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1. Introduction.

Our overall goal remains to develop predictive markers that will be useful in 
identifying the minority of cases of preinvasive breast cancer (DCIS), that do in fact 
progress to invasive disease (IBC), and complements our multi-institutional, NIH-funded 
study of genetic and epigenetic alterations of pre-invasive DCIS that either 
progressed to invasive breast cancer IBC (cases) or had no further breast cancer 
events (controls). 

The SPECIFIC AIMS unchanged from the updated aims in the 2016 report: 

Aim 1: Develop novel methods of assessing quality of samples and performing 
normalization across FFPE samples of variable quality. 
Aim 1a: Apply more stringent quality control parameters for enrichment of 
samples with high quality data. 
Aim 1b: Optimize thresholds of qRT-PCR-based QC analysis of FFPE samples 
for identification of samples that will yield reproducible data. 
Aim 1c: Integrate transcriptomic, methylome, and copy number data to 
identify biomarkers of progression in DCIS samples. 

Aim 2: Perform multi-omic analysis of transcriptome, methylome, and copy 
number data of DCIS. 
Aim 2a: Develop novel approaches, including non-parametric methods, to 
analyzing FFPE data with variable quality. 
Aim 2b: Identify subtypes across DCIS samples and learn molecular 
alterations unique to those subtypes across all three molecular platforms 
through exploratory data analysis. 
Aim 2c: Integrate transcriptomic, methylome, and copy number data to 
identify biomarkers of progression in DCIS samples. 

Aim 3: Perform RNA Access on a subset of DCIS samples, which allows for both 
comparative assessment of RNA species across methodologies and technical 
validation of genes of interest. 
Aim 3a: Perform sample-to-sample assessment of HTA2 and RNA Access data 
to identify commonalities, as well as differences across platforms. 

Aim 4: Validate genes of interest and biomarkers. 
Aim 4a: Develop bench-based assays and perform technical validation on a 
phenotypically-stratified subset of DCIS samples. 
Aim 4b: External validation of biomarkers in DCIS validation cohort. 

2. Keywords

Preinvasive breast cancer (DCIS); Invasive breast cancer (IBC); Transcriptome; 
Prognostic markers; splice variant analysis; non-coding RNA; formalin-fixed 
paraffin-embedded (FFPE) tissue; Receiver Operator Characteristic (ROC), Area 
under the Curve (AUC); Estrogen Receptor (ER). 
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3. Accomplishments
In previous reporting periods, we reported the completion of the accrual, initial 

characterization and processing of samples from 5 collaborating institutions. We 
also reported on the successful DNA methylome assessment using Illumina’s 450K 
microarray, and an initial assessment of DNA copy number variation (CNV) based 
on a computational method we developed called Epicopy. We have since refined this 
method to adapt to the specific challenges posed by FFPE-derived DNA.  

As previously reported, we initially changed our transcriptome analysis strategy from full 
RNA sequencing, which yielded insufficiently robust data, to the HTA2.0 microarray from 
Affymetrix, after obtaining good results in a titration pilot study using a subset of 
our DCIS samples. Unfortunately, despite promising results from a smaller pilot experiment, further 
analysis of the HTA2.0 microarray data lead us to conclude that much of the signal from these arrays 
have to be attributed to technical variation, and we are limited in the depth of biological information 
we can obtain from these arrays. While the result reported last year are likely valid, they represent 
only part of the biological information we are seeking, because only the strongest signals were 
detectable in our data. In collaboration with Affymetrix scientists, we were able to determine Q/C 
measures that are predictive of subsequent array data quality, but at the cost of losing a majority of 
samples in our cohort. We have therefore continued our collaboration with Dr. C. Perou at UNC to 
maximize the possibility of a successful RNA Sequencing effort, and have confirmed the 
encouraging pilot results using the new Illumina TruSeq RNA Access Library Preparation kit 
followed by RNA sequencing performed using the Illumina HiSeq 2500 we briefly reported last 
year. We have now completed the initial batch of 48 study samples, of which 75% yielded good read 
counts. We are further implementing additional optimization steps to address a remaining flaw in our 
results, which is due to the fact that following the manufacturer’s protocol for the library 
preparation, sets of 4 samples are combined. When there are significant differences in RNA quality 
in the samples, good quality RNA outcompetes lesser quality samples, decreasing the available reads 
from the latter in the subsequent sequencing process. We are therefore attempting to bin samples of 
similar RNA quality, and if unsatisfactory, we will run each sample in individual library 
preparations. This will marginally increase the cost of the experiment from approximately $800 to 
$1000 per sample, since most of the cost is incurred at the sequencing step, not the library 
preparation. This will allow us to complete the analysis of this unique sample cohort with expression 
data of much improved quality, and enable a meaningful multi-omic analysis combining 
transcriptome data with the already available methylome and DNA copy number variation data. 

Methods 

Patient identification and sample collection 
Table 1: Sample distribution 
Source 
Institution: 

Johns 
Hopkins 

UA 
Birmingham 

U Hawaii U Iowa USC Totals: 

Discovery 
Phase: 
Case 6 7 1 64 20 98 
Control 6 8 1 54 29 98 
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Normal breast    8  8 
Total 12 15 2 126 49  
       
Validation 
Phase: 

      

Case 22 6 23 64 12 127 
Control 22 6 23 62 12 125 
Normal breast       
Total 44 12 46 126 24  
 
For discovery experiments, 181 DCIS and 8 normal tissue samples passed QC and were used for the 
analysis. 
 
DNA/RNA co-extraction 
After evaluation of DCIS area by resident pathologist, DCIS epithelial cells were 
enriched via macrodissection with a clean scalpel. DNA and RNA were extracted 
using Qiagen (Hilden, Germany) Allprep RNA/DNA FFPE kit with a modified 
deparaffinization protocol, where samples were deparaffinized in xylene for 3x 10 
minute washes instead of manufacturer recommended 10 minute wash. 
DNA and RNA yield were quantified using Qubit fluorometer (Qiagen), with the 
broad range RNA and DNA reagents. 
DNA and RNA quality assessment 
DNA quality for methylation profiling was performed using the Illumina (San Diego 
CA) FFPE DNA QC kit and samples with a delta CT ≤ 6 compared to the provided 
control. RNA quality was assessed using Experion (Biorad, Hercules CA) on a 
randomly sampled subset of samples with varying yield and age of FFPE block. The 
RNA assessment showed no significant difference in RIN score or distribution of the 
RNA fragments across these samples. 
 
Data analysis 
Analyses were performed using the R statistical software [1] with base, 
Bioconductor [2] and custom functions and packages where necessary. 
 
Affymetrix HTA2 microarray 
FFPE-derived RNA was processed per manufacturer recommended protocols using 
the WT Pico kit for global amplification of the RNA and hybridization on the HTA2 
microarray. Based on our results from the titration experiment, 10ng total RNA 
were used as input. 
 
HTA2 data processing 
Per manufacturer recommendation for FFPE-derived RNA, data was processed 
using the Affymetrix Expression Console using the SST transformation, GCCN 
correction, and RMA normalization. Batch effects across processing plate were 
adjusted using COMBAT. Manufacturer recommended QC was performed and the 
positive vs negative AUC measure of 0.7 was used as a threshold to filter against 
samples of poor performance and principal component analysis (PCA) was used to 
identify outliers. A single sample was removed from further analysis, with low 
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positive vs negative AUC and behaving as outlier on PCA analysis. 
The Affymetrix HTA-2 Probeset Annotation (Release 36) was used to map probe 
sets to known genomic features. 

Differential expression analysis 
Differential expression analysis was performed using linear models for microarray 
analysis (limma) by constructing a model comparing progressive versus non-progressive 
DCIS cases. 

Gene Set Enrichment Analysis 
A rank-based GSEA-like [4] approach was used to perform gene set analysis. Briefly, 
moderated t-statistics from the DCIS progressive vs. non-progressive limma analysis 
restricted on RefSeq genes were used to rank the genes. These scores were used to 
calculate enrichment against the hallmark geneset curated by the Molecular 
Signatures Database (MSigDB) [5, 6] to identify biologically relevant gene set 
differences between progressive and non-progressive DCIS. 

Estrogen receptor (ER)-classification of DCIS samples 
A k top-scoring pairs (KTSP) approach implemented by the switchbox [7] package 
was used to build an ER classifier for both methylome and transcriptome datasets. 
Briefly, an ER classifier was built using invasive breast cancer data obtained from 
TCGA with unambiguous ER-status using a 10-fold cross validation scheme for 
parameterization. Two parameters were optimized using cross-validation 
approaches: 1) the number of features (genes or probes) in the search space 
(termed feature number, F) and 2) k pairs to use in the classifier (k). 

Feature number or search space optimization 
Feature number was optimized using a 10-fold cross-validation approach where the 
ER-positive and ER-negative samples were split proportionally into 10 sets, where 9 
sets were used as training sets and the remaining set was used as a validation set. 
The feature number was optimized by altering the search space to obtain a KTSP 
score for each of the validation samples and assessing prediction accuracy using an 
ROC analysis to maximize AUC. The number of pairs, k, was allowed to vary between 
3 (minimum requirement) and the rounded up square root of F. 

k optimization 
Following feature number optimization, the optimal number of k TSPs were 
identified using a similar schema, where 𝑘 ∈ 3…𝐹 was used to maximize the AUC 
of an ROC analysis in the validation dataset. 
Voting scheme 
Since previous measurements of prediction potential of the KTSP classifier was 
performed using ROC analyses, no thresholds were required for making a prediction 
call. In the application of this classifier in an unknown dataset, a threshold for 
classification is necessary. The classifier implements a majority vote in its decision 
process. 
Classifier validation & classification 
The ER classifier is then evaluated for predictive accuracy by using it to classify a 
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subset of DCIS with known ER-status. An empirical threshold for AUC was set at 0.8 
for the ability to predict ER-status in these samples to constitute success, before 
using the same classifier for the rest of the DCIS samples. Following validation, the 
ER-status for all the DCIS samples was predicted. 

Illumina Human Methylation 450k microarray (Illumina 450K array) 
FFPE-derived DNA were restored using the Illumina FFPE DNA restoration kit per 
manufacturer’s recommendation. Restored DNA samples were then hybridized and 
scanned according to manufacturer provided protocol. 

Illumina 450K data processing 
Raw Idat files of the Illumina 450K array were provided by the SKCCC microarray 
core and were read using the minfi package. Sample-wise call rate was calculated 
using a detection p-value cutoff of 1e-05 and density plots were used to evaluate the 
distribution of beta-values. Samples with <80% call rate or have an aberrant beta value 
distribution were excluded from downstream analyses. 
Pre-processing was performed using functional normalization. Probe-wise call rate 
was calculated using a detection p-value cut-off of 1e-05 for all probes, and probes 
with call rates of < 99% (failed in 2 or more samples) were dropped from the study. 
Probes within 3 base pairs of a known SNP with 5% minor allele frequency (MAF) 
were removed from the study. 

TCGA data 
Processed RNA-seq and Illumina 450K methylation data [3] were obtained from the 
Firehose GDAC hosted by the Broad Institute, with the data downloaded in August 
2015. 

Copy number analysis in DCIS 
Epicopy (Cho S. et al, submitted for publication) was used to obtain copy number information from 
Illumina 450K data. To adjust for FFPE-derived DNA, a more stringent threshold for minimum 
probe number per segment and fold change was implemented to obtain high quality 
segment calls. GISTIC 2.0 was used to identify and quantify recurrent copy number 
variation (CNV) across all DCIS samples. The meta-analysis results from Rane et al. 
(2015) [8] were obtained for use in a comparative Manhattan plot as the known 
CNVs in DCIS. A comparative analysis between progressive and non-progressive 
DCIS was performed by taking the difference of the frequencies of CNV observed 
across both groups. 

Transcriptome analysis using total RNA-Access in DCIS 
RNA Extraction and Quality Assessment 
Unstained histological slides were macro-dissected to enrich for tumor cells (>75%) 
using a consecutive H&E section annotated by the study pathologist as reference. 
RNA was extracted from the samples and DNase treated using the Maxwell(r) 16 
LEV RNA FFPE Purification Kit (Promega, Madison WI) following the manufacturers 
protocol. The resulting RNA was analyzed for UV absorbance wavelength ratios 
(Nanodrop; 260/230, 260/280) to determine purity and concentration. The amount 
of RNA was normalized to the DV200 value obtained from the Agilent RNA 
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Tapestation, representing the fraction of RNA >200bp in that sample. Where 
necessary, samples were concentrated using sodium acetate/ethanol precipitation 
to have a DV200-normalized input of 1ug RNA in 10uL. 
RNA fragment distribution was analyzed by the Tapestation and found to be highly 
degraded, as is expected for FFPE samples, eliminating the need for fragmentation 
before library preparation. 
Library preparation and sequencing  
FFPE-derived RNA was processed per manufacturer recommended protocols using 
the Illumina TruSeq RNA Access Library Preparation kit for global amplification of 
the RNA. Since the kit captures coding regions, no rRNA subtraction or 
poly(A)capture steps are required. The maximum recommended amount of total 
RNA (200ng) was used because of the typically low DV200 values observed in the DCIS RNA 
samples. Sequencing was performed using Illumina NexSeq500 on a pooled library of 4 samples to 
produce approximately 150 million paired-ended sequencing reads of 48 base pairs per sample. 

Results 
Unsupervised analysis of HTA2 array analysis 
Unsupervised clustering and principal component analysis (data not shown) 
revealed that signal intensities were affected by technical variation of unknown 
origin.  

T

Figure 1. Heatmap of HTA2 array showing top 2000 most variable features in DCIS. 
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he heatmap shows the top 2000 most variable features (x-axis) from the microarray across all the 
DCIS samples (y-axis). The blue/white color bar on the top represents the combined signal from a 
mix of control probes ranging from low to high amounts, spiked into the sample as a quality control 
measure. We observed correlation of expression in large blocks of features with this quality control 
measure. This behavior expands to most of the features obtained from this array and up to the second 
principal component (data not shown). Thus, we conclude that a majority of the signal from these 
arrays are attributed to technical variation, and we are unlikely to obtain useful biological 
information from these arrays. 
 
Using the Affymetrix Quality Assessment Kit to predict data quality in HTA2 arrays 
 
We established a collaboration with Affymetrix scientists to investigate our findings. We repeated a 
subset of array experiments comparing results with read-outs from the Affymetrix RT-PRC-based 
RNA Q/C kit, since the standard RNA Q/C assessment with Bioanalyzer-derived RIN-values is not 
useful for FFPE-derived RNA samples. The following data is representative of the type of predictive 
value one can expect when using the FFPE RNA Quality Assessment Kit prior to running 
Affymetrix® microarrays. 
 

 
Figure 2. Correlation plots of ∆Cq values (x-axis) vs.% Present Calls (A, y-axis), ∆Cq values (x-axis) vs. 
Pos_vs._Neg AUC (B, y-axis). 
 
 

	
Samples	

ΔCq	 38	 %	
<1	 18	 47%	
1-2	 3	 8%	

2-3	 4	 11%	
3-4	 3	 8%	
4-5	 2	 5%	

5-6	 4	 11%	
6-7	 1	 3%	
7-8	 2	 5%	

>8	 1	 3%	
sum	#	 38	 100%	

 
The Cq value is inversely proportional to the number of amplifiable templates. 74% of all FFPE 
samples tested generated ΔCq values less than 4 and should be considered as of acceptable quality 
(with predicted % Present calls around 50 based on Affymetrix in-house data).  
Our analysis indicates that ΔCq values above 3-4 in this assay showed the strongest correlation 
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between signal strength of transcript features and the spike-in controls.  
 
Three-way comparison of Illumina DASL vs Affymetrix HTA2 vs Affymetrix ClariomD gene 
expression arrays 
 While assessment of the transcriptome using FFPE-derived RNA has always been 
challenging, our lab has had excellent results with the now unfortunately discontinued DASL arrays 
by Illumina. We therefore decided  to compare one of our existing, DASL-derived datasets obtained 
from Triple-negative invasive ductal carcinomas, with the new Affymetrix platforms, both the HTA2 
arrays, which we had used for our DCIS project as described above, as well as Affymetrix’ newest 
iteration of gene expression arrays, the ClariomD. RNA stored at -80°C from the same preparations 
used for the DASL array was used in these experiments.  
 

 
Figure 3. Comparison of DASL, HTA2, and ClariomD expression arrays in TriNeg Breast Cancer. 

 
Overall, the signal intensities are about 2-fold higher on the DASL array than on the 2 Affymetrix 
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arrays, which may be an artifact of normalization, or scanner settings of the different vendors etc., 
and are adjusted for in these heatmaps.  
The heatmaps show the 1000 most differentially expressed genes/features in the samples. An 
unsupervised cluster analysis of the DASL array data suggests that samples are weakly divided into 
two groups, consistent with the study hypothesis that recurrent vs non-recurrent TriNeg Breast 
Cancer have distinguishing features. This finding is obscured on the HTA2 and ClariomD arrays. 
Intensities on the HT2.0 array are much lower, and the dynamic range seems quite small. In general, 
the 25th percentile of probe intensities should reflect background, while the 75% percentile should 
be unambiguously expressed, but those values are very close to one another on this array. These 
values would be much lower than expected on previous generations of Affymetrix chips, such as the 
hgu133. 
The ClariomD platform also has very low expression intensities, thought the dynamic range is 
slightly higher. The unsupervised cluster analysis using the most variable genes shows distinctive, 
vertical red and green stripes, a phenomenon that was evident in the DCIS HT2.0 dataset. 
The vertical stripes visible in the ClariomD heatmap are strongly associated with RNA quality. The 
heatmap presented in the bottom right is rearranged in order of RNA quality as measured by 
positive_vs_negative_AUC (Area Under the curve). 
The quantile normalization in RMA has successfully coerced the data into a common distribution. 
Despite this, the most variable genes capture a systematic bias in expression levels that is associated 
with RNA. The association with RNA quality is not evident if the most variable genes from the 
DASL array are selected instead. 
Integrative correlations provide a way of measuring gene-level agreement, across studies/platforms, 
even when there are no samples in common. Briefly, a gene has a high integrative correlation if it 
exhibits the same co-expression patterns with other genes in each dataset. In this instance, we have 
the same samples on all 3 platforms and can directly calculate gene-specific correlation coefficients 
between platforms, so we use integrative correlation as a general measure of agreement between 
platforms rather than to guide selection of informative genes. 
Integrative correlations between datasets were generally low (data not shown), probably indicating 
both heterogeneity among samples and lack of agreement between platforms.  
One characteristic distinguishing the DASL platform and the new Affymetrix arrays (but not the 
older hgu133 arrays) is that the DASL and hgu133 arrays only captured 3’-end features of 
transcripts, whereas HTA2 and ClariomD are designed to detect multiple features along the entire 
transcript. It is not how if this is related to the artifacts were are observing with lower quality RNA 
preparations, but we are in the process of running this sample set on one additional new Affymetrix 
platform, the ClariomS, which is limited to 3’-end transcript features. 
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Determining the DCIS transcriptome using Illumina RNA-Access pipeline at UNC 
In light of these results, we decided to pursue the successful collaboration with Dr. Perou’s group at 
UNC we initiated last year using the Illumina RNA-Access pipeline. The initial pilot results were 
reported in last years progress report. We now have the initial results of the first batch of 48 samples 
of the DCIS discovery cohort, of which 75% yielded mappable coding read counts. Our 
bioinformaticians, Drs. Leslie Cope and Liliana Florea, have assessed the emerging data and report 
that it should allow us to determine not just overall expression, but splice-variant analysis as well. 
The bar graphs below plot the number of reads (Millions) per sample. 

Figure 4. Total read count yields from first batch of study DCIS samples. 

It is immediately apparent that large sample-to-sample variation in read counts are present, which 
are due to competition between high and low quality RNA samples during the library generation 
process, which occurs in batches of 4 as per Illumina’s instructions. We are currently experimenting 
with binning of samples of similar RNA quality to minimize this effect, as well as repeating the 
library preparations of samples with low read counts. If necessary, we will proceed to single sample 
library preparation to maximize the library quality for these unique and irreplaceable samples.  
Figure 5 illustrates the data were are receiving from our UNC collaborators. The heatmaps shows 
expression levels of the 500 most variable genes across 12 DCIS samples that have completed the 
standard data analysis pipeline – significantly, no banding is evident for these samples. 
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Figure 5. Heatmap showing expression of top 500 most variable genes from first batch of study 
DCIS samples. 
 
Conclusion 
 
Taken together, we conclude that despite technical challenges that still persist in the 
data, we were able to detect biologically relevant signals from these DCIS samples, 
which we can augment with high quality methylation and copy number data. 
Furthermore, our continued assessment and improvement of FFPE-derived RNA analysis 
technologies yielded valuable technical insights into new array platforms, and confirmed promising 
results using the RNA-Access experimental pipeline, which we are now applying to the discovery 
set of DCIS samples.
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4. Impact

N/A 

5. Changes/Problems

See discussion of our results in section 3. 

6. Products

N/A 

7. Participants & Other Collaborating Organizations

Charles M. Perou, Ph.D, The May Goldman Shaw Distinguished 
Professor of Molecular Oncology Departments of Genetics, and 
Pathology & Laboratory Medicine 
Lineberger Comprehensive Cancer Center 
125 Mason Farm Road 
The University of North Carolina at Chapel Hill Chapel Hill, NC 27599 

8. Special Reporting Requirements

N/A 

9. Appendices
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