

ARL-TR-8312 • MAR 2018

Understanding and Controlling Living/ Inorganic Interfaces to Enable Reconfigurable Switchable Materials

by Margaret M Hurley, Hong Dong, Justin Jahnke, Deborah Sarkes, Meagan Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-8312 • MAR 2018

Understanding and Controlling Living/ Inorganic Interfaces to Enable Reconfigurable Switchable Materials

by Margaret M Hurley, Hong Dong, Justin Jahnke, Deborah Sarkes, Meagan Small, Dimitra Stratis-Cullum, and Jessica Terrell Sensors and Electron Devices Directorate, ARL

Nicole Zander Weapons and Materials Research Directorate, ARL

Check Dubbe Control Conteconte Control Control Conteconte Control Control Cont						Form Approved
Number of production is contained in control in the contro				N PAGE		OMB No. 0704-0188
1. REPORT DATE (DP-MM-YYY) 2. REPORT TYPE 3. DATES COVERED (From - To) March 2018 Director's Strategic Initiative 1. October 2015–30 September 2017 A.TTE AND SUBTITE 5. CONTACT NUMBER 5. CONTACT NUMBER Understanding and Controlling Living/Inorganic Interfaces to Enable 5. GRANT NUMBER Sc. AUTHOR(S) 5. PROGRAM ELEMENT NUMBER Margaret M Hurley, Hong Dong, Justin Jahnke, Deborah Sarkes, Meagan 5. PROGRAM ELEMENT NUMBER Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander 5. WORK UNIT NUMBER Startes Could Devices Directorate (ATTN: RDRL-SEE-B) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research Laboratory 8. PERFORMING ORGANIZATION REPORT NUMBER Schortech Proving Ground, MD 21005 9. SPONSON/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 12. DISTRIBUTION/AVAILABUTY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 10. SPONSON/MONITOR'S REPORT NUMBER(S) 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (FinH and CCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment	Public reporting burden data needed, and comple burden, to Department o Respondents should be a valid OMB control numb PLEASE DO NOT	for this collection of informat ting and reviewing the collect f Defense, Washington Headd ware that notwithstanding any per. RETURN YOUR FORM	ion is estimated to average 1 ho tion information. Send commen quarters Services, Directorate fo y other provision of law, no per A TO THE ABOVE ADD	ur per response, including th ts regarding this burden estir r Information Operations and son shall be subject to any per RESS.	time for reviewing i nate or any other aspe d Reports (0704-0188) enalty for failing to co	nstructions, searching existing data sources, gathering and maintaining the ct of this collection of information, including suggestions for reducing the), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. mply with a collection of information if it does not display a currently
March 2018 Director's Strategic Initiative I October 2015-30 September 2017 4. TTE AMO SUBTITE I October 2015-30 September 2017 4. TTE AMO SUBTITE I October 2015-30 September 2017 Keconfigurable Switchable Materials Se. CONTRACT NUMBER Inderstanding and Controlling Living/Inorganic Interfaces to Enable Se. CONTRACT NUMBER Sad, PROJECT NUMBER Set. GRANT NUMBER Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander Set. TASK NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER VIS Army Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SEE-B) Aberdeen Proving Ground, MD 21005 II. SPONSOR/MONITOR'S ACCONVM(S) 3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) III. SPONSOR/MONITOR'S ACCONVM(S) 3. SUPPLEMENTARY NOTES III. SPONSOR/MONITOR'S ACCONVM(S) 13. SUPPLEMENTARY NOTES Second and functionalized silica) to develop tailored, switchable bacterial adhesion, genetically engineered proteins for inorganics (GEP), switchable binding, FimH, eCPX 15. SUBJECT TEMMS 17. UMITATION 18. NUMBER 16. SUBJECT TEMMS 17. UMITATION 18. NUMBER 18. SUPPLEMENTARY NOTES 17. UMITATION 18. NUMBER 1	1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Understanding and Controlling Living/Inorganic Interfaces to Enable Sa. CONTRACT NUMBER 6. AUTHOR(S) Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Sd. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Se. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. SEGNOS and Electron Devices Directorate (ATTN: RDRL-SEE-B) ARL-TR-8312 Aberdeen Proving Ground, MD 21005 S. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION/AVAILABULTY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Supproved for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces. This work includes protein engineering of multiple targets (FirmH and eCPX), a variety of analytical techniques (including attripaction, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TEMMS 10. NUMBER 16. SECURITY CLASSIFICATION OF: 11. UMITATION OF PAGES 16. SECURITY CLASSIFICATION	March 2018		Director's Strateg	gic Initiative		1 October 2015–30 September 2017
Reconfigurable Switchable Materials 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(5) 5d. PROJECT NUMBER Margaret M Hurley, Hong Dong, Justin Jahnke, Deborah Sarkes, Meagan 5d. PROJECT NUMBER Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander 5d. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Sensors and Electron Devices Directorate (ATTN: RDRL-SEE-B) ARL-TR-8312 Aberdeen Proving Ground, MD 21005 10. SPONSOR/MONITOR'S ACRONYM(5) 9. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(5) ARL-TR-8312 ARL-TR-8312 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S REPORT NUMBER(5) 14. ASTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FirmH and cCPX), a variety of analytical techniques (including semining electron microscopy and atomic force microscopy), theoretical models including multiphysics and multicale trataments, as well as one of the first known studies of the role of environmental conditions and surface tr	4. TITLE AND SUB	TITLE and Controlling I	Living/Inorganic In	erfaces to Enable	5a. CONTRACT NUMBER	
	Reconfigurable Switchable Materials					5b. GRANT NUMBER
6. AUTHOR(5) 5d. PROJECT NUMBER Margaret M Hurley, Hong Dong, Justin Jahnke, Deborah Sarkes, Meagan Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander 5d. PROJECT NUMBER DSI15-SE-006 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5f. WORK UNIT NUMBER 200 Sarmy Research Laboratory 8. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 201 Sarmy Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SEE-B) ARL-TR-8312 Aberdeen Proving Ground, MD 21005 10. SPONSOR/MONITOR'S ACRONYM(5) ARL-TR-8312 9. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(5) ARL DSI 11. SPONSOR/MONITOR'S acconvertice 11. SPONSOR/MONITOR'S ACCONVM(5) ARL DSI 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized stilica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FinH and eCPX), a variety of analytical techniques (including scanning electron microscopy) and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of enviro						5c. PROGRAM ELEMENT NUMBER
Margaret M Hurley, Hong Dong, Justin Jahnke, Deborah Sarkes, Meagan Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander DSI15-SE-006 Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander Se. TASK NUMBER J. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION REPORT NUMBER US Army Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SEE-B) Aberdeen Proving Ground, MD 21005 I. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES) J. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) I. SPONSOR/MONITOR'S ACRONYM(S) ARL DSI ARL DSI 11. SPONSOR/MONITOR'S REPORT NUMBER(S) I. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES I. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS I. SABSTRACT I. MIM	6. AUTHOR(S)					5d. PROJECT NUMBER
Small, Dimitra Stratis-Cullum, Jessica Terrell, and Nicole Zander 5c. TASK NUMBER 5f. WORK UNIT NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(E5) 8. PERFORMING ORGANIZATION REPORT NUMBER US Army Research Laboratory 8. PERFORMING ORGANIZATION REPORT NUMBER Sensors and Electron Devices Directorate (ATTN: RDRL-SEE-B) ARL-TR-8312 Abbrdeen Proving Ground, MD 21005 10. SPONSOR/MONITORING AGENCY NAME(5) AND ADDRESS(E5) 9. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(E5) 10. SPONSOR/MONITOR'S ACRONYM(5) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S ACRONYM(5) 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surface: (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS 13. NUMER PAGE ABSTRACT 14. ABSTRACT C. THIS PAGE 13. NUMER PAGE ALIGNSTIFIC MOR NUMBER (include area code) 16. S	Margaret M Hu	urley, Hong Dong	, Justin Jahnke, De	borah Sarkes, Me	orah Sarkes, Meagan DSI15-SE-006	
5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER US Army Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SEE-B) Aberdeen Proving Ground, MD 21005 10. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARL DISI 11. SPONSOR/MONITOR'S ACRONYM(S) ARL DISI 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy.), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS 17. UMITATION of RASTRACT A. REPORT D. ABSTRACT a. REPORT D. ABSTRACT a. REPORT D. ABSTRACT	Small, Dimitra	Stratis-Cullum, J	essica Terrell, and	Nicole Zander		5e. TASK NUMBER
5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) US Army Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SEE-B) Aberdeen Proving Ground, MD 21005 9. SPONSORING/MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSOR/MONITOR'S ACRONYM(\$) ARL-TR-8312 ARL DSI 11. SPONSOR/MONITOR'S ACRONYM(\$) ARL DSI 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multicale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: 17. UMITATION OF ASTRACT 0F OF 0F OF						
7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) 8. PERFORMING ORGANIZATION REPORT NUMBER US Army Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SEE-B) ARL-TR-8312 Aberdeen Proving Ground, MD 21005 10. SPONSOR/MONITORIS AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSOR/MONITOR'S ACRONYM(\$) 9. SPONSORING/MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSOR/MONITOR'S ACRONYM(\$) ARL DSI 11. SPONSOR/MONITOR'S ACRONYM(\$) ARL DSI 13. SPONSOR/MONITOR'S ACRONYM(\$) ARL DSI 13. SPONSOR/MONITOR'S ACRONYM(\$) ARL DSI 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS Istract TIEPORT bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF OF OF ABSTRACT 18. NUMBER of CASONSIBLE PERSON						5f. WORK UNIT NUMBER
US Army Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SEE-B) Aberdeen Proving Ground, MD 21005 ARL-TR-8312 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS[ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARL DSI 11. SPONSOR/MONITOR'S ACRONYM(S) ARL DSI 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: 17. UMITATION OF BASTRACT Unclassified 18. NUMBER OF DASTRACT UNClassified 19. ANME of RESPONSIBLE PERSON Margaret M Hurley 19. TELEPHONE NUMBER (include area code) 19. TELEPHONE NUMBER (include area code) (410) 306.0728	7. PERFORMING C	RGANIZATION NAME	E(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARL DSI 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT Unclassified Linclassified UU 22 14. Unclassified Linclassified	US Army Research Laboratory Sensors and Electron Devices Directorate (ATTN: I Aberdeen Proving Ground, MD 21005			RDRL-SEE-B)		ARL-TR-8312
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: 17. UMITATION OF: 18. NUMBER OF RESPONSIBLE PERSON Margaret M Hurley 19. AMST FOR ELEPHONE NUMBER (include area code) Unclassified Unclassified				SS(FS)		
INCL DOT				33(13)		ARL DSI
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: 17. LIMITATION ABSTRACT 0. ABSTRACT 10. ABSTRACT 11. Unclassified 11. Unclassified 11. Unclassified						11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 0F 0F <						
Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: 17. UMITATION OF ABSTRACT 0r 0r 0r PAGES 19a. NAME OF RESPONSIBLE PERSON 0r Margaret M Hurley 19b. TELEPHONE NUMBER (Include area code) (410) 306-0728	12. DISTRIBUTION	I/AVAILABILITY STATE	MENT			
13. SUPPLEMENTARY NOTES 14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE Unclassified Unclassified Unclassified Unclassified	Approved for p	public release; dis	tribution is unlimite	ed.		
14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE UU 22 (410) 306-0728	13. SUPPLEMENT	ARY NOTES				
14. ABSTRACT Results are highlighted for a 3-year study to study fundamental interactions between engineered <i>E. coli</i> cells and inorganic surfaces (gold and functionalized silica) to develop tailored, switchable bacterial adhesion to a target surface. This work includes protein engineering of multiple targets (FimH and eCPX), a variety of analytical techniques (including scanning electron microscopy and atomic force microscopy), theoretical models including multiphysics and multiscale treatments, as well as one of the first known studies of the role of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE UI 22 (410) 306-0728						
15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF ABSTRACT 19a. NAME OF RESPONSIBLE PERSON Margaret M Hurley a. REPORT b. ABSTRACT c. THIS PAGE Uluclassified UU 22 19b. TELEPHONE NUMBER (Include area code) (410) 306-0728	14. ABSTRACT Results are hig surfaces (gold includes protei electron micros well as one of	hlighted for a 3-ya and functionalized n engineering of r scopy and atomic the first known stu	ear study to study f d silica) to develop nultiple targets (Fin force microscopy), udies of the role of	fundamental inter tailored, switchal mH and eCPX), a theoretical mode environmental co	actions betwee ble bacterial a variety of an els including p onditions and	een engineered <i>E. coli</i> cells and inorganic adhesion to a target surface. This work alytical techniques (including scanning multiphysics and multiscale treatments, as surface treatment on binding affinity.
bacterial adhesion, genetically engineered proteins for inorganics (GEPI), switchable binding, FimH, eCPX 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Margaret M Hurley a. REPORT b. ABSTRACT c. THIS PAGE Unclassified UU 22 19b. TELEPHONE NUMBER (Include area code) (410) 306-0728	15. SUBJECT TERM	IS				
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF ABSTRACT 19a. NAME OF RESPONSIBLE PERSON Margaret M Hurley a. REPORT b. ABSTRACT c. THIS PAGE Unclassified UU 22 19b. TELEPHONE NUMBER (Include area code)	bacterial adhes	ion, genetically en	ngineered proteins	for inorganics (G	EPI), switcha	ble binding, FimH, eCPX
a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT PAGES Margaret M Hurley Unclassified Unclassified UU 22 (410) 306-0728	16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON
Unclassified Unclassified Unclassified UU 22 (410) 306-0728				ABSTRACT	PAGES	INTARGARET MI HURIEY
	Unclassified	Unclassified	Unclassified	UU	22	(410) 306-0728

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

Contents

List	ist of Figures i	
Acknowledgments		v
1.	Introduction and Research Objective	1
2.	Research Strategy	1
3.	Research Highlights	1
4.	Applications Underway	2
5.	Army Impact	3
6.	Challenges and Lessons Learned	3
7.	Conclusion and Beyond	4
Арр	endix. Publications and Presentations	9
List	of Symbols, Abbreviations, and Acronyms	12
Dist	Distribution List 1	

List of Figures

Fig. 1	Demonstration of Au-binding properties by cells expressing mFimH. The above image shows <i>E. coli</i> cells engineered FimH (M6G4 added as a binding sequence) adhering with 10-µm resolution to Au patterned onto silica
Fig. 2	Engineered vFimH exposes a His6 tag at ILE52 in the lectin-domain (Ld) and seen to disrupt mannose binding both experimentally and in molecular dynamics simulation
Fig. 3	COMSOL Multiphysics model demonstrating normal and total forces exerted by fluid flow on bacterial cell (modeled as a rigid rod). Image is taken from Jahnke et al. Biointerphases 12, 02C410 (2017)
Fig. 4	Example of gold binding spot assay for <i>E. coli</i> cells (uninduced cells in lane 1) induced to express the eCPX peptide display scaffold (peptide-free scaffold in lane 2) with various N-terminal peptides for binding to gold (lanes 3–8: examples of designed peptides and peptides from literature in lanes)

Acknowledgments

Leverages: Open Campus Open House Partners Prof Candan Tamerler, University of Kansas; Dr Jeffrey Rice, Auburn University; Prof Arum Han, Texas A&M University; Prof Xuanhong Cheng, Lehigh University.

INTENTIONALLY LEFT BLANK.

1. Introduction and Research Objective

The integration, organization, and control of biological components into hybrid materials will allow the development of novel system properties and advanced functionality in plasmonics, optics, catalysis, biosensing, power generation, and energy storage, among a myriad of other applications. Our research moves toward these goals by developing control of bacterial adhesion on inorganic surfaces sufficient to revolutionize hybrid device development with the invention of tailored switchable binding on a target surface (the primary objective of the project). Future work can build upon this to focus on autonomous and directed patterning and reconfigurable binding, self-healing properties, responsive properties and more advanced forms of switching to control mass transfer and electron transfer at the interface.

2. Research Strategy

We leverage existing US Army Research Laboratory (ARL) strengths (e.g., molecular biology/synthetic biology, biomolecular recognition, materials characterization and polymer science, computational biology) and facilities (DOD Supercomputing Resource Center, ARL Specialty Electronics Materials and Sensors Cleanroom, biomaterial and polymer material characterization capabilities, and biotechnology laboratories). The pathway followed was the integrated development of switchable, controllable bacterial adhesion by investigation of 2 families of switches (chemical/environmental and DNA programmed) acting on 2 modes of binding in *E. coli* (fimbrial protein [FimH] and coat protein [eCPX]) on 2 target surfaces (gold [Au] and functionalized silicon [Si]).

3. Research Highlights

The research focus through the 3-year course of this work has covered multiple binding modes, multiple surfaces, and a variety of factors related to putative binding switches, as outlined in the research strategy. Highlights include:

 First-ever demonstration of selective cell autotemplating, demonstrating directed assembly through functional and selective activity of 3 phagederived Au-binding sequences in the *E. coli* bacterial cell surface display scaffold (eCPX). Preferential binding of engineered *E. coli* to Au over Si by up to 4 orders of magnitude was obtained. Further, functional activity post assembly was preserved, a key criterion for future living composite materials and systems.

Approved for public release; distribution is unlimited.

- 2) Development of a 30+ chemical on-switch for *E. coli* adhesion to Au through arabinose-induced expression of bacterial eCPX.
- 3) Successful demonstration of engineered fimbrial (FimH) adhesion of *E. coli* to Au surfaces. Successful iteration between experiment and theory leads to improved location of insertion site for Au-binding sequence in FimH protein, demonstrating almost complete coverage of the target surface and up to 10-µm resolution of surface patterning. This is achieved solely through bacterial capture, and does not require any growth or amplification processes.
- 4) Successful demonstration of *E. coli* adhesion to functionalized (mannosylated) Si and tested under a variety of flow (shear) conditions to test for the putative "catch bond".
- 5) First known study to address environmental conditions and surface treatment on binding affinity, carried out by X-ray photoelectron spectroscopy (XPS) and spot assay.
- 6) Successful theoretical analysis of energetics of binding and validation of classical methods.
- 7) Successful elucidation of contributions of eCPX components (N terminus/binding sequence/C terminus) to binding affinity.
- 8) Successful comparison of whole cell-binding mode (FimH vs. eCPX) by spot assay and atomic force microscopy (AFM).
- 9) Successful study of "living" dynamics of binding of filamentous bacteria under shear and development of COMSOL model.
- 10) Successful integration of both engineered scaffold systems for Au into microbial fuel systems showing enhanced output.
- 11) Successful development of chemical off-switch—chemically induced unbinding in peptide-mediated (eCPX) bound *E. coli* on Au surface. Proof of concept achieved.

4. Applications Underway

We have studied the behavior of filamentous *E. coli* on surfaces under shear and demonstrated controlled growth of filamenting cells to form a living bridge between Au domains on patterned glass. Bacterial systems developed under this program have been used to develop successful microbial fuel cells (MFCs), and have further

delineated differences between binding modes and furthered the understanding of overall cell performance that is correlated to scaffold engineering. Additional work has been performed studying the interactions between these bacterial systems and gold nanoparticles (AuNPs). While the metal coverage of the bacterial cells achieved stopped short of levels needed for production of programmed, autonomous circuit assembly and living, rehealing wires/components, there are nonetheless implications for directed drug delivery and catalysis, and more generally for dynamic responsive material coatings and composites.

5. Army Impact

The ability to create artificial biological systems and controllably interface these materials with nonliving inorganics is expected to broadly impact products in diverse areas such as bioenergy, biosensors, bioadhesives, vaccines, programmable devices, reconfigurable and self-healing materials, transient electronics, living-anticorrosion paints, high-strength materials inspired by nature, robust human–machine interfaces, smart skins, ubiquitous sensing, and Soldier augmentation.

6. Challenges and Lessons Learned

Not surprisingly, most challenges are created by the inherent complexity/ fragility/evolutionary capacity of the biological system, and the widely variable properties of the target surface due to morphological intricacies that influence underlying quantum effects. Subtle changes in the surface properties can have large repercussions with interactions both on- (eCPX or Fimh) and off-scaffold. This is simultaneously both a challenge (to minimize interference or loss of function) and a potential tool to employ as we move from static to more dynamic living material systems. To this end, it is clear that a hybrid biological and materials science approach is needed with a systems-level view of the material composite.

It is difficult to adapt existing characterization tools to dynamic, complex, and living material systems, which require a full complement of methods bridging scales both experimentally and by simulation. Pushing the limits on the fundamental characterization methods as well as simulation algorithms requires extremely large data sets as well as a plethora of controls. To mitigate this risk, we take a holistic systems approach and work fundamentally across scales, and in a manner to bridge these scales working iteratively between components and the complex materials in a systematic way. It is difficult to perform in situ chemical synthesis without adversely affecting viability and function of the bacteria. In particular metal salts are a challenge and it may require using biomineralizing bacteria up front for tailored applications.

Biological systems, especially bacteria, evolve over time through random genetic mutations, which alter fundamental behavior. This can have positive (additive effects) or deleterious consequences on the material/system performance. It is clear that this is a largely unexplored area, especially toward military applications/ environments.

7. Conclusion and Beyond

This work represents significant progress toward the goal of tailored switchable binding of bacterial (*E. coli*) cells to an inorganic surface. Multiple chemical on-switches have been demonstrated for both fimbrial (FimH) (see Figs. 1 and 2) and membrane surface protein (eCPX) (see Fig. 4) adhesion. A multiphysics COMSOL model was developed in the course of studying the living dynamics of filamentous bacteria under shear (see Fig. 3). Chemically induced unbinding of an engineered *E. coli* cell bound to an Au surface was achieved as a successful proof of concept. As a demonstration of applicability, the resulting engineered bacterial scaffolds have been integrated into microbial fuel systems and show enhanced output. As part of the Director's Strategic Initiative, this work is highly relevant to ongoing studies within the Biotechnology Branch. In FY18 this program has transitioned to an existing 6.1 funding line for Engineered Biology. In FY19 and beyond, this work will transition into the new Living Materials program to enable reconfigurable, dynamic living materials.

Fig. 1 Demonstration of Au-binding properties by cells expressing mFimH. The above image shows *E. coli* cells engineered FimH (M6G4 added as a binding sequence) adhering with 10-µm resolution to Au patterned onto silica.

Fig. 2 Engineered vFimH exposes a His6 tag at ILE52 in the lectin-domain (Ld) and seen to disrupt mannose binding both experimentally and in molecular dynamics simulation

Fig. 3 COMSOL Multiphysics model demonstrating normal and total forces exerted by fluid flow on bacterial cell (modeled as a rigid rod). Image is taken from Jahnke et al. Biointerphases 12, 02C410 (2017).

Fig. 4 Example of gold binding spot assay for *E. coli* cells (uninduced cells in lane 1) induced to express the eCPX peptide display scaffold (peptide-free scaffold in lane 2) with various N-terminal peptides for binding to gold (lanes 3–8: examples of designed peptides and peptides from literature in lanes).

Appendix. Publications and Presentations

Approved for public release; distribution is unlimited.

Ξ

Publications and Presentations

- Adams BL, Hurley MM, Jahnke JP, Stratis-Cullum DN. Functional and selective bacterial interfaces using cross-scaffold gold binding peptides. JOM. 2015 Nov;67(11):2483–2493. DOI: 10.1007/s11837-015-1662-7. Invited.
- Adams BL, Hurley MM, Sarkes DA, Stratis-Cullum D. Bacterial surface display for discovery and study of material specific peptides. Proteins and Cells at Interfaces, 2015 Annual Society for Biomaterials Meeting; 2015 Apr 15–18; Charlotte, NC.
- Adams BL, Stratis-Cullum DN. Selective preference of engineered peptides for an aluminum alloy. Emerging Mater Res. 2015;4:297–310. Invited.
- Dong H, Sarkes DA, Rice JJ, Hurley MM, Fu A, Stratis-Cullum D. Functionalization of living bacterial cells with metallic nanoparticles mediated by surface-displayed peptides. American Chemical Society 254th National Meeting; 2017 Aug; Washington, DC. Oral presentation.
- Dong H, Sarkes DA, Rice JJ, Hurley MM, Fu A, Stratis-Cullum D. Living composites: Viable bacteria-nanoparticle hybrids mediated through surfacedisplayed peptides. Langmuir. Forthcoming 2017.
- Dong H, Sarkes DA, Rice JJ, Hurley MM, Fu A, Stratis-Cullum DN. Living bacteria/nanoparticle hybrids mediated by surface-displayed peptides. ARAP workshop and review. 2017 Sep.
- Hurley MM. Computational studies of peptide-surface interactions drawn from bacterial display studies: up close and personal. Presented at the Bio-Nano Interfaces and Engineering Applications Symposium, 2017 TMS National Meeting; 2017 Feb; San Diego, CA. Invited talk.
- Jahnke JP, Smith AM, Zander NE, Wiedorn V, Strawhecker KE, Terrell JL, Stratis-Cullum DN, Cheng X. "Living" dynamics of filamentous bacteria on an adherent surface under hydrodynamic exposure. Biointerphases. 2017;12(2):02C410. DOI: http://dx.doi.org/10.1116/1.4983150. Invited.
- Jahnke JP, Terrell JL, Smith AM, Chen X, Stratis-Cullum DN. Influences of adhesion variability on the 'living' dynamics of filamentous bacteria in microfluidic channels. Molecules. 2016 July;21(8):E985. DOI: 10.3390/molecules21090985.
- Jahnke JP, Terrell JL, Smith AM, Cheng X, Stratis-Cullum DN. Spatiotemporal dynamics of filamentous bacteria near and on affinity substrates. American

Approved for public release; distribution is unlimited.

Chemical Society 254th National Meeting; 2017 Aug; Washington DC. Oral presentation.

- Small MC, Stratis-Cullum DN, Adams BL, Jahnke JP, Sarkes DA, Dong H, Terrell JL, Hurley MM. Understanding the effect of amino acid conformation on binding affinity to Au(111) using quantum mechanical calculations. 252nd American Chemical Society National Meeting; 2016 Aug 21; Philadelphia, PA.
- Small MC, Stratis-Cullum DN, Adams BL, Jahnke JP, Sarkes DA, Dong H, Terrell JL, Hurley MM. Understanding the effect of amino acid conformation on binding affinity to Au(111) using quantum mechanical calculations. Poster presentation at the American Chemical Society 254th National Meeting; 2017 Aug; Washington, DC.
- Stratis-Cullum DN. From materials science to next generation sensing using synthetic and engineered peptide technology. SPIE DSS; 2015 Apr 24; Baltimore, MD. Paper 9487-24. Invited.
- Stratis-Cullum DN, Adams BL. Discovery of peptides developed using bacterial surface display. MS&T; 2014 Oct; Pittsburgh, PA. Invited.
- Technical Assessment Board (TAB) poster presentations FY15.
- Technical Assessment Board (TAB) oral presentation FY15.
- Terrell JL, Adams B, Dong H, Jahnke J, Sarkes D, Small M, Gerlach ES, Liu S, Hurley M, Stratis-Cullum D. Living Hybrid Materials. ARAP workshop and review; 2017 Sep.
- Terrell JL, Dong H, Holtoff EL, Small MC, Sarkes DA, Hurley MM, Stratis-Cullum DN. Investigation of engineered bacterial adhesins for opportunity to interface cells with abiotic materials. Smart Biomedical and Physiological Sensor Technology XIII Proc. of SPIE; 2016. vol. 9862, 986308.
- Terrell JL, Dong H, Holtoff EL, Small MC, Sarkes DA, Hurley MM, Stratis-Cullum DN. Switchable interfacing between living and abiotic materials engineered bacterial adhesion. SPIE 2016: Defense and Commercial Sensing; 2016 Apr 18; Baltimore, MD.
- Terrell JL, Dong H, Small MC, Sarkes DA, Jahnke JP, Hurley MM, Bentley WE, Stratis-Cullum DN. Alteration of bacterial surface protein architectures for guided assembly of cell populations. Presented at the American Chemical Society 253rd National Meeting; 2017 Apr; San Francisco, CA.

Approved for public release; distribution is unlimited.

List of Symbols, Abbreviations, and Acronyms

AFM	atomic force microscopy
AMC	US Army Materiel Command
ARL	US Army Research Laboratory
Au	gold
AuNP	gold nanoparticles
DOD	Department of Defense
eCPX	coat protein
FimH	fimbrial protein
MFC	microbial fuel cell
RDECOM	US Army Research, Development and Engineering Command
Si	silicon
XPS	X-ray photoelectron spectroscopy

1	DEFENSE TECHNICAL
(PDF)	INFORMATION CTR
	DTIC OCA

2 DIR ARL

- (PDF) IMAL HRA RECORDS MGMT RDRL DCL TECH LIB
- 1 GOVT PRINTG OFC (PDF) A MALHOTRA

8 ARL

(PDF) RDRL SEE B
M HURLEY
H DONG
J JAHNKE
D SARKES
M SMALL
D STRATIS-CULLUM
J TERRELL
RDRL WMM G
N ZANDER

INTENTIONALLY LEFT BLANK.