70 DOD normotensive
71962 CT ABDOMEN W IV CONTRAST	10/9/05 0:52	22 White	М	139	84 DOD normotensive
71963 CT ABDOMEN W IV CONTRAST	11/8/06 21:43	20 White	M	165	91 DOD normotensive
71964 CT THORAX W IV CONTRAST	6/10/06 18:59	25 White	M	169	81 DOD normotensive
71965 CT ABDOMEN W IV CONTRAST	7/8/06 21:10	25 White	F	121	66 DOD normotensive
71966 CT OUTSIDE FILM CONSULT ABDOME	3/10/10 21:44	22 Black	M	159	64 DOD normotensive
71967 CT ABDOMEN W IV CONTRAST	4/30/05 23:56	21 White	M	144	82 DOD normotensive
71968 CT THORAX W IV CONTRAST	9/4/10 19:35	21 Black	M	122	74 DOD normotensive
71969 CT ABDOMEN W IV CONTRAST	6/7/05 15:53	49 Black	M	153	80 DOD normotensive
71970 CT OUTSIDE FILM CONSULT CHEST	2/21/09 15:49	42 White	M	135	98 DOD normotensive
	2/21/05 15.45	42 WINC	111	747	

71971 CT THORAX W IV CONTRAST	8/25/05 18:51	43 White	Μ	142	83 DOD normotensive
71972 CT ABDOMEN W IV CONTRAST	9/21/05 23:19	29 White	Μ	161	78 DOD normotensive
71973 CT THORAX W IV CONTRAST	8/25/05 2:35	48 White	F	140	86 DOD normotensive
71974 CT ABDOMEN W IV CONTRAST	10/30/05 17:33	38 White	Μ	153	90 DOD normotensive
71975 CT ABDOMEN W IV CONTRAST	6/19/06 21:17	20 White	Μ	182	88 DOD normotensive
71976 CT ABDOMEN W IV CONTRAST	11/3/05 13:31	21 White	Μ	159	74 DOD normotensive
71977 CT OUTSIDE FILM CONSULT ABDOME	5/23/08 0:02	18 White	Μ	127	58 DOD normotensive
71978 CT ABDOMEN W IV CONTRAST	8/1/05 19:35	45 White	Μ	164	66 DOD normotensive
71979 CT ABDOMEN W IV CONTRAST	5/6/05 10:11	27 White	F	137	82 DOD normotensive
71980 CT OUTSIDE FILM CONSULT ABDOME	9/6/05 23:00	25 White	Μ	153	74 DOD normotensive
72572 CT THORAX W IV CONTRAST	9/1/11 15:27	33 White	Μ	142	91 DOD normotensive
72573 CT OUTSIDE FILM CONSULT CHEST	7/5/10 2:27	26 White	Μ	149	98 DOD normotensive
72574 CT OUTSIDE FILM CONSULT ABDOME	6/24/11 23:50	49 White	Μ	131	96 DOD normotensive
72575 CT OUTSIDE FILM CONSULT ABDOME	12/18/10 23:49	42 Other	Μ	122	79 DOD normotensive
72576 CT ABDOMEN W IV CONTRAST	10/21/06 11:06	47 White	Μ	134	62 DOD normotensive
72577 CT OUTSIDE FILM CONSULT ABDOME	12/2/10 21:04	35 Hispanic	Μ	153	70 DOD normotensive
72578 CT OUTSIDE FILM CONSULT CHEST	1/7/11 16:32	25 White	Μ	175	79 DOD normotensive
72579 CT ABDOMEN W IV CONTRAST	7/22/06 19:36	45 White	Μ	136	99 DOD normotensive
72580 CT ABDOMEN W IV CONTRAST	7/11/04 5:03	47	Μ	137	94 DOD normotensive
72581 CT ABDOMEN W IV CONTRAST	7/24/04 9:02	23 White	F	125	85 DOD normotensive
72582 CT ABDOMEN W IV CONTRAST	11/1/09 11:27	19 White	Μ	148	89 DOD normotensive
72583 CT ABDOMEN W IV CONTRAST	7/29/06 21:10	31 White	Μ	142	95 DOD normotensive
72584 CT ABDOMEN PELVIS W IV CONTRAS	9/30/12 21:27	34 White	Μ	145	96 DOD normotensive
72585 CT OUTSIDE FILM CONSULT ABDOME	8/30/07 22:08	50 White	Μ	164	97 DOD normotensive
72586 CT OUTSIDE FILM CONSULT ABDOME	8/6/07 13:30	47 Black	F	159	64 DOD normotensive
72587 CT ABDOMEN W IV CONTRAST	7/29/06 19:46	46 Black	Μ	137	90 DOD normotensive
72588 CT OUTSIDE FILM CONSULT CHEST	10/7/10 15:35	46 White	Μ	156	95 DOD normotensive
72589 CT ABDOMEN W IV CONTRAST	10/14/05 0:58	23 Black	М	182	80 DOD normotensive
72590 CT ABDOMEN W IV CONTRAST	7/11/04 4:26	22 White	М	137	96 DOD normotensive
72591 CT ABDOMEN PELVIS W IV CONTRAS	4/19/12 3:13	24 Asian	М	120	96 DOD normotensive

72592 CT ABDOMEN W IV CONTRAST	2/7/05 7:12	27 Black	Μ	148	83 DOD normotensive
72593 CT ABDOMEN W IV CONTRAST	1/6/05 20:43	38 White	Μ	153	83 DOD normotensive
72594 CT OUTSIDE FILM CONSULT CHEST	5/18/06 17:05	28 White	Μ	142	92 DOD normotensive
72595 CT OUTSIDE FILM CONSULT CHEST	10/29/08 17:04	18 Black	Μ	153	95 DOD normotensive
72596 CT ABDOMEN W IV CONTRAST	8/29/04 6:59	24 White	Μ	140	77 DOD normotensive
72597 CT ABDOMEN W IV CONTRAST	8/27/04 3:24	34 Black	Μ	126	79 DOD normotensive
72598 CT ABDOMEN W IV CONTRAST	7/22/04 6:54	24 White	Μ	133	80 DOD normotensive
72599 CT ABDOMEN W IV CONTRAST	8/24/04 20:29	46 White	Μ	158	79 DOD normotensive
72600 CT ABDOMEN W IV CONTRAST	10/6/04 6:02	26 White	Μ	148	93 DOD normotensive
72601 CT ABDOMEN W IV CONTRAST	9/10/04 15:58	28 White	Μ	138	98 DOD normotensive
72602 CT ABDOMEN W IV CONTRAST	6/17/06 17:49	33 White	Μ	125	49 DOD normotensive
72603 CT ABDOMEN W IV CONTRAST	9/18/06 10:20	29 Hispanic	Μ	163	95 DOD normotensive
72604 CT OUTSIDE FILM CONSULT CHEST	3/21/06 13:05	48 White	Μ	155	70 DOD normotensive

Appendix B: Vascular Processing

Vascular Processing Methodology

Group

Analysis

59

Press arrow to play animation

Segmented Aorta and Vena Cava in situ

Press arrow to play animation

Appendix C: Machine Learning

Facial Recognition

- 8

3nd layer (objects) 2nd layer (object parts) 1st layer (edges)

Pixel images

Analytic morphomics convolutional neural networks (CNN)

Machine Learning Results

Aorta and Vena Cava

Psoas

Appendix D: Phase Overlay & Gated Radius Graph

Phase overlay - All 10 Aorta volumes from different phases overlaid on top of one another

Gated Radius Graph – Aortic Radius as a function of length along the aorta and cardiac phase.

Appendix E: Morphomics Overview

Morphomics = Personalized Medicine

Morphomics = Personalized Medicine

- **Multiplex** tool for patient diagnosis and stratification.
- Morphomics is based on highly-automated, high-throughput image processing to quantify millions of anatomically-indexed measures from a single patient's scan, offering remarkable opportunities for personalized treatment and surgical planning.
- Imaging data has been preserved in pristine condition (BUT NOT USED) while patients' response to treatment has been observed. .. Natural experiments
- Each patient's individual morphometric qualities are then assessed against population-based standards to identify patient-specific risk factors
- Morphomic assessment of trunk musculature (density and mass), body composition (fat distribution), vascular calcification, and solid organ morphomic measures have demonstrated that these patient-specific variables dominate risk prediction models and provide critical insight into patient risk. Thousands of other potential biomarkers are being tested.

Muscle Health/Sarcopenia

Bone Health

Obesity – Fat Characterization

Appendix F: Data Analysis and Results

Data Analysis and Results

Aorta Measurements

Methods

Following institutional review board approval (HUM00041441), trauma patients who underwent CT scanning were retrospectively identified from the University of Michigan radiology database. For inclusion, CT scans were those performed on male or female patients between the ages of 18 years and 50 years, inclusive. All CT scans were continuous examinations of the chest, abdomen, and pelvis.

The individual scans were loaded on to laptop running Matlab 2015a software (The MathWorks Inc., Natick, Massachusetts). Custom high-throughput image processing algorithms permitted the measurement (in millimeters) of the vessel radius at any point along the length, and the distance between vessel origins. The aorta was divided into and examined as three previously described zones (Stannard et al. J Trauma Acute Care Surg, Volume 75, Number 2, Supplement 2) (Figure 1). Aortic Zone I extended from the origin of the left subclavian artery (LSC) to the celiac branch point (CB). The superior celiac branch point (sCB) was also noted. Aortic Zone II extended from the celiac trunk to the origin of the lowest renal artery, either left (LR) or right (RR), and the infrarenal aorta (lowest renal to the aortic bifurcation) constituted the aortic Zone III.

The centerline length (mm) of each zone was measured, and the luminal diameter (mm) (calculated as 2 x radius) of the aorta at each 5% point between the proximal and distal most extent of each of the zones was recorded. In addition, the distance from left and right common femoral artery (LFA, RFA) at the midpoint of the femoral head to the aortic bifurcation (AB) and the origin of the left subclavian artery (LSC) were recorded. The CFA landmark was chosen as a plausible site for arterial access. For the purposes of the study, the external measure of torso extent was defined the distance (mm) from the suprasternal notch of the manubrium to the midpubic symphysis (s2pdist), parallel to the subject's craniocaudal axis (this is a direct, as the crow flies, distance [e.g., as measured using a rigid yard stick]).

Due to the low correlation between torso extent and distance to zone III, and the fact that zone III represents a much smaller target, an additional external measure was developed: the straight-line distances (mm) from the umbilicus to the left and right CFA landmarks (not parallel to the craniocaudal axis). This represents a measure of lower abdominal extent which was hypothesized to better correlate with distance to zone III than torso extent and was tested as a possible replacement.

CT images were examined by one or more of three separate readers (RG, PR, NW). Data were collected in a PostgreSQL database and imported to R version 3.3.0 (R Foundation for Statistical Computing, Vienna, Austria) for analysis. Distances and diameters were

reported as medians, accompanied by interquartile range (IQR) and maximum-minimum values, along with boxplots to describe their distribution. Scatter plots were generated showing aortic zone length against torso extent, and a best-fit line was drawn using simple linear regression analysis. The coefficient of determination (R²) was reported as a measure of the strength of the linear association. Model residuals were examined for normality and residual diagnostic plots were used to investigate individual influential data points and verify that the regression assumptions were satisfied.

Outlier points have a large residual but low leverage over the resulting model fit and are therefore not worrisome. On the other hand, influential points exert leverage over the resulting model fit, and if removed, the resulting model slope would change significantly. Three data points were found to have a Cook's Distance (a measure of influence) more than 3X greater than the other data points. Upon further investigation, we found that one had a dislocated femoral head due to motor vehicle crash, and in the other two we were unable to obtain an accurate femoral artery measurement due to poor scan quality. Models were re-fit after excluding these data points.

Nomograms for predicting length to individual zone midpoints using only torso extent were developed from these simple linear regression models, and include a 95% prediction interval. We would expect vascular distances to fall within this interval in 95/100 cases, based on the torso extent measured in new subjects.

Figure 1 - Balloon placement and aorta landing zones

Results

2,247 patients underwent CT imaging following traumatic injury between 2000-06-11 and 2015-03-30. There were 458 exclusions (20.4%) due to incomplete chest, abdomen, pelvis, and femoral imaging. The final cohort was composed of 1,789 patients with a mean (SD) age of 32.8 (10.2) and a median (IQR) torso extent of 557 (537-579) mm. There were 1,280 (71.5%) male patients and 78 (4.4%) patients identified as hypotensive. For the purposes of the study, hypotensive was defined as blood pressure less than 100 and pulse over 100 at the time of emergency department trauma admission.

Arterial Lengths

On average, the distance from the CFA to the aortic bifurcation was longer by 4.9 mm on the right than on the left side. The median (IQR) distance for the right and left were 200 (190-210) mm and 195 (186-205) mm, respectively. The median (IQR) total length of the aorta from the left subclavian to the aortic bifurcation was 345 (328-363) mm (Table 1, Figure 2).

			L	ength (mr	n)	
\mathbf{Sex}	Location	Minimum	25th	Median	$^{ m 75th}$	Maximum
F	LFA to AB	157.93	184.01	193.07	201.50	252.2
	RFA to AB	160.37	189.06	198.78	208.21	249.1
	AB to LR	31.01	77.11	84.19	92.40	134.4
	AB to RR	47.91	81.20	87.72	95.35	139.5
	AB to SMA	53.52	93.72	102.44	110.62	144.5
	AB to CB	63.92	105.73	113.64	123.14	155.6
	AB to sCB	69.12	115.01	123.03	131.34	170.1
	AB to LSC	207.83	309.65	324.94	340.52	402.7
М	LFA to AB	132.79	186.15	195.73	205.41	252.1
	RFA to AB	115.63	190.52	200.71	210.29	256.7
	AB to LR	30.01	81.71	89.33	97.41	130.8
	AB to RR	30.21	85.42	92.71	101.82	134.3
	AB to SMA	66.32	99.78	108.04	116.92	152.3
	AB to CB	76.82	112.32	121.91	131.15	164.8
	AB to sCB	81.52	120.92	130.15	140.13	170.9
	AB to LSC	263.35	336.84	353.12	369.55	497.6
All	LFA to AB	132.79	185.51	194.96	204.77	252.2
	RFA to AB	115.63	190.21	200.18	209.70	256.7
	AB to LR	30.01	80.62	87.52	96.82	134.4
	AB to RR	30.21	82.82	91.72	100.60	139.5
	AB to SMA	53.52	97.81	106.85	114.96	152.3
	AB to CB	63.92	109.92	119.02	129.31	164.8
	AB to sCB	69.12	118.74	128.13	138.23	170.9
	AB to LSC	207.83	327.60	345.46	363.26	497.6

Table 1 - Arterial length distributions

Figure 2 - Arterial length box plots

Comparing the lengths of Zone 1 and Zone III, Zone I was the longest, with a median length of 226 mm (212-238 mm). The length of Zone III was 87 mm (78-95 mm).

Arterial Diameters

The diameter of the left and right CFA were the same, measuring 6.014 mm (5-7) and 6.126 mm (5-7 mm), respectively. Aortic diameter was the smallest (13.073 mm (12-15 mm) at the bifurcation. Aortic diameter increased to 14.369 mm (13-16 mm) at the lowest renal artery, 16.598 mm (15-19 mm) at the celiac trunk, and 19.693 mm (18-22 mm) at the level of the left subclavian artery. In addition, the diameters were smaller in women than men (Table 2).

			Dia	ameter (n	nm)	
\mathbf{Sex}	Location	Minimum	25th	Median	75th	Maximum
F	LFA	2.85	4.36	5.10	6.01	15.85
	RFA	1.87	4.43	5.19	6.19	16.38
	AB	7.86	10.62	11.54	12.61	19.62
	LR	8.99	11.70	12.79	14.36	19.83
	RR	9.48	11.95	13.13	14.73	20.31
	SMA	9.97	12.85	14.43	15.97	21.35
	CB	9.94	13.49	15.21	16.77	22.74
	sCB	9.90	13.85	15.46	17.27	23.36
	LSC	13.12	17.20	18.52	20.28	29.67
М	LFA	2.98	5.49	6.42	7.38	18.41
	RFA	2.90	5.56	6.52	7.58	20.83
	AB	8.08	12.45	13.71	14.93	21.95
	LR	8.23	13.60	15.05	16.88	23.42
	RR	8.23	13.80	15.43	17.19	24.25
	\mathbf{SMA}	8.76	14.86	16.55	18.50	25.93
	CB	8.90	15.54	17.28	19.25	26.95
	sCB	9.02	15.72	17.42	19.46	27.78
	LSC	12.62	18.47	20.20	22.28	32.67
All	LFA	2.85	5.07	6.05	7.15	18.41
	RFA	1.87	5.08	6.16	7.36	20.83
	AB	7.86	11.69	13.15	14.57	21.95
	LR	8.23	12.83	14.53	16.27	23.42
	\mathbf{RR}	8.23	13.10	14.85	16.62	24.25
	SMA	8.76	14.17	15.95	18.01	25.93
	CB	8.90	14.79	16.68	18.72	26.95
	sCB	9.02	14.98	16.92	18.98	27.78
	LSC	12.62	18.05	19.75	21.78	32.67

Table 2 - Arterial diameters

Aortic diameter appears to increase near the end points of each the Regions of Interest (Figure 3). We hypothesize that this is due to the presence of branching vessels (renals, superior mesenteric, celiac, superior celiac), as these diameters all appear to increase at the point where the branching vessels are present.

Aorta Diameters along Regions of Interest, by sex

Figure 3 - Arterial diameter box plots at each 5% along the length

Univariate Linear Regression

Length measurements of the descending aorta were plotted against the measurements of torso extent, and simple linear regression was used to apply a best-fit line, on all subjects except those identified as hypotensive. Nomograms for predicting vascular lengths and distances using only torso extent were developed from the regression models, and include a 95% prediction interval (Figure 4, 5, 6). We would expect vascular distances to fall within this interval in 95/100 cases, based on the torso extent measured in new subjects. A simplified approximation of the equation for the upper and lower bounds of the interval is:

$$y * \pm 1.96 \times RSS$$
,

where y^* is the predicted y value from the regression equation and *RSS* is the residual sum of squares from the regression model.

An R^2 of 0.42 demonstrated that torso extent (straight-line) alone was able to explain more than 42% of the variability in total aortic length (left subclavian to AB).

Figure 4 - Nomogram for Total Aortic Length vs. Torso Extent

This method was repeated for the distances from the left and right CFA to the midpoint of the individual aortic zones I and III resulting in R^2 values of 0.60 (left) and 0.60 (right) for Zone I, and 0.28 (left) and 0.28 (right) for Zone III, indicating that other explanatory variables may be involved, especially for Zone III. The width of the 95% prediction interval was approximately 48mm for Zone III, which is a large amount of uncertainty considering that the median length of Zone III itself (the landing zone) is short (87 mm) and most of that length will be taken up by the balloon length (40 mm). On the other hand, the width of the interval was approximately 55mm for Zone 1, which is less than a quarter of the total Zone I length (226 mm).

 R^2 values of 0.18 (left) and 0.18 (right) demonstrated that CFA to umbilicus extent (straight-line) alone was not able to explain more of the variability in zone III length than was torso extent, so this measure was disregarded.

Figure 5 – Nomograms of external torso extent vs. distances to Zone I and III midpoint from the left and right femoral arteries. Dotted lines show the linear predictions of mean and 95% prediction interval.

As an aside, we also note that Zone I and III lengths were also correlated with torso height, though this should not come as a surprise given the relationships already described between vascular lengths and torso extent. Incidentally, we developed nomograms for each of the Zone lengths based on the same simple linear regression modeling technique used earlier (Figure 6). The implication of this finding is that, on average, taller individuals will have larger landing zones of roughly 0.15 cm (Zone III), and 0.35 cm (Zone I) per cm increase in torso extent.

Figure 6 - Nomograms for Zone 1 and Zone III lengths vs. torso extent

Multiple Linear Regression

The dataset was split into a 60% training set and 40% validation set, excluding hypotensive patients. The training set was used to fit multivariate models predicting the length from the left and right CFA to the midpoints of Zone III and Zone I. Five models were evaluated per side (L, R) and per zone (1, 3) for a total of 20 models. Models included: torso extent (by skin convex hull) alone (univariate model), torso extent with sex, torso extent with age, torso extent with age and sex, and a constant median model (the median Zone length of the training population, also a univariate model). A sex interaction term was assessed and excluded due to lack of statistical significance. Model residuals were examined for normality and residual diagnostic plots were used to investigate individual influential data points and verify that the regression assumptions were satisfied.

The median length to the midpoint of Zone III was 244 and 239 mm from the right and left femoral arteries, respectively. The median length to the midpoint of Zone I was 433 and 428 mm from the right and left femoral arteries, respectively. These are the values used in the constant models.

Of the Zone I and III models, torso extent, sex, and age were all statistically significant predictors on both the left and right sides in all training models. We selected the models including torso extent, sex, and age for both the left and right sides as the final Zone I and III models since they had the highest adjusted R² values and all predictors were statistically significant (p<.01). Comparing the R² values of the models is informative. The model including torso extent alone is similar to the simple univariate regression model previously described, except it is fit on a 60% subset of the data. Once again, it explained the vast majority of the variability in vascular lengths (roughly 57% for Zone I, and 27% for Zone III). Adding an age term to the model explained an additional 6% for Zone I and 1.5% for Zone III, while the sex term explained 0.3% for Zone I and 1.5% for Zone III. The coefficient for sex in these models suggests that controlling for torso extent and sex, a one-year increase in age increases the distance to the zone midpoint by 0.17 mm (Zone III), and 0.55 mm (Zone I), on average.

A brief commentary on sub-analysis of race and BMI

Race (self-reported) and BMI were available on a subset of N=1,242 patients in the dataset. A sub-analysis was performed comparing the final model above to a model including BMI, and one including race. When added to the model including torso extent, age, and sex, BMI was non-significant (p>.05) in both left and right Zone III midpoint models, and in both left and right Zone I midpoint models.

Race (N) was reported as one of the following: American Indian (4), Asian (33), African American (145), Hispanic (30), Other (39), Pacific Islander (1), Caucasian (1395), or Unknown (4). Groups with fewer than N=30 subjects were combined with Other, resulting in the following final race groups: Asian, African American, Hispanic, Caucasian, and Other. Race showed statistically significant differences between African American and Caucasian, but Asian, Hispanic, and Other showed no significant differences with Caucasian. Including race in the model explained only an additional 1% of the variability in Zone 1 and 0.3% to Zone III. The coefficient for race in these models suggests that controlling for torso extent, age, and sex, African Americans will have 5mm lesser distance to the midpoint, on average. These are extremely small effects compared to the overall distances, and the orders of magnitude sample size differences between the groups are so extreme that we hesitated to even make the comparison in the first place. Further study with more equivalent, and representative sample sizes would be prudent to verify these differences.

As a practical consideration, torso extent, age, and sex should be most readily apparent in the field. Height and weight (and therefore BMI) may be altered by injury or equipment and may be difficult to obtain. Self-reported race may be difficult, impractical, or simply insensitive to obtain in a wounded soldier. We believe that torso extent alone is sufficient to explain the majority of variability in the distance to Zones I and III in the field, with age and sex explaining marginally more of the variability in vascular length and therefore creating an improved statistical model in the lab (but not necessarily in the field). This is why our nomograms are reported using torso extent alone, but the multivariate models are used in the evaluation of balloon placement.

Model performance

In order to evaluate the performance of each final model, we calculated the misclassification error rate for the final models and compared them to the misclassification error rate for the constant models. This was done to compare a rather complex model with the an extremely simplified model. If the simplified model performed the same as the complex model, then the complex model would be deemed unnecessary. Each predicted length was assigned either 1 (success) or 0 (failure) based on whether the predicted length fell within the actual Region of Interest landing zone bounds for each individual and misclassification occurred if the predicted length was too short or too long. The misclassification rate was computed as the percentage of failures in the training and test datasets.

For Zone I, the misclassification rate was less than 0.1% for both the training and test datasets when using the final multivariable model (torso extent, sex, and age) to predict length to the midpoint of Zone I from both the left and right femoral artery start points. The misclassification rate was less than 0.3% for both the training and test datasets when using the constant model (the median arterial length to the midpoint) (Table 3).

	zone	side	dataset	final_model	median_model
1	1	right	train	0.1%	0.2%
2	1	right	\mathbf{test}	0%	0.3%
3	1	left	train	0.1%	0.1%
4	1	left	\mathbf{test}	0%	0%

Table 3 - Zone I model misclassification rates

For Zone III, the misclassification rate was about 40% for both the training and test datasets when using the final multivariable model (including torso extent, sex, and age) to predict length to Zone III from both the left and right femoral artery start points. The misclassification rate was at most 41% among the training and test datasets when using the constant model (the median arterial length to the midpoint) (Table 4).

	zone	side	dataset	final_model	median_model
1	3	right	train	39.4%	39.9%
2	3	right	\mathbf{test}	38.9%	37.7%
3	3	left	train	38.8%	40.7%
4	3	left	\mathbf{test}	39.7%	37.4%

Table 4 - Zone III model misclassification rates

Zone I represents a large enough landing zone (226 mm) that a multivariable model is only marginally better performing compared to a constant median model. However, as noted earlier, the median length of Zone III itself is short (87 mm) when compared to the length of a balloon (40 mm), and compared to the width of a 95% prediction interval (48mm). The balloon itself takes up nearly half the length of Zone III, severely shortening the available "safe" landing zone length. If the bounds were widened, the balloon were shortened, or the prediction interval could be narrowed, the misclassification error for Zone III would drop significantly.

The Region of Interest landing zone bounds for Zone III were: minimum length = left (right) Femoral Artery Cutpoint to AB length + 40mm (1 balloon length), maximum length = left (right) Femoral Artery Cutpoint to the lowest renal artery branch point. The Region of interest zone bounds for Zone I were: minimum length = left (right) Femoral Artery Cutpoint to superior celiac branch point + 40mm (1 balloon length), maximum length = left (right) Femoral Artery Cutpoint to left subclavian branch point. These bounds were selected in order to avoid (1) placing the balloon within the narrower femoral artery (Zone III minimum), (2) occluding the renal artery (Zone III maximum), (3) occluding the celiac artery (Zone I minimum), and (4) occluding the left subclavian (Zone I maximum). See Tables 6, 7, 8, and 9 for summaries of the results of the multiple linear regression models on the training datasets. Summary tables were created using the

'stargazer' package in R (Hlavac, Marek (2015). stargazer: Well-Formatted Regression and Summary Statistics Tables. R package version 5.2. http://CRAN.R-project.org/package=stargazer).

Hypothetical Analysis of Alternative Balloon Sizes:

Balloon length of 40mm was a major limiting factor in the Zone III models. We evaluated two hypothetical alternative balloon lengths of 30mm and 25mm to quantify the improvements in misclassification error if shorter balloons were used. We used the exact same Zone III linear regression models as were used above. The multivariate (MV) model included terms for torso extent, sex, and age, whereas the median model only included a constant term equal to the median length to the midpoint of Zone III was 244 and 239 mm from the right and left femoral arteries, respectively.) As before, each predicted length was assigned either 1 (success) or 0 (failure) based on whether the predicted length fell within the actual Region of Interest landing zone bounds for each individual and misclassification occurred if the predicted length was too short or too long. The misclassification rate was computed as the percentage of failures in the training and test datasets.

		MV Model		Mediar	n Model
	balloon length	train	test	train	test
RFA to Zone III	4 cm	39.7%	39.5%	39.8%	37.4%
	3 cm	16.4%	16.9%	17.0%	18.0%
	2.5 cm	10.9%	10.3%	10.2%	12.1%
LFA to Zone III	4 cm	39.1%	40.0%	40.7%	37.2%
	3 cm	15.5%	17.2%	17.5%	18.3%
	2.5 cm	9.9%	9.8%	11.9%	12.0%

Table 5 – Misclassification error rates

As shown in Table 5, the misclassification error rates in the test datasets drop to around 17% with a 30mm balloon and 10% with a 25mm balloon using the multivariate model, and 18% and 12% using the constant model. The larger landing zone afforded by the shorter balloon results in significantly better model performance, with the percentage of failures (too short/too long) dropping by more than half.

		Dependen	t variable:	
		dist_to_m	id_zone3r	
	(1)	(2)	(3)	(4)
s2pdist	0.250^{***}	0.280***	0.248***	0.277***
	p = 0.000	p = 0.000	p = 0.000	$\mathrm{p}=0.000$
	(0.224, 0.276)	(0.251, 0.309)	(0.222, 0.274)	(0.248, 0.306)
sex_is_f		4.664***		4.532^{***}
		p = 0.00001		p = 0.00002
		(2.647, 6.681)		(2.527, 6.537)
age_exact			0.177***	0.174***
0			p = 0.00002	p = 0.00002
			(0.098, 0.256)	(0.095, 0.252)
Constant	104.380***	86.319***	99.541***	82.122***
	p = 0.000	p = 0.000	p = 0.000	p = 0.000
	(89.742, 119.019)	(69.852, 102.786)	(84.840, 114.242)	(65.646, 98.598)
Observations	992	992	988	988
\mathbb{R}^2	0.261	0.276	0.275	0.289
Adjusted R ²	0.260	0.275	0.274	0.287
Residual Std. Error	13.022 (df = 990)	12.895 (df = 989)	12.918 (df = 985)	12.797 (df = 984)
F Statistic	349.575^{***} (df = 1; 990)	188.506^{***} (df = 2; 989)	186.964^{***} (df = 2; 985)	133.546^{***} (df = 3; 984)
Note:			*p<	<0.1; **p<0.05; ***p<0.02

Table 6 - Right CFA to Zone III models

		Dependen	t variable:		
	dist_to_mid_zone3l				
	(1)	(2)	(3)	(4)	
s2pdist	0.250***	0.274^{***}	0.249***	0.271***	
	p = 0.000	p = 0.000	$\mathrm{p}=0.000$	p = 0.000	
	(0.225, 0.276)	(0.246, 0.303)	(0.223, 0.274)	(0.243, 0.300)	
sex_is_f		3.672***		3.503^{***}	
		p = 0.0003		p = 0.0005	
		(1.692, 5.653)		(1.540, 5.466)	
age_exact			0.185^{***}	0.182^{***}	
•			p = 0.00001	p = 0.00001	
			(0.107, 0.262)	(0.105, 0.259)	
Constant	99.291***	85.070***	94.171***	80.708***	
	p = 0.000	p = 0.000	$\mathrm{p}=0.000$	p = 0.000	
	(84.972, 113.610)	(68.904, 101.237)	(79.827, 108.515)	(64.572, 96.844)	
Observations	992	992	988	988	
\mathbb{R}^2	0.271	0.280	0.287	0.296	
Adjusted R ²	0.270	0.279	0.286	0.294	
Residual Std. Error	12.738 (df = 990)	$12.660 \ (df = 989)$	$12.604 \ (df = 985)$	12.533 (df = 984)	
F Statistic	367.353^{***} (df = 1; 990)	192.547^{***} (df = 2; 989)	198.503^{***} (df = 2; 985)	137.921^{***} (df = 3; 984)	
Note:			*p<	<0.1; **p<0.05; ***p<0.01	

Table 7 - Left CFA to Zone III models

		Dependent	variable:	
		dist_to_mi	d_zone1r	
	(1)	(2)	(3)	(4)
s2pdist	0.569^{***}	0.550^{***}	0.561^{***}	0.540^{***}
	p = 0.000	p = 0.000	p = 0.000	p = 0.000
	(0.539, 0.600)	(0.516, 0.584)	(0.533, 0.590)	(0.508, 0.571)
sex_is_f		-2.938^{**}		-3.329^{***}
		p = 0.014		p = 0.003
		(-5.264, -0.611)		(-5.491, -1.167)
age_exact			0.547***	0.550***
			p = 0.000	p = 0.000
			(0.462, 0.632)	(0.465, 0.635)
Constant	115.426***	126.864^{***}	102.179***	115.041***
	p = 0.000	p = 0.000	p = 0.000	p = 0.000
	(98.297, 132.556)	(107.526, 146.203)	(86.086, 118.271)	(96.967, 133.114)
Observations	995	995	991	991
R^2	0.572	0.575	0.631	0.634
Adjusted R ²	0.572	0.574	0.630	0.633
Residual Std. Error	$14.984 \ (df = 993)$	14.946 (df = 992)	$13.928 \ (df = 988)$	13.871 (df = 987)
F Statistic	$1,328.724^{***}$ (df = 1; 993)	670.853^{***} (df = 2; 992)	844.998^{***} (df = 2; 988)	
Note:			*p<	<0.1; **p<0.05; ***p<0.01

Table 8 - Right CFA to Zone I models

		Dependent	variable:				
	dist_to_mid_zone11						
	(1)	(2)	(3)	(4)			
s2pdist	$\begin{array}{c} 0.571^{***} \\ \mathrm{p} = 0.000 \\ (0.541, 0.602) \end{array}$	$\begin{array}{c} 0.545^{***} \\ \mathrm{p} = 0.000 \\ (0.512, \ 0.579) \end{array}$	$\begin{array}{c} 0.563^{***} \\ \mathrm{p} = 0.000 \\ (0.535, 0.592) \end{array}$	$\begin{array}{c} 0.535^{***} \\ \mathrm{p} = 0.000 \\ (0.503, 0.566) \end{array}$			
sex_is_f		-3.982^{***} p = 0.001 (-6.288, -1.676)		-4.409^{***} p = 0.0001 (-6.543, -2.276)			
age_exact			$\begin{array}{c} 0.550^{***} \\ \mathrm{p} = 0.000 \\ (0.466, 0.635) \end{array}$	$0.554^{***} { m p} = 0.000 \ (0.471, 0.638)$			
Constant	$\begin{array}{l} 109.692^{***} \\ \mathrm{p} = 0.000 \\ (92.667, 126.718) \end{array}$	$\begin{array}{c} 125.197^{***} \\ \mathrm{p} = 0.000 \\ (106.027, 144.367) \end{array}$	96.267^{***} p = 0.000 (80.331, 112.203)	$\begin{array}{l} 113.303^{***} \\ p = 0.000 \\ (95.471, 131.135) \end{array}$			
Observations	995	995	991	991			
\mathbb{R}^2	0.577	0.582	0.637	0.643			
Adjusted R ²	0.576	0.581	0.637	0.642			
Residual Std. Error F Statistic	14.894 (df = 993) 1,353.446 ^{***} (df = 1; 993)	14.816 (df = 992) 689.572 ^{***} (df = 2; 992)	$\begin{array}{l} 13.792 \ (\mathrm{df}=988) \\ 868.069^{***} \ (\mathrm{df}=2; \ 988) \end{array}$	$\begin{array}{l} 13.686 \; (\mathrm{df}=987) \\ 593.210^{***} \; (\mathrm{df}=3; 987) \end{array}$			
Note:			*p•	<0.1; **p<0.05; ***p<0.01			

Table 9 - Left CFA to Zone I models

Arterial Tortuosity

We define tortuosity as L1/L2, where L1 = is the length of the vasculature following its centerline and L2 = the straight line length between the start and end points of the vasculature region (descending aorta, left and right femoral arteries). Mean (SD) tortuosity was 1.055 (.027) in females and 1.053 (.025) in males in the descending aorta, 1.039 (.032) in females and 1.053 (.044) in males in the left femoral artery, and 1.038 (.03) in females and 1.05 (.042) in males in the right femoral artery (Table 10).

			Т	ortuosit	у	
Vascular Region	Sex	Mean	SD	Min	Median	Max
AB to LSC	F	1.055	0.02732	1.015	1.050	1.220
	Μ	1.053	0.02503	1.008	1.048	1.241
LFA to AB	F	1.039	0.03177	1.003	1.029	1.222
	Μ	1.053	0.04443	1.004	1.038	1.339
RFA to AB	F	1.038	0.02986	1.006	1.030	1.257
	Μ	1.050	0.04242	1.001	1.036	1.340

Table 10 - Tortuosity statistics by vascular region and sex

The histogram of tortuosity measurements shows a distribution that is skewed, having a 'long tail' of high values (Figure 7). The majority of patients will have tortuosity values between +/-2SD (1.0 to 1.1) suggesting that the vascular centerline distance is typically up to 10% longer than the straight line distance.

Figure 7 - Distribution of tortuosity by vascular region and sex

Pearson correlation analysis demonstrated that age was the strongest correlate with tortuosity among the available measures (r = 0.48, p<.001). Tortuosity appears to increase with age in both men and women. Scatter plots with fitted smoothing splines are used to show the relationship between tortuosity, age, and sex below (Figure 8). There is some evidence of a non-linear relationship as both the slope of the fitted spline and the variability of tortuosity appear to increase sharply at around age 40.

Figure 8 - Tortuosity increases with age for all vascular regions and in both sexes

The following are examples of low and high tortuosity aorta and femoral arteries whose 3-D rendering has been extracted from our database (Figure 9).

Figure 9 - A: Low tortuosity aorta (1.01) and femoral arteries (1.01) B: High tortuosity aorta (1.24) and femoral arteries (1.34)

Replicating Military Population from Civilian Cohort

In lieu of an actual military population, we selected a subset of our civilian cohort between the ages of 18 and 30 with BMI between 18.5 and 25 to represent our "military population" (Figure 10).

Figure 10 - Selection of 'military' population from within civilian population

This subset (Mil) was compared against the remainder of the civilian population (a) between 18 and 30 (Civ Young Obese), and (b) over 30 at any BMI (Civ Old).

However, based on the results of our prior analysis, we can predict what the results of this analysis will be since it is the same population. BMI is not a significant predictor of vascular length, so we would predict no difference between the Mil and Civ Young Obese groups, but we would predict a significant difference between Mil and Civ Old of approximately 20*.17=3.4mm (Zone III) and 20*.55=11mm (Zone I), based on the average age difference of 20 years between the two groups.

Indeed, when we fit models that include torso extent, sex, and population group (Mil [reference group], Civ Young Obese, and Civ Old), the coefficient for Civ Old in Zone III was 3.3 (right) and 3.5 (left), and in Zone I was 10.9 (left) and 10.5 (right), whereas the Civ Young Obese coefficient was non-significant (Table 11, Figure 11).

	Dependent variable:					
	Zone III L	Zone III R	Zone I L	Zone I R		
	(1)	(2)	(3)	(4)		
s2pdist	0.271^{***}	0.284***	0.537***	0.551***		
	(0.012)	(0.012)	(0.013)	(0.013)		
sexM	-3.125^{***}	-4.319^{***}	4.044***	2.857***		
	(0.810)	(0.828)	(0.897)	(0.913)		
Civ Old	3.493***	3.299***	10.866***	10.545***		
	(0.831)	(0.851)	(0.922)	(0.938)		
Civ Young	0.222	0.325	0.707	0.668		
C C	(1.016)	(1.040)	(1.127)	(1.147)		
Constant	88.604***	86.878***	120.127***	118.406***		
	(6.205)	(6.349)	(6.900)	(7.021)		
Observations	1,473	1,473	1,478	1,478		
\mathbb{R}^2	0.306	0.308	0.650	0.645		
Adjusted \mathbb{R}^2	0.304	0.307	0.650	0.644		
Residual Std. Error	12.276	12.561	13.632	13.871		
F Statistic	161.985^{***}	163.648^{***}	685.338^{***}	668.870***		

Without a true military population of CT scans of actual soldiers, it is difficult for us to determine if they would be truly and predictably different from civilians in terms of aortic vascular lengths.

Table 11 - Linear regression summary of vascular lengths including 'military' vs. civilian groups

Figure 11 – 'Military', Civilian (Young Obese), and Civilian (Old) distances to midpoints of Zone I and III (from LFA)

Vena Cava Measurements

Vena Cava measurements were taken from the region of the vena cava bounded from the distal IVC point to a point 3 cm superior. The volume and surface area of this vena cava region were measured (Figure 12). Scans for which vena cava measurements could not be accurately extracted were excluded.

Figure 12 – Volume and area of Vena Cava 3cm region

In univariate analysis, age was not significantly correlated with volume or area; however, there were significant sex differences with both (p<.001) (Figure 13). Emergency department measured blood pressure (BP) and pulse were significantly correlated with volume and area, although the correlations were weak in magnitude (Pearson r=.16 (volume), .16 (area), p<.001 (BP) and r=-.26 (volume), -.25 (area), p<.001 (pulse)). Torso extent, measured as sternum to pelvis straight-line distance, was also correlated with both volume and area (Pearson r=.18 (volume), .17 (area), p<.001). Pulse showed the strongest association with vena cava volume and surface area. It showed a negative correlation, suggesting that as pulse increases vena cava volume and area decrease. In contrast, BP and torso extent were both positively correlated, increasing with vena cava volume and surface area (Figure 14).

Figure 13 - Vena Cava volume and area by sex and age

Figure 14 - Vena Cava volume in 3cm region vs. BP, pulse, and torso extent

ECG Gated Scan Measurements

We identified N=37 people with ECG-gated CT scans, 15 women and 22 men. Each patient had 10 reconstructions per scan resulting in a total of 370 series. We are able to identify and measure the aorta at ten different points in the cardiac cycle, from 5% to 95% by 10%, representing the percent R to R interval at which each series was reconstructed.

On average, the men in this subset were older than the women by six years (Table 12)

		А	ge
	Ν	Mean	SD
F	15	32.37	10.813
Μ	22	38.00	9.869

Table 12 – Average age by sex in ECG-gated subset

Hemodynamic data from the trauma registry was only available for 17 of these 37 individuals, so hypotensive vs. normotensive analysis was not possible.

The ECG scan protocol includes a CT Chest, with a common region of coverage from T5 through T8 for all scans. Aorta centerline and walls were delineated, allowing the measurement

of aorta radius at the inferior aspect of each vertebral body. Box plots were used to visualize the relationship between radius, vertebra number, ECG Cycle (%), and sex.

Diameter peaks at around ECG Percent 25% (women) and 35% to 45% (men) (Figure 15). This is interesting; however, due to the known effect of age on aorta diameter (presented in the first section above), more data are needed to understand whether this difference is simply due to the higher average age of men vs. women included in this subset analysis.

Figure 15 - Aorta diameter at points in the cardiac cycle (%) by sex and vertebra number

As shown in Figure 16, there is wide variability in T8 aorta diameter measurements in men and women due to both cardiac cycle and age.

Figure 16 - T8 aorta diameter at points in the cardiac cycle (%) by age

Note that there is one male patient (UID 21556 highlighted in the red box in Figure 16) who represents a high outlier in the male chart. He is 45 years old, tall (1.88m), rather large (130kg), and appears to have a dissecting aorta (Figure 17), which could explain the outlier radius measurement.

Figure 17 - T9 aortic slice for patient 21556

Figure 18 also illustrates the effect of age and cardiac cycle on aortic diameter.

Figure 18 – Effect of age and cardiac cycle on aortic diameter

Appendix G: CRADA

CRADA COVER SHEET

Action: New Agreement

Agreement Type: CRADA - Cooperative Research & Development Agreement

[NOTE: This Cover Sheet is for internal management purposes only. It is not part of the Agreement & neither party is bound to anything contained in it]

Title: Analytical Morphomics of Human Torso for Combat Injury Characterization

Effective Date:		6/13/2016	Expiration Date:		6/12/2019			
MRMC Control No:		W81XWH-16-0325	DA Control No:					
RAD:	2 - Combat	Casualty Care (CCCRP)	Lab Field:		d:	No RAD response		
Concurrence obtained from appropriate RAD/USAMMDA/CBMS-JPMO program managers: NO								
Concurrence obtained from US Trade Rep (if "YES" then concurrence must be attached): N/A								
Keywords: Analytical Morphomics CT Scan Battlefield Casualties								

	USAISR - US Army Institute of Surgical Research							
Laboratory:	Office Symbol: MCMR-SRR-P DTIC Source Code: 404885							
	3698 Chambers Pass, Building 3611							
	JBSA Fort Sam Houston Texas 78234-7767							
	Phone: 210-539-2448 FAX: 210-539-8522							
	LTC Kevin K. Chung, MD							
Lab's Technical	Office Symbol: MCMR-SRR Div/Dept: Research Directorate							
POC:	Phone: 210-539-4327 FAX: 210-539-8522							
	Email Address: Kevin.k.chung.mil@mail.mil							
	Commander, US Army Medical Research and Materiel Command							
Lab's Legal	ATTN: MCMR-JA (Technology Transfer Legal Staff)							
Counsel:	504 Scott Street, Fort Detrick, MD 21702-5012							
Courisei.	Phone: 301-619-2065; FAX: 301-619-5034							
	Legal Reviewer: N/A - no deviation from template							

	Dr. Steward C. Wang						
	Regents of the University of Michigan						
	1500 E. Medical Center Drive, 1C-421-UH						
Partner's Technical	Ann Arbor		MI			48109-5033	
POC:	Entity Status:	Educational		DTIC Source Code:		228600	
	Phone: 734-936-9690			FAX: 734-936-9657			
	Email Address:	stewartw@umich.edu					
	DoD Status:	Traditional (Collaboration with DoD in the past 3 years)					

Summary:

Perform the morphomic analysis of the CT scan images of battlefield casualties.

A COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT

Between

Regents of the University of Michigan Ann Arbor, MI 48109 ("UMichigan")

and

U.S. Army Institute of Surgical Research JBSA Fort Sam Houston, Texas 78234-7767 ("USAISR")

Article 1. Background

1.00 This Agreement is entered into under the authority of the Federal Technology Transfer Act of 1986, 15 U.S.C. 3710a, <u>et seq.</u>, between UMichigan and the USAISR, the parties to this Agreement.

1.01 USAISR, on behalf of the U.S. Government, and UMichigan desire to cooperate in research and development on **Analytical Morphomics of Human Torso for Combat Injury Characterization** according to the attached Statement of Work (SOW) described in Appendix A. NOW, THEREFORE, the parties agree as follows:

Article 2. Definitions

2.00 The following terms are defined for this Agreement as follows:

2.01 "Agreement" means this cooperative research and development agreement.

2.02 "Invention" and "Made" have the meanings set forth in Title 15 U.S.C. Section 3703(7) and (8).

2.03 "Proprietary Information" means information marked with a proprietary legend, or if disclosed orally or visually, summarized in writing, marked with a proprietary legend, and then delivered to the recipient within twenty (20) days of oral or visual disclosure, which embodies trade secrets developed at private expense or which is confidential business or financial information, provided that such information:

(i) is not generally known, or which becomes generally known or available during the period of this Agreement from other sources without obligations concerning their confidentiality;

(ii) has not been made available by the owners to others without obligation concerning its confidentiality; and

(iii) is not already available to the receiving party without obligation concerning its confidentiality.

(iv) is not independently developed by or on behalf of the receiving party, without reliance on the information received hereunder.

2.04 "Subject Data" means all recorded information first produced in the performance of this Agreement.

2.05 "Subject Invention" means any Invention Made as a consequence of, or in relation to, the performance of work under this Agreement.

Article 3. Research Scope and Administration

3.00 <u>Statement of Work</u>. Research performed under this Agreement shall be performed in accordance with the SOW incorporated as a part of this Agreement at Appendix A. It is agreed that any descriptions, statements, or specifications in the SOW shall be interpreted as goals and objectives of the services to be provided under this Agreement and not requirements or warranties. USAISR and UMichigan will endeavor to achieve the goals and objectives of such services; however, each party acknowledges that such goals and objectives, or any anticipated schedule of performance, may not be achieved.

3.01 <u>Review of Work</u>. Periodic conferences shall be held between the parties for the purpose of reviewing the progress of work. It is understood that the nature of this research is such that completion within the period of performance specified, or within the limits of financial support allocated, cannot be guaranteed. Accordingly, all research will be performed in good faith.

3.02 <u>Principal Investigator</u>. Any work required by the USAISR under the SOW will be performed under the supervision of LTC Kevin K. Chung, MD (Research Directorate, US Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, Texas 78234-7767, 210-539-4327, FAX 210-539-8522, kevin.k.chung.mil@mail.mil, who, as co-principal investigator has responsibility for the scientific and technical conduct of this project on behalf of the USAISR. Any work required by UMichigan under the SOW will be performed under the supervision of Stewart C. Wang, MD PhD (1500 E. Medical Center Drive, 1C-421-UH, Ann Arbor, MI 48109-5033, 734-936-9690, FAX: 734-936-

9657, <u>stewartw@umich.edu</u>, who, as co-principal investigator has responsibility for the scientific and technical conduct of this project on behalf of UMichigan.

3.03 <u>Collaboration Changes</u>. If at any time the co-principal investigators determine that the research data dictates a substantial change in the direction of the work, the parties shall make a good faith effort to agree on any necessary change to the SOW and make the change by written notice to the addresses listed in section 14.05 <u>Notices</u>.

3.04 <u>Final Report</u>. The parties shall prepare a final report of the results of this project within six months after completing the SOW.

Article 4. Ownership and Use of Physical Property

4.01 <u>Ownership of Materials or Equipment</u>. All materials or equipment developed or acquired under this Agreement by the parties shall be the property of the party which developed or acquired the property, except that government equipment provided by USAISR (1) which through mixed funding or mixed development must be integrated into a larger system, or (2) which through normal use at the termination of the Agreement has a salvage value that is less than the return shipping costs, shall become the property of UMichigan.

4.02 Use of Provided Materials. Both parties agree that any materials relating to them which were provided by one party to the other party will be used for research purposes only. The materials shall not be sold, offered for sale, used for commercial purposes, or be furnished to any other party without advance written approval from the Provider's official signing this Agreement or from another official to whom the authority has been delegated, and any use or furnishing of material shall be subject to the restrictions and obligations imposed by this Agreement.

Article 5. Financial Obligation

5.00 The parties shall each be individually responsible for funding its own respective researchers throughout this Agreement, including USAISR facilities, salaries, overhead and indirect costs, etc. Each party may determine at its own discretion, the amount of resources, personnel, materials or funds it will devote to the work under this Agreement.

Article 6. Patent Rights

6.00 <u>Reporting</u>. The parties shall promptly report to each other all Subject Inventions reported to either party by its employees. All Subject Inventions Made during the performance of this Agreement shall be listed in the Final Report required by this Agreement. 6.01 <u>UMichigan Employee Inventions</u>. USAISR waives any ownership rights the U.S. Government may have in Subject Inventions Made by UMichigan employees and agrees that UMichigan shall have the option to retain title in Subject Inventions Made by UMichigan employees. UMichigan shall notify USAISR promptly upon making this election and agrees to timely file patent applications on UMichigan's Subject Invention at its own expense. UMichigan agrees to grant to the U.S. Government on UMichigan's Subject Inventions a nonexclusive, nontransferable, irrevocable, paid-up license in the patents covering a Subject Invention, to practice or have practiced, throughout the world by, or on behalf of the U.S. Government. The nonexclusive license shall be evidenced by a confirmatory license agreement prepared by UMichigan in a form satisfactory to USAISR.

6.02 <u>USAISR Employee Inventions</u>. USAISR shall have the initial option to retain title to, and file patent application on, each Subject Invention Made by its employees. The USAISR agrees to grant an exclusive license to any invention arising under this Agreement to which it has ownership to UMichigan in accordance with Title 15 U.S. Code Section 3710a, on terms negotiated in good faith. Any invention arising under this Agreement is subject to the retention by the U.S. Government of nonexclusive, nontransferable, irrevocable, paid-up license to practice, or have practiced, the invention throughout the world by or on behalf of the U.S. Government.

6.03 Joint Inventions. Any Subject Invention patentable under U.S. patent law which is Made jointly by USAISR employees and UMichigan employees under the Scope of Work of this Agreement shall be jointly owned by the parties. The parties shall discuss together a filing strategy and filing expenses related to the filing of the patent covering the Subject Invention. If a party decides not to retain its ownership rights to a jointly owned Subject Invention, it shall offer to assign such rights to the other party, pursuant to Paragraph 6.05, below.

6.04 <u>Government Contractor Inventions</u>. In accordance with 37 Code of Federal Regulations 401.14, if one of USAISR's Contractors conceives an invention while performing services at USAISR to fulfill USAISR's obligations under this Agreement, USAISR may require the Contractor to negotiate a separate agreement with UMichigan regarding allocation of rights to any Subject Invention the Contractor makes, solely or jointly, under this Agreement. The separate agreement (i.e., between UMichigan and the Contractor) shall be negotiated prior to the Contractor undertaking work under this Agreement or, with the USAISR's permission, upon the identification of a Subject Invention. In the absence of such a separate agreement, the Contractor agrees to grant UMichigan an option for a license in Contractor's inventions of the same scope and terms set forth in this Agreement for inventions made by USAISR employees. 6.05 <u>Filing of Patent Applications</u>. The party having the right to retain title to, and file patent applications on, a specific Subject Invention may elect not to file patent applications, provided it so advises the other party within 90 days from the date it reports the Subject Invention to the other party. Thereafter, the other party may elect to file patent applications on the Subject Invention and the party initially reporting the Subject Invention agrees to assign its ownership interest in the Subject Invention to the other party.

6.06 <u>Patent Expenses</u>. The expenses attendant to the filing of patent applications shall be borne by the party filing the patent application, unless otherwise agreed. Each party shall provide the other party with copies of the patent applications it files on any Subject Invention, along with the power to inspect and make copies of all documents retained in the official patent application files by the applicable patent office. The parties agree to reasonably cooperate with each other in the preparation and filing of patent applications resulting from this Agreement.

Article 7. Exclusive License

7.00 <u>Grant</u>. The USAISR agrees to grant to UMichigan an exclusive license in each U.S. patent application, and patents issued thereon, covering a Subject Invention, which is filed by the USAISR subject to the reservation of a nonexclusive, nontransferable, irrevocable, paid-up license to practice and have practiced the Subject Invention on behalf of the United States.

7.01 <u>Exclusive License Terms</u>. UMichigan shall elect or decline to exercise its right to acquire an exclusive license to any Subject Invention within six months of being informed by the USAISR of the Subject Invention. The specific royalty rate and other terms of license shall be negotiated promptly in good faith and in conformance with the laws of the United States.

Article 8. <u>Background Patent(s)</u>

8.00 USAISR Background Patent(s): USAISR has filed patent application(s), or is the assignee of issued patent(s), listed below which contain(s) claims that are related to research contemplated under this Agreement. No license(s) to this/these patent applications or issue patents is/are granted under this Agreement, and this/these application(s) and any continuations to it/them are specifically excluded from the definitions of "Subject Invention" contained in this Agreement: None.

8.01 <u>UMichigan Background Patent(s)</u>: UMichigan has filed patent application(s), or is the assignee of issued patent(s), listed below which contain(s) claims that are related to research contemplated under this Agreement. No license(s) to this/these patent applications or issue patents is/are granted under this Agreement, and this/these application(s) and any continuations to it/them are specifically excluded from the definitions of "Subject Invention" contained in this Agreement:

Analytic morphomics: high speed medical image automated analysis method (Wang, et al.) January 26, 2016 United States Patent # 9,241,634

Article 9. Subject Data and Proprietary Information

9.00 <u>Subject Data Ownership</u>. Subject Data shall be jointly owned by the parties. Each party, upon request to the other party, shall have the right to review and to request delivery of all Subject Data, and delivery shall be made to the requesting party within two weeks of the request, except to the extent that such Subject Data are subject to a claim of confidentiality or privilege by a third party.

9.01 <u>Proprietary Information/Confidential Information</u>. Each party shall place a proprietary notice on all information it delivers to the other party under this Agreement that it asserts is proprietary. The parties agree that any Proprietary Information or Confidential Information furnished by one party to the other party under this Agreement, or in contemplation of this Agreement, shall be used, reproduced and disclosed by the receiving party only for the purpose of carrying out this Agreement, and shall not be released by the receiving party to third parties unless consent to such release is obtained from the providing party.

9.02 <u>Army limited-access database</u>. Notwithstanding anything to the contrary in this Article, the existence of established CRADAs specifying areas of research and their total dollar amounts may be documented on limited access, password-protected websites of the U.S. Army Medical Research and Materiel Command (the parent organization of USAISR), to provide the Command's leadership with a complete picture of military research efforts.

9.03 <u>USAISR Contractors</u>. UMichigan acknowledges and agrees to allow USAISR's disclosure of UMichigan's proprietary information to USAISR's Contractors for the purposes of carrying out this Agreement. USAISR agrees that it has or will ensure that its Contractors are under written obligation not to disclose UMichigan's proprietary information, except as required by law or court order, before Contractor employees have access to UMichigan's proprietary information under this Agreement.

9.04 <u>Release Restrictions</u>. USAISR shall have the right to use all Subject Data for any Governmental purpose, but shall not release Subject Data publicly except: (i) USAISR in reporting on the results of research may publish Subject Data in technical articles and other documents to the extent it determines to be appropriate; and (ii) USAISR may release Subject Data where release is required by law or court order. The parties agree to confer prior to the publication of Subject Data to assure that no Proprietary Information is released and that patent rights are not jeopardized. Prior to submitting a manuscript for review which contains the results of the research under this Agreement, or prior to publication, each party shall be offered at least fourty-five (45) days to review any proposed manuscript and request up to sixty (60) days to delay publication in order to file patent applications. In no event shall the delay in publication exceed one hundred and twenty (120) days.

9.05 <u>FDA Documents</u>. If this Agreement involves a product regulated by the U.S. Food and Drug Administration (FDA), then UMichigan or the U.S. Army Medical Research and Materiel Command, as appropriate, may file any required documentation with the FDA. In addition, the parties authorize and consent to allow each other or their contractors or agents access to, or to cross-reference, any documents filed with the FDA related to the product. In the event the UMichigan decides not to continue development or seeking FDA approval or stops commercializing in the US, then the Army has access to all the data/current FDA filings, and a non-exclusive license to any necessary underlying intellectual property.

Article 10. Information Assurance and Data Management

The parties to this agreement acknowledge the importance of maintaining information security and managing the data exchanged hereunder in compliance with all applicable legal authorities, affording the highest degree of protection practicable. The parties agree to the following:

10.01 The following data will be collected, shared, used or stored in support of this non-reimbursable agreement: human clinical test data.

10.02 All data generated under this agreement, as well as all rights in that data, will be jointly owned by the parties to this agreement. Both parties assume responsibility for storing, protecting and managing data in compliance with applicable legal authorities. Each party will notify the other party prior to the destruction of any data in their possession that is generated under this agreement.

10.03 Both parties will ensure that their personnel handling the data described above satisfy all necessary training requirements and obtain any requisite clearances to handle said data on any applicable information system. All personnel participating in data exchange must be under a duty to hold said data confidential. If there will be any individual lacking such a duty of confidentiality, that individual must sign a non-disclosure agreement before handling the data.

10.04 Both parties are responsible for ensuring that any data shared is both transmitted and stored in a secured information system network that is fully compliant with all applicable Federal legal authorities.

10.05 The data generated as a result of this interaction may be used to support the funding entities' regulatory filings, professional publications and other purposes.

10.06 Any public release of data prior to final transfer to the funding agency requires review and approval by the public affairs and security offices of both signatories to this agreement.

Article 11. Termination

11.00 <u>Termination by Mutual Consent</u>. UMichigan and USAISR may elect to terminate this Agreement, or portions thereof, at any time by mutual consent.

11.01 <u>Termination by Unilateral Action</u>. Either party may unilaterally terminate this entire Agreement at any time by giving the other party written notice, not less than 30 days prior to the desired termination date.

11.02 <u>Termination Procedures</u>. In the event of termination, the parties shall specify the disposition of all property, patents and other results of work accomplished or in progress, arising from or performed under this Agreement by written notice. Upon receipt of a written termination notice, the parties shall not make any new commitments and shall, to the extent feasible, cancel all outstanding commitments that relate to this Agreement. Notwithstanding any other provision of this Agreement, any exclusive license entered into by the parties relating to this Agreement shall be simultaneously terminated unless the parties agree to retain such exclusive license.

Article 12. Disputes

12.00 <u>Settlement</u>. Any dispute arising under this Agreement which is not disposed of by agreement of the principal investigators shall be submitted jointly to the signatories of this Agreement. A joint decision of the signatories or their designees shall be the disposition of such dispute. However, nothing in this section shall prevent any party from pursuing any and all administrative and/or judicial remedies which may be allowable.

Article 13. Liability

13.00 <u>Property</u>. Neither party shall be responsible for damages to any property provided to, or acquired by, the other party pursuant to this Agreement.

13.01 <u>UMichigan's Employees</u>. To the extent permitted by law, UMichigan agrees to indemnify and hold harmless the U.S. Government for liability of any kind involving an employee of UMichigan arising out of negligent act or omission in connection with this Agreement, and for all liabilities arising out of the use by UMichigan of USAISR's research and technical developments, or out of any use, sale or other disposition by UMichigan of products made based on USAISR's technical developments, except to the extent the liability is due to the negligence of USAISR under the provisions of the Federal Tort Claims Act. This provision shall survive termination or expiration of this Agreement.

13.02 <u>No Warranty</u>. The parties make no express or implied warranty as to any matter whatsoever, including the conditions of the research or any Invention or product, whether tangible or intangible, Made, or developed under this agreement, or the ownership, merchantability, or fitness for a particular purpose of the research or any Invention or product.

Article 14. Miscellaneous

14.00 <u>Governing Law</u>. The construction, validity, performance, and effect of this Agreement shall be governed for all purposes by the laws applicable to the United States Government.

14.01 Export Control and Biological Select Agents and Toxins. The obligations of the parties to transfer technology to one or more other parties, provide technical information and reports to one or more other parties, and otherwise perform under this Agreement are contingent upon compliance with applicable United States export control laws and regulations. The transfer of certain technical data and commodities may require a license from a cognizant agency of the United States Government or written assurances by the Parties that the Parties shall not export technical data, computer software, or certain commodities to specified foreign countries without prior approval of an appropriate agency of the United States Government. The Parties do not, alone or collectively, represent that a license shall not be required, nor that, if required, it shall be issued. In addition, where applicable, the parties agree to fully comply with all laws, regulations, and guidelines governing biological select agents and toxins.

14.02 <u>Independent Contractors</u>. The relationship of the parties to this Agreement is that of independent contractors and not as agents of each other or as joint venturers or partners.

14.03 <u>Use of Name or Endorsements</u>. (a) The parties shall not use the name of the other party on any product or service which is directly or indirectly

related to either this Agreement or any patent license or assignment agreement which implements this Agreement without the prior approval of the other party. (b) By entering into this Agreement, USAISR does not directly or indirectly endorse any product or service provided, or to be provided, by UMichigan, its successors, assignees, or licensees. UMichigan shall not in any way imply that this Agreement is an endorsement of any such product or service. Press releases or other public releases of information shall be coordinated between the parties prior to release, except that the USAISR may release the name of UMichigan and the title of the research without prior approval from UMichigan.

14.04 <u>Survival of Specified Provisions</u>. The rights specified in provisions of this Agreement covering <u>Patent Rights</u>, <u>Subject Data and Proprietary</u> <u>Information</u>, and <u>Liability</u> shall survive the termination or expiration of this Agreement.

14.05 <u>Notices</u>. All notices pertaining to or required by this Agreement shall be in writing and shall be signed by an authorized representative addressed as follows:

If to UMichigan:

Ryan Lankton, JD, MSI Project Representative Office of Research and Sponsored Projects University of Michigan 3003 South State Street, Room 1018 Ann Arbor, MI 48109-1274

If to USAISR:

U.S. Army Institute of Surgical Research MCMR-SRR-P (Rick Jocz) 3698 Chambers Pass Building 3611 JBSA Fort Sam Houston, Texas 78234-7767

Any party may change such address by notice given to the other in the manner set forth above.

Article 15. Duration of Agreement and Effective Date

15.01 <u>Effective Date</u>. This Agreement shall enter into force as of the date it is signed by the last authorized representative of the parties.

15.02 <u>Signature Execution</u>. This Agreement may be executed in one or more counterparts by the parties by signature of a person having authority to bind the party, which may be by facsimile signature, each of which when
executed and delivered, by facsimile transmission, mail, or email delivery, will be an original and all of which will constitute but one and the same Agreement.

15.03 <u>Expiration Date</u>. This Agreement will automatically expire three (3) years from effective date unless it is revised by written notice and mutual agreement.

IN WITNESS WHEREOF, the Parties have caused this agreement to be executed by their duly authorized representatives as follows:

RYAN LANKTON, JD, MSI Project Representative Office of Research and Sponsored Projects University of Michigan

DATE 6/13/2016

For UMichigan:

For the U.S. Government:

MICHAEL D. WIRT Colonel, US Army Commanding U.S. Army Institute of Surgical Research

DATE (3 5mlb

APPENDIX A STATEMENT OF WORK

Title: Analytical Morphomics of Human Torso for Combat Injury Characterization

In an effort to expand collaboration between the US Army Institute of Surgical Research (USAISR) and the University of Michigan (UMichigan), the institutions enter into a cooperative agreement described in the following statement of work. The points of contact for the two institutions are: Stewart C. Wang, MD, PhD, The University of Michigan and Sahar T. Leazer, MD, The US Army Institute of Surgical Research.

Background: "Analytical Morphomics" is a term described by Dr. Stewart Wang to characterize the innovative high throughput, highly automated, and anatomically indexed processing of 3D medical imaging data developed to support translational crash research. In analyzing thousands of crash cases it was apparent that occupant characteristics were significantly affecting the severity of incurred injuries. Experience in the civilian crash arena has pinpointed the influence of specific body characteristics on injury outcome following trauma. Morphomics measurements can overcome individual variability and improve by 10 to 100-fold the analytic power in crash study populations. Previous analysis of surgical outcome databases has shown that many of these morphomic factors can significantly predict and affect clinical outcomes of surgical patients following different medical treatments.

These findings can be translated to the military population injured in the battlefield. The result is the development of far more relevant and biofidelic physical test devices and methodologies that engineers need to guide military vehicle and personnel protection countermeasure development. The body composition data collected will also allow for improvements in medical and rehabilitation care for injured warfighters.

One specific application is the development of accurate measurements for aortic and venal caval dimensions based on CT scan images, hemodynamic status, habitus, gender and age in the military population. These findings will help create monograms of correlation for easily identifiable external bony landmarks and internal vascular anatomy. This is necessary to provide fluoroscopy-free insertion in the field. Aortic and vena caval dimensions differ with the hemodynamic status of the injured person as well as their gender, race, body habitus, and age. Better characterization of these differences is necessary to guide optimal field insertion and inflation of occlusive balloon catheters or other hemorrhage control devices for the treatment of battlefield casualties.

CT scans of battlefield casualties stored in the DoDTR at the USAISR will be de-identified then transferred electronically to the UMichigan. The morphomic analysis of the CT scan images provided by the USAISR will be implemented at the UMichigan using the following computer programs: MIMICS, MATLAB, ORACLE, and R for statistical analysis.

Collaboration:

The US Army Institute of Surgical Research agrees to:

- 1. De-identify and electronically transfer CT scans of battlefield casualties stored in the DoDTR to the UMichigan.
- 2. Share full research protocols and engage in good faith discussions pertaining to experimental design and objectives for the collaborative study designed to address de-identification and analysis of the CT scans provided by the USAISR and the UMichigan.
- 3. Share research data and engage in good faith discussions pertaining to the interpretation of data from the collaborative study as listed in paragraph 1, above.
- 4. Work in collaboration to publish results in appropriate peerreviewed journals as co-authors on all manuscripts generated from analysis.

The University of Michigan agrees to:

- 1. Perform the morphomic analysis of the CT scan images of battlefield casualties stored in the DoDTR provided by the USAISR.
- 2. Share full research protocols and engage in good faith discussions pertaining to experimental design and objectives for the collaborative study designed to address de-identification and analysis of the CT scans provided by the USAISR and the UMichigan.
- 3. Share research data and engage in good faith discussions pertaining to the interpretation of data from the collaborative study as listed in paragraph 1, above.
- 4. Work in collaboration to publish results in appropriate peerreviewed journals as co-authors on all manuscripts generated from analysis.

From time to time, USAISR personnel may work in UMichigan's facilities and UMichigan's personnel may work in USAISR's facilities as necessary to accomplish the goals of this collaboration.

Appendix H: Quad Chart

Characterization of Human Torso Vascular Morphometry in Normotensive and Hypotensive Trauma Patients Log. No. 13057165 Award No. W81XWH-14-2-0126 PI: Stewart Wang, MD **Org:** University of Michigan

18.3%

12.0%

Study Aims

• Develop accurate measurements for aortic dimensions based on hemodynamic status, body habitus, gender, and age in the civilian population

• Develop accurate measurements for venous dimensions based on hemodynamic status, body habitus, gender, and age in the civilian population

• Translate these findings to the military population and create accurate nomograms for catheter insertion and balloon inflation based on hemodynamic status, body habitus, gender, and age.

Approach

We developed a machine learning technique for extracting the aortic structures in a more automated fashion. This entails creating algorithms that search for circular structures in a region of interest and then reference the slices above and below to validate selection.

Timeline and Cost

Activities CY	14	15-16*
Develop accurate measurements for aortic dimensions		
Develop accurate measurements for venous dimensions		
Translate these findings to military population (healthier civilian)		
Perform analysis and develop nomograms		
Estimated Budget (\$K) Direct	\$517 K	\$535 K

*No Cost Time Extension Approved for CY16 (Yr3) Updated: (29 JUN 2017)

		Multivari	Multivariate Model		Median Model	
	balloon length	train	test	train	test	
RFA to Zone III	4 cm	39.7%	39.5%	39.8%	37.4%	
	3 cm	16.4%	16.9%	17.0%	18.0%	
	2.5 cm	10.9%	10.3%	10.2%	12.1%	
LFA to Zone III	4 cm	39.1%	40.0%	40.7%	37.2%	

15.5%

9.9%

17.2%

9.8%

17.5%

11.9%

Award Amount: \$1,089,496 Direct

Predicted error percentage rate for REBOA placement

3 cm

2.5 cm

Goals/Milestones

CY14 Goal – Civilian Population

- % Complete Task Identify and process civilian base morphomics 100% Develop aortic and vena cava algorithms 100% Process vasculature for civilian population 100%
 - Analyze data and create nomograms 100%

CY15 Goals – Military Population Surrogate*

Select civilian CTs to replace military CTs from AISR 100% Extract demographic information 100% Process base morphomics for military surrogate cohort 100% Process aorta for military surrogate cohort 100% Process vena cava for military surrogate cohort 100% Validate nomograms 100%

Comments/Challenges/Issues/Concerns

* Difficulty obtaining Military CTs resulted in a shift to a second set of Civilians with a tighter age and BMI range

Appendix I: Interim Progress Review Presentation

Award Number: W81XWH-14-2-0126 Award Date: 30-June-2014 Award Amount: \$1,680,120 Science/Project Officer: Wilbur W. Malloy Contract Officer Representative: Wilbur W. Malloy Program Sponsor Rep: Lt. Col Antoinette Shinn Portfolio Manager: Lt. Col Antoinette Shinn

Characterization of Human Torso Vascular Morphometry in Normotensive and Hypotensive Trauma Patients

University of Michigan

Morphomic

nalysis Group

Principal Investigator: Stewart C. Wang, MD, PhD

May 2, 2017

Co-PI Acknowledgements

Jonathan L. Eliason, MD

S. Martin Lindenauer Collegiate Associate Professor of Vascular Surgery

Medical Director – Diagnostic Vascular Labs

Co-Director – Multidisciplinary Aortic Program

Study Background

Non-compressible torso hemorrhage remains the leading cause of preventable death on the battlefield and a leading cause of death in civilian centers. Investigators are researching the use of various aortic occlusion catheters that can control non-compressible torso injuries in the field. Basic morphometric understanding is prerequisite for such procedures to be done safely and effectively.

- Better characterization of these differences is necessary to guide optimal field inflation of occlusive balloon catheters or other hemorrhage control devices for the treatment of battlefield casualties.
- Better characterization of these dimensions will support the development of occlusion devices that optimally limit hemorrhage while minimizing complications.

Grant Overview: Hypothesis & Aims

We hypothesize that aortic and venous dimensions differ with the hemodynamic status of the injured person as well as their gender, race, body habitus and age.

- AIM 1: Develop accurate measurements for aortic dimensions based on hemodynamic status, body habitus, gender and age in the civilian population.
- AIM 2: Develop accurate measurements for vena caval dimensions based on hemodynamic status, body habitus, gender and age in the civilian population.
- AIM 3: Translate these findings to the military population and create accurate nomograms for catheter design, catheter insertion and balloon inflation based on hemodynamic status, body habitus, gender, and age.

Grant Overview: Study Design Overview

- Refine our analytic techniques to quantify aortic as well as vena caval geometry and dimensions in a much larger population (n=2000 civilians, 500 injured warfighters) to more fully determine the effects of gender, race, and age as well as hemodynamic status.
- This information will be vital to determine the dimensions of balloon inflation necessary to control internal hemorrhage while minimizing complications such as aortic dissection or rupture.

STUDY POPULATION	Target	Delivered
Civilians: 18-50 years old (60% Male / 40% Female)	2000 (1200/800)	1789 of 2247 met criteria (1280/509)
EKG-gated scans	50	37
Hemodynamic instability (HR>110, SBP<100)	75	78 (HR > 100, BP < 100)
Military Scans	500	0

Limitation: Military Scan Access

- Proposed: include 500 warfighter scans obtained from AISR for processing and analysis. After obtaining appropriate CRADA and IRB approval from the military, we began working with the IT resources at AISR in San Antonio to acquire these scans.
- Reality: Scans were not retrievable from AISR, even though we verified they had scans.

Military Scan Access: Mitigation Strategies We Attempted

- Investigated the system that being used:
 - Found an outdated version of Orthanc, an open-source, web-based PACS, but due to their use of IE 8 (an unsupported browser), they were limited to accessing Orthanc via the command-line (i.e. 'curl').
- Developed tool to assist with scan retrieval:
 - Developed customized software to search for, anonymize, and download scans using this interface. This software was successfully tested to find 1 scan in a small sample of 10 patients.
 - After numerous attempts, including two in-person trips, the existing resources at AISR were unable to get the 500 requested scans necessary.
 - We subsequently investigated other sources for military scans to validate the civilian nomograms, but we had no success.
- Final approach:

Morphomic

Groun

 We are analyzing a subset of the civilian population, limiting this validation population to people 18-30 years of age with a normal BMI.

Methodology: Aorta Centerline

- The spine was landmarked first to provide a framework for segmenting the aorta
- A set of landmarks was also manually placed for use in splitting the aorta into the 3 REBOA zones
- Machine learning model was trained on an initial set to create an aortic probability cloud for any new scan
- Optimization was used to fit a centerline to the probability cloud and scan, with an arch at the top and spline for the descending aorta to the bifurcation

Methodology: Aortic Wall

- Using centerline, the scan was resampled radially away from the center of the aorta
- Using a 3D Sobel edge filter, the algorithm searched for the nearest significant change in density while going outward from the center of the aorta
- These resulting edges were fit with a surface and turned into the aorta modeled as a tube of variable radius
- At each step along the way, the results were verified and were manually corrected if the segmentation was unsatisfactory

Results

	Other		Hypote		
	Female	Male	Female	Male	Total
# CT Scans	477 (28%)	1,226 (72%)	30 (38%)	48 (62%)	1,773
Mean Age	33.1	32.5	36.7	32.2	32.7
Std. Dev. Age	10.3	10.2	10.7	10.5	10.2
Min Age	18	18	19	18	18
Max Age	51	51	50	50	51
Mean Height (m)	1.6	1.8	1.7	1.8	1.7
Mean Weight (kg)	74.4	89.3	68.4	101.0	85.5
Mean Torso Extent convex hull (mm)	621	666	637	679	654
Mean Torso Extent straight line (mm)	534	566	546	575	557

Aortic Dimensions

Aortic Dimensions and Balloon Target Site

Iniversity of Michie

127.

by Age and Sex

Arterial length (mm) measurements at key points

by Age and Sex

Arterial length (mm) measurements at key points

Arterial length (mm) measurements at key points

Arterial length (mm) measurements at key points

by Age and Sex

Arterial length (mm) measurements at key points

Arterial length (mm) measurements at key points

Arterial length (mm) measurements at key points

Arterial length (mm) measurements at key points

Civilian Trauma Cohort

	Avg. Length (mm)		Std. dev. of Length (mm)	
	Female	Male	Female	Male
From AB to LSubcl	324	351.9	22.5	23.9
From AB to supCeliac	123.4	130.7	13.2	13.9
From AB to Celiac	114.6	121.8	13.1	13.7
From AB to SMA	102.7	108.5	12.5	12.4
From AB to RRenal	88.5	93.1	11.9	12.6
From AB to LRenal	84.7	89.8	12	12.1
From Right CFA to AB	199.3	201.1	14.6	15.6
From Left CFA to AB	194.2	196.4	15	15.1

Torso Extent

Jniversity of Michiga

Morphomic – Analysis Group Straight Line (Blue)

Along Skin (Red)

Along Skin Convex Hull (Green)

Torso Extent (Straight Line) vs. Arterial Length by Sex

Torso Extent (Convex Hull) vs. Arterial Length by Sex

Torso Extent (Along Skin) vs. Arterial Length by Sex

Torso Extent (Straight Line) vs. Length to Zone 1 Midpoint by Sex

Torso Extent (Straight Line) vs. Length to Zone 3 Midpoint by Sex

-40

100

Morphomic – Analysis Group So, Zone 1 (~210 mm) midpoint is located roughly 435 mm from femoral insertion

So, Zone 3 (~90 mm) midpoint is located roughly 245 mm from femoral insertion

Zone 1 Results

Train the model on a 60% random sample. Test it on the remaining 40%.

Predict Length to <u>Zone 1</u>	Percent of predicted lengths outside			
	(Sup Celiac + 40mm to LSubCl)		(Sup Celiac + 5mm to LSubCl – 5	
Terms in model	Left CFA	Right CFA	Left CFA	Right CFA
Median	0% (427 mm)	0% (431 mm)		
Torso Extent Straight Line (TESL)	0%	0%		
Torso Extent Convex Hull (TECH)	0%	0%		
TESL + age	0%	0%		
TECH + age	0%	0%		
TESL + age + sex	0%	0%		
TECH + age + sex				

Zone 3 Results

Train the model on a 60% random sample. Test it on the remaining 40%.

Predict Length to Zone 3	Percent of predicted lengths outside			
	(Balloon is <u>entirely</u> in Zone 3 and no renal occlusion)			oon in Zone 3 al occlusion)
Terms in model	Left CFA	Right CFA	Left CFA	Right CFA
Median	41.8% (238 mm)	40.5% (243 mm)	2.6%	1.6%
Torso Extent Straight Line (TESL)	40.0%	38.0%	0.9%	1.2%
Torso Extent Convex Hull (TECH)	<u>39.0%</u>	<u>36.7%</u>	2.6%	1.7%
TESL + age	40.2%	38.4%	<u>0.9%</u>	<u>0.9%</u>
TECH + age	38.9%	37.3%	1.7%	1.4%
TESL + age + sex	39.2%	38.2%	1.5%	1.1%
TECH + age + sex	39.2%	37.0%	1.7%	1.2%
TESL + age + sex + TESL*sex	39.2%	37.8%	1.5%	1.1%
TECH + age + sex + TECH*sex	39.3%	37.1%	1.7%	1.2%

Morphomic

Group

Arterial Diameter

By Sex at Each 5% Along the Vascular Length

Aorta diameter (mm) measurements from Left Femoral Artery Cut Point to Superior Celiac Branch Point

Arterial Diameters

	Avg. Diameter (mm)		Std. dev. Dian	neter (mm)
Vascular Region	Female	Male	Female	Male
From AB to LSubclavian	19.2	20.9	2.6	3
From AB to supCeliac	16.5	18.5	3.2	3.3
From AB to Celiac	16	18	3.1	3.1
From AB to SMA	15.5	17.5	2.9	3
From AB to RRenal	14.6	16.4	2.9	2.8
From AB to LRenal	14.2	16	2.8	2.7
From RCFA to AB	8.6	10.3	1.9	2.1
From LCFA to AB	8.4	9.8	1.8	1.7

Venous Dimensions: Volume and Area

Venous Dimensions: By BP and Pulse

Non-hypotensive

Vena Cava 3cm Area (mm2) by ED BP and sex

Vena Cava 3cm Area (mm2) by ED Pulse and sex

Additional Work: Machine Learning Results

- Our initial plan was to use image processing and more manual effort to segment the aorta
 - We were able to utilize machine learning algorithms in order to make the process automatic, with manual revision
 - Machine learning will also allow us to take the results and feed them back into the model, improving our capabilities as we process more aortas

Aorta and Vena Cava

Additional Work: Tortuosity

Current Project Status

- Vascular anatomy analysis is complete in civilian population
- Civilian nomograms are complete
- Because military scans were not accessible, we are creating nomograms of a healthy, younger civilian population as a surrogate
- Final report is in development
- Manuscripts in preparation
- Database access

Appendix J: References

APPENDIX J: REFERENCES

- 1. Holcomb, J.B., et al., Causes of death in U.S. Special Operations Forces in the global war on terrorism: 2001-2004. Ann Surg, 2007. 245(6): p. 986-91.
- 2. Kragh, J.F., Jr., et al., Battle casualty survival with emergency tourniquet use to stop limb bleeding. J Emerg Med, 2011. 41(6): p. 590-7.
- 3. Kragh, J.F., Jr., et al., Survival with emergency tourniquet use to stop bleeding in major limb trauma. Ann Surg, 2009. 249(1): p. 1-7.
- 4. Eastridge, B.J., et al., Death on the battlefield (2001-2011): implications for the future of combat casualty care. J Trauma Acute Care Surg, 2012. 73(6 Suppl 5): p. S431-7.
- 5. Ledergerber, W. and H.R. Marti, [A case of heart rupture after contused thoracic trauma successfully treated by thoracotomy]. Praxis, 1958. 47(20): p. 487-90.
- 6. Edens, J.W., et al., Longterm outcomes after combat casualty emergency department thoracotomy. J Am Coll Surg, 2009. 209(2): p. 188-97.
- Cothren, C.C. and E.E. Moore, Emergency department thoracotomy for the critically injured patient: Objectives, indications, and outcomes. World J Emerg Surg, 2006. 1: p. 4.
- 8. Coats, T.J., et al., Prehospital resuscitative thoracotomy for cardiac arrest after penetrating trauma: rationale and case series. J Trauma, 2001. 50(4): p. 670-3.
- 9. Seamon, M.J., et al., Emergency department thoracotomy: still useful after abdominal exsanguination? J Trauma, 2008. 64(1): p. 1-7; discussion 7-8.
- 10. Wolf, R.K. and R.E. Berry, Transaxillary intra-aortic balloon tamponade in trauma. J Vasc Surg, 1986. 4(1): p. 95-7.
- 11. Sesma, J., et al., Effect of intra-aortic occlusion balloon in external thoracic compressions during CPR in pigs. Am J Emerg Med, 2002. 20(5): p. 453-62.
- 12. Starnes, B.W., et al., Management of ruptured abdominal aortic aneurysm in the endovascular era. J Vasc Surg, 2010. 51(1): p. 9-17; discussion 17-8.
- 13. Malina, M., et al., Balloon occlusion of the aorta during endovascular repair of ruptured abdominal aortic aneurysm. J Endovasc Ther, 2005. 12(5): p. 556-9.
- 14. Frankel, D.A., et al., Physiologic response to hemorrhagic shock depends on rate and means of hemorrhage. J Surg Res, 2007. 143(2): p. 276-80.
- 15. Lubner, M., et al., CT evaluation of shock viscera: a pictorial review. Emerg Radiol, 2008. 15(1): p. 1-11.
- 16. Ferrada, P., et al., Flat inferior vena cava: indicator of poor prognosis in trauma and acute care surgery patients. Am Surg, 2012. 78(12): p. 1396-8.
- 17. Matsumoto, S., et al., Predictive value of a flat inferior vena cava on initial computed tomography for hemodynamic deterioration in patients with blunt torso trauma. J Trauma, 2010. 69(6): p. 1398-402.
- 18. Khan, I.R., et al., Nonoperative management of contained retrohepatic caval injury. Ann Vasc Surg, 2012. 26(3): p. 420 e9-12.
- 19. Sullivan, P.S., et al., Outcome of ligation of the inferior vena cava in the modern era. Am J Surg, 2010. 199(4): p. 500-6.
- 20. Kataoka, Y., et al., Iliac vein injuries in hemodynamically unstable patients with pelvic fracture caused by blunt trauma. J Trauma, 2005. 58(4): p. 704-8; discussion 708-10.
- 21. Willaert, W., et al., Endovascular treatment of an iatrogenic perforation of the internal iliac vein. Ann Vasc Surg, 2012. 26(5): p. 733 e1-4.

- 22. Xiong, J., et al., A retrospective study on endovascular management of iatrogenic vascular injuries. Vascular, 2012. 20(2): p. 65-71.
- 23. Tillman, B.W., et al., Use of an endovascular occlusion balloon for control of unremitting venous hemorrhage. J Vasc Surg, 2006. 43(2): p. 399-400.
- Beitner, M.M., et al., Penetrating liver injury managed with a combination of balloon tamponade and venous stenting. A case report and literature review. Injury, 2012. 43(1): p. 119-22.
- 25. Stannard, A., J.L. Eliason, and T.E. Rasmussen, Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock. J Trauma, 2011. 71(6): p. 1869-72.